51
|
Antioxidant activity of the methanolic extract of the newly generated vegetable, baemuchae (xBrassicoraphanus). Food Chem Toxicol 2012; 50:848-53. [DOI: 10.1016/j.fct.2012.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 12/15/2011] [Accepted: 01/07/2012] [Indexed: 11/21/2022]
|
52
|
Mehta DR, Ashkar AA, Mossman KL. The nitric oxide pathway provides innate antiviral protection in conjunction with the type I interferon pathway in fibroblasts. PLoS One 2012; 7:e31688. [PMID: 22363706 PMCID: PMC3283670 DOI: 10.1371/journal.pone.0031688] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 01/11/2012] [Indexed: 12/30/2022] Open
Abstract
The innate host response to virus infection is largely dominated by the production of type I interferon and interferon stimulated genes. In particular, fibroblasts respond robustly to viral infection and to recognition of viral signatures such as dsRNA with the rapid production of type I interferon; subsequently, fibroblasts are a key cell type in antiviral protection. We recently found, however, that primary fibroblasts deficient for the production of interferon, interferon stimulated genes, and other cytokines and chemokines mount a robust antiviral response against both DNA and RNA viruses following stimulation with dsRNA. Nitric oxide is a chemical compound with pleiotropic functions; its production by phagocytes in response to interferon-γ is associated with antimicrobial activity. Here we show that in response to dsRNA, nitric oxide is rapidly produced in primary fibroblasts. In the presence of an intact interferon system, nitric oxide plays a minor but significant role in antiviral protection. However, in the absence of an interferon system, nitric oxide is critical for the protection against DNA viruses. In primary fibroblasts, NF-κB and interferon regulatory factor 1 participate in the induction of inducible nitric oxide synthase expression, which subsequently produces nitric oxide. As large DNA viruses encode multiple and diverse immune modulators to disable the interferon system, it appears that the nitric oxide pathway serves as a secondary strategy to protect the host against viral infection in key cell types, such as fibroblasts, that largely rely on the type I interferon system for antiviral protection.
Collapse
Affiliation(s)
- Devangi R. Mehta
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Ali A. Ashkar
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Karen L. Mossman
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
53
|
Privett BJ, Broadnax AD, Bauman SJ, Riccio DA, Schoenfisch MH. Examination of bacterial resistance to exogenous nitric oxide. Nitric Oxide 2012; 26:169-73. [PMID: 22349019 DOI: 10.1016/j.niox.2012.02.002] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 12/29/2011] [Accepted: 02/12/2012] [Indexed: 11/19/2022]
Abstract
While much research has been directed to harnessing the antimicrobial properties of exogenous NO, the possibility of bacteria developing resistance to such therapy has not been thoroughly studied. Herein, we evaluate potential NO resistance using spontaneous and serial passage mutagenesis assays. Specifically, Staphylococcus aureus, Methicillin-resistant S. aureus (MRSA), Staphylococcus epidermidis, Escherichia coli, and Pseudomonas aeruginosa were systematically exposed to NO-releasing 75mol% MPTMS-TEOS nitrosothiol particles at or below minimum inhibitory concentration (MIC) levels. In the spontaneous mutagenesis assay, bacteria that survived exposure to lethal concentrations of NO showed no increase in MIC. Similarly, no increase in MIC was observed in the serial passage mutagenesis assay after exposure of these species to sub-inhibitory concentrations of NO through 20 d.
Collapse
Affiliation(s)
- Benjamin J Privett
- University of North Carolina at Chapel Hill, Department of Chemistry, Chapel Hill, NC 27599, United States
| | | | | | | | | |
Collapse
|
54
|
De Luca C, Kharaeva Z, Raskovic D, Pastore P, Luci A, Korkina L. Coenzyme Q(10), vitamin E, selenium, and methionine in the treatment of chronic recurrent viral mucocutaneous infections. Nutrition 2011; 28:509-14. [PMID: 22079390 DOI: 10.1016/j.nut.2011.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2010] [Revised: 07/27/2011] [Accepted: 08/01/2011] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Host defense and latency determinants in viral recurrent dermatologic infections are not entirely understood, as conventional protocols are inadequate to achieve fast healing and relapse prevention. Endogenously produced oxygen/nitrogen reactive species (ROS/RNS) are essential for antiviral immune defense, while their excess may aggravate skin inflammation. Here, we sought a nutritional approach capable of controlling ROS/RNS balance to accelerate recovery and inhibit recurrences of two mucocutaneous chronic DNA-virus infections. METHODS Two controlled clinical trials evaluated the feasibility of ROS/RNS-modulating nutriceutical dosages of coenzyme Q(10), RRR-α-tocopherol, selenium aspartate, and L-methionine associated with established therapies. Clinical trial 1 evaluated 68 patients with relapsing human papillomavirus skin warts treated with cryotherapy followed by 180 d of nutriceutical/placebo administration. Clinical trial 2 compared the combination of acyclovir followed by 90 d of nutriceutical administration versus acyclovir alone in patients with recurrences of herpes simplex genitalis (n = 60) or herpes zoster (n = 29). Viral DNA levels were assessed by polymer chain reaction, biomarkers of antiviral defense (peroxynitrite and IFNα/γ) and antioxidant capacity (lipophilic antioxidants and glutathione) were assayed by biochemical/enzyme-linked immunosorbent assay techniques in blood fractions. RESULTS In both trials, the nutriceutical induced significantly faster healing (P < 0.01-0.05) with reduced incidence of relapses (P < 0.05) as compared to control groups, which was confirmed by decreased viral load and increased antiviral cytokine and peroxynitrite plasma levels. Plasma antioxidant capacity was higher (P < 0.01) in the experimental versus control groups. CONCLUSIONS Results document positive clinical outcomes of the selected nutriceutical associated with conventional protocols in the management of relapsing mucocutaneous human papillomavirus and herpes infections.
Collapse
Affiliation(s)
- Chiara De Luca
- Dermatology Research Institute (IDI IRCCS), Rome, Italy.
| | | | | | | | | | | |
Collapse
|
55
|
Bertrand R, Danielson D, Gong V, Olynik B, Eze MO. Sodium nitroprusside may modulate Escherichia coli antioxidant enzyme expression by interacting with the ferric uptake regulator. Med Hypotheses 2011; 78:130-3. [PMID: 22061896 DOI: 10.1016/j.mehy.2011.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 09/28/2011] [Accepted: 10/07/2011] [Indexed: 11/28/2022]
Abstract
Efforts to explore possible relationships between nitric oxide (NO) and antioxidant enzymes in an Escherichia coli model have uncovered a possible interaction between sodium nitroprusside (SNP), a potent, NO-donating drug, and the ferric uptake regulator (Fur), an iron(II)--dependent regulator of antioxidant and iron acquisition proteins present in Gram-negative bacteria. The enzymatic profiles of superoxide dismutase and hydroperoxidase during logarithmic phase of growth were studied via non-denaturing polyacrylamide gel electrophoresis and activity staining specific to each enzyme. Though NO is known to induce transcription of the manganese-bearing isozyme of SOD (MnSOD), treatment with SNP paradoxically suppressed MnSOD expression and greatly enhanced the activity of the iron-containing equivalent (FeSOD). Fur, one of six global regulators of MnSOD transcription, is uniquely capable of suppressing MnSOD while enhancing FeSOD expression through distinct mechanisms. We thus hypothesize that Fur is complacent in causing this behaviour and that the iron(II) component of SNP is activating Fur. E. coli was also treated with the SNP structural analogues, potassium ferricyanide (PFi) and potassium ferrocyanide (PFo). Remarkably, the ferrous PFo was capable of mimicking the SNP-related pattern, whereas the ferric PFi was not. As Fur depends upon ferrous iron for activation, we submit this observation of redox-specificity as preliminary supporting evidence for the hypothesized Fur-SNP interaction. Iron is an essential metal that the human innate immune system sequesters to prevent its use by invading pathogens. As NO is known to inhibit iron-bound Fur, and as activated Fur regulates iron uptake through feedback inhibition, we speculate that the administration of this drug may disrupt this strategic management of iron in favour of residing Gram-negative species by providing a source of iron in an otherwise iron-scarce environment capable of encouraging its own uptake. However, these gains may be counteracted by the oxidative consequences of iron and NO, as the former can catalyse the formation of toxic free radical species while the latter can inhibit enzymes and contribute to the formation of other toxic compounds. The potential consequences of SNP on microbial growth warrant future investigation.
Collapse
Affiliation(s)
- R Bertrand
- Department of Chemistry, University of Winnipeg, Winnipeg, Manitoba, Canada R3B 2E9
| | | | | | | | | |
Collapse
|
56
|
Gundogdu O, Mills DC, Elmi A, Martin MJ, Wren BW, Dorrell N. The Campylobacter jejuni transcriptional regulator Cj1556 plays a role in the oxidative and aerobic stress response and is important for bacterial survival in vivo. J Bacteriol 2011; 193:4238-49. [PMID: 21642451 PMCID: PMC3147681 DOI: 10.1128/jb.05189-11] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 05/25/2011] [Indexed: 01/11/2023] Open
Abstract
Campylobacter jejuni is the leading bacterial cause of human gastroenteritis worldwide. Despite stringent microaerobic growth requirements, C. jejuni is ubiquitous in the aerobic environment and so must possess regulatory systems to sense and adapt to external stimuli, such as oxidative and aerobic (O(2)) stress. Reannotation of the C. jejuni NCTC11168 genome sequence identified Cj1556 (originally annotated as a hypothetical protein) as a MarR family transcriptional regulator, and further analysis indicated a potential role in regulating the oxidative stress response. A C. jejuni 11168H Cj1556 mutant exhibited increased sensitivity to oxidative and aerobic stress, decreased ability for intracellular survival in Caco-2 human intestinal epithelial cells and J774A.1 mouse macrophages, and a reduction in virulence in the Galleria mellonella infection model. Microarray analysis of gene expression changes in the Cj1556 mutant indicated negative autoregulation of Cj1556 expression and downregulation of genes associated with oxidative and aerobic stress responses, such as katA, perR, and hspR. Electrophoretic mobility shift assays confirmed the binding of recombinant Cj1556 to the promoter region upstream of the Cj1556 gene. cprS, which encodes a sensor kinase involved in regulation of biofilm formation, was also upregulated in the Cj1556 mutant, and subsequent studies showed that the mutant had a reduced ability to form biofilms. This study identified a novel C. jejuni transcriptional regulator, Cj1556, that is involved in oxidative and aerobic stress responses and is important for the survival of C. jejuni in the natural environment and in vivo.
Collapse
Affiliation(s)
- Ozan Gundogdu
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Dominic C. Mills
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Abdi Elmi
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Melissa J. Martin
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Brendan W. Wren
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Nick Dorrell
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| |
Collapse
|
57
|
Ramasamy KT, Reddy MR, Murugesan S. Toll-like receptor mRNA expression, iNOS gene polymorphism and serum nitric oxide levels in indigenous chickens. Vet Res Commun 2011; 35:321-7. [PMID: 21607608 DOI: 10.1007/s11259-011-9472-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2011] [Indexed: 01/27/2023]
Abstract
Toll-like receptor (TLR) family is one of the important members of innate immune system that recognizes conserved microbial patterns and induces innate immune response. They also act as a link to adaptive immune response. Nitric oxide (NO) is a multi-functional mediator with diverse physiological and immunological roles. In the present study TLR mRNA expression in heterophils, serum nitric oxide level and iNOS (inducible Nitric Oxide Synthase) gene polymorphism were investigated in cockerels of two Indian native chicken breeds, Aseel and Kadaknath. TLR (4 and 5) mRNA expression as quantified by real time RT-PCR revealed Kadaknath males expressed significantly (P < 0.01) higher TLR4 mRNA than Aseel males. iNOS gene polymorphism analyzed by PCR-RFLP method revealed difference in allele frequency. Kadaknath males had higher allele B frequency (0.81) than Aseel males (0.56). However, there were no genotype and breed effect on serum nitric oxide level. Based on the present study we conclude that Kadaknath has comparatively higher innate immunity levels than Aseel, however further investigations are needed.
Collapse
Affiliation(s)
- Kannaki T Ramasamy
- Project Directorate on Poultry, Rajendranagar, Hyderabad, 500030, Andhra Pradesh, India.
| | | | | |
Collapse
|
58
|
Qu W, Zhou Y, Sun Y, Fang M, Yu H, Li W, Liu Z, Zeng J, Chen C, Gao C, Jia J. Identification of S-nitrosylation of proteins of Helicobacter pylori in response to nitric oxide stress. J Microbiol 2011; 49:251-6. [PMID: 21538246 DOI: 10.1007/s12275-011-0262-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 11/10/2010] [Indexed: 12/16/2022]
Abstract
Innate and adaptive immune responses are activated in humans when Helicobacter pylori invades the gastric mucosa. Nitric oxide (NO) and reactive nitrogen species are important immune effectors, which can exert their functions through oxidation and S-nitrosylation of proteins. S-nitrosoglutathione and sodium nitroprus-side were used as NO donors and H. pylori cells were incubated with these compounds to analyze the inhibitory effect of NO. The suppressing effect of NO on H. pylori has been shown in vitro. Furthermore, the proteins modified by S-nitrosylation in H. pylori were identified through the biotin switch method in association with matrix-assisted laser desorption ionization/time-of-flight tandem mass spectrometry (MALDI-TOF-MS/MS). Five S-nitrosylated proteins identified were a chaperone and heat-shock protein (GroEL), alkyl hydroperoxide reductase (TsaA), urease alpha subunit (UreA), HP0721, and HP0129. Importantly, S-nitrosylation of TsaA and UreA were confirmed using purified recombinant proteins. Considering the importance of these enzymes in antioxidant defenses, adherence, and colonization, NO may exert its antibacterial actions by targeting enzymes through S-nitrosylation. Identification of protein S-nitrosylation may contribute to an understanding of the antibacterial actions of NO. Our findings provide an insight into potential targets for the development of novel therapeutic agents against H. pylori infection.
Collapse
Affiliation(s)
- Wei Qu
- Department of Microbiology and Immunology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan, Shandong 250012, P R China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Ihara H, Sawa T, Nakabeppu Y, Akaike T. Nucleotides function as endogenous chemical sensors for oxidative stress signaling. J Clin Biochem Nutr 2010; 48:33-9. [PMID: 21297909 PMCID: PMC3022061 DOI: 10.3164/jcbn.11-003fr] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 09/10/2010] [Indexed: 01/31/2023] Open
Abstract
Oxidized and nitrated nucleotides including 8-oxogunanine and 8-nitroguanine derivatives such as 8-nitroguanosine 3',5'-cyclic monophosphate were generated by reactive nitrogen oxides and reactive oxygen species in cultured cells and in tissues. 8-oxoguanine and 8-nitroguanine in DNA and RNA are potentially mutagenic, and the former also induces cell death. Some derivative, 8-nitroguanosine 3',5'-cyclic monophosphate a major nitrated guanine nucleotide, was identified as a novel second messenger. Surprisingly, the amount of 8-nitroguanosine 3',5'-cyclic monophosphate generated was found to be higher than that of guanosine 3',5'-cyclic monophosphate in cells expressing inducible nitric oxide synthase. More important, 8-nitroguanosine 3',5'-cyclic monophosphate is electrophilic and reacted efficiently with sulfhydryls of proteins to produce a novel posttranslational modification (named S-guanylation) via guanosine 3',5'-cyclic monophosphate adduction. For example, 8-nitroguanosine 3',5'-cyclic monophosphate-induced S-guanylation of Kelch-like ECH-associated protein 1 led to NF-E2-related factor activation and induction of antioxidant enzymes. 8-nitroguanosine 3',5'-cyclic monophosphate may thus protect cells against oxidative stress-related cytotoxicity. Therefore, although chemically modified nucleotides produced via oxidative and nitrative stress are regarded simply as endogenous mutagens, the endogenous nucleotides stored in cells per se may serve functionally as a sensing mechanism for reactive nitrogen oxides and oxygen species to induce cellular adaptive responses to oxidative stress.
Collapse
Affiliation(s)
- Hideshi Ihara
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531, Japan
| | | | | | | |
Collapse
|
60
|
Privett BJ, Deupree SM, Backlund CJ, Rao KS, Johnson CB, Coneski PN, Schoenfisch MH. Synergy of nitric oxide and silver sulfadiazine against gram-negative, gram-positive, and antibiotic-resistant pathogens. Mol Pharm 2010; 7:2289-96. [PMID: 20939612 DOI: 10.1021/mp100248e] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The synergistic activity between nitric oxide (NO) released from diazeniumdiolate-modified proline (PROLI/NO) and silver(I) sulfadiazine (AgSD) was evaluated against Escherichia coli, Enterococcus faecalis, Proteus mirabilis, Pseudomonas aeruginosa, Staphylococcus aureus and Staphylococcus epidermidis using a modified broth microdilution technique and a checkerboard-type assay. The combination of NO and AgSD was defined as synergistic when the fractional bactericidal concentration (FBC) was calculated to be <0.5. Gram-negative species were generally more susceptible to the individual antimicrobial agents than the Gram-positive bacteria, while Gram-positive bacteria were more susceptible to combination therapy. The in vitro synergistic activity of AgSD and NO observed against a range of pathogens strongly supports future investigation of this therapeutic combination, particularly for its potential use in the treatment of burns and chronic wounds.
Collapse
Affiliation(s)
- Benjamin J Privett
- Department of Chemistry, University of North Carolina at Chapel Hill, North Carolina 27599, United States
| | | | | | | | | | | | | |
Collapse
|
61
|
Chandru H, Chen G. Human Hydroxysteroid Sulfotransferase 2A1 is Down Regulated by Nitric Oxide in Human Hep G2 Cells. INT J PHARMACOL 2010. [DOI: 10.3923/ijp.2010.631.637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
62
|
Abstract
Cellular damage occurring under oxidative conditions has been ascribed mainly to the formation of peroxynitrite (ONOOH/ONOO(-)) that originates from the reaction of NO(*) with O(2) (*-). The detrimental effects of peroxynitrite are exacerbated by the reaction with CO(2) that leads to ONOOC(O)O(-), which further decays to the strong oxidant radicals NO(2) (*) and CO(3) (*-). The reaction with CO(2), however, may redirect peroxynitrite specificity. An excessive formation of peroxynitrite represents an important mechanism contributing to the DNA damage, the inactivation of metabolic enzymes, ionic pumps, and structural proteins, and the disruption of cell membranes. Because of its ability to oxidize biomolecules, peroxynitrite is implicated in an increasing list of diseases, including neurodegenerative and cardiovascular disorders, inflammation, pain, autoimmunity, cancer, and aging. However, peroxynitrite displays also protective activities: (i) at high concentrations, it shows anti-viral, anti-microbial, and anti-parasitic actions; and (ii) at low concentrations, it stimulates protective mechanisms in the cardiovascular, nervous, and respiratory systems. The detrimental effects of peroxynitrite and related reactive species are impaired by (pseudo-) enzymatic systems, mainly represented by heme-proteins (e.g., hemoglobin and myoglobin). Here, we report biochemical aspects of peroxynitrite actions being at the root of its biomedical effects.
Collapse
|
63
|
Gill R, Tsung A, Billiar T. Linking oxidative stress to inflammation: Toll-like receptors. Free Radic Biol Med 2010; 48:1121-32. [PMID: 20083193 PMCID: PMC3423196 DOI: 10.1016/j.freeradbiomed.2010.01.006] [Citation(s) in RCA: 412] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2009] [Revised: 01/01/2010] [Accepted: 01/05/2010] [Indexed: 02/06/2023]
Abstract
Injury caused by oxidative stress occurs in many clinical scenarios involving ischemia and reperfusion such as organ transplantation, hemorrhagic shock (HS), myocardial infarction, and cerebral vascular accidents. Activation of the immune system as a result of disturbances in the redox state of cells seems to contribute to tissue and organ damage in these conditions. The link between oxidative stress and inflammatory pathways is poorly understood. Recently, Toll-like receptors (TLRs) have been shown to mediate the inflammatory response seen in experimental ischemia and reperfusion (I/R). The TLR family of receptors involved in alerting the innate immune system of danger seems to be activated by damage-associated molecular pattern molecules (DAMPs) that are released during conditions of oxidative stress. In this review, we examine the role of TLRs in various experimental models of oxidative stress such as HS and I/R. We also report on potential DAMPs that may interact with TLRs in mediating injury. Finally, potential mechanisms by which reactive oxygen species from NADPH oxidase can signal the commencement of inflammatory pathways through TLRs are explored.
Collapse
Affiliation(s)
- Roop Gill
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | | | |
Collapse
|
64
|
Choi JM, Kim JH, Cho EJ. Protective activity of purple sweet potato extract-added soymilk fermented by Bacillus subtilis against oxidative stress. Food Sci Biotechnol 2010. [DOI: 10.1007/s10068-010-0064-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
65
|
Huang YJ, Zhang BB, Ma N, Murata M, Tang AZ, Huang GW. Nitrative and oxidative DNA damage as potential survival biomarkers for nasopharyngeal carcinoma. Med Oncol 2010; 28:377-84. [PMID: 20339958 DOI: 10.1007/s12032-010-9434-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 01/25/2010] [Indexed: 12/14/2022]
Abstract
Currently, there are no satisfactory biomarkers available to screen for nasopharyngeal carcinoma (NPC). Nitric oxide (NO), produced by inducible nitric oxide synthase (iNOS), has been suggested to cause nitrative and oxidative stress, leading to the accumulation of 8-nitroguanine (8-NitroG) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) and the subsequent transversion mutation of DNA. The aim of this study was to evaluate iNOS expression and the status of nitrative and oxidative stress in NPC. Fifty-nine cases of NPC and 39 cases of chronic nasopharyngitis were investigated to examine the expression of iNOS and the formation of 8-NitroG and 8-OHdG, using double-immunofluorescent staining. The statistical differences in immunoreactivities were analyzed using the Mann-Whitney test. Thirty-six patients from the 57 cases of NPC and 36 healthy controls were investigated to examine the level of serum 8-OHdG, using enzyme-linked immunosorbent assay (ELISA). The statistical differences were analyzed using a t test. Strong DNA lesions were observed in the cancer cells of NPC patients. All cases of NPC were positive for 8-NitroG and 8-OHdG, and 54 (94.7%) were positive for iNOS. NPC samples exhibited significantly more intense staining for 8-NitroG, 8-OHdG and iNOS than those of chronic nasopharyngitis (P < 0.05, respectively). The mean value of serum 8-OHdG in the 36 NPC patients was 0.538 ± 0.336 ng/ml compared to 0.069 ± 0.059 ng/ml for the healthy controls. The difference in the serum levels of 8-OHdG between the NPC patients and controls was statistically significant (P < 0.05). Our present findings suggest that pathological stimulation of nasopharyngeal tissue, caused by bacterial, viral or parasitic inflammation, may lead to nitrative and oxidative DNA lesions, caused by NO. This may contribute to the cause and development of NPC. Thus, 8-NitroG and 8-OHdG could be potential biomarkers for evaluating the risk of NPC. Better understanding of the molecular mechanisms underlying nitrative and oxidative DNA damage may provide clues to molecular targets for new approaches of NPC prevention.
Collapse
Affiliation(s)
- Yuan-Jiao Huang
- Medical Scientific Research Center, Guangxi Medical University, 530021 Nanning, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
66
|
Heaselgrave W, Andrew PW, Kilvington S. Acidified nitrite enhances hydrogen peroxide disinfection of Acanthamoeba, bacteria and fungi. J Antimicrob Chemother 2010; 65:1207-14. [DOI: 10.1093/jac/dkq075] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
67
|
Peroxynitrite scavenging by ferryl sperm whale myoglobin and human hemoglobin. Biochem Biophys Res Commun 2009; 390:27-31. [PMID: 19766099 DOI: 10.1016/j.bbrc.2009.09.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 09/14/2009] [Indexed: 11/21/2022]
Abstract
Globins protect from the oxidative and nitrosative cell damage. Here, kinetics of peroxynitrite scavenging by ferryl sperm whale myoglobin (MbFe(IV)O) and human hemoglobin (HbFe(IV)O), between pH 5.8 and 8.3 at 20.0 degrees C, are reported. In the absence of CO(2), values of the second-order rate constant for peroxynitrite scavenging by MbFe(IV)O and HbFe(IV)O (i.e., for MbFe(III) and HbFe(III) formation; k(on)) are 4.6 x 10(4)M(-1)s(-1) and 3.3 x 10(4)M(-1)s(-1), respectively, at pH 7.1. Values of k(on) increase on decreasing pH with pK(a) values of 6.9 and 6.7, this suggests that the ONOOH species reacts preferentially with MbFe(IV)O and HbFe(IV)O. In the presence of CO(2) (=1.2 x 10(-3)M), values of k(on) for peroxynitrite scavenging by MbFe(IV)O and HbFe(IV)O are essentially pH-independent, the average k(on) values are 7.1 x 10(4)M(-1)s(-1) and 1.2 x 10(5)M(-1)s(-1), respectively. As a whole, MbFe(IV)O and HbFe(IV)O, obtained by treatment with H(2)O(2), undertake within the same cycle H(2)O(2) and peroxynitrite detoxification.
Collapse
|
68
|
Qu W, Zhou Y, Shao C, Sun Y, Zhang Q, Chen C, Jia J. Helicobacter pylori proteins response to nitric oxide stress. J Microbiol 2009; 47:486-93. [PMID: 19763424 DOI: 10.1007/s12275-008-0266-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 04/01/2009] [Indexed: 12/12/2022]
Abstract
Helicobacter pylori is a highly pathogenic microorganism with various strategies to evade human immune responses. Nitric oxide (NO) and reactive nitrogen species (RNS) generated via nitric oxide synthase pathway are important effectors during the innate immune response. However, the mechanisms of H. pylori to survive the nitrosative stress are not clear. Here the proteomic approach has been used to define the adaptive response of H. pylori to nitrosative stress. Proteomic analysis showed that 38 protein spots were regulated by NO donor, sodium nitroprusside (SNP). These proteins were involved in protein processing, anti-oxidation, general stress response, and virulence, as well as some unknown functions. Particularly, some of them were participated in iron metabolism, potentially under the control of ferric uptake regulator (Fur). Real time PCR revealed that fur was induced under nitrosative stress, consistent with our deduction. One stress-related protein up-regulated under nitrosative conditions was thioredoxin reductase (TrxR). Inactivation of fur or trxR can lead to increased susceptivity to nitrosative stress respectively. These studies described the adaptive response of H. pylori to nitric oxide stress, and analyzed the relevant role of Fur regulon and TrxR in nitrosative stress management.
Collapse
Affiliation(s)
- Wei Qu
- Department of Microbiology and Key Lab for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan 250012, P. R. China
| | | | | | | | | | | | | |
Collapse
|
69
|
Dezengrini R, Weiss M, Torres FD, Oliveira MS, Furian F, Mello CF, Weiblen R, Flores EF. Bovine herpesvirus 5 induces an overproduction of nitric oxide in the brain of rabbits that correlates with virus dissemination and precedes the development of neurological signs. J Neurovirol 2009; 15:153-63. [PMID: 19115129 DOI: 10.1080/13550280802578067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We herein report an investigation of nitric oxide (NO) levels, a candidate molecule for neuronal toxicity and dysfunction, in the brain of rabbits during experimental neurological infection by bovine herpesvirus 5 (BoHV-5). Spectrophotometry for NO products (NO(2) and NO(3)) revealed that NO levels were significantly increased (F(4, 40) = 3.33; P <.02) in several regions of the brain of rabbits with neurological disease, correlating with moderate to high BoHV-5 titers. Immunohistochemistry of brain regions revealed a group of cells with neuronal and astrocyte morphology expressing the enzyme inducible NO synthase (iNOS) close to virus antigen-positive neurons. In addition, the investigation of nitric oxide levels between 2 and 6 days post infection (d.p.i.) revealed an initial increase in NO levels in the olfactory bulb and cortex (OB/OC) and anterior cortex (AC) at day 3 p.i., correlating with the initial detection of virus. As the infection proceeded, increased NO levels-and infectivity-were progressively being detected in the OB/CO and AC at day 4 p.i. (F(12, 128) = 2.82; P <.003); at day 5 p.i. in several brain regions (P <.003 in the OB/OC); and at day 6 p.i. in all regions (P <.003) but the thalamus. These results show that BoHV-5 replication in the brain of rabbits induces an overproduction of NO. The increase in NO levels in early infection correlated spatially and temporally with virus dissemination within the brain and preceded the development of neurological signs. Thus, the overproduction of NO in the brain of BoHV-5-infected rabbits may be a component of the pathogenesis of BoHV-5-induced neurological disease.
Collapse
Affiliation(s)
- R Dezengrini
- Setor de Virologia, Departamento de Medicina Veterinaria Preventiva, Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Albert Christophersen O, Haug A. Possible roles of oxidative stress, local circulatory failure and nutrition factors in the pathogenesis of hypervirulent influenza: Implications for therapy and global emergency preparedness. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2009. [DOI: 10.1080/08910600500497655] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
| | - Anna Haug
- Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
71
|
Chaturvedi UC, Nagar R. Nitric oxide in dengue and dengue haemorrhagic fever: necessity or nuisance? FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2009; 56:9-24. [PMID: 19239490 PMCID: PMC7110348 DOI: 10.1111/j.1574-695x.2009.00544.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 12/23/2008] [Accepted: 01/22/2009] [Indexed: 01/03/2023]
Abstract
Advances in free radical research show that reactive oxygen and nitrogen oxide species, for example superoxide, nitric oxide (NO) and peroxynitrite, play an important role in the pathogenesis of different viral infections, including dengue virus. The pathogenic mechanism of dengue haemorrhagic fever (DHF) is complicated and is not clearly understood. The hallmarks of the dengue disease, the antibody-dependent enhancement, the shift from T-helper type 1 (Th1) to Th2 cytokine response and the cytokine tsunami resulting in vascular leakage can now be explained much better with the knowledge gained about NO and peroxynitrite. This paper makes an effort to present a synthesis of the current opinions to explain the pathogenesis of DHF/shock syndrome with NO on centre stage.
Collapse
|
72
|
Deupree SM, Schoenfisch MH. Morphological analysis of the antimicrobial action of nitric oxide on gram-negative pathogens using atomic force microscopy. Acta Biomater 2009; 5:1405-15. [PMID: 19250890 DOI: 10.1016/j.actbio.2009.01.025] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 01/08/2009] [Accepted: 01/26/2009] [Indexed: 11/18/2022]
Abstract
Atomic force microscopy (AFM) was used to study the morphological changes of two gram-negative pathogens, Pseudomonas aeruginosa and Escherichia coli, after exposure to nitric oxide (NO). The time-dependent effects of NO released from a xerogel coating and the concentration-dependent effects rendered by a small molecule that releases NO in a bolus were examined and compared. Bacteria exhibited irregular and degraded exteriors. With NO-releasing surfaces, an increase in surface debris and disorganized adhesion patterns were observed compared to controls. Analysis of cell surface topography revealed that increasing membrane roughness correlated with higher doses of NO. At a lower total dose, NO delivered via a bolus resulted in greater membrane roughness than NO released from a surface via a sustained flux. At sub-inhibitory levels, treatment with amoxicillin, an antibiotic known to compromise the integrity of the cell wall, led to morphologies resembling those resulting from NO treatment. Our observations indicate that cell envelope deterioration is a visible consequence of NO-exposure for both gram-negative species studied.
Collapse
Affiliation(s)
- Susan M Deupree
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
73
|
Association between high risk papillomavirus DNA and nitric oxide release in the human uterine cervix. Gynecol Oncol 2009; 114:323-6. [PMID: 19481240 DOI: 10.1016/j.ygyno.2009.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 05/05/2009] [Accepted: 05/06/2009] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Local cervical factors may determine the outcome of human papillomavirus (HPV) infection. Nitric oxide (NO) may be one such factor, since it is produced by uterine cervical cells and it takes part in both immunological and carcinogenic reactions. We studied the association between the presence of cervical high risk (hr) HPV DNA and NO in the cervical canal in women. METHODS High risk HPV DNA status was assessed from 328 women by using a specific DNA test and the release of cervical NO was assessed as nitrate/nitrite in cervical fluid. Cervical NO was then compared between women showing different status of hr HPV DNA and different cytological and histological findings. RESULTS High risk HPV DNA was present in 175/328 (53%) women. The cervical NO release in women with hr HPV DNA was 90% higher compared to hr HPV DNA negative women (p<0.001) (median 45.2 micromol/L; 95% CI 35.2-53.1 vs. 23.8 micromol/L; 95% CI 21.0-26.1). This elevation was not affected by parity, use of oral contraception, intrauterine devices, or signs of bacterial vaginosis or candida infection. Cytologically healthy epithelium and epithelium with mild cytological or histological changes showed elevated NO release if hr HPV DNA was present. CONCLUSIONS The presence of hr HPV DNA is associated with an increased release of NO in the human uterine cervix. The clinical significance of this phenomenon remains open.
Collapse
|
74
|
Zaki MH, Fujii S, Okamoto T, Islam S, Khan S, Ahmed KA, Sawa T, Akaike T. Cytoprotective function of heme oxygenase 1 induced by a nitrated cyclic nucleotide formed during murine salmonellosis. THE JOURNAL OF IMMUNOLOGY 2009; 182:3746-56. [PMID: 19265153 DOI: 10.4049/jimmunol.0803363] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Signaling mechanisms of NO-mediated host defense are yet to be elucidated. In this study, we report a unique signal pathway for cytoprotection during Salmonella infection that involves heme oxygenase 1 (HO-1) induced by a nitrated cyclic nucleotide, 8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP). Wild-type C57BL/6 mice and C57BL/6 mice lacking inducible NO synthase (iNOS) were infected with Salmonella enterica serovar Typhimurium LT2. HO-1 was markedly up-regulated during the infection, the level being significantly higher in wild-type mice than in iNOS-deficient mice. HO-1 up-regulation was associated with 8-nitro-cGMP formation detected immunohistochemically in Salmonella-infected mouse liver and peritoneal macrophages. 8-Nitro-cGMP either exogenously added or formed endogenously induced HO-1 in cultured macrophages infected with Salmonella. HO-1 inhibition by polyethylene glycol-conjugated zinc-protoporphyrin IX impaired intracellular killing of bacteria in mouse liver and in both RAW 264 cells and peritoneal macrophages. Infection-associated apoptosis was also markedly increased in polyethylene glycol-conjugated zinc-protoporphyrin IX-treated mouse liver cells and cultured macrophages. This effect of HO-1 inhibition was further confirmed by using HO-1 short interfering RNA in peritoneal macrophages. Our results suggest that HO-1 induced by NO-mediated 8-nitro-cGMP formation contributes, via its potent cytoprotective function, to host defense during murine salmonellosis.
Collapse
Affiliation(s)
- Mohammad Hasan Zaki
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Yang CS, Yuk JM, Jo EK. The role of nitric oxide in mycobacterial infections. Immune Netw 2009; 9:46-52. [PMID: 20107543 PMCID: PMC2803309 DOI: 10.4110/in.2009.9.2.46] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 03/10/2009] [Indexed: 12/24/2022] Open
Abstract
Although tuberculosis poses a significant health threat to the global population, it is a challenge to develop new and effective therapeutic strategies. Nitric oxide (NO) and inducible NO synthase (iNOS) are important in innate immune responses to various intracellular bacterial infections, including mycobacterial infections. It is generally recognized that reactive nitrogen intermediates play an effective role in host defense mechanisms against tuberculosis. In a murine model of tuberculosis, NO plays a crucial role in antimycobacterial activity; however, it is controversial whether NO is critically involved in host defense against Mycobacterium tuberculosis in humans. Here, we review the roles of NO in host defense against murine and human tuberculosis. We also discuss the specific roles of NO in the central nervous system and lung epithelial cells during mycobacterial infection. A greater understanding of these defense mechanisms in human tuberculosis will aid in the development of new strategies for the treatment of disease.
Collapse
Affiliation(s)
- Chul-Su Yang
- Department of Microbiology and Infection Signaling Network Research Center, College of Medicine, Chungnam National University, Daejeon 301-747, Korea
| | | | | |
Collapse
|
76
|
Kagota S, Tada Y, Nejime N, Nakamura K, Kunitomo M, Shinozuka K. Chronic production of peroxynitrite in the vascular wall impairs vasorelaxation function in SHR/NDmcr-cp rats, an animal model of metabolic syndrome. J Pharmacol Sci 2009; 109:556-64. [PMID: 19346675 DOI: 10.1254/jphs.08273fp] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
We have previously reported that peroxynitrite is involved in dysfunction of nitric oxide (NO)-mediated vasorelaxation in SHR/NDmcr-cp rats (SHR-cp), which display typical symptoms of metabolic syndrome. This study investigated whether peroxynitrite is actually generated in the vascular wall with angiotensin II-induced NADPH-oxidase activation, thus contributing to the dysfunction. In isolated mesenteric arteries of male 18-week-old SHR-cp, relaxations in response to acetylcholine and sodium nitroprusside were impaired compared with that in Wistar-Kyoto rats. This impaired relaxation was not restored by treatment with apocynin, an NADPH-oxidase inhibitor. Protein expression of endothelial NO synthase increased while that of soluble guanylyl cyclase (sGC) decreased in the artery. We observed increased production of superoxide anions and peroxynitrite from the artery and their inhibition by apocynin, and also increased contents of nitrotyrosine, a biomarker of peroxynitrite, in mesenteric arteries and angiotensin II in aortas. Long-term (8 weeks) administration of telmisartan, an angiotensin II type 1-receptor antagonist, prevented the impaired vasorelaxation, decreased sGC expression and increased nitrotyrosine content in mesenteric arteries. These findings suggest that in the vascular wall of SHR-cp, peroxynitrite is continually produced by the reaction of NO with NADPH oxidase-derived superoxide via angiotensin II and gradually denatures sGC protein, leading to vasorelaxation dysfunction.
Collapse
Affiliation(s)
- Satomi Kagota
- Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan.
| | | | | | | | | | | |
Collapse
|
77
|
Electrochemical quantification of reactive oxygen and nitrogen: challenges and opportunities. Anal Bioanal Chem 2009; 394:95-105. [DOI: 10.1007/s00216-009-2692-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2008] [Revised: 01/29/2009] [Accepted: 02/09/2009] [Indexed: 01/09/2023]
|
78
|
Possible effects of microbial ecto-nucleoside triphosphate diphosphohydrolases on host-pathogen interactions. Microbiol Mol Biol Rev 2009; 72:765-81, Table of Contents. [PMID: 19052327 DOI: 10.1128/mmbr.00013-08] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In humans, purinergic signaling plays an important role in the modulation of immune responses through specific receptors that recognize nucleoside tri- and diphosphates as signaling molecules. Ecto-nucleoside triphosphate diphosphohydrolases (ecto-NTPDases) have important roles in the regulation of purinergic signaling by controlling levels of extracellular nucleotides. This process is key to pathophysiological protective responses such as hemostasis and inflammation. Ecto-NTPDases are found in all higher eukaryotes, and recently it has become apparent that a number of important parasitic pathogens of humans express surface-located NTPDases that have been linked to virulence. For those parasites that are purine auxotrophs, these enzymes may play an important role in purine scavenging, although they may also influence the host response to infection. Although ecto-NTPDases are rare in bacteria, expression of a secreted NTPDase in Legionella pneumophila was recently described. This ecto-enzyme enhances intracellular growth of the bacterium and potentially affects virulence. This discovery represents an important advance in the understanding of the contribution of other microbial NTPDases to host-pathogen interactions. Here we review other progress made to date in the characterization of ecto-NTPDases from microbial pathogens, how they differ from mammalian enzymes, and their association with organism viability and virulence. In addition, we postulate how ecto-NTPDases may contribute to the host-pathogen interaction by reviewing the effect of selected microbial pathogens on purinergic signaling. Finally, we raise the possibility of targeting ecto-NTPDases in the development of novel anti-infective agents based on potential structural and clear enzymatic differences from the mammalian ecto-NTPDases.
Collapse
|
79
|
Fujikura Y, Kudlackova P, Vokurka M, Krijt J, Melkova Z. The effect of nitric oxide on vaccinia virus-encoded ribonucleotide reductase. Nitric Oxide 2008; 20:114-21. [PMID: 18951991 DOI: 10.1016/j.niox.2008.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 09/29/2008] [Accepted: 09/30/2008] [Indexed: 10/21/2022]
Abstract
Growth inhibition of the DNA virus vaccinia (VACV) by NO is known to occur at the level of DNA synthesis. This inhibition is partially reversed by addition of deoxyribonucleosides, suggesting that NO or NO-related species inhibit viral ribonucleotide reductase (RR). However, the effect of NO on VACV-encoded RR or other DNA-synthesizing enzymes has not been demonstrated. In order to study the effects of NO on VACV-encoded RR, DNA polymerase (DNA pol) and thymidine kinase (TK), we generated a VACV recombinant expressing murine macrophage iNOS under control of a VACV early/late promoter p7.5. Using this recombinant, we demonstrate that expression of iNOS and the resulting production of NO inhibit activity of the viral RR, but not of viral DNA pol and TK. This NO-mediated inhibition of viral RR occurred around the same time as the increase of ADP levels, while it preceded the block in VACV DNA synthesis and the decrease of ATP levels. In addition, we tested the effects of DPTA/NONOate on the growth of different VACV mutants. Fold-inhibition of the growth of VACV deletion mutant for TK was comparable to that of wild-type VACV. VACV containing amplification of the gene for the small subunit of RR appeared to be least sensitive to DPTA/NONOate, while VACV deletion mutant for the large subunit of RR was most sensitive. The results provide a direct evidence for NO-mediated inhibition of VACV-encoded RR.
Collapse
Affiliation(s)
- Yuzo Fujikura
- Institute of Pathological Physiology, 1st Medical Faculty, Charles University, Prague, Czech Republic
| | | | | | | | | |
Collapse
|
80
|
Choi JM, Yi NR, Seo KC, Han JS, Song YO, Cho EJ. Protective Effect of Chungkukjang from Sunchang Province against Cellular Oxidative Damage. Prev Nutr Food Sci 2008. [DOI: 10.3746/jfn.2008.13.2.090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
81
|
Ma N, Kawanishi M, Hiraku Y, Murata M, Huang GW, Huang Y, Luo DZ, Mo WG, Fukui Y, Kawanishi S. Reactive nitrogen species-dependent DNA damage in EBV-associated nasopharyngeal carcinoma: the relation to STAT3 activation and EGFR expression. Int J Cancer 2008; 122:2517-25. [PMID: 18307254 DOI: 10.1002/ijc.23415] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is strongly associated with Epstein-Barr virus (EBV) infection. Recently, reactive nitrogen and oxygen species are considered to participate in inflammation-related carcinogenesis through DNA damage. In our study, we obtained biopsy and surgical specimens of nasopharyngeal tissues from NPC patients in southern China, and performed double immunofluorescent staining to examine the formation of 8-nitroguanine, a nitrative DNA lesion and 8-oxo-7,8-dihydro-2'-deoxyguanosine, an oxidative DNA lesion, in these specimens. Strong DNA lesions were observed in cancer cells and inflammatory cells in stroma of NPC patients. Intensive immunoreactivity of iNOS was detected in the cytoplasm of 8-nitroguanine-positive cancer cells. DNA lesions and iNOS expression were also observed in epithelial cells of EBV-positive patients with chronic nasopharyngitis, although their intensities were significantly weaker than those in NPC patients. In EBV-negative subjects, no or little DNA lesions and iNOS expression were observed. EGFR and phosphorylated STAT3 were strongly expressed in cancer cells of NPC patients, but NF-kappaB was not expressed, suggesting that STAT3-dependent mechanism is important for NPC carcinogenesis. IL-6 was expressed mainly in inflammatory cells of nasopharyngeal tissues of EBV-infected patients. EBV-encoded RNAs (EBERs) and latent membrane protein 1 (LMP1) were detected in cancer cells from all EBV-infected patients. In vitro cell system, nuclear accumulation of EGFR was observed in LMP1-expressing cells, and IL-6 induced phosphorylated STAT3 and iNOS. These data suggest that nuclear accumulation of EGFR and STAT3 activation by IL-6 play the key role in iNOS expression and resultant DNA damage, leading to EBV-mediated NPC.
Collapse
Affiliation(s)
- Ning Ma
- Department of Anatomy, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Federico A, Morgillo F, Tuccillo C, Ciardiello F, Loguercio C. Chronic inflammation and oxidative stress in human carcinogenesis. Int J Cancer 2007; 121:2381-6. [PMID: 17893868 DOI: 10.1002/ijc.23192] [Citation(s) in RCA: 657] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A wide array of chronic inflammatory conditions predispose susceptible cells to neoplastic transformation. In general, the longer the inflammation persists, the higher the risk of cancer. A mutated cell is a sine qua non for carcinogenesis. Inflammatory processes may induce DNA mutations in cells via oxidative/nitrosative stress. This condition occurs when the generation of free radicals and active intermediates in a system exceeds the system's ability to neutralize and eliminate them. Inflammatory cells and cancer cells themselves produce free radicals and soluble mediators such as metabolites of arachidonic acid, cytokines and chemokines, which act by further producing reactive species. These, in turn, strongly recruit inflammatory cells in a vicious circle. Reactive intermediates of oxygen and nitrogen may directly oxidize DNA, or may interfere with mechanisms of DNA repair. These reactive substances may also rapidly react with proteins, carbohydrates and lipids, and the derivative products may induce a high perturbation in the intracellular and intercellular homeostasis, until DNA mutation. The main substances that link inflammation to cancer via oxidative/nitrosative stress are prostaglandins and cytokines. The effectors are represented by an imbalance between pro-oxidant and antioxidant enzyme activities (lipoxygenase, cyclooxygenase and phospholipid hydroperoxide glutathione-peroxidase), hydroperoxides and lipoperoxides, aldehydes and peroxinitrite. This review focalizes some of these intricate events by discussing the relationships occurring among oxidative/nitrosative/metabolic stress, inflammation and cancer.
Collapse
Affiliation(s)
- Alessandro Federico
- Division of Gastroenterology, "F. Magrassi and A. Lanzara" Medical-Surgical Department, Second University of Naples, Naples, Italy.
| | | | | | | | | |
Collapse
|
83
|
van de Sande WWJ, Fahal A, Verbrugh H, van Belkum A. Polymorphisms in Genes Involved in Innate Immunity Predispose Toward Mycetoma Susceptibility. THE JOURNAL OF IMMUNOLOGY 2007; 179:3065-74. [PMID: 17709521 DOI: 10.4049/jimmunol.179.5.3065] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Madurella mycetomatis is the main causative agent of mycetoma, a tumorous fungal infection characterized by the infiltration of large numbers of neutrophils at the site of infection. In endemic areas the majority of inhabitants have Abs to M. mycetomatis, although only a small proportion of individuals actually develop mycetomal disease. It therefore appears that neutrophils are unable to clear the infection in some individuals. To test this hypothesis, 11 single nucleotide polymorphisms involved in neutrophil function were studied in a population of Sudanese mycetoma patients vs geographically and ethnically matched controls. Significant differences in allele distribution for IL-8 (CXCL8), its receptor CXCR2, thrombospondin-4 (TSP-4), NO synthase 2 (NOS2), and complement receptor 1 (CR1) were found. Further, the NOS2(Lambaréné) polymorphism was clearly associated with lesion size. The genotypes obtained for CXCL8, its receptor CXCR2, and TSP-4 all predisposed to a higher CXCL8 expression in patients, which was supported by the detection of significantly elevated levels of CXCL8 in patient serum. The NOS2 genotype observed in healthy controls was correlated with an increase in NOS2 expression and higher concentrations of nitrate and nitrite in control serum. We present the first evidence of human genetic predisposition toward susceptibility to mycetoma, a neglected infection of the poor.
Collapse
Affiliation(s)
- Wendy W J van de Sande
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|
84
|
Hiraku Y, Tabata T, Ma N, Murata M, Ding X, Kawanishi S. Nitrative and oxidative DNA damage in cervical intraepithelial neoplasia associated with human papilloma virus infection. Cancer Sci 2007; 98:964-72. [PMID: 17488337 PMCID: PMC11158700 DOI: 10.1111/j.1349-7006.2007.00497.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Recently, it was proposed that inflammation plays an integral role in the development of human papilloma virus (HPV)-induced cervical cancer. The present study sought to examine if 8-nitroguanine, a mutagenic nitrative DNA lesion formed during inflammation, contributes to cervical carcinogenesis. We obtained biopsy specimens from 30 patients with cervical intraepithelial neoplasia (CIN)1 (n = 9), CIN2 (n = 10), CIN3 (n = 6) and condyloma acuminatum (n = 5). We used immunohistochemistry to detect the formation of 8-nitroguanine and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), an oxidative DNA lesion, and compared it with the expression of the cyclin-dependent kinase inhibitor p16, which is considered to be a biomarker for cervical neoplasia. Double immunofluorescence labeling revealed that 8-nitroguanine and 8-oxodG were colocalized in cervical epithelial cells. Samples from CIN2-3 patients, most of whom were infected with high-risk HPV subtypes, exhibited significantly more intense staining for 8-nitroguanine than those with condyloma acuminatum. 8-Nitroguanine and 8-oxodG immunoreactivities correlated significantly with the CIN grade. We observed the expression of inducible nitric oxide synthase in epithelial and inflammatory cells from CIN lesions. Proliferating cell nuclear antigen was expressed specifically in dysplastic epithelial cells, but not in those of condyloma acuminatum. There were no statistically significant differences in p16 expression between CIN and condyloma acuminatum samples. These results suggest that high-risk HPV types promote inducible nitric oxide synthase-dependent DNA damage, which leads to dysplastic changes and carcinogenesis; in contrast, p16 appears to be merely a marker of HPV infection. Thus, 8-nitroguanine is a more suitable and promising biomarker for evaluating the risk of inflammation-mediated cervical carcinogenesis than p16.
Collapse
Affiliation(s)
- Yusuke Hiraku
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie, Japan
| | | | | | | | | | | |
Collapse
|
85
|
Nucleotide receptor signalling and the generation of reactive oxygen species. Purinergic Signal 2007; 3:39-51. [PMID: 18404417 PMCID: PMC2096761 DOI: 10.1007/s11302-006-9035-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Accepted: 03/15/2006] [Indexed: 12/21/2022] Open
Abstract
Elevated levels of extracellular nucleotides are present at sites of inflammation, platelet degranulation and cellular damage or lysis. These extracellular nucleotides can lead to the activation of purinergic (nucleotide) receptors on various leukocytes, including monocytes, macrophages, eosinophils, and neutrophils. In turn, nucleotide receptor activation has been linked to increased cellular production and release of multiple inflammatory mediators, including superoxide anion, nitric oxide and other reactive oxygen species (ROS). In the present review, we will summarize the evidence that extracellular nucleotides can facilitate the generation of multiple ROS by leukocytes. In addition, we will discuss several potential mechanisms by which nucleotide-enhanced ROS production may occur. Delineation of these mechanisms is important for understanding the processes associated with nucleotide-induced antimicrobial activities, cell signalling, apoptosis, and pathology.
Collapse
|
86
|
Kanno SI, Kakuta M, Kitajima Y, Osanai Y, Kurauchi K, Ohtake T, Ujibe M, Uwai K, Takeshita M, Ishikawa M. Inhibitory Effect of Trimidox on Lipopolysaccharide-Induced Nitric Oxide Production in RAW 264.7 Macrophages. J Pharmacol Sci 2007; 104:278-81. [PMID: 17609582 DOI: 10.1254/jphs.sc0070073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
We examined the effect of trimidox (3,4,5-trihydroxybenzamidoxime) on the production of nitric oxide (NO) by lipopolysaccharide (LPS) in mouse RAW 264.7 macrophages. Trimidox (50 - 300 microM) concentration-dependently inhibited NO production by LPS (0.01, 0.1, or 1 microg/ml) after incubation for 24 h. LPS-induced expression of inducible NO synthase (iNOS) and degradation of IkappaBalpha were prevented by trimidox. The protective effect against NO production by LPS was not only observed in prior incubation but also later incubation with trimidox until iNOS was activated by LPS. These results suggest that trimidox has a predominantly protective effect against LPS-induced production of NO via iNOS expression.
Collapse
Affiliation(s)
- Syu-ichi Kanno
- Department of Clinical Pharmacotheraputics, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Ihara H, Kuwamura M, Atsuta M, Nihonmatsu I, Okada T, Mukamoto M, Kozaki S. Expression of neuronal nitric oxide synthase variant, nNOS-μ, in rat brain. Nitric Oxide 2006; 15:13-9. [PMID: 16412669 DOI: 10.1016/j.niox.2005.11.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 11/09/2005] [Accepted: 11/25/2005] [Indexed: 11/24/2022]
Abstract
Neuronal nitric oxide synthase (nNOS) is alternatively spliced. An nNOS splice variant form, nNOS-mu, was first found to be selectively expressed in rat skeletal muscle and heart. To date, the expression of nNOS-mu in the brain has not been well characterized. The aim of this study was to determine whether nNOS-mu is expressed in rat brain, and whether nNOS-mu exhibits a specific expression pattern. To analyze the expression of nNOS-mu, we generated a monoclonal antibody that is specific for nNOS-mu. An immunoblot analysis using this antibody showed that nNOS-mu is expressed in the rat brain at a measurable level, which was 10.3% of total nNOSs. In rat brain, the nNOS-mu expression was high in the mesencephalon and the cerebellum. nNOS-mu was immunohistochemically localized in neurites and perikarya of large neurons. In the cerebellum, granule cells showed marked staining, while weak staining was detected in basket and stellate cells. This expression pattern is different from that described for nNOS and suggests that nNOS-mu plays unique roles in different neurons.
Collapse
Affiliation(s)
- Hideshi Ihara
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan.
| | | | | | | | | | | | | |
Collapse
|
88
|
Kawanishi S, Hiraku Y, Pinlaor S, Ma N. Oxidative and nitrative DNA damage in animals and patients with inflammatory diseases in relation to inflammation-related carcinogenesis. Biol Chem 2006; 387:365-72. [PMID: 16606333 DOI: 10.1515/bc.2006.049] [Citation(s) in RCA: 330] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Infection and chronic inflammation are proposed to contribute to carcinogenesis through inflammation-related mechanisms. Infection with hepatitis C virus, Helicobacter pylori and the liver fluke, Opisthorchis viverrini (OV), are important risk factors for hepatocellular carcinoma (HCC), gastric cancer and cholangiocarcinoma, respectively. Inflammatory bowel diseases (IBDs) and oral diseases, such as oral lichen planus (OLP) and leukoplakia, are associated with colon carcinogenesis and oral squamous cell carcinoma (OSCC), respectively. We performed a double immunofluorescence labeling study and found that nitrative and oxidative DNA lesion products, 8-nitroguanine and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), were formed and inducible nitric oxide synthase (iNOS) was expressed in epithelial cells and inflammatory cells at the site of carcinogenesis in humans and animal models. Antibacterial, antiviral and antiparasitic drugs dramatically diminished the formation of these DNA lesion markers and iNOS expression. These results suggest that oxidative and nitrative DNA damage occurs at the sites of carcinogenesis, regardless of etiology. Therefore, it is considered that excessive amounts of reactive nitrogen species produced via iNOS during chronic inflammation may play a key role in carcinogenesis by causing DNA damage. On the basis of our results, we propose that 8-nitroguanine is a promising biomarker to evaluate the potential risk of inflammation-mediated carcinogenesis.
Collapse
Affiliation(s)
- Shosuke Kawanishi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514-8507, Japan.
| | | | | | | |
Collapse
|
89
|
Ohshima H, Sawa T, Akaike T. 8-nitroguanine, a product of nitrative DNA damage caused by reactive nitrogen species: formation, occurrence, and implications in inflammation and carcinogenesis. Antioxid Redox Signal 2006; 8:1033-45. [PMID: 16771693 DOI: 10.1089/ars.2006.8.1033] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The authors review studies on 8-nitroguanine (8-NO(2)-G) formed by reactions of guanine, guanosine, and 2 - deoxyguanosine, either free or in DNA or RNAwith reactive nitrogen species (RNS) generated from peroxynitrite, the myeloperoxidase-H(2)O(2)-nitrite system, and others. Use of antibodies against 8-NO(2)-G has revealed increased formation of 8-NO(2)-G in various pathological conditions, including RNA virus-induced pneumonia in mice, intrahepatic bile ducts of hamsters infected with the liver fluke Opisthorchis viverrini, and gastric mucosa of patients with Helicobacter pylori-induced gastritis. Immunoreactivity has been found in the cytosol as well as in the nucleus of inflammatory cells and epithelial cells in inflamed tissues, but not in normal tissues. 8- NO(2)-G in DNA is potentially mutagenic, yielding G:C to T:A transversion, possibly through its rapid depurination to form an apurinic site and/or miscoding with adenine. 8-NO(2)-G in RNA may interfere with RNA functions and metabolism. Nitrated guanine nucleosides and nucleotides in the nucleotide pool may contribute to oxidative stress via production of superoxide mediated by various reductases and may disturb or modulate directly various important enzymes such as GTP-binding proteins and cGMP-dependent enzymes. Further studies are warranted to establish the roles of 8-NO(2)-G in various pathophysiological conditions and inflammation-associated cancer.
Collapse
|
90
|
Kawanishi S, Hiraku Y. Oxidative and nitrative DNA damage as biomarker for carcinogenesis with special reference to inflammation. Antioxid Redox Signal 2006; 8:1047-58. [PMID: 16771694 DOI: 10.1089/ars.2006.8.1047] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Reactive oxygen and nitrogen species are known to participate in a wide variety of human diseases. Oxidative DNAdamage is involved in chemical carcinogenesis and aging. Monocyclic chemicals induce mainly oxidative DNAdamage, whereas polycyclic chemicals can induce oxidative DNA damage in addition to DNA adduct formation. Recently, chronic infection and inflammation have been recognized as important factors for carcinogenesis. Nitrative DNA damage as well as oxidative DNA damage is induced in relation to inflammationrelated carcinogenesis. The authors examined the formation of 8-nitroguanine, a nitrative DNA lesion, in humans and animals under inflammatory conditions. An immunofluorescence labeling study demonstrated that 8-nitroguanine was strongly formed in gastric gland epithelial cells in gastritis patients with H. pylori infection, in hepatocytes in patients with hepatitis C, and in oral epithelium of patients with oral lichen planus. 8-Nitroguanine was also formed in colonic epithelial cells of model mice of inflammatory bowel diseases and patients with ulcerative colitis. Interestingly, 8-nitroguanine was formed at the sites of carcinogenesis regardless of etiology. Therefore, 8-nitroguanine could be used as a potential biomarker to evaluate the risk of inflammation- related carcinogenesis.
Collapse
Affiliation(s)
- Shosuke Kawanishi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan.
| | | |
Collapse
|
91
|
Christophersen OA, Haug A. Possible roles of oxidative stress, local circulatory failure and nutrition factors in the pathogenesis of hypervirulent influenza: implications for therapy and global emergency preparedness. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2006. [DOI: 10.1080/0891060050049655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|