51
|
Mbadhi MN, Tang JM, Zhang JX. Histone Lysine Methylation and Long Non-Coding RNA: The New Target Players in Skeletal Muscle Cell Regeneration. Front Cell Dev Biol 2021; 9:759237. [PMID: 34926450 PMCID: PMC8678087 DOI: 10.3389/fcell.2021.759237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
Satellite stem cell availability and high regenerative capacity have made them an ideal therapeutic approach for muscular dystrophies and neuromuscular diseases. Adult satellite stem cells remain in a quiescent state and become activated upon muscular injury. A series of molecular mechanisms succeed under the control of epigenetic regulation and various myogenic regulatory transcription factors myogenic regulatory factors, leading to their differentiation into skeletal muscles. The regulation of MRFs via various epigenetic factors, including DNA methylation, histone modification, and non-coding RNA, determine the fate of myogenesis. Furthermore, the development of histone deacetylation inhibitors (HDACi) has shown promising benefits in their use in clinical trials of muscular diseases. However, the complete application of using satellite stem cells in the clinic is still not achieved. While therapeutic advancements in the use of HDACi in clinical trials have emerged, histone methylation modulations and the long non-coding RNA (lncRNA) are still under study. A comprehensive understanding of these other significant epigenetic modulations is still incomplete. This review aims to discuss some of the current studies on these two significant epigenetic modulations, histone methylation and lncRNA, as potential epigenetic targets in skeletal muscle regeneration. Understanding the mechanisms that initiate myoblast differentiation from its proliferative state to generate new muscle fibres will provide valuable information to advance the field of regenerative medicine and stem cell transplant.
Collapse
Affiliation(s)
- Magdaleena Naemi Mbadhi
- Hubei Key Laboratory of Embryonic Stem Cell Research, Department of Physiology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Jun-Ming Tang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Department of Physiology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Jing-Xuan Zhang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Department of Physiology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
52
|
Long Noncoding RNAs: Recent Insights into Their Role in Male Infertility and Their Potential as Biomarkers and Therapeutic Targets. Int J Mol Sci 2021; 22:ijms222413579. [PMID: 34948376 PMCID: PMC8708977 DOI: 10.3390/ijms222413579] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/21/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are composed of nucleotides located in the nucleus and cytoplasm; these are transcribed by RNA polymerase II and are greater than 200 nt in length. LncRNAs fulfill important functions in a variety of biological processes, including genome imprinting, cell differentiation, apoptosis, stem cell pluripotency, X chromosome inactivation and nuclear transport. As high throughput sequencing technology develops, a substantial number of lncRNAs have been found to be related to a variety of biological processes, such as development of the testes, maintaining the self-renewal and differentiation of spermatogonial stem cells, and regulating spermatocyte meiosis. These indicate that lncRNAs can be used as biomarkers and potential therapeutic targets for male infertility. However, only a few comprehensive reviews have described the role of lncRNAs in male reproduction. In this paper, we summarize recent findings relating to the role of lncRNAs in spermatogenesis, their potential as biomarkers for male infertility and the relationship between reproductive arrest and transgenerational effects. Finally, we suggest specific targets for the treatment of male infertility from the perspective of lncRNAs.
Collapse
|
53
|
Scaffa A, Yao H, Oulhen N, Wallace J, Peterson AL, Rizal S, Ragavendran A, Wessel G, De Paepe ME, Dennery PA. Single-cell transcriptomics reveals lasting changes in the lung cellular landscape into adulthood after neonatal hyperoxic exposure. Redox Biol 2021; 48:102091. [PMID: 34417156 PMCID: PMC8710996 DOI: 10.1016/j.redox.2021.102091] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/22/2021] [Accepted: 07/31/2021] [Indexed: 01/11/2023] Open
Abstract
Ventilatory support, such as supplemental oxygen, used to save premature infants impairs the growth of the pulmonary microvasculature and distal alveoli, leading to bronchopulmonary dysplasia (BPD). Although lung cellular composition changes with exposure to hyperoxia in neonatal mice, most human BPD survivors are weaned off oxygen within the first weeks to months of life, yet they may have persistent lung injury and pulmonary dysfunction as adults. We hypothesized that early-life hyperoxia alters the cellular landscape in later life and predicts long-term lung injury. Using single-cell RNA sequencing, we mapped lung cell subpopulations at postnatal day (pnd)7 and pnd60 in mice exposed to hyperoxia (95% O2) for 3 days as neonates. We interrogated over 10,000 cells and identified a total of 45 clusters within 32 cell states. Neonatal hyperoxia caused persistent compositional changes in later life (pnd60) in all five type II cell states with unique signatures and function. Premature infants requiring mechanical ventilation with different durations also showed similar alterations in these unique signatures of type II cell states. Pathologically, neonatal hyperoxic exposure caused alveolar simplification in adult mice. We conclude that neonatal hyperoxia alters the lung cellular landscape in later life, uncovering neonatal programing of adult lung dysfunction.
Collapse
Affiliation(s)
- Alejandro Scaffa
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, United States
| | - Hongwei Yao
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, United States
| | - Nathalie Oulhen
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, United States
| | - Joselynn Wallace
- Center for Computational Biology of Human Disease and Center for Computation and Visualization, Brown University, Providence, RI, United States
| | - Abigail L Peterson
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, United States
| | - Salu Rizal
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, United States
| | - Ashok Ragavendran
- Center for Computational Biology of Human Disease and Center for Computation and Visualization, Brown University, Providence, RI, United States
| | - Gary Wessel
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, United States
| | - Monique E De Paepe
- Department of Pathology, Women and Infants Hospital, Providence, RI, United States
| | - Phyllis A Dennery
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, United States; Department of Pediatrics, Warren Alpert Medical School of Brown University, Providence, RI, United States.
| |
Collapse
|
54
|
Zhou Q, Liu L, Zhou J, Chen Y, Xie D, Yao Y, Cui D. Novel Insights Into MALAT1 Function as a MicroRNA Sponge in NSCLC. Front Oncol 2021; 11:758653. [PMID: 34778078 PMCID: PMC8578859 DOI: 10.3389/fonc.2021.758653] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/06/2021] [Indexed: 12/21/2022] Open
Abstract
The long non-coding RNA metastasis-associated lung adenocarcinoma transcript-1 (MALAT1) was initially found to be overexpressed in early non-small cell lung cancer (NSCLC). Accumulating studies have shown that MALAT1 is overexpressed in the tissue or serum of NSCLC and plays a key role in its occurrence and development. In addition, the expression level of MALAT1 is significantly related to the tumor size, stage, metastasis, and distant invasion of NSCLC. Therefore, MALAT1 could be used as a biomarker for the early diagnosis, severity assessment, or prognosis evaluation of NSCLC patients. This review describes the basic properties and biological functions of MALAT1, focuses on the specific molecular mechanism of MALAT1 as a microRNA sponge in the occurrence and development of NSCLC in recent years, and emphasizes the application and potential prospect of MALAT1 in molecular biological markers and targeted therapy of NSCLC.
Collapse
Affiliation(s)
- Qinfeng Zhou
- Department of Laboratory Medicine, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Lianfang Liu
- Department of Oncology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Jing Zhou
- Department of Laboratory Medicine, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Yuanyuan Chen
- Department of Laboratory Medicine, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Dacheng Xie
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Yinan Yao
- Department of Respiratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
55
|
Winkler L, Dimitrova N. A mechanistic view of long noncoding RNAs in cancer. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1699. [PMID: 34668345 PMCID: PMC9016092 DOI: 10.1002/wrna.1699] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/23/2022]
Abstract
Long noncoding RNAs (lncRNAs) have emerged as important modulators of a wide range of biological processes in normal and disease states. In particular, lncRNAs have garnered significant interest as novel players in the molecular pathology of cancer, spurring efforts to define the functions, and elucidate the mechanisms through which cancer‐associated lncRNAs operate. In this review, we discuss the prevalent mechanisms employed by lncRNAs, with a critical assessment of the methodologies used to determine each molecular function. We survey the abilities of cancer‐associated lncRNAs to enact diverse trans functions throughout the nucleus and in the cytoplasm and examine the local roles of cis‐acting lncRNAs in modulating the expression of neighboring genes. In linking lncRNA functions and mechanisms to their roles in cancer biology, we contend that a detailed molecular understanding of lncRNA functionality is key to elucidating their contributions to tumorigenesis and to unlocking their therapeutic potential. This article is categorized under:Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA in Disease and Development > RNA in Disease
Collapse
Affiliation(s)
- Lauren Winkler
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Nadya Dimitrova
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
56
|
Subramaniam N, Nair R, Marsden PA. Epigenetic Regulation of the Vascular Endothelium by Angiogenic LncRNAs. Front Genet 2021; 12:668313. [PMID: 34512715 PMCID: PMC8427604 DOI: 10.3389/fgene.2021.668313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/17/2021] [Indexed: 12/15/2022] Open
Abstract
The functional properties of the vascular endothelium are diverse and heterogeneous between vascular beds. This is especially evident when new blood vessels develop from a pre-existing closed cardiovascular system, a process termed angiogenesis. Endothelial cells are key drivers of angiogenesis as they undergo a highly choreographed cascade of events that has both exogenous (e.g., hypoxia and VEGF) and endogenous regulatory inputs. Not surprisingly, angiogenesis is critical in health and disease. Diverse therapeutics target proteins involved in coordinating angiogenesis with varying degrees of efficacy. It is of great interest that recent work on non-coding RNAs, especially long non-coding RNAs (lncRNAs), indicates that they are also important regulators of the gene expression paradigms that underpin this cellular cascade. The protean effects of lncRNAs are dependent, in part, on their subcellular localization. For instance, lncRNAs enriched in the nucleus can act as epigenetic modifiers of gene expression in the vascular endothelium. Of great interest to genetic disease, they are undergoing rapid evolution and show extensive inter- and intra-species heterogeneity. In this review, we describe endothelial-enriched lncRNAs that have robust effects in angiogenesis.
Collapse
Affiliation(s)
- Noeline Subramaniam
- Marsden Lab, Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Marsden Lab, Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada
| | - Ranju Nair
- Marsden Lab, Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada
- Marsden Lab, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Philip A. Marsden
- Marsden Lab, Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Marsden Lab, Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada
- Marsden Lab, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
57
|
Miao S, Bhunia D, Devari S, Liang Y, Munyaradzi O, Rundell S, Bong D. Bifacial PNAs Destabilize MALAT1 by 3' A-Tail Displacement from the U-Rich Internal Loop. ACS Chem Biol 2021; 16:1600-1609. [PMID: 34382766 DOI: 10.1021/acschembio.1c00575] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report herein a new class of synthetic reagents for targeting the element for nuclear expression (ENE) in MALAT1, a long noncoding RNA upregulated in many cancers. The cis-acting ENE contains a U-rich internal loop (URIL) that forms an 11 base UAU-rich triplex stem with the truncated 3' oligo-A tail of MALAT1, protecting the terminus from exonuclease digestion and greatly extending transcript lifetime. Bifacial peptide nucleic acids (bPNAs) similarly bind URILs via base triple formation between two uracil bases and a synthetic base, melamine. We synthesized a set of low molecular weight bPNAs composed of α-linked peptide, isodipeptide, and diketopiperazine backbones and evaluated their ENE binding efficacy in vitro via oligo-A strand displacement and consequent exonuclease sensitivity. Degradation was greatly enhanced by bPNA treatment in the presence of exonucleases, with ENE half-life plunging to 6 min from >24 h. RNA digestion kinetics could clearly distinguish between bPNAs with similar URIL affinities, highlighting the utility of functional assays for evaluating synthetic RNA binders. In vitro activity was mirrored by a 50% knockdown of MALAT1 expression in pancreatic cancer (PANC-1) cells upon treatment with bPNAs, consistent with intracellular digestion triggered by a similar ENE A-tail displacement mechanism. Pulldown from PANC-1 total RNA with biotinylated bPNA enriched MALAT1 > 4000× , supportive of bPNA-URIL selectivity. Together, these experiments establish the feasibility of native transcript targeting by bPNA in both in vitro and intracellular contexts. Reagents such as bPNAs may be useful tools for the investigation of transcripts stabilized by cis-acting poly(A) binding RNA elements.
Collapse
Affiliation(s)
- Shiqin Miao
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Debmalya Bhunia
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Shekaraiah Devari
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Yufeng Liang
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Oliver Munyaradzi
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Sarah Rundell
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Dennis Bong
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
58
|
Exploring chromatin structural roles of non-coding RNAs at imprinted domains. Biochem Soc Trans 2021; 49:1867-1879. [PMID: 34338292 PMCID: PMC8421051 DOI: 10.1042/bst20210758] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022]
Abstract
Different classes of non-coding RNA (ncRNA) influence the organization of chromatin. Imprinted gene domains constitute a paradigm for exploring functional long ncRNAs (lncRNAs). Almost all express an lncRNA in a parent-of-origin dependent manner. The mono-allelic expression of these lncRNAs represses close by and distant protein-coding genes, through diverse mechanisms. Some control genes on other chromosomes as well. Interestingly, several imprinted chromosomal domains show a developmentally regulated, chromatin-based mechanism of imprinting with apparent similarities to X-chromosome inactivation. At these domains, the mono-allelic lncRNAs show a relatively stable, focal accumulation in cis. This facilitates the recruitment of Polycomb repressive complexes, lysine methyltranferases and other nuclear proteins — in part through direct RNA–protein interactions. Recent chromosome conformation capture and microscopy studies indicate that the focal aggregation of lncRNA and interacting proteins could play an architectural role as well, and correlates with close positioning of target genes. Higher-order chromatin structure is strongly influenced by CTCF/cohesin complexes, whose allelic association patterns and actions may be influenced by lncRNAs as well. Here, we review the gene-repressive roles of imprinted non-coding RNAs, particularly of lncRNAs, and discuss emerging links with chromatin architecture.
Collapse
|
59
|
Keihani S, Kluever V, Fornasiero EF. Brain Long Noncoding RNAs: Multitask Regulators of Neuronal Differentiation and Function. Molecules 2021; 26:molecules26133951. [PMID: 34203457 PMCID: PMC8272081 DOI: 10.3390/molecules26133951] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
The extraordinary cellular diversity and the complex connections established within different cells types render the nervous system of vertebrates one of the most sophisticated tissues found in living organisms. Such complexity is ensured by numerous regulatory mechanisms that provide tight spatiotemporal control, robustness and reliability. While the unusual abundance of long noncoding RNAs (lncRNAs) in nervous tissues was traditionally puzzling, it is becoming clear that these molecules have genuine regulatory functions in the brain and they are essential for neuronal physiology. The canonical view of RNA as predominantly a 'coding molecule' has been largely surpassed, together with the conception that lncRNAs only represent 'waste material' produced by cells as a side effect of pervasive transcription. Here we review a growing body of evidence showing that lncRNAs play key roles in several regulatory mechanisms of neurons and other brain cells. In particular, neuronal lncRNAs are crucial for orchestrating neurogenesis, for tuning neuronal differentiation and for the exact calibration of neuronal excitability. Moreover, their diversity and the association to neurodegenerative diseases render them particularly interesting as putative biomarkers for brain disease. Overall, we foresee that in the future a more systematic scrutiny of lncRNA functions will be instrumental for an exhaustive understanding of neuronal pathophysiology.
Collapse
|
60
|
ArcRNAs and the formation of nuclear bodies. Mamm Genome 2021; 33:382-401. [PMID: 34085114 DOI: 10.1007/s00335-021-09881-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/25/2021] [Indexed: 01/13/2023]
Abstract
Long noncoding RNAs (lncRNAs) have long been collectively and passively defined as transcripts that do not encode proteins. However, extensive functional studies performed over the last decade have enabled the classification of lncRNAs into multiple categories according to their functions and/or molecular properties. Architectual RNAs (arcRNAs) are a group of lncRNAs that serve as architectural components of submicron-scale cellular bodies or nonmembranous organelles, which are composed of specific sets of proteins and nucleic acids involved in particular molecular processes. In this review, we focus on arcRNAs that function in the nucleus, which provide a structural basis for the formation of nuclear bodies, nonmembranous organelles in the cell nucleus. We will summarize the current list of arcRNAs and proteins associated with classic and more recently discovered nuclear bodies and discuss general rules that govern the formation of nuclear bodies, emphasizing weak multivalent interactions mediated by innately flexible biomolecules.
Collapse
|
61
|
Onoguchi-Mizutani R, Kirikae Y, Ogura Y, Gutschner T, Diederichs S, Akimitsu N. Identification of a heat-inducible novel nuclear body containing the long noncoding RNA MALAT1. J Cell Sci 2021; 134:268337. [PMID: 34028540 DOI: 10.1242/jcs.253559] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 03/29/2021] [Indexed: 11/20/2022] Open
Abstract
The heat-shock response is critical for the survival of all organisms. Metastasis-associated long adenocarcinoma transcript 1 (MALAT1) is a long noncoding RNA localized in nuclear speckles, but its physiological role remains elusive. Here, we show that heat shock induces translocation of MALAT1 to a distinct nuclear body named the heat shock-inducible noncoding RNA-containing nuclear (HiNoCo) body in mammalian cells. MALAT1-knockout A549 cells showed reduced proliferation after heat shock. The HiNoCo body, which is formed adjacent to nuclear speckles, is distinct from any other known nuclear bodies, including the nuclear stress body, Cajal body, germs, paraspeckles, nucleoli and promyelocytic leukemia body. The formation of HiNoCo body is reversible and independent of heat shock factor 1, the master transcription regulator of the heat-shock response. Our results suggest the HiNoCo body participates in heat shock factor 1-independent heat-shock responses in mammalian cells.
Collapse
Affiliation(s)
| | - Yoshitaka Kirikae
- Isotope Science Center, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Yoko Ogura
- Isotope Science Center, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Tony Gutschner
- Junior Research Group 'RNA Biology and Pathogenesis', Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Sven Diederichs
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) - Partner Site Freiburg, 79106 Freiburg, Germany.,Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | | |
Collapse
|
62
|
Yang Y, Liu KY, Liu Q, Cao Q. Androgen Receptor-Related Non-coding RNAs in Prostate Cancer. Front Cell Dev Biol 2021; 9:660853. [PMID: 33869227 PMCID: PMC8049439 DOI: 10.3389/fcell.2021.660853] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/12/2021] [Indexed: 12/20/2022] Open
Abstract
Prostate cancer (PCa) is the second leading cause of cancer-related death among men in the United States. Androgen receptor (AR) signaling is the dominant oncogenic pathway in PCa and the main strategy of PCa treatment is to control the AR activity. A large number of patients acquire resistance to Androgen deprivation therapy (ADT) due to AR aberrant activation, resulting in castration-resistant prostate cancer (CRPC). Understanding the molecular mechanisms underlying AR signaling in the PCa is critical to identify new therapeutic targets for PCa patients. The recent advances in high-throughput RNA sequencing (RNA-seq) techniques identified an increasing number of non-coding RNAs (ncRNAs) that play critical roles through various mechanisms in different diseases. Some ncRNAs have shown great potentials as biomarkers and therapeutic targets. Many ncRNAs have been investigated to regulate PCa through direct association with AR. In this review, we aim to comprehensively summarize recent findings of the functional roles and molecular mechanisms of AR-related ncRNAs as AR regulators or targets in the progression of PCa.
Collapse
Affiliation(s)
- Yongyong Yang
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Kilia Y Liu
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Qi Liu
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Qi Cao
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
63
|
Song Z, Lin J, Li Z, Huang C. The nuclear functions of long noncoding RNAs come into focus. Noncoding RNA Res 2021; 6:70-79. [PMID: 33898883 PMCID: PMC8053782 DOI: 10.1016/j.ncrna.2021.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/16/2022] Open
Abstract
Long noncoding RNAs (lncRNAs), defined as untranslated and tightly-regulated transcripts with a length exceeding 200 nt, are common outputs of the eukaryotic genome. It is becoming increasingly apparent that many lncRNAs likely serve as important regulators in a variety of biological processes. In particular, some of them accumulate in the nucleus and function in diverse nuclear events, including chromatin remodeling, transcriptional regulation, RNA processing, DNA damage repair, etc. Here, we unite recent progresses on the functions of nuclear lncRNAs and provide insights into the future research directions of this field.
Collapse
Affiliation(s)
- Zhenxing Song
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Jiamei Lin
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Zhengguo Li
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Chuan Huang
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
- Corresponding author. School of Life Sciences, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
64
|
Sas-Nowosielska H, Magalska A. Long Noncoding RNAs-Crucial Players Organizing the Landscape of the Neuronal Nucleus. Int J Mol Sci 2021; 22:ijms22073478. [PMID: 33801737 PMCID: PMC8037058 DOI: 10.3390/ijms22073478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/25/2022] Open
Abstract
The ability to regulate chromatin organization is particularly important in neurons, which dynamically respond to external stimuli. Accumulating evidence shows that lncRNAs play important architectural roles in organizing different nuclear domains like inactive chromosome X, splicing speckles, paraspeckles, and Gomafu nuclear bodies. LncRNAs are abundantly expressed in the nervous system where they may play important roles in compartmentalization of the cell nucleus. In this review we will describe the architectural role of lncRNAs in the nuclei of neuronal cells.
Collapse
|
65
|
González-Moro I, Santin I. Long non-coding RNA-regulated pathways in pancreatic β cells: Their role in diabetes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 359:325-355. [PMID: 33832652 DOI: 10.1016/bs.ircmb.2021.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Long non-coding RNAs (lncRNAs) are transcripts of more than 200 nucleotides that have not coding potential, but act as gene expression regulators through several molecular mechanisms. Several studies have identified tons of lncRNAs that are expressed in pancreatic β cells and many of them have been shown to have β cell-specific expression, suggesting a potential role in the regulation of basal β cell functions. Indeed, accumulating evidence based on numerous studies, has highlighted the implication of lncRNAs in the regulation of pancreatic β cell differentiation and proliferation, insulin synthesis and secretion, and apoptosis. In addition, several lncRNAs have shown to be implicated in pancreatic β cell dysfunction linked to different types of diabetes, including type 1 and type 2 diabetes, and monogenic forms of the disease. Pathogenic conditions linked to diabetes (inflammation or lipoglucotoxicity, for example) dysregulate the expression of several lncRNAs, suggesting that changes in lncRNA may alter potentially important pathways for β cell function, and eventually leading to β cell dysfunction and diabetes development. In this sense, functional characterization of some lncRNAs has demonstrated that these non-coding molecules participate in the regulation of several crucial pathways at the pancreatic β cell level, and dysregulation of these pathways leads to pathogenic phenotypes. In this review, we provide an overview of the action mechanisms of functionally characterized lncRNAs in healthy β cells and describe the contribution of some diabetes-associated lncRNAs to pancreatic β cell failure.
Collapse
Affiliation(s)
- Itziar González-Moro
- Department of Biochemistry and Molecular biology, University of the Basque Country, Leioa, Spain; Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Izortze Santin
- Department of Biochemistry and Molecular biology, University of the Basque Country, Leioa, Spain; Biocruces Bizkaia Health Research Institute, Barakaldo, Spain; CIBER (Centro de Investigación Biomédica en Red) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
66
|
N 6-methyladenosine modification of MALAT1 promotes metastasis via reshaping nuclear speckles. Dev Cell 2021; 56:702-715.e8. [PMID: 33609462 DOI: 10.1016/j.devcel.2021.01.015] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 11/25/2020] [Accepted: 01/24/2021] [Indexed: 01/05/2023]
Abstract
N6-methyladenosine (m6A), one of the most prevalent RNA post-transcriptional modifications, is involved in numerous biological processes. In previous studies, the functions of m6A were typically identified by perturbing the activity of the methyltransferase complex. Here, we dissect the contribution of m6A to an individual-long noncoding RNA-metastasis-associated lung adenocarcinoma transcript 1 (MALAT1). The mutant MALAT1 lacking m6A-motifs significantly suppressed the metastatic potential of cancer cells both in vitro and in vivo in mouse. Super-resolution imaging showed that the concatenated m6A residues on MALAT1 acted as a scaffold for recruiting YTH-domain-containing protein 1 (YTHDC1) to nuclear speckles. We further reveal that the recognition of MALAT1-m6A by YTHDC1 played a critical role in maintaining the composition and genomic binding sites of nuclear speckles, which regulate the expression of several key oncogenes. Furthermore, artificially tethering YTHDC1 onto m6A-deficient MALAT1 largely rescues the metastatic potential of cancer cells.
Collapse
|
67
|
Constanty F, Shkumatava A. lncRNAs in development and differentiation: from sequence motifs to functional characterization. Development 2021; 148:148/1/dev182741. [PMID: 33441380 DOI: 10.1242/dev.182741] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The number of long noncoding RNAs (lncRNAs) with characterized developmental and cellular functions continues to increase, but our understanding of the molecular mechanisms underlying lncRNA functions, and how they are dictated by RNA sequences, remains limited. Relatively short, conserved sequence motifs embedded in lncRNA transcripts are often important determinants of lncRNA localization, stability and interactions. Identifying such RNA motifs remains challenging due to the substantial length of lncRNA transcripts and the rapid evolutionary turnover of lncRNA sequences. Nevertheless, the recent discovery of specific RNA elements, together with their experimental interrogation, has enabled the first step in classifying heterogeneous lncRNAs into sub-groups with similar molecular mechanisms and functions. In this Review, we focus on lncRNAs with roles in development, cell differentiation and normal physiology in vertebrates, and we discuss the sequence elements defining their functions. We also summarize progress on the discovery of regulatory RNA sequence elements, as well as their molecular functions and interaction partners.
Collapse
Affiliation(s)
- Florian Constanty
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris 75005, France
| | - Alena Shkumatava
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris 75005, France
| |
Collapse
|
68
|
Taniue K, Akimitsu N. The Functions and Unique Features of LncRNAs in Cancer Development and Tumorigenesis. Int J Mol Sci 2021; 22:E632. [PMID: 33435206 PMCID: PMC7826647 DOI: 10.3390/ijms22020632] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/19/2022] Open
Abstract
Over the past decades, research on cancer biology has focused on the involvement of protein-coding genes in cancer development. Long noncoding RNAs (lncRNAs), which are transcripts longer than 200 nucleotides that lack protein-coding potential, are an important class of RNA molecules that are involved in a variety of biological functions. Although the functions of a majority of lncRNAs have yet to be clarified, some lncRNAs have been shown to be associated with human diseases such as cancer. LncRNAs have been shown to contribute to many important cancer phenotypes through their interactions with other cellular macromolecules including DNA, protein and RNA. Here we describe the literature regarding the biogenesis and features of lncRNAs. We also present an overview of the current knowledge regarding the roles of lncRNAs in cancer from the view of various aspects of cellular homeostasis, including proliferation, survival, migration and genomic stability. Furthermore, we discuss the methodologies used to identify the function of lncRNAs in cancer development and tumorigenesis. Better understanding of the molecular mechanisms involving lncRNA functions in cancer is critical for the development of diagnostic and therapeutic strategies against tumorigenesis.
Collapse
Affiliation(s)
- Kenzui Taniue
- Isotope Science Center, The University of Tokyo, 2-11-16, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Cancer Genomics and Precision Medicine, Division of Gastroenterology and Hematology-Oncology, Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa 078-8510, Hokkaido, Japan
| | - Nobuyoshi Akimitsu
- Isotope Science Center, The University of Tokyo, 2-11-16, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
69
|
Ramírez-Colmenero A, Oktaba K, Fernandez-Valverde SL. Evolution of Genome-Organizing Long Non-coding RNAs in Metazoans. Front Genet 2020; 11:589697. [PMID: 33329735 PMCID: PMC7734150 DOI: 10.3389/fgene.2020.589697] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/09/2020] [Indexed: 12/28/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have important regulatory functions across eukarya. It is now clear that many of these functions are related to gene expression regulation through their capacity to recruit epigenetic modifiers and establish chromatin interactions. Several lncRNAs have been recently shown to participate in modulating chromatin within the spatial organization of the genome in the three-dimensional space of the nucleus. The identification of lncRNA candidates is challenging, as it is their functional characterization. Conservation signatures of lncRNAs are different from those of protein-coding genes, making identifying lncRNAs under selection a difficult task, and the homology between lncRNAs may not be readily apparent. Here, we review the evidence for these higher-order genome organization functions of lncRNAs in animals and the evolutionary signatures they display.
Collapse
Affiliation(s)
- América Ramírez-Colmenero
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, México
| | - Katarzyna Oktaba
- Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, México
| | - Selene L Fernandez-Valverde
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, México
| |
Collapse
|
70
|
Zhou W, Zheng J, Yuan M, Yuan L, Jia X, Liu H. Differentially expressed lncRNAs in peripheral blood mononuclear cells from middle-aged female patients with rheumatoid arthritis–associated interstitial lung disease. Clin Rheumatol 2020; 39:2281-2289. [DOI: 10.1007/s10067-020-04977-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/06/2020] [Accepted: 02/07/2020] [Indexed: 12/21/2022]
|
71
|
Olivero CE, Dimitrova N. Identification and characterization of functional long noncoding RNAs in cancer. FASEB J 2020; 34:15630-15646. [PMID: 33058262 PMCID: PMC7756267 DOI: 10.1096/fj.202001951r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
Long noncoding RNAs (lncRNAs) have emerged as key regulators in a variety of cellular processes that influence disease states. In particular, many lncRNAs are genetically or epigenetically deregulated in cancer. However, whether lncRNA alterations are passengers acquired during cancer progression or can act as tumorigenic drivers is a topic of ongoing investigation. In this review, we examine the current methodologies underlying the identification of cancer-associated lncRNAs and highlight important considerations for evaluating their biological significance as cancer drivers.
Collapse
Affiliation(s)
- Christiane E. Olivero
- Department of Molecular, Cellular and Developmental BiologyYale UniversityNew HavenCTUSA
| | - Nadya Dimitrova
- Department of Molecular, Cellular and Developmental BiologyYale UniversityNew HavenCTUSA
| |
Collapse
|
72
|
Chen H, Shan G. The physiological function of long-noncoding RNAs. Noncoding RNA Res 2020; 5:178-184. [PMID: 32959025 PMCID: PMC7494506 DOI: 10.1016/j.ncrna.2020.09.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022] Open
Abstract
The physiological processes of cells and organisms are regulated by various biological macromolecules, including long-noncoding RNAs (lncRNAs), which cannot be translated into protein and are different from small-noncoding RNAs on their length. In animals, lncRNAs are involved in development, metabolism, reproduction, aging and other life events by cis or trans effects. For many functional lncRNAs, there is growing evidence that they play different roles on cellular level and organismal level. On the other hand, many annotated lncRNAs are not essential and could be transcription noises. In this minireview, we investigate the physiological function of lncRNAs in cells and focus on their functions and functional mechanisms on the organismal level. The studies on lncRNAs using different classic animal models such as worms and flies are summarized and discussed in this article.
Collapse
Affiliation(s)
- He Chen
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, 230027, China
| | - Ge Shan
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, 230027, China
| |
Collapse
|
73
|
Ilik İA, Malszycki M, Lübke AK, Schade C, Meierhofer D, Aktaş T. SON and SRRM2 are essential for nuclear speckle formation. eLife 2020; 9:60579. [PMID: 33095160 PMCID: PMC7671692 DOI: 10.7554/elife.60579] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022] Open
Abstract
Nuclear speckles (NS) are among the most prominent biomolecular condensates. Despite their prevalence, research on the function of NS is virtually restricted to colocalization analyses, since an organizing core, without which NS cannot form, remains unidentified. The monoclonal antibody SC35, raised against a spliceosomal extract, is frequently used to mark NS. Unexpectedly, we found that this antibody was mischaracterized and the main target of SC35 mAb is SRRM2, a spliceosome-associated protein that sharply localizes to NS. Here we show that, the core of NS is likely formed by SON and SRRM2, since depletion of SON leads only to a partial disassembly of NS, while co-depletion of SON and SRRM2 or depletion of SON in a cell-line where intrinsically disordered regions (IDRs) of SRRM2 are genetically deleted, leads to a near-complete dissolution of NS. This work, therefore, paves the way to study the role of NS under diverse physiological and stress conditions. Most cells store their genetic material inside a compartment called the nucleus, which helps to separate DNA from other molecules in the cell. Inside the nucleus, DNA is tightly packed together with proteins that can read the cell’s genetic code and convert into the RNA molecules needed to build proteins. However, the contents of the nucleus are not randomly arranged, and these proteins are often clustered into specialized areas where they perform their designated roles. One of the first nuclear territories to be identified were granular looking structures named Nuclear Speckles (or NS for short), which are thought to help process RNA before it leaves the nucleus. Structures like NS often contain a number of different factors held together by a core group of proteins known as a scaffold. Although NS were discovered over a century ago, little is known about their scaffold proteins, making it difficult to understand the precise role of these speckles. Typically, researchers visualize NS using a substance called SC35 which targets specific sites in these structures. However, it was unclear which parts of the NS this marker binds to. To answer this question, Ilik et al. studied NS in human cells grown in the lab. The analysis revealed that SC35 attaches to certain parts of a large, flexible protein called SRRM2. Ilik et al. discovered that although the structure and sequence of SRMM2 varies between different animal species, a small region of this protein remained unchanged throughout evolution. Studying the evolutionary history of SRRM2 led to the identification of another protein with similar properties called SON. Ilik et al. found that depleting SON and SRRM2 from human cells caused other proteins associated with the NS to diffuse away from their territories and become dispersed within the nucleus. This suggests that SRMM2 and SON make up the scaffold that holds the proteins in NS together. Nuclear speckles have been associated with certain viral infections, and seem to help prevent the onset of diseases such as Huntington’s and spinocerebellar ataxia. These newly discovered core proteins could therefore further our understanding of the role NS play in disease.
Collapse
Affiliation(s)
| | - Michal Malszycki
- Max Planck Institute for Molecular Genetics, Berlin, Germany.,Freie Universität Berlin, Berlin, Germany
| | - Anna Katharina Lübke
- Max Planck Institute for Molecular Genetics, Berlin, Germany.,Freie Universität Berlin, Berlin, Germany
| | - Claudia Schade
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Tuğçe Aktaş
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
74
|
Senmatsu S, Hirota K. Roles of lncRNA transcription as a novel regulator of chromosomal function. Genes Genet Syst 2020; 95:213-223. [PMID: 33028747 DOI: 10.1266/ggs.20-00024] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In recent years, many transcriptome analyses have revealed that numerous noncoding RNAs are transcribed in eukaryotic cells. Long noncoding RNAs (lncRNAs), which consist of over 200 nucleotides, are considered to be key players in a variety of biological processes and structures including gene expression, differentiation and nuclear architecture. Many studies on individual lncRNAs have identified their molecular functions as decoys, recruiters and scaffolds, which arise through interactions with proteins and the construction of ribonucleoproteins. In addition to the roles played by transcribed lncRNA molecules, several studies have indicated the important functions of nascent lncRNA transcription processes. In this review, we discuss recent findings on the important roles of lncRNA transcription processes in the regulation of chromosome function.
Collapse
Affiliation(s)
- Satoshi Senmatsu
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University
| |
Collapse
|
75
|
Alkalay E, Gam Ze Letova Refael C, Shoval I, Kinor N, Sarid R, Shav-Tal Y. The Sub-Nuclear Localization of RNA-Binding Proteins in KSHV-Infected Cells. Cells 2020; 9:cells9091958. [PMID: 32854341 PMCID: PMC7564026 DOI: 10.3390/cells9091958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022] Open
Abstract
RNA-binding proteins, particularly splicing factors, localize to sub-nuclear domains termed nuclear speckles. During certain viral infections, as the nucleus fills up with replicating virus compartments, host cell chromatin distribution changes, ending up condensed at the nuclear periphery. In this study we wished to determine the fate of nucleoplasmic RNA-binding proteins and nuclear speckles during the lytic cycle of the Kaposi's sarcoma associated herpesvirus (KSHV). We found that nuclear speckles became fewer and dramatically larger, localizing at the nuclear periphery, adjacent to the marginalized chromatin. Enlarged nuclear speckles contained splicing factors, whereas other proteins were nucleoplasmically dispersed. Polyadenylated RNA, typically found in nuclear speckles under regular conditions, was also found in foci separated from nuclear speckles in infected cells. Poly(A) foci did not contain lncRNAs known to colocalize with nuclear speckles but contained the poly(A)-binding protein PABPN1. Examination of the localization of spliced viral RNAs revealed that some spliced transcripts could be detected within the nuclear speckles. Since splicing is required for the maturation of certain KSHV transcripts, we suggest that the infected cell does not dismantle nuclear speckles but rearranges their components at the nuclear periphery to possibly serve in splicing and transport of viral RNAs into the cytoplasm.
Collapse
|
76
|
Gast M, Rauch BH, Haghikia A, Nakagawa S, Haas J, Stroux A, Schmidt D, Schumann P, Weiss S, Jensen L, Kratzer A, Kraenkel N, Müller C, Börnigen D, Hirose T, Blankenberg S, Escher F, Kühl AA, Kuss AW, Meder B, Landmesser U, Zeller T, Poller W. Long noncoding RNA NEAT1 modulates immune cell functions and is suppressed in early onset myocardial infarction patients. Cardiovasc Res 2020; 115:1886-1906. [PMID: 30924864 DOI: 10.1093/cvr/cvz085] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 02/15/2019] [Accepted: 03/27/2019] [Indexed: 12/16/2022] Open
Abstract
AIMS Inflammation is a key driver of atherosclerosis and myocardial infarction (MI), and beyond proteins and microRNAs (miRs), long noncoding RNAs (lncRNAs) have been implicated in inflammation control. To obtain further information on the possible role of lncRNAs in the context of atherosclerosis, we obtained comprehensive transcriptome maps of circulating immune cells (peripheral blood mononuclear cells, PBMCs) of early onset MI patients. One lncRNA significantly suppressed in post-MI patients was further investigated in a murine knockout model. METHODS AND RESULTS Individual RNA-sequencing (RNA-seq) was conducted on PBMCs from 28 post-MI patients with a history of MI at age ≤50 years and stable disease ≥3 months before study participation, and from 31 healthy individuals without manifest cardiovascular disease or family history of MI as controls. RNA-seq revealed deregulated protein-coding transcripts and lncRNAs in post-MI PBMCs, among which nuclear enriched abundant transcript (NEAT1) was the most highly expressed lncRNA, and the only one significantly suppressed in patients. Multivariate statistical analysis of validation cohorts of 106 post-MI patients and 85 controls indicated that the PBMC NEAT1 levels were influenced (P = 0.001) by post-MI status independent of statin intake, left ventricular ejection fraction, low-density lipoprotein or high-density lipoprotein cholesterol, or age. We investigated NEAT1-/- mice as a model of NEAT1 deficiency to evaluate if NEAT1 depletion may directly and causally alter immune regulation. RNA-seq of NEAT1-/- splenocytes identified disturbed expression and regulation of chemokines/receptors, innate immunity genes, tumour necrosis factor (TNF) and caspases, and increased production of reactive oxygen species (ROS) under baseline conditions. NEAT1-/- spleen displayed anomalous Treg and TH cell differentiation. NEAT1-/- bone marrow-derived macrophages (BMDMs) displayed altered transcriptomes with disturbed chemokine/chemokine receptor expression, increased baseline phagocytosis (P < 0.0001), and attenuated proliferation (P = 0.0013). NEAT1-/- BMDMs responded to LPS with increased (P < 0.0001) ROS production and disturbed phagocytic activity (P = 0.0318). Monocyte-macrophage differentiation was deregulated in NEAT1-/- bone marrow and blood. NEAT1-/- mice displayed aortic wall CD68+ cell infiltration, and there was evidence of myocardial inflammation which could lead to severe and potentially life-threatening structural damage in some of these animals. CONCLUSION The study indicates distinctive alterations of lncRNA expression in post-MI patient PBMCs. Regarding the monocyte-enriched NEAT1 suppressed in post-MI patients, the data from NEAT1-/- mice identify NEAT1 as a novel lncRNA-type immunoregulator affecting monocyte-macrophage functions and T cell differentiation. NEAT1 is part of a molecular circuit also involving several chemokines and interleukins persistently deregulated post-MI. Individual profiling of this circuit may contribute to identify high-risk patients likely to benefit from immunomodulatory therapies. It also appears reasonable to look for new therapeutic targets within this circuit.
Collapse
Affiliation(s)
- Martina Gast
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11, Hindenburgdamm 30, Berlin, Germany
| | - Bernhard H Rauch
- Institute for Pharmacology, Universitätsmedizin Greifswald, Felix-Hausdorff-Strasse 3, Greifswald, Germany.,German Center for Cardiovascular Research (DZHK), Site Greifswald, Felix-Hausdorff-Strasse 3, Greifswald
| | - Arash Haghikia
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11, Hindenburgdamm 30, Berlin, Germany.,RNA Biology Laboratory, RIKEN Advanced Research Institute, Wako, Saitama, Japan
| | - Shinichi Nakagawa
- RNA Biology Laboratory, RIKEN Advanced Research Institute, Wako, Saitama, Japan.,Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 jo, Nishi 6-chome, Kita-ku, Sapporo, Japan
| | - Jan Haas
- Department of Cardiology, Institute for Cardiomyopathies, University Hospital Heidelberg, Im Neuenheimer Feld 669, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Site Heidelberg, Im Neuenheimer Feld 669, Heidelberg, Germany
| | - Andrea Stroux
- Institute for Biometry and Clinical Epidemiology, Hindenburgdamm 30, Berlin, Germany
| | - David Schmidt
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11, Hindenburgdamm 30, Berlin, Germany
| | - Paul Schumann
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11, Hindenburgdamm 30, Berlin, Germany
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genome Research, University of Greifswald, Felix-Hausdorff-Strasse 8, Greifswald, Germany
| | - Lars Jensen
- Interfaculty Institute for Genetics and Functional Genome Research, University of Greifswald, Felix-Hausdorff-Strasse 8, Greifswald, Germany
| | - Adelheid Kratzer
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11, Hindenburgdamm 30, Berlin, Germany
| | - Nicolle Kraenkel
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11, Hindenburgdamm 30, Berlin, Germany
| | - Christian Müller
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Martinistrasse 52, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Site Hamburg/Lübeck/Kiel, Martinistrasse 52, Hamburg, Germany
| | - Daniela Börnigen
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Martinistrasse 52, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Site Hamburg/Lübeck/Kiel, Martinistrasse 52, Hamburg, Germany
| | - Tetsuro Hirose
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Stefan Blankenberg
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Martinistrasse 52, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Site Hamburg/Lübeck/Kiel, Martinistrasse 52, Hamburg, Germany
| | - Felicitas Escher
- German Center for Cardiovascular Research (DZHK), Site Berlin, Hindenburgdamm 30, Berlin, Germany.,Institute of Cardiac Diagnostics and Therapy (IKDT), Hindenburgdamm 30, Berlin, Germany.,Department of Cardiology CVK, Hindenburgdamm 30, Berlin, Germany
| | - Anja A Kühl
- iPATH.Berlin-Core Unit Immunopathology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas W Kuss
- Interfaculty Institute for Genetics and Functional Genome Research, University of Greifswald, Felix-Hausdorff-Strasse 8, Greifswald, Germany
| | - Benjamin Meder
- Department of Cardiology, Institute for Cardiomyopathies, University Hospital Heidelberg, Im Neuenheimer Feld 669, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Site Heidelberg, Im Neuenheimer Feld 669, Heidelberg, Germany.,Department of Genetics, Genome Technology Center, Stanford University Medical School, Stanford, CA, USA
| | - Ulf Landmesser
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11, Hindenburgdamm 30, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Site Berlin, Hindenburgdamm 30, Berlin, Germany.,Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Strasse 2, Berlin, Germany
| | - Tanja Zeller
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Martinistrasse 52, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Site Hamburg/Lübeck/Kiel, Martinistrasse 52, Hamburg, Germany
| | - Wolfgang Poller
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11, Hindenburgdamm 30, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Site Berlin, Hindenburgdamm 30, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Hindenburgdamm 30, Berlin, Germany
| |
Collapse
|
77
|
Hasenson SE, Shav‐Tal Y. Speculating on the Roles of Nuclear Speckles: How RNA‐Protein Nuclear Assemblies Affect Gene Expression. Bioessays 2020; 42:e2000104. [DOI: 10.1002/bies.202000104] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/17/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Sarah E. Hasenson
- The Mina & Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials Bar‐Ilan University Ramat Gan 4481400 Israel
| | - Yaron Shav‐Tal
- The Mina & Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials Bar‐Ilan University Ramat Gan 4481400 Israel
| |
Collapse
|
78
|
Wu Y, Sarkissyan M, Ogah O, Kim J, Vadgama JV. Expression of MALAT1 Promotes Trastuzumab Resistance in HER2 Overexpressing Breast Cancers. Cancers (Basel) 2020; 12:E1918. [PMID: 32708561 PMCID: PMC7409266 DOI: 10.3390/cancers12071918] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is associated with cancer progression. Our study examined the role of MALAT1 in breast cancer and the mechanisms involved in the regulation of MALAT1. METHODS In vitro cell and in vivo animal models were used to examine the role of MALAT1 in breast cancer. The interaction of FOXO1 (Forkhead Box O1) at the promoter region of MALAT1 was investigated by chromatin immunoprecipitation (ChIP) assay. RESULTS The data shows an elevated expression of MALAT1 in breast cancer tissues and cells compared to non-cancer tissues and cells. The highest level of MALAT1 was observed in metastatic triple-negative breast cancer and trastuzumab-resistant HER2 (human epidermal growth factor receptor 2) overexpressing (HER2+) cells. Knockdown of MALAT1 in trastuzumab-resistant HER2+ cells reversed epithelial to mesenchymal transition-like phenotype and cell invasiveness. It improved the sensitivity of the cell's response to trastuzumab. Furthermore, activation of Akt by phosphorylation was associated with the upregulation of MALAT1. The transcription factor FOXO1 regulates the expression of MALAT1 via the PI3/Akt pathway. CONCLUSIONS We show that MALAT1 contributes to HER2+ cell resistance to trastuzumab. Targeting the PI3/Akt pathway and stabilizing FOXO1 translocation could inhibit the upregulation of MALAT1.
Collapse
Affiliation(s)
- Yanyuan Wu
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, 1731 East 120th Street, Los Angeles, CA 90059, USA; (M.S.); (O.O.); (J.K.)
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Marianna Sarkissyan
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, 1731 East 120th Street, Los Angeles, CA 90059, USA; (M.S.); (O.O.); (J.K.)
| | - Ochanya Ogah
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, 1731 East 120th Street, Los Angeles, CA 90059, USA; (M.S.); (O.O.); (J.K.)
| | - Juri Kim
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, 1731 East 120th Street, Los Angeles, CA 90059, USA; (M.S.); (O.O.); (J.K.)
| | - Jaydutt V. Vadgama
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, 1731 East 120th Street, Los Angeles, CA 90059, USA; (M.S.); (O.O.); (J.K.)
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
79
|
Zhao Y, Teng H, Yao F, Yap S, Sun Y, Ma L. Challenges and Strategies in Ascribing Functions to Long Noncoding RNAs. Cancers (Basel) 2020; 12:cancers12061458. [PMID: 32503290 PMCID: PMC7352683 DOI: 10.3390/cancers12061458] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 12/16/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are involved in many physiological and pathological processes, such as development, aging, immunity, and cancer. Mechanistically, lncRNAs exert their functions through interaction with proteins, genomic DNA, and other RNA, leading to transcriptional and post-transcriptional regulation of gene expression, either in cis or in trans; it is often difficult to distinguish between these two regulatory mechanisms. A variety of approaches, including RNA interference, antisense oligonucleotides, CRISPR-based methods, and genetically engineered mouse models, have yielded abundant information about lncRNA functions and underlying mechanisms, albeit with many discrepancies. In this review, we elaborate on the challenges in ascribing functions to lncRNAs based on the features of lncRNAs, including the genomic location, copy number, domain structure, subcellular localization, stability, evolution, and expression pattern. We also describe a framework for the investigation of lncRNA functions and mechanisms of action. Rigorous characterization of cancer-implicated lncRNAs is critical for the identification of bona fide anticancer targets.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.Z.); (H.T.); (F.Y.); (S.Y.)
| | - Hongqi Teng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.Z.); (H.T.); (F.Y.); (S.Y.)
| | - Fan Yao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.Z.); (H.T.); (F.Y.); (S.Y.)
| | - Shannon Yap
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.Z.); (H.T.); (F.Y.); (S.Y.)
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.Z.); (H.T.); (F.Y.); (S.Y.)
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-713-792-6590
| |
Collapse
|
80
|
Arun G, Aggarwal D, Spector DL. MALAT1 Long Non-Coding RNA: Functional Implications. Noncoding RNA 2020; 6:E22. [PMID: 32503170 PMCID: PMC7344863 DOI: 10.3390/ncrna6020022] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022] Open
Abstract
The mammalian genome is pervasively transcribed and the functional significance of many long non-coding RNA (lncRNA) transcripts are gradually being elucidated. Metastasis Associated Lung Adenocarcinoma Transcript 1 (MALAT1) is one of the most well-studied lncRNAs. MALAT1 is a highly conserved nuclear retained lncRNA that is abundantly expressed in cells and tissues and has been shown to play a role in regulating genes at both the transcriptional and post-transcriptional levels in a context-dependent manner. However, Malat1 has been shown to be dispensable for normal development and viability in mice. Interestingly, accumulating evidence suggests that MALAT1 plays an important role in numerous diseases including cancer. Here, we discuss the current state-of-knowledge in regard to MALAT1 with respect to its function, role in diseases, and the potential therapeutic opportunities for targeting MALAT1 using antisense oligonucleotides and small molecules.
Collapse
Affiliation(s)
- Gayatri Arun
- Envisagenics, 101 Avenue of the Americas, New York, NY 10013, USA;
| | - Disha Aggarwal
- Graduate Program in Genetics, Stony Brook University, Stony Brook, New York, NY 11794, USA;
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA
| | - David L. Spector
- Graduate Program in Genetics, Stony Brook University, Stony Brook, New York, NY 11794, USA;
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA
| |
Collapse
|
81
|
Kukharsky MS, Ninkina NN, An H, Telezhkin V, Wei W, Meritens CRD, Cooper-Knock J, Nakagawa S, Hirose T, Buchman VL, Shelkovnikova TA. Long non-coding RNA Neat1 regulates adaptive behavioural response to stress in mice. Transl Psychiatry 2020; 10:171. [PMID: 32467583 PMCID: PMC7256041 DOI: 10.1038/s41398-020-0854-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/10/2020] [Accepted: 05/18/2020] [Indexed: 12/18/2022] Open
Abstract
NEAT1 is a highly and ubiquitously expressed long non-coding RNA (lncRNA) which serves as an important regulator of cellular stress response. However, the physiological role of NEAT1 in the central nervous system (CNS) is still poorly understood. In the current study, we addressed this by characterising the CNS function of the Neat1 knockout mouse model (Neat1-/- mice), using a combination of behavioural phenotyping, electrophysiology and expression analysis. RNAscope® in situ hybridisation revealed that in wild-type mice, Neat1 is expressed across the CNS regions, with high expression in glial cells and low expression in neurons. Loss of Neat1 in mice results in an inadequate reaction to physiological stress manifested as hyperlocomotion and panic escape response. In addition, Neat1-/- mice display deficits in social interaction and rhythmic patterns of activity but retain normal motor function and memory. Neat1-/- mice do not present with neuronal loss, overt neuroinflammation or gross synaptic dysfunction in the brain. However, cultured Neat1-/- neurons are characterised by hyperexcitability and dysregulated calcium homoeostasis, and stress-induced neuronal activity is also augmented in Neat1-/- mice in vivo. Gene expression analysis showed that Neat1 may act as a weak positive regulator of multiple genes in the brain. Furthermore, loss of Neat1 affects alternative splicing of genes important for the CNS function and implicated in neurological diseases. Overall, our data suggest that Neat1 is involved in stress signalling in the brain and fine-tunes the CNS functions to enable adaptive behaviour in response to physiological stress.
Collapse
Affiliation(s)
- Michail S Kukharsky
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
- Institute of Physiologically Active Compounds of Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
| | - Natalia N Ninkina
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
- Institute of Physiologically Active Compounds of Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
| | - Haiyan An
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
- Medicines Discovery Institute, Cardiff University, Cardiff, CF10 3AT, UK
| | - Vsevolod Telezhkin
- School of Dental Sciences, Newcastle University, Newcastle upon Tyne, NE2 4BW, UK
| | - Wenbin Wei
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | | | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Shinichi Nakagawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Tetsuro Hirose
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Vladimir L Buchman
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
- Institute of Physiologically Active Compounds of Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
| | - Tatyana A Shelkovnikova
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK.
- Institute of Physiologically Active Compounds of Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation.
- Medicines Discovery Institute, Cardiff University, Cardiff, CF10 3AT, UK.
| |
Collapse
|
82
|
Yan W, Yue H, Ji X, Li G, Sang N. Prenatal NO 2 exposure and neurodevelopmental disorders in offspring mice: Transcriptomics reveals sex-dependent changes in cerebral gene expression. ENVIRONMENT INTERNATIONAL 2020; 138:105659. [PMID: 32203807 DOI: 10.1016/j.envint.2020.105659] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 05/25/2023]
Abstract
BACKGROUND Early-life exposure to nitrogen dioxide (NO2) is associated with an increased risk of developing a neurodevelopmental disorder during childhood or later in life. OBJECTIVES We investigated whether prenatal NO2 inhalation causes neurodevelopmental abnormalities and cognitive deficits in weanling offspring without subsequent postnatal NO2 exposure and how this prenatal exposure contributes to postnatal consequences. METHODS Pregnant C57BL/6 mice were exposed to air or NO2 (2.5 ppm, 5 h/day) throughout gestation, and the offspring were sacrificed on postnatal days (PNDs) 1, 7, 14 and 21. We determined the mRNA profiles of different postnatal developmental windows, detected the long noncoding RNA (lncRNA) profiles and cognitive function in weanling offspring, and analyzed the effects of hub lncRNAs on differentially expressed genes (DEGs). RESULTS Prenatal NO2 inhalation significantly impaired cognitive function in the weanling male, but not female, offspring. The male-specific response was coupled with abnormal neuropathologies and transcriptional profiles in the cortex during different postnatal developmental windows. Consistently, Gene Ontology (GO) analysis of the DEGs revealed persistent disruptions in neurodevelopment-associated biological processes and cellular components in the male offspring, and Apolipoprotein E (ApoE) was one of key factors contributing to prenatal exposure-induced male-specific neurological dysfunction. In addition, distinct sex-dependent lncRNA expression was identified in the weanling offspring, and metastasis-associated lung adenocarcinoma transcript 1 (Malat1) acted as a hub lncRNA and was coexpressed with most coding genes in the lncRNA-mRNA coexpressed pairs in the male offspring. Importantly, lncRNA Malat1 expression was elevated, and Malat1 modulated ApoE expression through NF-κB activation during this process. CONCLUSIONS Prenatal NO2 exposure is related to sex-dependent neurocognitive deficits and transcriptomic profile changes in the cortices of the prenatally exposed offspring. Male-specific neurological dysfunction is associated with the constant alteration of genes during postnatal neurodevelopment and their transcriptional modulation by hub lncRNAs.
Collapse
Affiliation(s)
- Wei Yan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xiaotong Ji
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China.
| |
Collapse
|
83
|
Abstract
The advent of deep sequencing technologies led to the identification of a considerable amount of noncoding RNA transcripts, which are increasingly recognized for their functions in controlling cardiovascular diseases. MicroRNAs have already been studied for a decade, leading to the identification of several vasculoprotective and detrimental species, which might be considered for therapeutic targeting. Other noncoding RNAs such as circular RNAs, YRNAs, or long noncoding RNAs are currently gaining increasing attention, and first studies provide insights into their functions as mediators or antagonists of vascular diseases in vivo. The present review article will provide an overview of the different types of noncoding RNAs controlling the vasculature and focus on the developing field of long noncoding RNAs.
Collapse
Affiliation(s)
- Nicolas Jaé
- From the Institute for Cardiovascular Regeneration (N.J., S.D.), Goethe University Frankfurt, Germany
| | - Stefanie Dimmeler
- From the Institute for Cardiovascular Regeneration (N.J., S.D.), Goethe University Frankfurt, Germany.,Cardiopulmonary Institute (S.D.), Goethe University Frankfurt, Germany.,German Center for Cardiovascular Research (DZHK) and Cardiopulmonary Institute (CPI), Partner Site Rhine-Main, Frankfurt (S.D.)
| |
Collapse
|
84
|
Hewitson JP, West KA, James KR, Rani GF, Dey N, Romano A, Brown N, Teichmann SA, Kaye PM, Lagos D. Malat1 Suppresses Immunity to Infection through Promoting Expression of Maf and IL-10 in Th Cells. THE JOURNAL OF IMMUNOLOGY 2020; 204:2949-2960. [PMID: 32321759 PMCID: PMC7231852 DOI: 10.4049/jimmunol.1900940] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 04/01/2020] [Indexed: 12/25/2022]
Abstract
Malat1 is suppressed during Th1 and Th2 differentiation. Malat1 loss suppresses IL-10 and Maf expression in effector Th cells. Malat1−/− mice mount enhanced immune responses in leishmaniasis and malaria models.
Despite extensive mapping of long noncoding RNAs in immune cells, their function in vivo remains poorly understood. In this study, we identify over 100 long noncoding RNAs that are differentially expressed within 24 h of Th1 cell activation. Among those, we show that suppression of Malat1 is a hallmark of CD4+ T cell activation, but its complete deletion results in more potent immune responses to infection. This is because Malat1−/− Th1 and Th2 cells express lower levels of the immunosuppressive cytokine IL-10. In vivo, the reduced CD4+ T cell IL-10 expression in Malat1−/−mice underpins enhanced immunity and pathogen clearance in experimental visceral leishmaniasis (Leishmania donovani) but more severe disease in a model of malaria (Plasmodium chabaudi chabaudi AS). Mechanistically, Malat1 regulates IL-10 through enhancing expression of Maf, a key transcriptional regulator of IL-10. Maf expression correlates with Malat1 in single Ag-specific Th cells from P. chabaudi chabaudi AS–infected mice and is downregulated in Malat1−/− Th1 and Th2 cells. The Malat1 RNA is responsible for these effects, as antisense oligonucleotide-mediated inhibition of Malat1 also suppresses Maf and IL-10 levels. Our results reveal that through promoting expression of the Maf/IL-10 axis in effector Th cells, Malat1 is a nonredundant regulator of mammalian immunity.
Collapse
Affiliation(s)
- James P Hewitson
- York Biomedical Research Institute, University of York, York, YO10 5DD Yorkshire, United Kingdom.,Department of Biology, University of York, York, YO10 5DD Yorkshire, United Kingdom
| | - Katie A West
- York Biomedical Research Institute, University of York, York, YO10 5DD Yorkshire, United Kingdom.,Department of Biology, University of York, York, YO10 5DD Yorkshire, United Kingdom.,Hull York Medical School, University of York, York, YO10 5DD Yorkshire, United Kingdom
| | - Kylie R James
- Wellcome Sanger Institute, CB10 1SA Hinxton, United Kingdom
| | - Gulab Fatima Rani
- York Biomedical Research Institute, University of York, York, YO10 5DD Yorkshire, United Kingdom.,Hull York Medical School, University of York, York, YO10 5DD Yorkshire, United Kingdom
| | - Nidhi Dey
- York Biomedical Research Institute, University of York, York, YO10 5DD Yorkshire, United Kingdom.,Hull York Medical School, University of York, York, YO10 5DD Yorkshire, United Kingdom
| | - Audrey Romano
- York Biomedical Research Institute, University of York, York, YO10 5DD Yorkshire, United Kingdom.,Hull York Medical School, University of York, York, YO10 5DD Yorkshire, United Kingdom
| | - Najmeeyah Brown
- York Biomedical Research Institute, University of York, York, YO10 5DD Yorkshire, United Kingdom.,Hull York Medical School, University of York, York, YO10 5DD Yorkshire, United Kingdom
| | - Sarah A Teichmann
- Wellcome Sanger Institute, CB10 1SA Hinxton, United Kingdom.,Theory of Condensed Matter, Cavendish Laboratory, Department of Physics, University of Cambridge, CB3 0HE Cambridge, United Kingdom; and.,European Molecular Biology Laboratory, European Bioinformatics Institute, CB10 1SA Hinxton, United Kingdom
| | - Paul M Kaye
- York Biomedical Research Institute, University of York, York, YO10 5DD Yorkshire, United Kingdom.,Hull York Medical School, University of York, York, YO10 5DD Yorkshire, United Kingdom
| | - Dimitris Lagos
- York Biomedical Research Institute, University of York, York, YO10 5DD Yorkshire, United Kingdom; .,Hull York Medical School, University of York, York, YO10 5DD Yorkshire, United Kingdom
| |
Collapse
|
85
|
Yao MY, Zhang WH, Ma WT, Liu QH, Xing LH, Zhao GF. Long non-coding RNA MALAT1 exacerbates acute respiratory distress syndrome by upregulating ICAM-1 expression via microRNA-150-5p downregulation. Aging (Albany NY) 2020; 12:6570-6585. [PMID: 32315984 PMCID: PMC7202495 DOI: 10.18632/aging.102953] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/09/2020] [Indexed: 12/19/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a severe form of acute lung injury in which severe inflammatory responses induce cell apoptosis, necrosis, and fibrosis. This study investigated the role of lung adenocarcinoma transcript 1 (MALAT1) in ARDS and the underlying mechanism involved. The expression of MALAT1, microRNA-150-5p (miR-150-5p), and intercellular adhesion molecule-1 (ICAM-1) was determined in ARDS patients and lipopolysaccharide (LPS)-treated human pulmonary microvascular endothelial cells (HPMECs). Next, the interactions among MALAT1, miR-150-5p, and ICAM-1 were explored. Gain- or loss-of-function experiments in HPMECs were employed to determine cell apoptosis and inflammation. Furthermore, a mouse xenograft model of ARDS was established in order to verify the function of MALAT1 in vivo. MALAT1 and ICAM-1 were upregulated, while miR-150-5p was downregulated in both ARDS patients and LPS-treated HPMECs. MALAT1 upregulated ICAM-1 expression by competitively binding to miR-150-5p. MALAT1 silencing or miR-150-5p overexpression was shown to suppress HPMEC apoptosis, decrease the expressions of pro-inflammatory cytokines (IL-6, IL-1β and TNF-α) and E-selectin in HPMECs, as well as alleviated lung injury in nude mice. These findings demonstrated that MALAT1 silencing can potentially suppress HPMEC apoptosis and alleviate lung injury in ARDS via miR-150-5p-targeted ICAM-1, suggestive of a novel therapeutic target for ARDS.
Collapse
Affiliation(s)
- Meng-Ying Yao
- Department of Respiratory Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Wei-Hong Zhang
- Department of Anatomy, Nursing College of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Wen-Tao Ma
- Department of Respiratory Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Qiu-Hong Liu
- Department of Respiratory Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Li-Hua Xing
- Department of Respiratory Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Gao-Feng Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| |
Collapse
|
86
|
Abstract
Long non-coding RNAs (lncRNAs) represent a major fraction of the transcriptome in multicellular organisms. Although a handful of well-studied lncRNAs are broadly recognized as biologically meaningful, the fraction of such transcripts out of the entire collection of lncRNAs remains a subject of vigorous debate. Here we review the evidence for and against biological functionalities of lncRNAs and attempt to arrive at potential modes of lncRNA functionality that would reconcile the contradictory conclusions. Finally, we discuss different strategies of phenotypic analyses that could be used to investigate such modes of lncRNA functionality.
Collapse
Affiliation(s)
- Fan Gao
- Institute of Genomics, School of Biomedical Sciences, Huaqiao University, 201 Pan-Chinese S & T Building, 668 Jimei Road, Xiamen, 361021, China
| | - Ye Cai
- Institute of Genomics, School of Biomedical Sciences, Huaqiao University, 201 Pan-Chinese S & T Building, 668 Jimei Road, Xiamen, 361021, China
| | - Philipp Kapranov
- Institute of Genomics, School of Biomedical Sciences, Huaqiao University, 201 Pan-Chinese S & T Building, 668 Jimei Road, Xiamen, 361021, China.
| | - Dongyang Xu
- Institute of Genomics, School of Biomedical Sciences, Huaqiao University, 201 Pan-Chinese S & T Building, 668 Jimei Road, Xiamen, 361021, China.
| |
Collapse
|
87
|
Gupta SK, Kumari S, Singh S, Barthwal MK, Singh SK, Thum T. Non-coding RNAs: Regulators of valvular calcification. J Mol Cell Cardiol 2020; 142:14-23. [PMID: 32247640 DOI: 10.1016/j.yjmcc.2020.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/23/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023]
Abstract
There is currently a growing global burden of valvular heart diseases due to aging populations and changing lifestyles. Valvular heart diseases mainly include the malfunctioning of aortic and mitral valves and are characterized by extensive tissue remodeling, which includes calcification, endothelial dysfunction, and endothelial-mesenchymal transition. These valvular remodeling processes are known to be regulated by protein-coding genes as well as non-coding genes. Here, we have summarized studies highlighting the non-coding RNA mediated regulation of valvular tissue remodeling and their potential therapeutic benefits. Additionally, studies investigating the diagnostic capability of circulating non-coding RNA molecules in valvular diseases are also summarized. Overall, of the various candidates, several studies have highlighted miR-214 and miR-204 as central regulators of valvular calcification.
Collapse
Affiliation(s)
- Shashi Kumar Gupta
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India.
| | - Sunaina Kumari
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sandhya Singh
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | | | - Sushil Kumar Singh
- Department of Cardiovascular & Thoracic Surgery, King George Medical University, Lucknow, India
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| |
Collapse
|
88
|
Gast M, Rauch BH, Nakagawa S, Haghikia A, Jasina A, Haas J, Nath N, Jensen L, Stroux A, Böhm A, Friebel J, Rauch U, Skurk C, Blankenberg S, Zeller T, Prasanth KV, Meder B, Kuss A, Landmesser U, Poller W. Immune system-mediated atherosclerosis caused by deficiency of long non-coding RNA MALAT1 in ApoE-/-mice. Cardiovasc Res 2020; 115:302-314. [PMID: 30101304 DOI: 10.1093/cvr/cvy202] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/03/2018] [Indexed: 02/07/2023] Open
Abstract
Aims The immune system is considered a key driver of atherosclerosis, and beyond proteins and microRNAs (miRs), long non-coding RNAs (lncRNAs) are implicated in immune control. We previously described that lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is involved in cardiac innate immunity in a myocarditis model. Here, we investigated the impact of MALAT1 deficiency upon atherosclerosis development. Methods and results Heterozygous MALAT1-deficient ApoE-/- mice displayed massive immune system dysregulation and atherosclerosis within 2 months even when kept on normal diet. Aortic plaque area (P < 0.05) and aortic root plaque size (P < 0.001) were increased in MALAT1-deficient vs. MALAT1-wildtype ApoE-/- mice. Serum levels of interferon-γ (IFN-γ), tumour necrosis factor (TNF), and interleukin 6 (IL6) were elevated (P < 0.001) in MALAT1-deficient animals. MALAT1-deficient bone marrow-derived macrophages showed enhanced expression of TNF (P = 0.001) and inducible NO synthase (NOS2) (P = 0.002), suppressed MMP9 (P < 0.001), and impaired phagocytic activity (P < 0.001) upon lipopolysaccharide stimulation. RNA-sequencing revealed grossly altered transcriptomes of MALAT1-deficient splenocytes already at baseline, with massive induction of IFN- γ, TNF, NOS2, and granzyme B; CC and CXC chemokines and CCR8; and innate immunity genes interferon-induced protein with tetratricopeptide repeats (IFIT)1/3, interferon-induced transmembrane protein (IFITM)1/3, ISG15. Multiple miRs were up to 45-fold upregulated. Further, selective ablation of the cytosolic part of the MALAT1 system only, the enzymatically MALAT1-derived mascRNA, resulted in massive induction of TNF (P = 0.004) and IL6 (P = 0.028) in macrophages. Northern analysis of post-myocardial infarction patient vs. control peripheral blood mononuclear cells showed reduced (P = 0.005) mascRNA in the patients. CHART-enriched RNA-sequencing reads at the genomic loci of MALAT1 and neighbouring nuclear enriched abundant transcript (NEAT1) documented direct interaction between these lncRNA transcripts. Conclusion The data suggest a molecular circuit involving the MALAT1-mascRNA system, interactions between MALAT1 and NEAT1, and key immune effector molecules, cumulatively impacting upon the development of atherosclerosis. It appears reasonable to look for therapeutic targets in this circuit and to screen for anomalies in the NEAT1-MALAT1 region in humans, too, as possible novel disease risk factors.
Collapse
Affiliation(s)
- Martina Gast
- Department of Cardiology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, Berlin, Germany
| | - Bernhard H Rauch
- Institute for Pharmacology, Universitätsmedizin Greifswald, Felix-Hausdorff-Strasse 3, Greifswald, Germany.,German Center for Cardiovascular Research (DZHK), Felix-Hausdorff-Strasse 3, Greifswald, Germany
| | - Shinichi Nakagawa
- RNA Biology Laboratory, RIKEN Advanced Research Institute, Wako, Saitama, Japan.,Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 jo, Nishi 6-chome, Kita-ku, Sapporo, Japan
| | - Arash Haghikia
- Department of Cardiology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Hindenburgdamm 30, Berlin, Germany
| | - Andrzej Jasina
- Department of Cardiology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, Berlin, Germany
| | - Jan Haas
- Institute for Cardiomyopathies, Department of Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 669, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Im Neuenheimer Feld 669, Heidelberg, Germany
| | - Neetika Nath
- Interfaculty Institute for Genetics and Functional Genome Research, University of Greifswald, Felix-Hausdorff-Strasse 8, Greifswald, Germany.,Institute for Bioinformatics, Universitätsmedizin Greifswald, Walther-Rathenau-Strasse 48, Greifswald, Germany
| | - Lars Jensen
- Interfaculty Institute for Genetics and Functional Genome Research, University of Greifswald, Felix-Hausdorff-Strasse 8, Greifswald, Germany.,Institute for Bioinformatics, Universitätsmedizin Greifswald, Walther-Rathenau-Strasse 48, Greifswald, Germany
| | - Andrea Stroux
- Institute for Biometry and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, Chariteplatz 1, Berlin, Germany
| | - Andreas Böhm
- Institute for Pharmacology, Universitätsmedizin Greifswald, Felix-Hausdorff-Strasse 3, Greifswald, Germany
| | - Julian Friebel
- Department of Cardiology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, Berlin, Germany
| | - Ursula Rauch
- Department of Cardiology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, Berlin, Germany
| | - Carsten Skurk
- Department of Cardiology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, Berlin, Germany
| | - Stefan Blankenberg
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Martinistrasse 52, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Site Hamburg/Lübeck/Kiel, Martinistrasse 52, Hamburg, Germany
| | - Tanja Zeller
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Martinistrasse 52, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Site Hamburg/Lübeck/Kiel, Martinistrasse 52, Hamburg, Germany
| | - Kannanganattu V Prasanth
- Department of Cell and Developmental Biology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Chemical and Life Sciences Laboratory, 601 S. Goodwin Avenue, Urbana, IL, USA
| | - Benjamin Meder
- Institute for Cardiomyopathies, Department of Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 669, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Im Neuenheimer Feld 669, Heidelberg, Germany
| | - Andreas Kuss
- Interfaculty Institute for Genetics and Functional Genome Research, University of Greifswald, Felix-Hausdorff-Strasse 8, Greifswald, Germany.,Institute for Bioinformatics, Universitätsmedizin Greifswald, Walther-Rathenau-Strasse 48, Greifswald, Germany
| | - Ulf Landmesser
- Department of Cardiology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Hindenburgdamm 30, Berlin, Germany.,Berlin Institute of Health, Anna-Louisa-Karsch-Strasse 2, Berlin, Germany
| | - Wolfgang Poller
- Department of Cardiology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Hindenburgdamm 30, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin, Germany
| |
Collapse
|
89
|
Isobe M, Toya H, Mito M, Chiba T, Asahara H, Hirose T, Nakagawa S. Forced isoform switching of Neat1_1 to Neat1_2 leads to the loss of Neat1_1 and the hyperformation of paraspeckles but does not affect the development and growth of mice. RNA (NEW YORK, N.Y.) 2020; 26:251-264. [PMID: 31822595 PMCID: PMC7025509 DOI: 10.1261/rna.072587.119] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/04/2019] [Indexed: 05/27/2023]
Abstract
Neat1 is a long noncoding RNA (lncRNA) that serves as an architectural component of the nuclear bodies known as paraspeckles. Two isoforms of Neat1, the short isoform Neat1_1 and the long isoform Neat1_2, are generated from the same gene locus by alternative 3' processing. Neat1_1 is the most abundant and the best conserved isoform expressed in various cell types, whereas Neat1_2 is expressed in a small population of particular cell types, including the tip cells of the intestinal epithelium. To investigate the physiological significance of isoform switching, we created mutant mice that solely expressed Neat1_2 by deleting the upstream polyadenylation (poly-A) signal (PAS) required for the production of Neat1_1. We observed the loss of Neat1_1 and strong up-regulation of Neat1_2 in various tissues and cells and the subsequent hyperformation of paraspeckles, especially in cells that normally express Neat1_2. However, the mutant mice were born at the expected Mendelian ratios and did not exhibit obvious external and histological abnormalities. These observations suggested that the hyperformation of paraspeckles does not interfere with the development and growth of these animals under normal laboratory conditions.
Collapse
Affiliation(s)
- Momo Isobe
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Hikaru Toya
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Mari Mito
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama 351-0198, Japan
| | - Tomoki Chiba
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Hiroshi Asahara
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Tetsuro Hirose
- Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
90
|
Isobe M, Toya H, Mito M, Chiba T, Asahara H, Hirose T, Nakagawa S. Forced isoform switching of Neat1_1 to Neat1_2 leads to the loss of Neat1_1 and the hyperformation of paraspeckles but does not affect the development and growth of mice. RNA (NEW YORK, N.Y.) 2020. [PMID: 31822595 DOI: 10.1101/698068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Neat1 is a long noncoding RNA (lncRNA) that serves as an architectural component of the nuclear bodies known as paraspeckles. Two isoforms of Neat1, the short isoform Neat1_1 and the long isoform Neat1_2, are generated from the same gene locus by alternative 3' processing. Neat1_1 is the most abundant and the best conserved isoform expressed in various cell types, whereas Neat1_2 is expressed in a small population of particular cell types, including the tip cells of the intestinal epithelium. To investigate the physiological significance of isoform switching, we created mutant mice that solely expressed Neat1_2 by deleting the upstream polyadenylation (poly-A) signal (PAS) required for the production of Neat1_1. We observed the loss of Neat1_1 and strong up-regulation of Neat1_2 in various tissues and cells and the subsequent hyperformation of paraspeckles, especially in cells that normally express Neat1_2. However, the mutant mice were born at the expected Mendelian ratios and did not exhibit obvious external and histological abnormalities. These observations suggested that the hyperformation of paraspeckles does not interfere with the development and growth of these animals under normal laboratory conditions.
Collapse
Affiliation(s)
- Momo Isobe
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Hikaru Toya
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Mari Mito
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama 351-0198, Japan
| | - Tomoki Chiba
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Hiroshi Asahara
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Tetsuro Hirose
- Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
91
|
Chen Q, Zhu C, Jin Y. The Oncogenic and Tumor Suppressive Functions of the Long Noncoding RNA MALAT1: An Emerging Controversy. Front Genet 2020; 11:93. [PMID: 32174966 PMCID: PMC7056701 DOI: 10.3389/fgene.2020.00093] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/28/2020] [Indexed: 12/22/2022] Open
Abstract
Long noncoding RNAs are recently emerging as critical factors of tumorigenesis. Originally regarded as a pre-messenger RNA (mRNA) splicing regulator, the long noncoding RNA MALAT1 has been demonstrated to regulate gene transcription by binding histone modification enzymes and transcription factors, and to regulate mRNA and protein expression post-transcriptionally by binding microRNAs (miRNAs) and acting as a sponge. Early studies consistently report that MALAT1 is up-regulated in human cancer tissues of various organ origins, particularly metastatic cancer tissues, that high levels of MALAT1 expression in cancer tissues are associated with poor patient prognosis, and that MALAT1 induces cancer cell proliferation, migration, and invasion in vitro and tumor metastasis in mice. By contrast, by analyzing multiple independent large datasets, MALAT1 have very recently been found to be down-regulated in human colorectal and breast cancer tissues, and low MALAT1 expression is associated with decreased patient survival. By binding to the transcription factor TEAD, MALAT1 suppresses metastasis gene expression, colorectal and breast cancer cell migration, invasion, and metastasis in vitro and in mice. MALAT1 has therefore been proposed to function as a tumor suppressor in colorectal and breast cancers. More comprehensive studies with multiple independent cohorts of human cancer tissues of various organ origins, in vitro and in vivo function, and mechanism studies with rescue experiments are required to confirm the oncogenic or tumor suppressive role of MALAT1 in other cancers.
Collapse
Affiliation(s)
- Qingjuan Chen
- Department of Oncology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Chenjing Zhu
- Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yingying Jin
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
92
|
Carlevaro-Fita J, Lanzós A, Feuerbach L, Hong C, Mas-Ponte D, Pedersen JS, Johnson R. Cancer LncRNA Census reveals evidence for deep functional conservation of long noncoding RNAs in tumorigenesis. Commun Biol 2020; 3:56. [PMID: 32024996 PMCID: PMC7002399 DOI: 10.1038/s42003-019-0741-7] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/31/2018] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a growing focus of cancer genomics studies, creating the need for a resource of lncRNAs with validated cancer roles. Furthermore, it remains debated whether mutated lncRNAs can drive tumorigenesis, and whether such functions could be conserved during evolution. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, we introduce the Cancer LncRNA Census (CLC), a compilation of 122 GENCODE lncRNAs with causal roles in cancer phenotypes. In contrast to existing databases, CLC requires strong functional or genetic evidence. CLC genes are enriched amongst driver genes predicted from somatic mutations, and display characteristic genomic features. Strikingly, CLC genes are enriched for driver mutations from unbiased, genome-wide transposon-mutagenesis screens in mice. We identified 10 tumour-causing mutations in orthologues of 8 lncRNAs, including LINC-PINT and NEAT1, but not MALAT1. Thus CLC represents a dataset of high-confidence cancer lncRNAs. Mutagenesis maps are a novel means for identifying deeply-conserved roles of lncRNAs in tumorigenesis.
Collapse
Affiliation(s)
- Joana Carlevaro-Fita
- Department of Medical Oncology, Inselspital, University Hospital and University of Bern, 3010, Bern, Switzerland
- Department of Biomedical Research, University of Bern, 3008, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012, Bern, Switzerland
| | - Andrés Lanzós
- Department of Medical Oncology, Inselspital, University Hospital and University of Bern, 3010, Bern, Switzerland
- Department of Biomedical Research, University of Bern, 3008, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012, Bern, Switzerland
| | - Lars Feuerbach
- Applied Bioinformatics, Deutsches Krebsforschungszentrum, 69120, Heidelberg, Germany
| | - Chen Hong
- Applied Bioinformatics, Deutsches Krebsforschungszentrum, 69120, Heidelberg, Germany
| | - David Mas-Ponte
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Jakob Skou Pedersen
- Department for Molecular Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Rory Johnson
- Department of Medical Oncology, Inselspital, University Hospital and University of Bern, 3010, Bern, Switzerland.
- Department of Biomedical Research, University of Bern, 3008, Bern, Switzerland.
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012, Bern, Switzerland.
| |
Collapse
|
93
|
Yao RW, Liu CX, Chen LL. Linking RNA Processing and Function. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2020; 84:67-82. [PMID: 32019863 DOI: 10.1101/sqb.2019.84.039495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RNA processing is critical for eukaryotic mRNA maturation and function. It appears there is no exception for other types of RNAs. Long noncoding RNAs (lncRNAs) represent a subclass of noncoding RNAs, have sizes of >200 nucleotides (nt), and participate in various aspects of gene regulation. Although many lncRNAs are capped, polyadenylated, and spliced just like mRNAs, others are derived from primary transcripts of RNA polymerase II and stabilized by forming circular structures or by ending with small nucleolar RNA-protein complexes. Here we summarize the recent progress in linking the processing and function of these unconventionally processed lncRNAs; we also discuss how directional RNA movement is achieved using the radial flux movement of nascent precursor ribosomal RNA (pre-rRNA) in the human nucleolus as an example.
Collapse
Affiliation(s)
- Run-Wen Yao
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chu-Xiao Liu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
94
|
Kilchert C, Sträßer K, Kunetsky V, Änkö ML. From parts lists to functional significance-RNA-protein interactions in gene regulation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1582. [PMID: 31883228 DOI: 10.1002/wrna.1582] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/03/2019] [Accepted: 12/07/2019] [Indexed: 12/17/2022]
Abstract
Hundreds of canonical RNA binding proteins facilitate diverse and essential RNA processing steps in cells forming a central regulatory point in gene expression. However, recent discoveries including the identification of a large number of noncanonical proteins bound to RNA have changed our view on RNA-protein interactions merely as necessary steps in RNA biogenesis. As the list of proteins interacting with RNA has expanded, so has the scope of regulation through RNA-protein interactions. In addition to facilitating RNA metabolism, RNA binding proteins help to form subcellular structures and membraneless organelles, and provide means to recruit components of macromolecular complexes to their sites of action. Moreover, RNA-protein interactions are not static in cells but the ribonucleoprotein (RNP) complexes are highly dynamic in response to cellular cues. The identification of novel proteins in complex with RNA and ways cells use these interactions to control cellular functions continues to broaden the scope of RNA regulation in cells and the current challenge is to move from cataloguing the components of RNPs into assigning them functions. This will not only facilitate our understanding of cellular homeostasis but may bring in key insights into human disease conditions where RNP components play a central role. This review brings together the classical view of regulation accomplished through RNA-protein interactions with the novel insights gained from the identification of RNA binding interactomes. We discuss the challenges in combining molecular mechanism with cellular functions on the journey towards a comprehensive understanding of the regulatory functions of RNA-protein interactions in cells. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications aRNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition.
Collapse
Affiliation(s)
- Cornelia Kilchert
- Institute of Biochemistry, Justus-Liebig University Giessen, Giessen, Germany
| | - Katja Sträßer
- Institute of Biochemistry, Justus-Liebig University Giessen, Giessen, Germany
| | - Vladislav Kunetsky
- Institute of Biochemistry, Justus-Liebig University Giessen, Giessen, Germany
| | - Minna-Liisa Änkö
- Centre for Reproductive Health and Centre for Cancer Research, Hudson Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Molecular and Translational Science, School of Clinical Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
95
|
MALAT1: a therapeutic candidate for a broad spectrum of vascular and cardiorenal complications. Hypertens Res 2019; 43:372-379. [PMID: 31853043 DOI: 10.1038/s41440-019-0378-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 01/26/2023]
Abstract
Cardiovascular and renal complications cover a wide array of diseases. The most commonly known overlapping complications include cardiac and renal fibrosis, cardiomyopathy, cardiac hypertrophy, hypertension, and cardiorenal failure. The known or reported causes for the abovementioned complications include injury, ischemia, infection, and metabolic stress. To date, various targets have been reported and investigated in detail that are considered to be the cause of these complications. In the past 5 years, the role of noncoding RNAs has emerged in the area of cardiovascular and renal research, especially in relation to metabolic stress. The long noncoding RNA MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) has shown immense promise among the long noncoding RNA targets for treating cardiorenal complications. In this review, we shed light on the role of MALAT1 as a primary and novel target in treating cardiovascular and renal diseases as a whole.
Collapse
|
96
|
George MR, Duan Q, Nagle A, Kathiriya IS, Huang Y, Rao K, Haldar SM, Bruneau BG. Minimal in vivo requirements for developmentally regulated cardiac long intergenic non-coding RNAs. Development 2019; 146:dev.185314. [PMID: 31784461 DOI: 10.1242/dev.185314] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/20/2019] [Indexed: 12/30/2022]
Abstract
Long intergenic non-coding RNAs (lincRNAs) have been implicated in gene regulation, but their requirement for development needs empirical interrogation. We computationally identified nine murine lincRNAs that have developmentally regulated transcriptional and epigenomic profiles specific to early heart differentiation. Six of the nine lincRNAs had in vivo expression patterns supporting a potential function in heart development, including a transcript downstream of the cardiac transcription factor Hand2, which we named Handlr (Hand2-associated lincRNA), Rubie and Atcayos We genetically ablated these six lincRNAs in mouse, which suggested genomic regulatory roles for four of the cohort. However, none of the lincRNA deletions led to severe cardiac phenotypes. Thus, we stressed the hearts of adult Handlr and Atcayos mutant mice by transverse aortic banding and found that absence of these lincRNAs did not affect cardiac hypertrophy or left ventricular function post-stress. Our results support roles for lincRNA transcripts and/or transcription in the regulation of topologically associated genes. However, the individual importance of developmentally specific lincRNAs is yet to be established. Their status as either gene-like entities or epigenetic components of the nucleus should be further considered.
Collapse
Affiliation(s)
- Matthew R George
- Gladstone Institutes, San Francisco, CA 94158, USA.,Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA.,Program in Developmental and Stem Cell Biology, University of California, San Francisco, CA 94143, USA
| | - Qiming Duan
- Gladstone Institutes, San Francisco, CA 94158, USA
| | | | - Irfan S Kathiriya
- Gladstone Institutes, San Francisco, CA 94158, USA.,Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA.,Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94158, USA
| | - Yu Huang
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Kavitha Rao
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Saptarsi M Haldar
- Gladstone Institutes, San Francisco, CA 94158, USA.,Division of Cardiology, Department of Medicine, University of California, San Francisco, CA 94143, USA.,Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Benoit G Bruneau
- Gladstone Institutes, San Francisco, CA 94158, USA .,Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA.,Program in Developmental and Stem Cell Biology, University of California, San Francisco, CA 94143, USA.,Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA.,Department of Pediatrics, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
97
|
Xu E, Liang X, Ji Z, Zhao S, Li L, Lang J. Blocking long noncoding RNA MALAT1 restrained the development of laryngeal and hypopharyngeal carcinoma. Eur Arch Otorhinolaryngol 2019; 277:611-621. [PMID: 31792655 PMCID: PMC6981317 DOI: 10.1007/s00405-019-05732-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022]
Abstract
Purpose The long non-coding RNA MALAT1 is a predictive marker in several solid tumors with highly conserved sequences. However, the role of non-coding RNA in development of laryngeal or hypopharyngeal cancer remains unclear. Methods Tumor tissues and adjacent non-cancer tissues of 24 patients were collected. We detected the expression of MALAT1 in laryngeal cancer tissues and hypopharyngeal cancer tissues. Moreover, we developed a MALAT1 silencing model in human laryngeal tumor cells by transfecting MALAT1 small interfering RNA into human laryngeal carcinoma cell line Hep-2 and pharyngeal carcinoma cell line FaDu with Lipofectamine 2000 system. Cell cycle analysis, Cell Counting Kit-8 assay, Transwell assay, quantitative reverse transcription PCR, and wound-healing assays were performed to evaluate the impact of MALAT1 depletion on laryngeal or hypopharyngeal cancer cell’s growth, proliferation, apoptosis, invasion and migration. Results MALAT1 was significantly up-regulated in laryngeal and hypopharyngeal carcinoma cells. MALAT1 down-regulation induced the increased apoptosis of both cell lines and suppressed cells’ proliferation. Cells were arrested in G1/G2 phase and cells of S phase were significantly decreased. Down-regulation of MALAT1 expression can also inhibit the migration and invasion of laryngeal squamous cell carcinoma cell (Hep-2) and hypopharyngeal cancer cell (FaDu). Conclusion In summary, our deactivation model of MALAT1 disentangled the active function of it as a regulator of gene expression governing the hallmarks of laryngeal and hypopharyngeal cancer. Blocking this long non-coding RNA may restrain the development of laryngeal cancer.
Collapse
Affiliation(s)
- Enhong Xu
- Department of Otolaryngology Head and Neck Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xiaoben Liang
- Department of Otolaryngology Head and Neck Surgery, Children's Hospital of Shanghai, Shanghai, China
| | - Zhenhua Ji
- Department of Otolaryngology Head and Neck Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Shuwei Zhao
- Department of Otolaryngology Head and Neck Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Li Li
- Department of Otolaryngology Head and Neck Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Juntian Lang
- Department of Otolaryngology Head and Neck Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
98
|
Lyu Y, Bai L, Qin C. Long noncoding RNAs in neurodevelopment and Parkinson's disease. Animal Model Exp Med 2019; 2:239-251. [PMID: 31942556 PMCID: PMC6930994 DOI: 10.1002/ame2.12093] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/12/2019] [Accepted: 11/20/2019] [Indexed: 12/16/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are RNA molecules comprising more than 200 nucleotides, which are not translated into proteins. Many studies have shown that lncRNAs are involved in regulating a variety of biological processes, including immune, cancer, stress, development and differentiation at the transcriptional, epigenetic or post-transcriptional levels. Here, we review the role of lncRNAs in the process of neurodevelopment, neural differentiation, synaptic function, and pathogenesis of Parkinson's disease (PD). These pathomechanisms include protein misfolding and aggregation, disordered protein degradation, mitochondrial dysfunction, oxidative stress, autophagy, apoptosis, and neuroinflammation. This information will provide the basis of lncRNA-based disease diagnosis and drug treatment for PD.
Collapse
Affiliation(s)
- Ying Lyu
- Institute of Medical Laboratory Animal ScienceChinese Academy of Medical Sciences & Comparative Medical CenterPeking Union Medical CollegeBeijingChina
| | - Lin Bai
- Institute of Medical Laboratory Animal ScienceChinese Academy of Medical Sciences & Comparative Medical CenterPeking Union Medical CollegeBeijingChina
| | - Chuan Qin
- Institute of Medical Laboratory Animal ScienceChinese Academy of Medical Sciences & Comparative Medical CenterPeking Union Medical CollegeBeijingChina
| |
Collapse
|
99
|
Aboudehen K. Regulation of mTOR signaling by long non-coding RNA. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1863:194449. [PMID: 31751821 DOI: 10.1016/j.bbagrm.2019.194449] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/05/2019] [Accepted: 11/08/2019] [Indexed: 12/31/2022]
Abstract
The mechanistic target of rapamycin (mTOR) is a major signaling hub that coordinates cellular and organismal responses, such as cell growth, proliferation, apoptosis, and metabolism. Dysregulation of mTOR signaling occurs in many human diseases, and there are significant ongoing efforts to pharmacologically target this pathway. Long noncoding RNAs (lncRNA), defined by a length > 200 nucleotides and absence of a long open-reading-frame, are a class of non-protein-coding RNAs. Mutations and dysregulations of lncRNAs are directly linked to the development and progression of many diseases, including cancer, diabetes, and neurologic disorders. Recent findings reveal diverse functions for lncRNA that include transcriptional regulation, organization of nuclear domains, and regulation of proteins or RNA molecules. Despite considerable development in our understanding of lncRNA over the past decade, only a fraction of annotated lncRNAs has been examined for biological function. In addition, lncRNAs have emerged as therapeutic targets due to their ability to modulate multiple pathways, including mTOR signaling. This review will provide an up-to-date summary of lncRNAs that are involved in regulating mTOR pathway.
Collapse
Affiliation(s)
- Karam Aboudehen
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA.
| |
Collapse
|
100
|
Vishnubalaji R, Shaath H, Elango R, Alajez NM. Noncoding RNAs as potential mediators of resistance to cancer immunotherapy. Semin Cancer Biol 2019; 65:65-79. [PMID: 31733291 DOI: 10.1016/j.semcancer.2019.11.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/31/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022]
Abstract
Substantial evolution in cancer therapy has been witnessed lately, steering mainly towards immunotherapeutic approaches, replacing or in combination with classical therapies. Whereas the use of various immunotherapy approaches, such as adoptive T cell therapy, genetically-modified T cells, or immune checkpoint inhibitors, has been a triumph for cancer immunotherapy, the great challenge is the ability of the immune system to sustain long lasting anti-tumor response. Additionally, epigenetic changes in a suppressive tumor microenvironment can pertain to T cell exhaustion, limiting their functionality. Noncoding RNAs (ncRNAs) have emerged over the last years as key players in epigenetic regulation. Among those, microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) have been studied extensively for their potential role in regulating tumor immunity through direct regulation of genes involved in immune activation or suppression. In this review, we will provide an overview of contemporary approaches for cancer immunotherapy and will present the current state of knowledge implicating miRNAs and lncRNAs in regulating immune response against human cancer and their potential implications in resistance to cancer immunotherapy, with main emphasis on immune checkpoints regulation.
Collapse
Affiliation(s)
- Radhakrishnan Vishnubalaji
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Hibah Shaath
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar; College of Health & Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Ramesh Elango
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Nehad M Alajez
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar; College of Health & Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar.
| |
Collapse
|