51
|
Shirafkan N, Mansoori B, Mohammadi A, Shomali N, Ghasbi M, Baradaran B. MicroRNAs as novel biomarkers for colorectal cancer: New outlooks. Biomed Pharmacother 2018; 97:1319-1330. [DOI: 10.1016/j.biopha.2017.11.046] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/04/2017] [Accepted: 11/07/2017] [Indexed: 12/19/2022] Open
|
52
|
Atanasov J, Groher F, Weigand JE, Suess B. Design and implementation of a synthetic pre-miR switch for controlling miRNA biogenesis in mammals. Nucleic Acids Res 2017; 45:e181. [PMID: 29036355 PMCID: PMC5727447 DOI: 10.1093/nar/gkx858] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 08/22/2017] [Accepted: 09/20/2017] [Indexed: 01/07/2023] Open
Abstract
Synthetic RNA-based systems have increasingly been used for the regulation of eukaryotic gene expression. Due to their structural properties, riboregulators provide a convenient basis for the development of ligand-dependent controllable systems. Here, we demonstrate reversible conditional control of miRNA biogenesis with an aptamer domain as a sensing unit connected to a natural miRNA precursor for the first time. For the design of the pre-miR switch, we replaced the natural terminal loop with the TetR aptamer. Thus, the TetR aptamer was positioned close to the Dicer cleavage sites, which allowed sterical control over pre-miR processing by Dicer. Our design proved to be highly versatile, allowing us to regulate the biogenesis of three structurally different miRNAs: miR-126, -34a and -199a. Dicer cleavage was inhibited up to 143-fold via co-expression of the TetR protein, yet could be completely restored upon addition of doxycycline. Moreover, we showed the functionality of the pre-miR switches for gene regulation through the interaction of the respective miRNA with its specific target sequence. Our designed device is capable of robust and reversible control of miRNA abundance. Thus, we offer a novel investigational tool for functional miRNA analysis.
Collapse
Affiliation(s)
- Janina Atanasov
- Department of Biology, Technical University Darmstadt, Darmstadt 64287, Germany
| | - Florian Groher
- Department of Biology, Technical University Darmstadt, Darmstadt 64287, Germany
| | - Julia E. Weigand
- Department of Biology, Technical University Darmstadt, Darmstadt 64287, Germany
| | - Beatrix Suess
- Department of Biology, Technical University Darmstadt, Darmstadt 64287, Germany
| |
Collapse
|
53
|
RNA stem structure governs coupling of dicing and gene silencing in RNA interference. Proc Natl Acad Sci U S A 2017; 114:E10349-E10358. [PMID: 29133395 PMCID: PMC5715756 DOI: 10.1073/pnas.1710298114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
RNAi is an RNA-induced gene-silencing pathway that is shared among various organisms. Better understanding of RNAi is urgently needed to improve our knowledge of RNA-mediated gene regulation and to advance the field of functional genomics and its application to gene therapy. We counted with high precision the number of transcripts in each cell’s nucleus and cytoplasm as a function of silencing time to investigate the role of small RNA secondary structures such as loop length and stem mismatches. We screened various structural features of small RNAs and discovered a distinct role of each structural element that contributes to gene-silencing kinetics. We provide a helpful guideline for designing small RNAs for more efficient gene silencing. PremicroRNAs (premiRNAs) possess secondary structures consisting of a loop and a stem with multiple mismatches. Despite the well-characterized RNAi pathway, how the structural features of premiRNA contribute to dicing and subsequent gene-silencing efficiency remains unclear. Using single-molecule FISH, we demonstrate that cytoplasmic mRNA, but not nuclear mRNA, is reduced during RNAi. The dicing rate and silencing efficiency both increase in a correlated manner as a function of the loop length. In contrast, mismatches in the stem drastically diminish the silencing efficiency without impacting the dicing rate. We show that this decoupling effect is not due to the loading to the RNA-induced silencing complex, RNA uptake, or cellular dicing. We postulate that the stem mismatches perturb the handover of the cleaved miRNAs from Dicer to Argonaute, leading to poor strand selection. Our results imply that the stem structures prevalent in cellular miRNAs have suboptimal silencing efficiency.
Collapse
|
54
|
Hassan S, Sidransky E, Tayebi N. The role of epigenetics in lysosomal storage disorders: Uncharted territory. Mol Genet Metab 2017; 122:10-18. [PMID: 28918065 DOI: 10.1016/j.ymgme.2017.07.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/30/2017] [Accepted: 07/31/2017] [Indexed: 12/18/2022]
Abstract
The study of the contribution of epigenetic mechanisms, including DNA methylation, histone modifications, and microRNAs, to human disease has enhanced our understanding of different cellular processes and diseased states, as well as the effect of environmental factors on phenotypic outcomes. Epigenetic studies may be particularly relevant in evaluating the clinical heterogeneity observed in monogenic disorders. The lysosomal storage disorders are Mendelian disorders characterized by a wide spectrum of associated phenotypes, ranging from neonatal presentations to symptoms that develop in late adulthood. Some lack a tight genotype/phenotype correlation. While epigenetics may explain some of the discordant phenotypes encountered in patients with the same lysosomal storage disorder, especially among patients sharing the same genotype, to date, few studies have focused on these mechanisms. We review three common epigenetic mechanisms, DNA methylation, histone modifications, and microRNAs, and highlight their applications to phenotypic variation and therapeutics. Three specific lysosomal storage diseases, Gaucher disease, Fabry disease, and Niemann-Pick type C disease are presented as prototypical disorders with vast clinical heterogeneity that may be impacted by epigenetics. Our goal is to motivate researchers to consider epigenetics as a mechanism to explain the complexities of biological functions and pathologies of these rare disorders.
Collapse
Affiliation(s)
- Shahzeb Hassan
- Medical Genetics Branch, NHGRI, NIH, Bethesda, MD, United States
| | - Ellen Sidransky
- Medical Genetics Branch, NHGRI, NIH, Bethesda, MD, United States.
| | - Nahid Tayebi
- Medical Genetics Branch, NHGRI, NIH, Bethesda, MD, United States
| |
Collapse
|
55
|
Núñez-Hernández F, Pérez LJ, Muñoz M, Vera G, Accensi F, Sánchez A, Rodríguez F, Núñez JI. Differential expression of porcine microRNAs in African swine fever virus infected pigs: a proof-of-concept study. Virol J 2017; 14:198. [PMID: 29041944 PMCID: PMC5646143 DOI: 10.1186/s12985-017-0864-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/09/2017] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND African swine fever (ASF) is a re-expanding devastating viral disease currently threatening the pig industry worldwide. MicroRNAs are a class of 17-25 nucleotide non- coding RNAs that have been shown to have critical functions in a wide variety of biological processes, such as cell differentiation, cell cycle regulation, carcinogenesis, apoptosis, regulation of immunity as well as in viral infections by cleavage or translational repression of mRNAs. Nevertheless, there is no information about miRNA expression in an ASFV infection. METHODS In this proof-of-concept study, we have analyzed miRNAs expressed in spleen and submandibular lymph node of experimentally infected pigs with a virulent (E75) or its derived attenuated (E75CV1) ASFV strain, as well as, at different times post-infection with the virulent strain, by high throughput sequencing of small RNA libraries. RESULTS Spleen presented a more differential expression pattern than lymph nodes in an ASFV infection. Of the most abundant miRNAs, 12 were differentially expressed in both tissues at two different times in infected animals with the virulent strain. Of these, miR-451, miR-145-5p, miR-181a and miR-122 presented up-regulation at late times post-infection while miR-92a, miR-23a, miR-92b-3p, miR-126-5p, miR-126-3p, miR-30d, miR-23b and miR-92c showed down-regulation. Of the 8 differentially expressed miRNAs identified at the same time post-infection in infected animals with the virulent strain compared with animals infected with its attenuated strain, miR-126-5p, miR-92c, miR-92a, miR-30e-5p and miR-500a-5p presented up-regulation whereas miR-125b, miR-451 and miR-125a were down-regulated. All these miRNAs have been shown to be associated with cellular genes involved in pathways related to the immune response, virus-host interactions as well as with several viral genes. CONCLUSION The study of miRNA expression will contribute to a better understanding of African swine fever virus pathogenesis, essential in the development of any disease control strategy.
Collapse
Affiliation(s)
| | | | - Marta Muñoz
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Bellaterra, Spain
| | - Gonzalo Vera
- Departament de Genètica Animal, Centre de Recerca en AgriGenòmica (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Francesc Accensi
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Bellaterra, Spain.,Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, Bellaterra, 08193, Barcelona, Spain
| | - Armand Sánchez
- Departament de Genètica Animal, Centre de Recerca en AgriGenòmica (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.,Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Fernando Rodríguez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Bellaterra, Spain
| | - José I Núñez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Bellaterra, Spain.
| |
Collapse
|
56
|
Ando H, Hirose M, Kurosawa G, Impey S, Mikoshiba K. Time-lapse imaging of microRNA activity reveals the kinetics of microRNA activation in single living cells. Sci Rep 2017; 7:12642. [PMID: 28974737 PMCID: PMC5626736 DOI: 10.1038/s41598-017-12879-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/15/2017] [Indexed: 01/11/2023] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that play critical roles in the post-transcriptional regulation of gene expression. Although the molecular mechanisms of the biogenesis and activation of miRNA have been extensively studied, the details of their kinetics within individual living cells remain largely unknown. We developed a novel method for time-lapse imaging of the rapid dynamics of miRNA activity in living cells using destabilized fluorescent proteins (dsFPs). Real-time monitoring of dsFP-based miRNA sensors revealed the duration necessary for miRNA biogenesis to occur, from primary miRNA transcription to mature miRNA activation, at single-cell resolution. Mathematical modeling, which included the decay kinetics of the fluorescence of the miRNA sensors, demonstrated that miRNAs induce translational repression depending on their complementarity with targets. We also developed a dual-color imaging system, and demonstrated that miR-9-5p and miR-9-3p were produced and activated from a common hairpin precursor with similar kinetics, in single cells. Furthermore, a dsFP-based miR-132 sensor revealed the rapid kinetics of miR-132 activation in cortical neurons under physiological conditions. The timescale of miRNA biogenesis and activation is much shorter than the median half-lives of the proteome, suggesting that the degradation rates of miRNA target proteins are the dominant rate-limiting factors for miRNA-mediated gene silencing.
Collapse
Affiliation(s)
- Hideaki Ando
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan.
| | - Matsumi Hirose
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
| | - Gen Kurosawa
- Theoretical Biology Laboratory, RIKEN, Wako, Saitama, 351-0198, Japan
| | - Soren Impey
- Oregon Stem Cell Center, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
57
|
Lee H, Patschull AOM, Bagnéris C, Ryan H, Sanderson CM, Ebrahimi B, Nobeli I, Barrett TE. KSHV SOX mediated host shutoff: the molecular mechanism underlying mRNA transcript processing. Nucleic Acids Res 2017; 45:4756-4767. [PMID: 28132029 PMCID: PMC5416870 DOI: 10.1093/nar/gkw1340] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 12/22/2016] [Indexed: 11/18/2022] Open
Abstract
Onset of the lytic phase in the KSHV life cycle is accompanied by the rapid, global degradation of host (and viral) mRNA transcripts in a process termed host shutoff. Key to this destruction is the virally encoded alkaline exonuclease SOX. While SOX has been shown to possess an intrinsic RNase activity and a potential consensus sequence for endonucleolytic cleavage identified, the structures of the RNA substrates targeted remained unclear. Based on an analysis of three reported target transcripts, we were able to identify common structures and confirm that these are indeed degraded by SOX in vitro as well as predict the presence of such elements in the KSHV pre-microRNA transcript K12-2. From these studies, we were able to determine the crystal structure of SOX productively bound to a 31 nucleotide K12-2 fragment. This complex not only reveals the structural determinants required for RNA recognition and degradation but, together with biochemical and biophysical studies, reveals distinct roles for residues implicated in host shutoff. Our results further confirm that SOX and the host exoribonuclease Xrn1 act in concert to elicit the rapid degradation of mRNA substrates observed in vivo, and that the activities of the two ribonucleases are co-ordinated.
Collapse
Affiliation(s)
- Hyunah Lee
- Institute for Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, Malet Street, London WC1E 7HX, UK.,Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Anathe O M Patschull
- Institute for Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, Malet Street, London WC1E 7HX, UK
| | - Claire Bagnéris
- Institute for Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, Malet Street, London WC1E 7HX, UK
| | - Hannah Ryan
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Christopher M Sanderson
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK
| | - Bahram Ebrahimi
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Irene Nobeli
- Institute for Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, Malet Street, London WC1E 7HX, UK
| | - Tracey E Barrett
- Institute for Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, Malet Street, London WC1E 7HX, UK
| |
Collapse
|
58
|
Lorenz DA, Vander Roest S, Larsen MJ, Garner AL. Development and Implementation of an HTS-Compatible Assay for the Discovery of Selective Small-Molecule Ligands for Pre-microRNAs. SLAS DISCOVERY 2017; 23:47-54. [PMID: 28686847 DOI: 10.1177/2472555217717944] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
microRNAs (miRNAs) are small gene regulatory RNAs, and their expression has been found to be dysregulated in a number of human diseases. To facilitate the discovery of small molecules capable of selectively modulating the activity of a specific miRNA, we have utilized new high-throughput screening technology targeting Dicer-mediated pre-miRNA maturation. Pilot screening of ~50,000 small molecules and ~33,000 natural product extract libraries against pre-miR-21 processing indicated the potential of our assay for this goal, yielding a campaign Z' factor of 0.52 and an average plate signal-to-background (S/B) ratio of 13. Using two-dimensional screening against a second pre-miRNA, pre-let-7d, we evaluated the selectivity of confirmed hits. The results presented demonstrate how high-throughput screening can be used to identify selective small molecules for a target RNA.
Collapse
Affiliation(s)
- Daniel A Lorenz
- 1 Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Steve Vander Roest
- 3 Center for Chemical Genomics, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Martha J Larsen
- 3 Center for Chemical Genomics, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Amanda L Garner
- 1 Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, USA.,2 Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
59
|
Paces J, Nic M, Novotny T, Svoboda P. Literature review of baseline information to support the risk assessment of RNAi‐based GM plants. ACTA ACUST UNITED AC 2017. [PMCID: PMC7163844 DOI: 10.2903/sp.efsa.2017.en-1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Paces
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| | | | | | - Petr Svoboda
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| |
Collapse
|
60
|
A-to-I editing in human miRNAs is enriched in seed sequence, influenced by sequence contexts and significantly hypoedited in glioblastoma multiforme. Sci Rep 2017; 7:2466. [PMID: 28550310 PMCID: PMC5446428 DOI: 10.1038/s41598-017-02397-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/18/2017] [Indexed: 01/14/2023] Open
Abstract
Editing in microRNAs, particularly in seed can significantly alter the choice of their target genes. We show that out of 13 different human tissues, different regions of brain showed higher adenosine to inosine (A-to-I) editing in mature miRNAs. These events were enriched in seed sequence (73.33%), which was not observed for cytosine to uracil (17.86%) editing. More than half of the edited miRNAs showed increased stability, 72.7% of which had ΔΔG values less than −6.0 Kcal/mole and for all of them the edited adenosines mis-paired with cytosines on the pre-miRNA structure. A seed-editing event in hsa-miR-411 (with A – C mismatch) lead to increased expression of the mature form compared to the unedited version in cell culture experiments. Further, small RNA sequencing of GBM patients identified significant miRNA hypoediting which correlated with downregulation of ADAR2 both in metadata and qRT-PCR based validation. Twenty-two significant (11 novel) A-to-I hypoediting events were identified in GBM samples. This study highlights the importance of specific sequence and structural requirements of pre-miRNA for editing along with a suggestive crucial role for ADAR2. Enrichment of A-to-I editing in seed sequence highlights this as an important layer for genomic regulation in health and disease, especially in human brain.
Collapse
|
61
|
Gozuacik D, Akkoc Y, Ozturk DG, Kocak M. Autophagy-Regulating microRNAs and Cancer. Front Oncol 2017; 7:65. [PMID: 28459042 PMCID: PMC5394422 DOI: 10.3389/fonc.2017.00065] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 03/21/2017] [Indexed: 12/12/2022] Open
Abstract
Macroautophagy (autophagy herein) is a cellular stress response and a survival pathway that is responsible for the degradation of long-lived proteins, protein aggregates, as well as damaged organelles in order to maintain cellular homeostasis. Consequently, abnormalities of autophagy are associated with a number of diseases, including Alzheimers’s disease, Parkinson’s disease, and cancer. According to the current view, autophagy seems to serve as a tumor suppressor in the early phases of cancer formation, yet in later phases, autophagy may support and/or facilitate tumor growth, spread, and contribute to treatment resistance. Therefore, autophagy is considered as a stage-dependent dual player in cancer. microRNAs (miRNAs) are endogenous non-coding small RNAs that negatively regulate gene expression at a post-transcriptional level. miRNAs control several fundamental biological processes, and autophagy is no exception. Furthermore, accumulating data in the literature indicate that dysregulation of miRNA expression contribute to the mechanisms of cancer formation, invasion, metastasis, and affect responses to chemotherapy or radiotherapy. Therefore, considering the importance of autophagy for cancer biology, study of autophagy-regulating miRNA in cancer will allow a better understanding of malignancies and lead to the development of novel disease markers and therapeutic strategies. The potential to provide study of some of these cancer-related miRNAs were also implicated in autophagy regulation. In this review, we will focus on autophagy, miRNA, and cancer connection, and discuss its implications for cancer biology and cancer treatment.
Collapse
Affiliation(s)
- Devrim Gozuacik
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey.,Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabanci University, Istanbul, Turkey
| | - Yunus Akkoc
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Deniz Gulfem Ozturk
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Muhammed Kocak
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| |
Collapse
|
62
|
Ameis D, Khoshgoo N, Iwasiow BM, Snarr P, Keijzer R. MicroRNAs in Lung Development and Disease. Paediatr Respir Rev 2017; 22:38-43. [PMID: 28237418 DOI: 10.1016/j.prrv.2016.12.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 12/05/2016] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are small (∼22 nucleotides), non-coding RNA molecules that regulate gene expression post-transcriptionally by inhibiting target mRNAs. Research into the roles of miRNAs in lung development and disease is at the early stages. In this review, we discuss the role of miRNAs in pediatric respiratory disease, including cystic fibrosis, asthma, and bronchopulmonary dysplasia.
Collapse
Affiliation(s)
- Dustin Ameis
- Departments of Surgery, Pediatrics and Child Health and Physiology and Pathophysiology, University of Manitoba, and The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Naghmeh Khoshgoo
- Departments of Surgery, Pediatrics and Child Health and Physiology and Pathophysiology, University of Manitoba, and The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Barbara M Iwasiow
- Departments of Surgery, Pediatrics and Child Health and Physiology and Pathophysiology, University of Manitoba, and The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Phillip Snarr
- Departments of Surgery, Pediatrics and Child Health and Physiology and Pathophysiology, University of Manitoba, and The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Richard Keijzer
- Departments of Surgery, Pediatrics and Child Health and Physiology and Pathophysiology, University of Manitoba, and The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
63
|
Sripada L, Singh K, Lipatova AV, Singh A, Prajapati P, Tomar D, Bhatelia K, Roy M, Singh R, Godbole MM, Chumakov PM, Singh R. hsa-miR-4485 regulates mitochondrial functions and inhibits the tumorigenicity of breast cancer cells. J Mol Med (Berl) 2017; 95:641-651. [PMID: 28220193 DOI: 10.1007/s00109-017-1517-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 01/07/2017] [Accepted: 02/07/2017] [Indexed: 12/13/2022]
Abstract
The modulation of mitochondrial functions is important for maintaining cellular homeostasis. Mitochondria essentially depend on the import of RNAs and proteins encoded by the nuclear genome. MicroRNAs encoded in the nucleus can translocate to mitochondria and target the genome, affecting mitochondrial function. Here, we analyzed the role of miR-4485 in the regulation of mitochondrial functions. We showed that miR-4485 translocated to mitochondria where its levels varied in response to different stress conditions. A direct binding of miR-4485 to mitochondrial 16S rRNA was demonstrated. MiR-4485 regulated the processing of pre-rRNA at the 16S rRNA-ND1 junction and the translation of downstream transcripts. MiR-4485 modulated mitochondrial complex I activity, the production of ATP, ROS levels, caspase-3/7 activation, and apoptosis. Transfection of a miR-4485 mimic downregulated the expression of regulatory glycolytic pathway genes and reduced the clonogenic ability of breast cancer cells. Ectopic expression of miR-4485 in MDA-MB-231 breast carcinoma cells decreased the tumorigenicity in a nude mouse xenograft model. Furthermore, levels of both precursor and mature miR-4485 are decreased in tumor tissue of breast cancer patients. We conclude that the mitochondria-targeted miR-4485 may act as a tumor suppressor in breast carcinoma cells by negatively regulating mitochondrial RNA processing and mitochondrial functions.
Collapse
Affiliation(s)
- Lakshmi Sripada
- Department of Biochemistry, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Kritarth Singh
- Department of Biochemistry, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Anastasiya V Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Aru Singh
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, 226014, India
| | - Paresh Prajapati
- Department of Biochemistry, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Dhanendra Tomar
- Center for Translational Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Khyati Bhatelia
- Department of Biochemistry, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Milton Roy
- Department of Biochemistry, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Rochika Singh
- Department of Cell Biology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat, 382007, India
| | - Madan M Godbole
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, 226014, India
| | - Peter M Chumakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Rajesh Singh
- Department of Biochemistry, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India.
| |
Collapse
|
64
|
Approaches for the Discovery of Small Molecule Ligands Targeting microRNAs. TOPICS IN MEDICINAL CHEMISTRY 2017. [DOI: 10.1007/7355_2017_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
65
|
Bao Y, Hayashida M, Akutsu T. LBSizeCleav: improved support vector machine (SVM)-based prediction of Dicer cleavage sites using loop/bulge length. BMC Bioinformatics 2016; 17:487. [PMID: 27887571 PMCID: PMC5124314 DOI: 10.1186/s12859-016-1353-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 11/11/2016] [Indexed: 12/03/2022] Open
Abstract
Background Dicer is necessary for the process of mature microRNA (miRNA) formation because the Dicer enzyme cleaves pre-miRNA correctly to generate miRNA with correct seed regions. Nonetheless, the mechanism underlying the selection of a Dicer cleavage site is still not fully understood. To date, several studies have been conducted to solve this problem, for example, a recent discovery indicates that the loop/bulge structure plays a central role in the selection of Dicer cleavage sites. In accordance with this breakthrough, a support vector machine (SVM)-based method called PHDCleav was developed to predict Dicer cleavage sites which outperforms other methods based on random forest and naive Bayes. PHDCleav, however, tests only whether a position in the shift window belongs to a loop/bulge structure. Result In this paper, we used the length of loop/bulge structures (in addition to their presence or absence) to develop an improved method, LBSizeCleav, for predicting Dicer cleavage sites. To evaluate our method, we used 810 empirically validated sequences of human pre-miRNAs and performed fivefold cross-validation. In both 5p and 3p arms of pre-miRNAs, LBSizeCleav showed greater prediction accuracy than PHDCleav did. This result suggests that the length of loop/bulge structures is useful for prediction of Dicer cleavage sites. Conclusion We developed a novel algorithm for feature space mapping based on the length of a loop/bulge for predicting Dicer cleavage sites. The better performance of our method indicates the usefulness of the length of loop/bulge structures for such predictions.
Collapse
Affiliation(s)
- Yu Bao
- Laboratory of Mathematical Bioinformatics, Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.
| | - Morihiro Hayashida
- Laboratory of Mathematical Bioinformatics, Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Tatsuya Akutsu
- Laboratory of Mathematical Bioinformatics, Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
66
|
Baumann FM, Yuzefpolskiy Y, Sarkar S, Kalia V. Dicer Regulates the Balance of Short-Lived Effector and Long-Lived Memory CD8 T Cell Lineages. PLoS One 2016; 11:e0162674. [PMID: 27627450 PMCID: PMC5023163 DOI: 10.1371/journal.pone.0162674] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 08/28/2016] [Indexed: 12/30/2022] Open
Abstract
MicroRNAs constitute a major post-transcriptional mechanism for controlling protein expression, and are emerging as key regulators during T cell development and function. Recent reports of augmented CD8 T cell activation and effector differentiation, and aberrant migratory properties upon ablation of Dicer/miRNAs in naïve cells have established a regulatory role of miRNAs during priming. Whether miRNAs continue to exert similar functions or are dispensable during later stages of CD8 T cell expansion and memory differentiation remains unclear. Here, we report a critical role of Dicer/miRNAs in regulating the balance of long-lived memory and short-lived terminal effector fates during the post-priming stages when CD8 T cells undergo clonal expansion to generate a large cytotoxic T lymphocyte (CTL) pool and subsequently differentiate into a quiescent memory state. Conditional ablation of Dicer/miRNAs in early effector CD8 T cells following optimal activation and expression of granzyme B, using unique dicerfl/flgzmb-cre mice, led to a strikingly diminished peak effector size relative to wild-type antigen-specific cells in the same infectious milieu. Diminished expansion of Dicer-ablated CD8 T cells was associated with lack of sustained antigen-driven proliferation and reduced accumulation of short-lived effector cells. Additionally, Dicer-ablated CD8 T cells exhibited more pronounced contraction after pathogen clearance and comprised a significantly smaller proportion of the memory pool, despite significantly higher proportions of CD127Hi memory precursors at the effector peak. Combined with previous reports of dynamic changes in miRNA expression as CD8 T cells differentiate from naïve to effector and memory states, these findings support distinct stage-specific roles of miRNA-dependent gene regulation during CD8 T cell differentiation.
Collapse
Affiliation(s)
- Florian M. Baumann
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, United States of America
| | - Yevgeniy Yuzefpolskiy
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, United States of America
| | - Surojit Sarkar
- Department of Pediatrics, Division of Hematology and Oncology, University of Washington School of Medicine, Seattle, WA, United States of America; Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA, United States of America
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, United States of America
| | - Vandana Kalia
- Department of Pediatrics, Division of Hematology and Oncology, University of Washington School of Medicine, Seattle, WA, United States of America; Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA, United States of America
- * E-mail:
| |
Collapse
|
67
|
Patil KM, Chen G. Recognition of RNA Sequence and Structure by Duplex and Triplex Formation: Targeting miRNA and Pre-miRNA. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-3-319-34175-0_13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
68
|
Cao DD, Li L, Chan WY. MicroRNAs: Key Regulators in the Central Nervous System and Their Implication in Neurological Diseases. Int J Mol Sci 2016; 17:E842. [PMID: 27240359 PMCID: PMC4926376 DOI: 10.3390/ijms17060842] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 05/20/2016] [Accepted: 05/23/2016] [Indexed: 01/03/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small, well-conserved noncoding RNAs that regulate gene expression post-transcriptionally. They have been demonstrated to regulate a lot of biological pathways and cellular functions. Many miRNAs are dynamically regulated during central nervous system (CNS) development and are spatially expressed in adult brain indicating their essential roles in neural development and function. In addition, accumulating evidence strongly suggests that dysfunction of miRNAs contributes to neurological diseases. These observations, together with their gene regulation property, implicated miRNAs to be the key regulators in the complex genetic network of the CNS. In this review, we first focus on the ways through which miRNAs exert the regulatory function and how miRNAs are regulated in the CNS. We then summarize recent findings that highlight the versatile roles of miRNAs in normal CNS physiology and their association with several types of neurological diseases. Subsequently we discuss the limitations of miRNAs research based on current studies as well as the potential therapeutic applications and challenges of miRNAs in neurological disorders. We endeavor to provide an updated description of the regulatory roles of miRNAs in normal CNS functions and pathogenesis of neurological diseases.
Collapse
Affiliation(s)
- Dan-Dan Cao
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong-Chinese Academy of Sciences Guangzhou Institute of Biomedicine and Health Joint Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, SAR, China.
| | - Lu Li
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong-Chinese Academy of Sciences Guangzhou Institute of Biomedicine and Health Joint Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, SAR, China.
| | - Wai-Yee Chan
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong-Chinese Academy of Sciences Guangzhou Institute of Biomedicine and Health Joint Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, SAR, China.
| |
Collapse
|
69
|
Schober A, Weber C. Mechanisms of MicroRNAs in Atherosclerosis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 11:583-616. [DOI: 10.1146/annurev-pathol-012615-044135] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Andreas Schober
- Institute for Cardiovascular Prevention, Ludwig Maximilians University Munich, Munich 80336, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich 80336, Germany;
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig Maximilians University Munich, Munich 80336, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich 80336, Germany;
| |
Collapse
|
70
|
Svobodova E, Kubikova J, Svoboda P. Production of small RNAs by mammalian Dicer. Pflugers Arch 2016; 468:1089-102. [PMID: 27048428 PMCID: PMC4893058 DOI: 10.1007/s00424-016-1817-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/20/2016] [Accepted: 03/24/2016] [Indexed: 01/16/2023]
Abstract
MicroRNA (miRNA) and RNA interference (RNAi) pathways employ RNase III Dicer for the biogenesis of small RNAs guiding post-transcriptional repression. Requirements for Dicer activity differ in the two pathways. The biogenesis of miRNAs requires a single Dicer cleavage of a short hairpin precursor to produce a small RNA with a precisely defined sequence, while small RNAs in RNAi come from a processive cleavage of a long double-stranded RNA (dsRNA) into a pool of small RNAs with different sequences. While Dicer is generally conserved among eukaryotes, its substrate recognition, cleavage, and biological roles differ. In Metazoa, a single Dicer can function as a universal factor for RNAi and miRNA pathways or as a factor adapted specifically for one of the pathways. In this review, we focus on the structure, function, and evolution of mammalian Dicer. We discuss key structural features of Dicer and other factors defining Dicer substrate repertoire and biological functions in mammals in comparison with invertebrate models. The key for adaptation of Dicer for miRNA or RNAi pathways is the N-terminal helicase, a dynamically evolving Dicer domain. Its functionality differs between mammals and invertebrates: the mammalian Dicer is well adapted to produce miRNAs while its ability to support RNAi is limited.
Collapse
Affiliation(s)
- Eliska Svobodova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, 142 20, Czech Republic
| | - Jana Kubikova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, 142 20, Czech Republic
| | - Petr Svoboda
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, 142 20, Czech Republic.
| |
Collapse
|
71
|
Zuo H, Yuan J, Chen Y, Li S, Su Z, Wei E, Li C, Weng S, Xu X, He J. A MicroRNA-Mediated Positive Feedback Regulatory Loop of the NF-κB Pathway in Litopenaeus vannamei. THE JOURNAL OF IMMUNOLOGY 2016; 196:3842-53. [DOI: 10.4049/jimmunol.1502358] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/23/2016] [Indexed: 01/17/2023]
|
72
|
Li L, Feng H, Da Q, Jiang H, Chen L, Xie L, Huang Q, Xiong H, Luo F, Kang L, Zeng Y, Hu H, Hou W, Feng Y. Expression of HIV-encoded microRNA-TAR and its inhibitory effect on viral replication in human primary macrophages. Arch Virol 2016; 161:1115-23. [PMID: 26831929 DOI: 10.1007/s00705-016-2755-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/07/2016] [Indexed: 12/12/2022]
Abstract
A number of virus-encoded microRNAs have been shown to play important roles in virus replication and virus-host interactions, although the expression and function of miR-TAR-3p derived from the human immunodeficiency virus type 1 (HIV-1) TAR element remain controversial. In this study, miR-TAR-3p was detected in human peripheral blood monocyte-derived macrophages (MDMs) infected by HIV-1. Overexpression of miR-TAR-3p impaired viral replication, while inhibition of miR-TAR-3p enhanced it. Additionally, miR-TAR-3p repressed viral transcription and replication by targeting the TAR element in the HIV-1 5'-LTR in a sequence-specific manner. These results confirm the presence of miR-TAR-3p in HIV-1-infected MDMs and suggest that its function might be used as a mechanism to modulate HIV-1 replication through the expression of a negative regulatory factor.
Collapse
Affiliation(s)
- Li Li
- School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuchang, Wuhan, 430070, Hubei, People's Republic of China
- State Key Laboratory of Virology, Wuhan University, Wuhan, 430072, Hubei, People's Republic of China
| | - Haimin Feng
- School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuchang, Wuhan, 430070, Hubei, People's Republic of China
| | - Qin Da
- Hubei Center for Disease Control and Prevention, Wuhan, 430079, Hubei, People's Republic of China
| | - Honglin Jiang
- Hubei Center for Disease Control and Prevention, Wuhan, 430079, Hubei, People's Republic of China
| | - Lang Chen
- School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuchang, Wuhan, 430070, Hubei, People's Republic of China
| | - Linlin Xie
- School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuchang, Wuhan, 430070, Hubei, People's Republic of China
| | - Qiuling Huang
- School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuchang, Wuhan, 430070, Hubei, People's Republic of China
- State Key Laboratory of Virology, Wuhan University, Wuhan, 430072, Hubei, People's Republic of China
| | - Hairong Xiong
- School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuchang, Wuhan, 430070, Hubei, People's Republic of China
- State Key Laboratory of Virology, Wuhan University, Wuhan, 430072, Hubei, People's Republic of China
| | - Fan Luo
- School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuchang, Wuhan, 430070, Hubei, People's Republic of China
- State Key Laboratory of Virology, Wuhan University, Wuhan, 430072, Hubei, People's Republic of China
| | - Lei Kang
- State Key Laboratory of Virology, Wuhan University, Wuhan, 430072, Hubei, People's Republic of China
| | - Yan Zeng
- Department of Zoology, College of Life Sciences, Nanjing Agriculture University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Haitao Hu
- Department of Microbiology and Immunology, Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Wei Hou
- School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuchang, Wuhan, 430070, Hubei, People's Republic of China.
- State Key Laboratory of Virology, Wuhan University, Wuhan, 430072, Hubei, People's Republic of China.
| | - Yong Feng
- School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuchang, Wuhan, 430070, Hubei, People's Republic of China.
- State Key Laboratory of Virology, Wuhan University, Wuhan, 430072, Hubei, People's Republic of China.
| |
Collapse
|
73
|
Nahar S, Bose D, Pal S, Chakraborty TK, Maiti S. Cyclic Cationic Peptides Containing Sugar Amino Acids Selectively Distinguishes and Inhibits Maturation of Pre-miRNAs of the Same Family. Nucleic Acid Ther 2015; 25:323-9. [DOI: 10.1089/nat.2015.0554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Smita Nahar
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Debojit Bose
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Sudip Pal
- CSIR-Central Drug Research Institute, Lucknow, India
| | - Tushar Kanti Chakraborty
- CSIR-Central Drug Research Institute, Lucknow, India
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, India
| | - Souvik Maiti
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
- CSIR-National Chemical Laboratory, Pune, India
| |
Collapse
|
74
|
The art of CHO cell engineering: A comprehensive retrospect and future perspectives. Biotechnol Adv 2015; 33:1878-96. [DOI: 10.1016/j.biotechadv.2015.10.015] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 10/21/2015] [Accepted: 10/30/2015] [Indexed: 12/14/2022]
|
75
|
Fu Y, Zhang J, Shi Z, Wang G, Li W, Jia L. A key gene of the small RNA pathway in the flounder, Paralichthys olivaceus: identification and functional characterization of dicer. FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:1221-1231. [PMID: 26045159 DOI: 10.1007/s10695-015-0081-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/25/2015] [Indexed: 06/04/2023]
Abstract
Dicer is critical for producing mature microRNAs (miRNAs) from precursor molecules and small interfering RNAs and plays an important role in controlling development and metabolism. In the present study, we cloned the flounder dicer gene, which is 6585 nucleotides (nt), including a 5'-untranslated region (UTR) of 231 nt, a 3'-UTR of 663 nt and an open reading frame of 5691 nt encoding a polypeptide of 1897 amino acids, and analyzed the conservation and expression pattern of dicer. The tissue distribution analysis indicated that dicer is abundantly expressed in the brain, heart, liver, spleen, stomach, kidney, gill, muscle, intestine and gonad of adult fish. Temporal expression analysis indicated that dicer mRNA is highly expressed during the embryonic and early larval stages, and exhibits low expression during the metamorphic stages. Treatment with thyroid hormone (TH) or thiourea indirectly or directly up-regulated dicer mRNA levels at 17 and 23 dph, whereas treatment with TH down-regulated dicer mRNA levels at 36 dph. The dicer-specific siRNA significantly down-regulated dicer mRNA and pol-let-7d levels, while pol-let-7d precursor levels were not differentially changed compared with the control (NC). These results demonstrated that dicer plays a key role in development and metabolism through the production of mature miRNAs, providing basic information for further studies concerning the role of dicer in Paralichthys olivaceus development.
Collapse
Affiliation(s)
- Yuanshuai Fu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, 999, Hu-Cheng-Huan Road, Lingang New City, Shangai, 201306, China
| | - Junling Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, 999, Hu-Cheng-Huan Road, Lingang New City, Shangai, 201306, China
| | - Zhiyi Shi
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, 999, Hu-Cheng-Huan Road, Lingang New City, Shangai, 201306, China.
| | - Guyue Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, 999, Hu-Cheng-Huan Road, Lingang New City, Shangai, 201306, China
| | - Wejuan Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, 999, Hu-Cheng-Huan Road, Lingang New City, Shangai, 201306, China
| | - Liang Jia
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, 999, Hu-Cheng-Huan Road, Lingang New City, Shangai, 201306, China
| |
Collapse
|
76
|
MicroRNA Processing and Human Cancer. J Clin Med 2015; 4:1651-67. [PMID: 26308063 PMCID: PMC4555082 DOI: 10.3390/jcm4081651] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs of 20 to 25 nucleotides that regulate gene expression post-transcriptionally mainly by binding to a specific sequence of the 3′ end of the untranslated region (3′UTR) of target genes. Since the first report on the clinical relevance of miRNAs in cancer, many miRNAs have been demonstrated to act as oncogenes, whereas others function as tumor suppressors. Furthermore, global miRNA dysregulation, due to alterations in miRNA processing factors, has been observed in a large variety of human cancer types. As previous studies have shown, the sequential miRNA processing can be divided into three steps: processing by RNAse in the nucleus; transportation by Exportin-5 (XPO5) from the nucleus; and processing by the RNA-induced silencing complex (RISC) in the cytoplasm. Alteration in miRNA processing genes, by genomic mutations, aberrant expression or other means, could significantly affect cancer initiation, progression and metastasis. In this review, we focus on the biogenesis of miRNAs with emphasis on the potential of miRNA processing factors in human cancers.
Collapse
|
77
|
Romero-Cordoba SL, Salido-Guadarrama I, Rodriguez-Dorantes M, Hidalgo-Miranda A. miRNA biogenesis: biological impact in the development of cancer. Cancer Biol Ther 2015; 15:1444-55. [PMID: 25482951 PMCID: PMC4622859 DOI: 10.4161/15384047.2014.955442] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
microRNAs (miRNAs) are non coding RNAs with different biological functions and pathological implications. Given their role as post-transcriptional gene expression regulators, they are involved in several important physiological processes like development, cell differentiation and cell signaling. miRNAs act as modulators of gene expression programs in different diseases, particularly in cancer, where they act through the repression of genes which are critical for carcinogenesis. The expression level of mature miRNAs is the result of a fine mechanism of biogenesis, carried out by different enzymatic complexes that exert their function at transcriptional and post-transcriptional levels. In this review, we will focus our discussion on the alterations in the miRNA biogenesis machinery, and its impact on the establishment and development of cancer programs.
Collapse
Key Words
- Ago2, Argonaute 2 protein
- Ars2, Arsenic Resistance protein 2
- DGCR8, DiGeorge syndrome Critical Region 8 protein
- EMT, epithelial–mesenchymal transition
- KSRP, KH-type splicing regulatory protein
- MK2, MAPK-activated protein kinase 2
- PABP, poly(A)-binding protein
- PACT, kinase R–activating protein
- PRC2, Polycomb repressor complex
- RISC, RNA-induced silencing complex
- TRBP, TAR RNA binding protein
- TUT4, terminal uridine transferase-4
- XPO5, exportin 5
- cancer
- cellular signaling
- circRNA, circular RNA
- hnRNPs, heterogeneous nuclear ribonucleoproteins
- miRNA biogenesis
- miRNAs, microRNAs
Collapse
|
78
|
Noncoding RNAs, post-transcriptional RNA operons and Chinese hamster ovary cells. ACTA ACUST UNITED AC 2015. [DOI: 10.4155/pbp.14.65] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
79
|
Sinha NK, Trettin KD, Aruscavage PJ, Bass BL. Drosophila dicer-2 cleavage is mediated by helicase- and dsRNA termini-dependent states that are modulated by Loquacious-PD. Mol Cell 2015; 58:406-17. [PMID: 25891075 DOI: 10.1016/j.molcel.2015.03.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/04/2015] [Accepted: 03/09/2015] [Indexed: 12/22/2022]
Abstract
In previous studies we observed that the helicase domain of Drosophila Dicer-2 (dmDcr-2) governs substrate recognition and cleavage efficiency, and that dsRNA termini are key to this discrimination. We now provide a mechanistic basis for these observations. We show that discrimination of termini occurs during initial binding. Without ATP, dmDcr-2 binds 3' overhanging, but not blunt, termini. By contrast, with ATP, dmDcr-2 binds both types of termini, with highest-affinity binding observed with blunt dsRNA. In the presence of ATP, binding, cleavage, and ATP hydrolysis are optimal with BLT termini compared to 3'ovr termini. Limited proteolysis experiments suggest the optimal reactivity of BLT dsRNA is mediated by a conformational change that is dependent on ATP and the helicase domain. We find that dmDcr-2's partner protein, Loquacious-PD, alters termini dependence, enabling dmDcr-2 to cleave substrates normally refractory to cleavage, such as dsRNA with blocked, structured, or frayed ends.
Collapse
Affiliation(s)
- Niladri K Sinha
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Kyle D Trettin
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - P Joseph Aruscavage
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Brenda L Bass
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
80
|
Ristori E, Lopez-Ramirez MA, Narayanan A, Hill-Teran G, Moro A, Calvo CF, Thomas JL, Nicoli S. A Dicer-miR-107 Interaction Regulates Biogenesis of Specific miRNAs Crucial for Neurogenesis. Dev Cell 2015; 32:546-60. [PMID: 25662174 DOI: 10.1016/j.devcel.2014.12.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 10/16/2014] [Accepted: 12/17/2014] [Indexed: 01/07/2023]
Abstract
Dicer controls the biogenesis of microRNAs (miRNAs) and is essential for neurogenesis. Recent reports show that the levels and substrate selectivity of DICER result in the preferential biogenesis of specific miRNAs in vitro. However, how dicer expression levels and miRNA biogenesis are regulated in vivo and how this affects neurogenesis is incompletely understood. Here we show that during zebrafish hindbrain development dicer expression levels are controlled by miR-107 to tune the biogenesis of specific miRNAs, such as miR-9, whose levels regulate neurogenesis. Loss of miR-107 function stabilizes dicer levels and miR-9 biogenesis across the ventricular hindbrain zone, resulting in an increase of both proliferating progenitors and postmitotic neurons. miR-9 ectopic accumulation in differentiating neuronal cells recapitulated the excessive neurogenesis phenotype. We propose that miR-107 modulation of dicer levels in differentiating neuronal cells is required to maintain the homeostatic levels of specific miRNAs, whose precise accumulation is essential for neurogenesis.
Collapse
Affiliation(s)
- Emma Ristori
- Yale Cardiovascular Research Center, Internal Medicine, Yale University, New Haven, CT 06511, USA
| | | | - Anand Narayanan
- Yale Cardiovascular Research Center, Internal Medicine, Yale University, New Haven, CT 06511, USA
| | - Guillermina Hill-Teran
- Yale Cardiovascular Research Center, Internal Medicine, Yale University, New Haven, CT 06511, USA
| | - Albertomaria Moro
- Yale Cardiovascular Research Center, Internal Medicine, Yale University, New Haven, CT 06511, USA
| | - Charles-Félix Calvo
- University Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle Epiniere, UMR S975, Paris 75651, France; INSERM/CNRS U-1127/UMR-7225, Paris 75651, France; AP-HP, Groupe Hospitalier Pitié-Salpètrière, Paris 75651, France
| | - Jean-Léon Thomas
- Yale Cardiovascular Research Center, Internal Medicine, Yale University, New Haven, CT 06511, USA; University Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle Epiniere, UMR S975, Paris 75651, France; INSERM/CNRS U-1127/UMR-7225, Paris 75651, France; AP-HP, Groupe Hospitalier Pitié-Salpètrière, Paris 75651, France
| | - Stefania Nicoli
- Yale Cardiovascular Research Center, Internal Medicine, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
81
|
Mirihana Arachchilage G, Dassanayake AC, Basu S. A potassium ion-dependent RNA structural switch regulates human pre-miRNA 92b maturation. ACTA ACUST UNITED AC 2015; 22:262-72. [PMID: 25641166 DOI: 10.1016/j.chembiol.2014.12.013] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/11/2014] [Accepted: 12/29/2014] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are an important set of oligonucleotide sequences with a biogenesis that involves Dicer-mediated cleavage as a critical step. Dicer cleaves the precursor miRNA (pre-miRNA) stem-loop structure to produce the mature miRNA. Using bioinformatics analysis, we discovered the presence of putative G-quadruplex (GQ)-forming sequences in about 16% of pre-miRNAs. We report the existence of a GQ as an alternative to the canonical stem-loop structure in the clinically important human pre-miRNA 92b. GQ formation led to unwinding of the stem-loop structure imparting resistance to Dicer-mediated cleavage both in vitro and in vivo. A potential K(+) ion-dependent equilibrium between GQ and the stem-loop structure has the ability to regulate the Dicer-mediated maturation of pre-miRNA 92b, which consequently affects target gene silencing. These findings unravel a new mechanism of regulation in pre-miRNA maturation, albeit at the RNA structure level.
Collapse
Affiliation(s)
| | - Arosha C Dassanayake
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Soumitra Basu
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA.
| |
Collapse
|
82
|
Lorenz DA, Song JM, Garner AL. High-throughput platform assay technology for the discovery of pre-microrna-selective small molecule probes. Bioconjug Chem 2015; 26:19-23. [PMID: 25506628 DOI: 10.1021/bc500544v] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
MicroRNAs (miRNA) play critical roles in human development and disease. As such, the targeting of miRNAs is considered attractive as a novel therapeutic strategy. A major bottleneck toward this goal, however, has been the identification of small molecule probes that are specific for select RNAs and methods that will facilitate such discovery efforts. Using pre-microRNAs as proof-of-concept, herein we report a conceptually new and innovative approach for assaying RNA-small molecule interactions. Through this platform assay technology, which we term catalytic enzyme-linked click chemistry assay or cat-ELCCA, we have designed a method that can be implemented in high throughput, is virtually free of false readouts, and is general for all nucleic acids. Through cat-ELCCA, we envision the discovery of selective small molecule ligands for disease-relevant miRNAs to promote the field of RNA-targeted drug discovery and further our understanding of the role of miRNAs in cellular biology.
Collapse
Affiliation(s)
- Daniel A Lorenz
- Program in Chemical Biology and ‡Department of Medicinal Chemistry, College of Pharmacy, University of Michigan , Ann Arbor, Michigan 48109, United States
| | | | | |
Collapse
|
83
|
A Variety of Dicer Substrates in Human and C. elegans. Cell 2014; 159:1153-1167. [DOI: 10.1016/j.cell.2014.10.040] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 08/18/2014] [Accepted: 10/03/2014] [Indexed: 11/19/2022]
|
84
|
Sperber H, Beem A, Shannon S, Jones R, Banik P, Chen Y, Ku S, Varani G, Yao S, Ruohola-Baker H. miRNA sensitivity to Drosha levels correlates with pre-miRNA secondary structure. RNA (NEW YORK, N.Y.) 2014; 20:621-631. [PMID: 24677349 PMCID: PMC3988564 DOI: 10.1261/rna.043943.113] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 01/25/2014] [Indexed: 05/29/2023]
Abstract
microRNAs (miRNAs) are crucial for cellular development and homeostasis. In order to better understand regulation of miRNA biosynthesis, we studied cleavage of primary miRNAs by Drosha. While Drosha knockdown triggers an expected decrease of many mature miRNAs in human embryonic stem cells (hESC), a subset of miRNAs are not reduced. Statistical analysis of miRNA secondary structure and fold change of expression in response to Drosha knockdown showed that absence of mismatches in the central region of the hairpin, 5 and 9-12 nt from the Drosha cutting site conferred decreased sensitivity to Drosha knockdown. This suggests that, when limiting, Drosha processes miRNAs without mismatches more efficiently than mismatched miRNAs. This is important because Drosha expression changes over cellular development and the fold change of expression for miRNAs with mismatches in the central region correlates with Drosha levels. To examine the biochemical relationship directly, we overexpressed structural variants of miRNA-145, miRNA-137, miRNA-9, and miRNA-200b in HeLa cells with and without Drosha knockdown; for these miRNAs, elimination of mismatches in the central region increased, and addition of mismatches decreased their expression in an in vitro assay and in cells with low Drosha expression. Change in Drosha expression can be a biologically relevant mechanism by which eukaryotic cells control miRNA profiles. This phenomenon may explain the impact of point mutations outside the seed region of certain miRNAs.
Collapse
Affiliation(s)
- Henrik Sperber
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, UW Medicine at South Lake Union, Seattle, Washington 98109, USA
| | - Alan Beem
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, UW Medicine at South Lake Union, Seattle, Washington 98109, USA
- Department of Economics, University of Washington, Seattle, Washington 98195, USA
- Undergraduate Program in Neurobiology, University of Washington, Seattle, Washington 98195, USA
| | - Sandra Shannon
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, UW Medicine at South Lake Union, Seattle, Washington 98109, USA
- Department of Biology, University of Washington, Seattle, Washington 98195, USA
| | - Ross Jones
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, UW Medicine at South Lake Union, Seattle, Washington 98109, USA
| | - Pratyusha Banik
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, UW Medicine at South Lake Union, Seattle, Washington 98109, USA
| | - Yu Chen
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Sherman Ku
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Shuyuan Yao
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | - Hannele Ruohola-Baker
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, UW Medicine at South Lake Union, Seattle, Washington 98109, USA
- Department of Biology, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
85
|
Relative specificity: all substrates are not created equal. GENOMICS PROTEOMICS & BIOINFORMATICS 2014; 12:1-7. [PMID: 24491634 PMCID: PMC4411342 DOI: 10.1016/j.gpb.2014.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 12/21/2013] [Accepted: 01/07/2014] [Indexed: 11/24/2022]
Abstract
A biological molecule, e.g., an enzyme, tends to interact with its many cognate substrates, targets, or partners differentially. Such a property is termed relative specificity and has been proposed to regulate important physiological functions, even though it has not been examined explicitly in most complex biochemical systems. This essay reviews several recent large-scale studies that investigate protein folding, signal transduction, RNA binding, translation and transcription in the context of relative specificity. These results and others support a pervasive role of relative specificity in diverse biological processes. It is becoming clear that relative specificity contributes fundamentally to the diversity and complexity of biological systems, which has significant implications in disease processes as well.
Collapse
|
86
|
Ahmed F, Kaundal R, Raghava GPS. PHDcleav: a SVM based method for predicting human Dicer cleavage sites using sequence and secondary structure of miRNA precursors. BMC Bioinformatics 2013; 14 Suppl 14:S9. [PMID: 24267009 PMCID: PMC3851333 DOI: 10.1186/1471-2105-14-s14-s9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Dicer, an RNase III enzyme, plays a vital role in the processing of pre-miRNAs for generating the miRNAs. The structural and sequence features on pre-miRNA which can facilitate position and efficiency of cleavage are not well known. A precise cleavage by Dicer is crucial because an inaccurate processing can produce miRNA with different seed regions which can alter the repertoire of target genes. RESULTS In this study, a novel method has been developed to predict Dicer cleavage sites on pre-miRNAs using Support Vector Machine. We used the dataset of experimentally validated human miRNA hairpins from miRBase, and extracted fourteen nucleotides around Dicer cleavage sites. We developed number of models using various types of features and achieved maximum accuracy of 66% using binary profile of nucleotide sequence taken from 5p arm of hairpin. The prediction performance of Dicer cleavage site improved significantly from 66% to 86% when we integrated secondary structure information. This indicates that secondary structure plays an important role in the selection of cleavage site. All models were trained and tested on 555 experimentally validated cleavage sites and evaluated using 5-fold cross validation technique. In addition, the performance was also evaluated on an independent testing dataset that achieved an accuracy of ~82%. CONCLUSION Based on this study, we developed a webserver PHDcleav (http://www.imtech.res.in/raghava/phdcleav/) to predict Dicer cleavage sites in pre-miRNA. This tool can be used to investigate functional consequences of genetic variations/SNPs in miRNA on Dicer cleavage site, and gene silencing. Moreover, it would also be useful in the discovery of miRNAs in human genome and design of Dicer specific pre-miRNAs for potent gene silencing.
Collapse
|
87
|
Ponia SS, Arora S, Kumar B, Banerjea AC. Arginine rich short linear motif of HIV-1 regulatory proteins inhibits dicer dependent RNA interference. Retrovirology 2013; 10:97. [PMID: 24025624 PMCID: PMC3848888 DOI: 10.1186/1742-4690-10-97] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 08/09/2013] [Indexed: 12/29/2022] Open
Abstract
Background Arginine Rich Motif (ARM) of HIV-1 Tat and Rev are extensively studied linear motifs (LMs). They are already established as an inefficient bipartite nuclear localisation signal (NLS). The unusual passive diffusion of HIV-1 NLS tagged reporter proteins across the nucleus is due to an unknown competing functionality of ARM. Recent findings about the role of retroviral proteins as a suppressor of RNA interference (RNAi) involving their basic residues hint an interesting answer to this alternate functionality. The present work explores the role of HIV-1 ARM as a uniquely evolved viral motif to combat Dicer dependent RNAi. Results We show that RNA binding ARM of both HIV-1 Tat and Rev is a LM with a pattern RXXRRXRRR unique to viruses. Extending the in silico results to wet lab, we proved both HIV-1 Tat and Rev can suppress Dicer dependent RNA silencing process involving ARM. We show, HIV-1 Tat and Rev and their corresponding ARM can bind the RISC loading complex (RLC) components TRBP and PACT confirming ARM as an independent RNAi suppression motif. Enhancement of RNAi in infection scenario through enoxacin increases HIV-1 replication as indicated by p24 levels. Except Dicer, all other cytoplasmic RNAi components enhance HIV-1 replication, indicating crucial role of Dicer independent (Ago2 dependent) RNAi pathway in HIV-1 infection. Sequence and structural analysis of endo/exo-microRNA precursors known to be regulated in HIV-1 infection highlights differential features of microRNA biogenesis. One such set of miRNA is viral TAR encoded HIV-1-miR-TAR-5p (Tar1) and HIV-1-miR-TAR-3p (Tar2) that are known to be present throughout the HIV-1 life cycle. Our qPCR results showed that enoxacin increases Tar2 miRNA level which is interesting as Tar2 precursor shows Ago2 dependent processing features. Conclusions We establish HIV-1 ARM as a novel viral motif evolved to target the Dicer dependent RNAi pathway. The conservation of such motif in other viral proteins possibly explains the potent suppression of Dicer dependent RNAi. Our model argues that HIV-1 suppress the processing of siRNAs through inhibition of Dicer while at the same time manipulates the RNAi machinery to process miRNA involved in HIV-1 replication from Dicer independent pathways.
Collapse
Affiliation(s)
- Sanket Singh Ponia
- Virology Lab II, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | | | | | | |
Collapse
|
88
|
Winter J, Link S, Witzigmann D, Hildenbrand C, Previti C, Diederichs S. Loop-miRs: active microRNAs generated from single-stranded loop regions. Nucleic Acids Res 2013; 41:5503-12. [PMID: 23580554 PMCID: PMC3664828 DOI: 10.1093/nar/gkt251] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are key mediators of post-transcriptional gene regulation. The miRNA precursors are processed by the endonucleases Drosha and Dicer into a duplex, bound to an Argonaute protein and unwound into two single-stranded miRNAs. Although alternative ways to generate miRNAs have been discovered, e.g. pre-miRNA cleavage by Ago2 or cleavage products of snoRNAs or tRNAs, all known pathways converge on a double-stranded RNA duplex. Exogenous single-stranded siRNAs (ss-siRNAs) can elicit an effective RNA interference reaction; recent studies have identified chemical modifications increasing their stability and activity. Here, we provide first evidence that endogenous, unmodified, single-stranded RNA sequences are generated from single-stranded loop regions of human pre-miRNA hairpins, the so called loop-miRs. Luciferase assays and immunoprecipitation validate loop-miR activity and incorporation into RNA-induced silencing complexes. This study identifies endogenous miRNAs that are generated from single-stranded regions; hence, it provides evidence that precursor-miRNAs can give rise to three distinct endogenous miRNAs: the guide strand, the passenger strand and the loop-miR.
Collapse
Affiliation(s)
- Julia Winter
- Helmholtz-University-Group Molecular RNA Biology & Cancer, German Cancer Research Center, DKFZ, Im Neuenheimer Feld 280, D-69120 Heidelberg
| | | | | | | | | | | |
Collapse
|
89
|
Liu YP, Schopman NCT, Berkhout B. Dicer-independent processing of short hairpin RNAs. Nucleic Acids Res 2013; 41:3723-33. [PMID: 23376931 PMCID: PMC3616727 DOI: 10.1093/nar/gkt036] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 12/11/2012] [Accepted: 01/07/2013] [Indexed: 12/11/2022] Open
Abstract
Short hairpin RNAs (shRNAs) are widely used to induce RNA interference (RNAi). We tested a variety of shRNAs that differed in stem length and terminal loop size and revealed strikingly different RNAi activities and shRNA-processing patterns. Interestingly, we identified a specific shRNA design that uses an alternative Dicer-independent processing pathway. Detailed analyses indicated that a short shRNA stem length is critical for avoiding Dicer processing and activation of the alternative processing route, in which the shRNA is incorporated into RISC and processed by the AGO2-mediated slicer activity. Such alternatively processed shRNAs (AgoshRNAs) yield only a single RNA strand that effectively induces RNAi, whereas conventional shRNA processing results in an siRNA duplex of which both strands can trigger RNAi. Both the processing and subsequent RNAi activity of these AgoshRNAs are thus mediated by the RISC-component AGO2. These results have important implications for the future design of more specific RNAi therapeutics.
Collapse
Affiliation(s)
| | | | - Ben Berkhout
- Department of Medical Microbiology, Laboratory of Experimental Virology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
90
|
Xu Q, Dong QG, Sun LP, He CY, Yuan Y. Expression of serum miR-20a-5p, let-7a, and miR-320a and their correlations with pepsinogen in atrophic gastritis and gastric cancer: a case-control study. BMC Clin Pathol 2013; 13:11. [PMID: 23521833 PMCID: PMC3635921 DOI: 10.1186/1472-6890-13-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 03/18/2013] [Indexed: 02/07/2023] Open
Abstract
Background The identification of serial miRNAs targeting the same functional gastric protein could provide new and effective serological biomarkers for the diagnosis of gastric cancer (GC). The aim of this study was to evaluate the potential of miR-20a-5p, let-7a and miR-320a in the diagnosis of AG or GC and the correlation of the three miRNAs with their predicted target molecules PGA, PGC and PGA/PGC ratio. Methods The total of 291 patients included 103 controls (CON), 94 with atrophic gastritis (AG) and 94 with GC. The levels of serum miRNAs were detected by quantitative reverse transcription-polymerase chain reaction and serum pepsinogen A (PGA) and C (PGC) were determined by enzyme-linked immunosorbent assays. Results Serum miR-320a level decreased through the controls, AG and GC groups which were the cascades of GC development, while there were no significant differences in levels of miR-20a-5p and let-7a among the controls, AG and GC groups. When stratified by gender and age, serum miR-320a expression was lower in female GC patients than in controls (p = 0.035), especially in female GC patients older than 60 years (p = 0.008). For distinguishing female GC patients aged over 60, the area under the receiver operating characteristic curve for miR-320a was 0.699, and the best cut-off point was 4.76 with a sensitivity of 65.2% and specificity of 68.2%. Concerning the correlations between the selected miR-20a-5p, let-7a, miR-320a and PGs, we found that there were positive correlations between all the three and the ratio of PGA/PGC (r = 0.408, 0.255, 0.324; p = <0.001, 0.009, 0.001, respectively), but there was no relationship between the expression of serum miR-20a-5p and its predicted target PGA, or between let-7a and miR-320a and their predicted target PGC. Serum miR-320a was decreased and PGC was increased in the GC group compared with the control group. Conclusions Levels of serum miR-320a were lower in female GC patients older than 60 than in controls, which may provide a potential valuable marker for diagnosing older women with GC. The levels of serum miR-20a-5p, let-7a and miR-320a were positively correlated with PGA/PGC, which may indirectly reflect the functional status of the gastric mucosa.
Collapse
Affiliation(s)
- Qian Xu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, the Key Laboratory of Tumor Etiology and Prevention in Liaoning Province, Shenyang, Liaoning Province 110001, China
| | - Qi-Guan Dong
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, the Key Laboratory of Tumor Etiology and Prevention in Liaoning Province, Shenyang, Liaoning Province 110001, China.,The Department of Medical Oncology, the General Hospital of Fushun Mining Bureau, Fushun, Liaoning Province 113008, China
| | - Li-Ping Sun
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, the Key Laboratory of Tumor Etiology and Prevention in Liaoning Province, Shenyang, Liaoning Province 110001, China
| | - Cai-Yun He
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, the Key Laboratory of Tumor Etiology and Prevention in Liaoning Province, Shenyang, Liaoning Province 110001, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, the Key Laboratory of Tumor Etiology and Prevention in Liaoning Province, Shenyang, Liaoning Province 110001, China
| |
Collapse
|
91
|
Soni K, Choudhary A, Patowary A, Singh AR, Bhatia S, Sivasubbu S, Chandrasekaran S, Pillai B. miR-34 is maternally inherited in Drosophila melanogaster and Danio rerio. Nucleic Acids Res 2013; 41:4470-80. [PMID: 23470996 PMCID: PMC3632126 DOI: 10.1093/nar/gkt139] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are small, endogenous, regulatory RNA molecules that can bind to partially complementary regions on target messenger RNAs and impede their expression or translation. We rationalized that miRNAs, being localized to the cytoplasm, will be maternally inherited during fertilization and may play a role in early development. Although Dicer is known to be essential for the transition from single-celled zygote to two-cell embryo, a direct role for miRNAs has not yet been demonstrated. We identified miRNAs with targets in zygotically expressed transcripts in Drosophila using a combination of transcriptome analysis and miRNA target prediction. We experimentally established that Drosophila miRNA dme-miR-34, the fly homologue of the cancer-related mammalian miRNA miR-34, involved in somatic-cell reprogramming and having critical role in early neuronal differentiation, is present in Drosophila embryos before initiation of zygotic transcription. We also show that the Drosophila miR-34 is dependent on maternal Dicer-1 for its expression in oocytes. Further, we show that miR-34 is also abundant in unfertilized oocytes of zebrafish. Its temporal expression profile during early development showed abundant expression in unfertilized oocytes that gradually decreased by 5 days post-fertilization (dpf). We find that knocking down the maternal, but not the zygotic, miR-34 led to developmental defects in the neuronal system during early embryonic development in zebrafish. Here, we report for the first time, the maternal inheritance of an miRNA involved in development of the neuronal system in a vertebrate model system.
Collapse
Affiliation(s)
- Kartik Soni
- CSIR-Institute of Genomics and Integrative Biology, Delhi 110 007, India, Ambedkar Centre for Biomedical Research, Delhi University, Delhi 110007, India
| | | | | | | | | | | | | | | |
Collapse
|