51
|
Alakwaa FM, Savelieff MG. Bioinformatics Analysis of Metabolomics Data Unveils Association of Metabolic Signatures with Methylation in Breast Cancer. J Proteome Res 2020; 19:2879-2889. [PMID: 31886666 DOI: 10.1021/acs.jproteome.9b00755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Breast cancer (BC) contributes the highest global cancer mortality in women. BC tumors are highly heterogeneous, so subtyping by cell-surface markers is inadequate. Omics-driven tumor stratification is urgently needed to better understand BC and tailor therapies for personalized medicine. We used unsupervised k-means and partition around medoids (pam) to cluster metabolomics data from two data sets. The first comprised 271 BC tumors (data set 1) that were estrogen receptor (ER) positive (ER+, n = 204) or negative (ER-, n = 67) with 162 identified and validated metabolites. The second data set contained 67 BC samples (data set 2; ER+, n = 33; ER-, n = 34) and 352 known metabolites. Significance Analysis of Microarrays (SAM) was used to identify the most significant metabolites among these clusters, which were then reassigned into new clusters using prediction analysis of microarrays (PAM). Generally, metabolome-defined BC subtypes identified from either data set 1 or data set 2 were different from the well-known receptor- or transcriptome-defined subtypes. Metabolomics-directed clustering of data set 2 identified distinctive BC tumors characterized by metabolome profiles that associated with DNA methylation (p-value = 0.000 048, χ2 test). Pathway analysis of cluster metabolites revealed that nitrogen metabolism and aminoacyl-tRNA biosynthesis were highly related to BC subtyping. The pipeline may be run from GitHub: https://github.com/FADHLyemen/Metabolomics_signature. Our proposed bioinformatics pipeline analyzed metabolomics data from BC tumors, revealing clusters characterized by unique metabolic signatures that may potentially stratify BC patients and tailor precision treatment.
Collapse
Affiliation(s)
- Fadhl M Alakwaa
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Masha G Savelieff
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
52
|
Zeng T, Hua Y, Sun C, Zhang Y, Yang F, Yang M, Yang Y, Li J, Huang X, Wu H, Fu Z, Li W, Yin Y. Relationship between tRNA-derived fragments and human cancers. Int J Cancer 2020; 147:3007-3018. [PMID: 32427348 DOI: 10.1002/ijc.33107] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/14/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022]
Abstract
tRNA-derived fragments, a class of small noncoding RNAs (sncRNAs), have been identified in numerous studies in recent years. tRNA-derived fragments are classified into two main groups, including tRNA halves (tiRNAs) and tRNA-derived small RNA fragments (tRFs), according to different cleavage positions of the precursor or mature tRNAs. Instead of random tRNA degradation debris, a growing body of evidence has shown that tRNA-derived fragments are precise products of specific tRNA modifications and play important roles in biological activities, such as regulating protein translation, affecting gene expression, and altering immune signaling. Recently, the relations between tRNA-derived fragments and the occurrence of human diseases, especially cancers, have generated wide interest. It has been demonstrated that tRNA-derived fragments are involved in cancer cell proliferation, metastasis, progression and survival. In this review, we will describe the biogenesis of tRNA-derived fragments, the distinct expression and function of tRNA-derived fragments in the development of cancers, and their emerging roles as diagnostic and prognostic biomarkers and precise targets of future treatments.
Collapse
Affiliation(s)
- Tianyu Zeng
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yijia Hua
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chunxiao Sun
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuchen Zhang
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fan Yang
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mengzhu Yang
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yiqi Yang
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Li
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiang Huang
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Wu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ziyi Fu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Maternal and Child Health Medical Institute, Obstetrics and Gynecology Hospital Affiliated of Nanjing Medical University, Nanjing, China
| | - Wei Li
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongmei Yin
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
53
|
Costa-Mattioli M, Walter P. The integrated stress response: From mechanism to disease. Science 2020; 368:368/6489/eaat5314. [PMID: 32327570 DOI: 10.1126/science.aat5314] [Citation(s) in RCA: 870] [Impact Index Per Article: 174.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Protein quality control is essential for the proper function of cells and the organisms that they make up. The resulting loss of proteostasis, the processes by which the health of the cell's proteins is monitored and maintained at homeostasis, is associated with a wide range of age-related human diseases. Here, we highlight how the integrated stress response (ISR), a central signaling network that responds to proteostasis defects by tuning protein synthesis rates, impedes the formation of long-term memory. In addition, we address how dysregulated ISR signaling contributes to the pathogenesis of complex diseases, including cognitive disorders, neurodegeneration, cancer, diabetes, and metabolic disorders. The development of tools through which the ISR can be modulated promises to uncover new avenues to diminish pathologies resulting from it for clinical benefit.
Collapse
Affiliation(s)
- Mauro Costa-Mattioli
- Department of Neuroscience, Memory and Brain Research Center, Baylor College of Medicine, Houston, TX, USA.
| | - Peter Walter
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA.
| |
Collapse
|
54
|
Gene-Specific Control of tRNA Expression by RNA Polymerase II. Mol Cell 2020; 78:765-778.e7. [PMID: 32298650 DOI: 10.1016/j.molcel.2020.03.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/12/2020] [Accepted: 03/13/2020] [Indexed: 12/20/2022]
Abstract
Increasing evidence suggests that tRNA levels are dynamically and specifically regulated in response to internal and external cues to modulate the cellular translational program. However, the molecular players and the mechanisms regulating the gene-specific expression of tRNAs are still unknown. Using an inducible auxin-degron system to rapidly deplete RPB1 (the largest subunit of RNA Pol II) in living cells, we identified Pol II as a direct gene-specific regulator of tRNA transcription. Our data suggest that Pol II transcription robustly interferes with Pol III function at specific tRNA genes. This activity was further found to be essential for MAF1-mediated repression of a large set of tRNA genes during serum starvation, indicating that repression of tRNA genes by Pol II is dynamically regulated. Hence, Pol II plays a direct and central role in the gene-specific regulation of tRNA expression.
Collapse
|
55
|
Yang J, Smith DK, Ni H, Wu K, Huang D, Pan S, Sathe AA, Tang Y, Liu ML, Xing C, Zhang CL, Zhuge Q. SOX4-mediated repression of specific tRNAs inhibits proliferation of human glioblastoma cells. Proc Natl Acad Sci U S A 2020; 117:5782-5790. [PMID: 32123087 PMCID: PMC7084149 DOI: 10.1073/pnas.1920200117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Transfer RNAs (tRNAs) are products of RNA polymerase III (Pol III) and essential for mRNA translation and ultimately cell growth and proliferation. Whether and how individual tRNA genes are specifically regulated is not clear. Here, we report that SOX4, a well-known Pol II-dependent transcription factor that is critical for neurogenesis and reprogramming of somatic cells, also directly controls, unexpectedly, the expression of a subset of tRNA genes and therefore protein synthesis and proliferation of human glioblastoma cells. Genome-wide location analysis through chromatin immunoprecipitation-sequencing uncovers specific targeting of SOX4 to a subset of tRNA genes, including those for tRNAiMet Mechanistically, sequence-specific SOX4-binding impedes the recruitment of TATA box binding protein and Pol III to tRNA genes and thereby represses their expression. CRISPR/Cas9-mediated down-regulation of tRNAiMet greatly inhibits growth and proliferation of human glioblastoma cells. Conversely, ectopic tRNAiMet partially rescues SOX4-mediated repression of cell proliferation. Together, these results uncover a regulatory mode of individual tRNA genes to control cell behavior. Such regulation may coordinate codon usage and translation efficiency to meet the demands of diverse tissues and cell types, including cancer cells.
Collapse
Affiliation(s)
- Jianjing Yang
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325000
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325000
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Derek K Smith
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Haoqi Ni
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325000
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325000
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Ke Wu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325000
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325000
| | - Dongdong Huang
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325000
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325000
| | - Sishi Pan
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325000
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325000
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Adwait A Sathe
- McDermott Center of Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Yu Tang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Meng-Lu Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Chao Xing
- McDermott Center of Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Chun-Li Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390;
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Qichuan Zhuge
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325000;
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325000
| |
Collapse
|
56
|
Varanda AS, Santos M, Soares AR, Vitorino R, Oliveira P, Oliveira C, Santos MAS. Human cells adapt to translational errors by modulating protein synthesis rate and protein turnover. RNA Biol 2020; 17:135-149. [PMID: 31570039 PMCID: PMC6948982 DOI: 10.1080/15476286.2019.1670039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/12/2019] [Accepted: 09/14/2019] [Indexed: 02/08/2023] Open
Abstract
Deregulation of tRNAs, aminoacyl-tRNA synthetases (aaRS) or tRNA modifying enzymes, increase the level of protein synthesis errors (PSE) and are associated with several diseases, but the cause-effect mechanisms of these pathologies remain elusive. To clarify the role of PSE in human biology, we have engineered a HEK293 cell line to overexpress a wild type (Wt) tRNASer and two tRNASer mutants that misincorporate serine at non-cognate codon sites. Then, we followed long-term adaptation to PSE of such recombinant cells by analysing cell viability, protein synthesis rate and activation of protein quality control mechanisms (PQC). Engineered cells showed higher level of misfolded and aggregated proteins; activated the ubiquitin-proteasome system (UPS) and the unfolded protein response (UPR), indicative of proteotoxic stress. Adaptation to PSE involved increased protein turnover, UPR up-regulation and altered protein synthesis rate. Gene expression analysis showed that engineered cells presented recurrent alterations in the endoplasmic reticulum, cell adhesion and calcium homeostasis. Herein, we unveil new phenotypic consequences of protein synthesis errors in human cells and identify the protein quality control processes that are necessary for long-term adaptation to PSE and proteotoxic stress. Our data provide important insight on how chronic proteotoxic stress may cause disease and highlight potential biological pathways that support the association of PSE with disease.
Collapse
Affiliation(s)
- Ana Sofia Varanda
- Department of Medical Sciences and Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Expression Regulation in Cancer, Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| | - Mafalda Santos
- Department of Medical Sciences and Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Expression Regulation in Cancer, Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| | - Ana R. Soares
- Department of Medical Sciences and Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| | - Rui Vitorino
- Department of Medical Sciences and Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| | - Patrícia Oliveira
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Expression Regulation in Cancer, Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| | - Carla Oliveira
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Expression Regulation in Cancer, Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Manuel A. S. Santos
- Department of Medical Sciences and Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
57
|
Liko D, Mitchell L, Campbell KJ, Ridgway RA, Jones C, Dudek K, King A, Bryson S, Stevenson D, Blyth K, Strathdee D, Morton JP, Bird TG, Knight JRP, Willis AE, Sansom OJ. Brf1 loss and not overexpression disrupts tissues homeostasis in the intestine, liver and pancreas. Cell Death Differ 2019; 26:2535-2550. [PMID: 30858608 PMCID: PMC6861133 DOI: 10.1038/s41418-019-0316-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 01/18/2019] [Accepted: 02/13/2019] [Indexed: 12/22/2022] Open
Abstract
RNA polymerase III (Pol-III) transcribes tRNAs and other small RNAs essential for protein synthesis and cell growth. Pol-III is deregulated during carcinogenesis; however, its role in vivo has not been studied. To address this issue, we manipulated levels of Brf1, a Pol-III transcription factor that is essential for recruitment of Pol-III holoenzyme at tRNA genes in vivo. Knockout of Brf1 led to embryonic lethality at blastocyst stage. In contrast, heterozygous Brf1 mice were viable, fertile and of a normal size. Conditional deletion of Brf1 in gastrointestinal epithelial tissues, intestine, liver and pancreas, was incompatible with organ homeostasis. Deletion of Brf1 in adult intestine and liver induced apoptosis. However, Brf1 heterozygosity neither had gross effects in these epithelia nor did it modify tumorigenesis in the intestine or pancreas. Overexpression of BRF1 rescued the phenotypes of Brf1 deletion in intestine and liver but was unable to initiate tumorigenesis. Thus, Brf1 and Pol-III activity are absolutely essential for normal homeostasis during development and in adult epithelia. However, Brf1 overexpression or heterozygosity are unable to modify tumorigenesis, suggesting a permissive, but not driving role for Brf1 in the development of epithelial cancers of the pancreas and gut.
Collapse
Affiliation(s)
- Dritan Liko
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Louise Mitchell
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Kirsteen J Campbell
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Rachel A Ridgway
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Carolyn Jones
- MRC Toxicology Unit, Hodgkin Building Lancaster Road, Leicester, LE1 9HN, UK
| | - Kate Dudek
- MRC Toxicology Unit, Hodgkin Building Lancaster Road, Leicester, LE1 9HN, UK
| | - Ayala King
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Sheila Bryson
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - David Stevenson
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Karen Blyth
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Douglas Strathdee
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Jennifer P Morton
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Thomas G Bird
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - John R P Knight
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
| | - Anne E Willis
- MRC Toxicology Unit, Hodgkin Building Lancaster Road, Leicester, LE1 9HN, UK
| | - Owen J Sansom
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK.
| |
Collapse
|
58
|
Novel in vivo system to monitor tRNA expression based on the recovery of GFP fluorescence and its application for the determination of plant tRNA expression. Gene 2019; 703:145-152. [PMID: 30940526 DOI: 10.1016/j.gene.2019.03.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 03/01/2019] [Accepted: 03/29/2019] [Indexed: 11/23/2022]
Abstract
We developed a novel assay system to quantitatively detect amber codon suppression by tRNAs expressed in plant cells. The assay was based on recovery of the expression of the green fluorescent protein (GFP) as a reporter, in which a fourth Lys codon (AAG) was changed to a premature amber codon TAG, designated as GFP/amber. Plasmids carrying GFP/amber, suppressor tRNA, and red fluorescent protein (RFF) as an internal control, respectively, were introduced into onion epidermal cells to monitor cell numbers with GFP and RFP fluorescence. First, an amber suppressor tRNASer from tobacco (NtS2) to suppress a TAG codon in GFP mRNA was examined, leading to the recovery of GFP fluorescence. Second, we used two different tRNAs (i.e., AtY3II-am and AtY3II-amiG7), both of which are intron-containing amber suppressor tRNAsTyr, the former impaired precursor-tRNA splicing but the latter did not, as confirmed previously using two different approaches (Szeykowska-Kulinska and Beier, 1991; Akama and Beier, 2003). As expected, coexpression of GFP/amber with AtY3II-am gave no green fluorescence, but significant fluorescence was observed with AtY3II-amiG7. Then, we applied this system for the analysis of 5'-regulatory sequences of the tRNAGln gene family from Arabidopsis. A 5'-flanking sequence of each of the 17 tRNAGln genes was fused to a coding region of an amber suppressor tRNASer gene (NtS2/amber) and its 3'-flanking sequence. Chimeric tRNASer gene, GFP/amber, and RFP were coexpressed, and the GFP or RFP fluorescence intensity was determined in cells using laser-scanning microscopy. In parallel, 17 kinds of original Arabidopsis tRNAGln genes and their chimeric genes with NtS2/amber were all analyzed in cell-free nuclear extract (Yukawa et al., 1997). Comparison of in vitro and in vivo expression of these chimeric tRNA genes displayed generally similar results, accompanied by a wide range of variance in the expression of each gene. Nevertheless, the expression patterns of several genes were clearly the opposite of each other comparing between the two different system, demonstrating the importance of in vivo systems in the study on tRNA expression in plants.
Collapse
|
59
|
Santos M, Fidalgo A, Varanda AS, Oliveira C, Santos MAS. tRNA Deregulation and Its Consequences in Cancer. Trends Mol Med 2019; 25:853-865. [PMID: 31248782 DOI: 10.1016/j.molmed.2019.05.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 02/06/2023]
Abstract
The expression of transfer RNAs (tRNAs) is deregulated in cancer cells but the mechanisms and functional meaning of such deregulation are poorly understood. The proteome of cancer cells is not fully encoded by their transcriptome, however, the contribution of mRNA translation to such diversity remains to be elucidated. We review data supporting the hypothesis that tRNA expression deregulation and translational error rate is an important contributor to proteome diversity and cell population heterogeneity, genome instability, and drug resistance in tumors. This hypothesis is aligned with recent data in various model organisms, showing unanticipated adaptive roles of translational errors (adaptive mistranslation), expression control of specific gene subsets by tRNAs, and proteome diversification by elevation of translational error rates in tumors.
Collapse
Affiliation(s)
- Mafalda Santos
- Expression Regulation in Cancer, Instituto de Investigação e Inovação em Saúde, University of Porto, Portugal; Institute of Molecular Pathology and Immunology University of Porto (IPATIMUP), Porto, Portugal; Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
| | - Ana Fidalgo
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
| | - A Sofia Varanda
- Expression Regulation in Cancer, Instituto de Investigação e Inovação em Saúde, University of Porto, Portugal; Institute of Molecular Pathology and Immunology University of Porto (IPATIMUP), Porto, Portugal; Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
| | - Carla Oliveira
- Expression Regulation in Cancer, Instituto de Investigação e Inovação em Saúde, University of Porto, Portugal; Institute of Molecular Pathology and Immunology University of Porto (IPATIMUP), Porto, Portugal; Department of Pathology, Medical Faculty of Porto, Porto, Portugal.
| | - Manuel A S Santos
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
60
|
Szatkowska R, Garcia-Albornoz M, Roszkowska K, Holman SW, Furmanek E, Hubbard SJ, Beynon RJ, Adamczyk M. Glycolytic flux in Saccharomyces cerevisiae is dependent on RNA polymerase III and its negative regulator Maf1. Biochem J 2019; 476:1053-1082. [PMID: 30885983 PMCID: PMC6448137 DOI: 10.1042/bcj20180701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 03/11/2019] [Accepted: 03/15/2019] [Indexed: 02/07/2023]
Abstract
Protein biosynthesis is energetically costly, is tightly regulated and is coupled to stress conditions including glucose deprivation. RNA polymerase III (RNAP III)-driven transcription of tDNA genes for production of tRNAs is a key element in efficient protein biosynthesis. Here we present an analysis of the effects of altered RNAP III activity on the Saccharomyces cerevisiae proteome and metabolism under glucose-rich conditions. We show for the first time that RNAP III is tightly coupled to the glycolytic system at the molecular systems level. Decreased RNAP III activity or the absence of the RNAP III negative regulator, Maf1 elicit broad changes in the abundance profiles of enzymes engaged in fundamental metabolism in S. cerevisiae In a mutant compromised in RNAP III activity, there is a repartitioning towards amino acids synthesis de novo at the expense of glycolytic throughput. Conversely, cells lacking Maf1 protein have greater potential for glycolytic flux.
Collapse
Affiliation(s)
- Roza Szatkowska
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Manuel Garcia-Albornoz
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, U.K
| | - Katarzyna Roszkowska
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Stephen W Holman
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool, U.K
| | - Emil Furmanek
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Simon J Hubbard
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, U.K
| | - Robert J Beynon
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool, U.K
| | - Malgorzata Adamczyk
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
61
|
Kuang M, Zheng D, Tao X, Peng Y, Pan Y, Zheng S, Zhang Y, Li H, Yuan C, Zhang Y, Xiang J, Li Y, Chen H, Sun Y. tRNA-based prognostic score in predicting survival outcomes of lung adenocarcinomas. Int J Cancer 2019; 145:1982-1990. [PMID: 30838640 DOI: 10.1002/ijc.32250] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 02/07/2019] [Accepted: 02/27/2019] [Indexed: 12/16/2022]
Abstract
As the most abundant noncoding RNA in cells, tRNA plays an important role in tumorigenesis and development. The report of tRNA on the pathogenesis of lung adenocarcinoma is rare. It is of great clinical significance to explore the relationship between tRNA expression and prognosis of lung adenocarcinoma. The expression level of tRNAs in lung adenocarcinoma tissues and paracarcinoma tissues was detected using a tRNA RT-qPCR array. A total of 104 lung adenocarcinomas were included in the analysis of the correlation between candidate tRNAs expression and prognosis. A tRNA-based prognostic model was constructed and validated using Cox proportional hazards regression. A nomogram was built to help clinicians develop treatment strategies. We screened a series of differentially expressed tRNAs between lung adenocarcinoma tissues and paracarcinoma tissues. Among these tRNAs, tRNAAsn ATT , tRNAIle AAT , tRNALeu TAA , mt-tRNATrp TCA , mt-tRNALeu TAA , tRNAPro AGG , tRNALys CTT -1 and tRNALeu AAG were associated with the clinicopathological characteristics of lung adenocarcinoma. tRNALys CTT -1 , mt-tRNASer GCT and tRNATyr ATA were associated with cancer-specific survival. We constructed a prognostic model for lung adenocarcinoma using specific tRNA expression levels as reference factors. Multivariate analyses showed that tRNA-based prognostic score was a significant and important prognostic factor. The prognostic model based on the tRNAs expression signatures can help predict the prognosis of patients with lung adenocarcinoma.
Collapse
Affiliation(s)
- Muyu Kuang
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Huadong Hospital, Fudan University, Shanghai, China
| | - Difan Zheng
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoting Tao
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yizhou Peng
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yunjian Pan
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shanbo Zheng
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yang Zhang
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hang Li
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chongze Yuan
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yawei Zhang
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiaqing Xiang
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuan Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Haiquan Chen
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yihua Sun
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
62
|
Lant JT, Berg MD, Heinemann IU, Brandl CJ, O'Donoghue P. Pathways to disease from natural variations in human cytoplasmic tRNAs. J Biol Chem 2019; 294:5294-5308. [PMID: 30643023 DOI: 10.1074/jbc.rev118.002982] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Perfectly accurate translation of mRNA into protein is not a prerequisite for life. Resulting from errors in protein synthesis, mistranslation occurs in all cells, including human cells. The human genome encodes >600 tRNA genes, providing both the raw material for genetic variation and a buffer to ensure that resulting translation errors occur at tolerable levels. On the basis of data from the 1000 Genomes Project, we highlight the unanticipated prevalence of mistranslating tRNA variants in the human population and review studies on synthetic and natural tRNA mutations that cause mistranslation or de-regulate protein synthesis. Although mitochondrial tRNA variants are well known to drive human diseases, including developmental disorders, few studies have revealed a role for human cytoplasmic tRNA mutants in disease. In the context of the unexpectedly large number of tRNA variants in the human population, the emerging literature suggests that human diseases may be affected by natural tRNA variants that cause mistranslation or de-regulate tRNA expression and nucleotide modification. This review highlights examples relevant to genetic disorders, cancer, and neurodegeneration in which cytoplasmic tRNA variants directly cause or exacerbate disease and disease-linked phenotypes in cells, animal models, and humans. In the near future, tRNAs may be recognized as useful genetic markers to predict the onset or severity of human disease.
Collapse
Affiliation(s)
| | | | | | | | - Patrick O'Donoghue
- From the Departments of Biochemistry and .,Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
63
|
Grafanaki K, Anastasakis D, Kyriakopoulos G, Skeparnias I, Georgiou S, Stathopoulos C. Translation regulation in skin cancer from a tRNA point of view. Epigenomics 2018; 11:215-245. [PMID: 30565492 DOI: 10.2217/epi-2018-0176] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Protein synthesis is a central and dynamic process, frequently deregulated in cancer through aberrant activation or expression of translation initiation factors and tRNAs. The discovery of tRNA-derived fragments, a new class of abundant and, in some cases stress-induced, small Noncoding RNAs has perplexed the epigenomics landscape and highlights the emerging regulatory role of tRNAs in translation and beyond. Skin is the biggest organ in human body, which maintains homeostasis of its multilayers through regulatory networks that induce translational reprogramming, and modulate tRNA transcription, modification and fragmentation, in response to various stress signals, like UV irradiation. In this review, we summarize recent knowledge on the role of translation regulation and tRNA biology in the alarming prevalence of skin cancer.
Collapse
Affiliation(s)
- Katerina Grafanaki
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece.,Department of Dermatology, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Dimitrios Anastasakis
- National Institute of Musculoskeletal & Arthritis & Skin, NIH, 50 South Drive, Room 1152, Bethesda, MD 20892, USA
| | - George Kyriakopoulos
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Ilias Skeparnias
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Sophia Georgiou
- Department of Dermatology, School of Medicine, University of Patras, 26504 Patras, Greece
| | | |
Collapse
|
64
|
Oberbauer V, Schaefer MR. tRNA-Derived Small RNAs: Biogenesis, Modification, Function and Potential Impact on Human Disease Development. Genes (Basel) 2018; 9:genes9120607. [PMID: 30563140 PMCID: PMC6315542 DOI: 10.3390/genes9120607] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 12/11/2022] Open
Abstract
Transfer RNAs (tRNAs) are abundant small non-coding RNAs that are crucially important for decoding genetic information. Besides fulfilling canonical roles as adaptor molecules during protein synthesis, tRNAs are also the source of a heterogeneous class of small RNAs, tRNA-derived small RNAs (tsRNAs). Occurrence and the relatively high abundance of tsRNAs has been noted in many high-throughput sequencing data sets, leading to largely correlative assumptions about their potential as biologically active entities. tRNAs are also the most modified RNAs in any cell type. Mutations in tRNA biogenesis factors including tRNA modification enzymes correlate with a variety of human disease syndromes. However, whether it is the lack of tRNAs or the activity of functionally relevant tsRNAs that are causative for human disease development remains to be elucidated. Here, we review the current knowledge in regard to tsRNAs biogenesis, including the impact of RNA modifications on tRNA stability and discuss the existing experimental evidence in support for the seemingly large functional spectrum being proposed for tsRNAs. We also argue that improved methodology allowing exact quantification and specific manipulation of tsRNAs will be necessary before developing these small RNAs into diagnostic biomarkers and when aiming to harness them for therapeutic purposes.
Collapse
Affiliation(s)
- Vera Oberbauer
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria.
| | - Matthias R Schaefer
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria.
| |
Collapse
|
65
|
Impact of tRNA Modifications and tRNA-Modifying Enzymes on Proteostasis and Human Disease. Int J Mol Sci 2018; 19:ijms19123738. [PMID: 30477220 PMCID: PMC6321623 DOI: 10.3390/ijms19123738] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/17/2018] [Accepted: 11/20/2018] [Indexed: 12/14/2022] Open
Abstract
Transfer RNAs (tRNAs) are key players of protein synthesis, as they decode the genetic information organized in mRNA codons, translating them into the code of 20 amino acids. To be fully active, tRNAs undergo extensive post-transcriptional modifications, catalyzed by different tRNA-modifying enzymes. Lack of these modifications increases the level of missense errors and affects codon decoding rate, contributing to protein aggregation with deleterious consequences to the cell. Recent works show that tRNA hypomodification and tRNA-modifying-enzyme deregulation occur in several diseases where proteostasis is affected, namely, neurodegenerative and metabolic diseases. In this review, we discuss the recent findings that correlate aberrant tRNA modification with proteostasis imbalances, in particular in neurological and metabolic disorders, and highlight the association between tRNAs, their modifying enzymes, translational decoding, and disease onset.
Collapse
|
66
|
Lipinszki Z, Vernyik V, Farago N, Sari T, Puskas LG, Blattner FR, Posfai G, Gyorfy Z. Enhancing the Translational Capacity of E. coli by Resolving the Codon Bias. ACS Synth Biol 2018; 7:2656-2664. [PMID: 30351909 DOI: 10.1021/acssynbio.8b00332] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Escherichia coli is a well-established and popular host for heterologous expression of proteins. The preference in the choice of synonymous codons (codon bias), however, might differ for the host and the original source of the recombinant protein, constituting a potential bottleneck in production. Codon choice affects the efficiency of translation by a complex and poorly understood mechanism. The availability of certain tRNA species is one of the factors that may curtail the capacity of translation. Here we provide a tRNA-overexpressing strategy that allows the resolution of the codon bias, and boosts the translational capacity of the popular host BL21(DE3) when rare codons are encountered. In the BL21(DE3)-derived strain, called SixPack, copies of the genes corresponding to the six least abundant tRNA species have been assembled in a synthetic fragment and inserted into a rRNA operon. This arrangement, while not interfering with the growth properties of the new strain, allows dynamic control of the transcription of the extra tRNA genes, providing significantly elevated levels of the rare tRNAs in the exponential growth phase. Results from expression assays of a panel of recombinant proteins of diverse origin and codon composition showed that the performance of SixPack surpassed that of the parental BL21(DE3) or a related strain equipped with a rare tRNA-expressing plasmid.
Collapse
|
67
|
Tomita K, Liu Y. Human BCDIN3D Is a Cytoplasmic tRNA His-Specific 5'-Monophosphate Methyltransferase. Front Genet 2018; 9:305. [PMID: 30127802 PMCID: PMC6088191 DOI: 10.3389/fgene.2018.00305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 07/18/2018] [Indexed: 01/17/2023] Open
Abstract
Bicoid interacting 3 domain containing RNA methyltransferase (BCDIN3D) is a member of the Bin3 methyltransferase family and is evolutionary conserved from worm to human. BCDIN3D is overexpressed in breast cancer, which is associated with poor prognosis of breast cancers. However, the biological functions and properties of BCDIN3D have been enigmatic. Recent studies have revealed that human BCDIN3D monomethylates 5'-monophsosphate of cytoplasmic tRNAHisin vivo and in vitro. BCDIN3D recognizes the unique and exceptional structural features of cytoplasmic tRNAHis and discriminates tRNAHis from other cytoplasmic tRNA species. Thus, BCDIN3D is a tRNAHis-specific 5'-monophosphate methyltransferase. Methylation of the 5'-phosphate group of tRNAHis does not significantly affect tRNAHis aminoacylation by histidyl-tRNA synthetase in vitro nor the steady state level or stability of tRNAHisin vivo. Hence, methylation of the 5'-phosphate group of tRNAHis by BCDIN3D or tRNAHis itself may be involved in certain unknown biological processes, beyond protein synthesis. This review discusses recent reports on BCDIN3D and the possible association between 5'-phosphate monomethylation of tRNAHis and the tumorigenic phenotype of breast cancer.
Collapse
Affiliation(s)
- Kozo Tomita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Yining Liu
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
68
|
Santos M, Pereira PM, Varanda AS, Carvalho J, Azevedo M, Mateus DD, Mendes N, Oliveira P, Trindade F, Pinto MT, Bordeira-Carriço R, Carneiro F, Vitorino R, Oliveira C, Santos MAS. Codon misreading tRNAs promote tumor growth in mice. RNA Biol 2018; 15:773-786. [PMID: 29558247 DOI: 10.1080/15476286.2018.1454244] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Deregulation of tRNAs, aminoacyl-tRNA synthetases and tRNA modifying enzymes are common in cancer, raising the hypothesis that protein synthesis efficiency and accuracy (mistranslation) are compromised in tumors. We show here that human colon tumors and xenograft tumors produced in mice by two epithelial cancer cell lines mistranslate 2- to 4-fold more frequently than normal tissue. To clarify if protein mistranslation plays a role in tumor biology, we expressed mutant Ser-tRNAs that misincorporate Ser-at-Ala (frequent error) and Ser-at-Leu (infrequent error) in NIH3T3 cells and investigated how they responded to the proteome instability generated by the amino acid misincorporations. There was high tolerance to both misreading tRNAs, but the Ser-to-Ala misreading tRNA was a more potent inducer of cell transformation, stimulated angiogenesis and produced faster growing tumors in mice than the Ser-to-Leu misincorporating tRNA. Upregulation of the Akt pathway and the UPR were also observed. Most surprisingly, the relative expression of both misreading tRNAs increased during tumor growth, suggesting that protein mistranslation is advantageous in cancer contexts. These data highlight new features of protein synthesis deregulation in tumor biology.
Collapse
Affiliation(s)
- Mafalda Santos
- a Department of Medical Sciences and Institute of Biomedicine - iBiMED , University of Aveiro , Aveiro , Portugal.,b Expression Regulation in Cancer, Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP) , Porto , Portugal.,c Instituto de Investigação e Inovação em Saúde, University of Porto , Porto , Portugal
| | - Patricia M Pereira
- a Department of Medical Sciences and Institute of Biomedicine - iBiMED , University of Aveiro , Aveiro , Portugal.,b Expression Regulation in Cancer, Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP) , Porto , Portugal
| | - A Sofia Varanda
- a Department of Medical Sciences and Institute of Biomedicine - iBiMED , University of Aveiro , Aveiro , Portugal.,b Expression Regulation in Cancer, Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP) , Porto , Portugal.,c Instituto de Investigação e Inovação em Saúde, University of Porto , Porto , Portugal
| | - Joana Carvalho
- b Expression Regulation in Cancer, Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP) , Porto , Portugal.,c Instituto de Investigação e Inovação em Saúde, University of Porto , Porto , Portugal
| | - Mafalda Azevedo
- b Expression Regulation in Cancer, Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP) , Porto , Portugal
| | - Denisa D Mateus
- b Expression Regulation in Cancer, Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP) , Porto , Portugal
| | - Nuno Mendes
- b Expression Regulation in Cancer, Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP) , Porto , Portugal.,c Instituto de Investigação e Inovação em Saúde, University of Porto , Porto , Portugal
| | - Patricia Oliveira
- b Expression Regulation in Cancer, Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP) , Porto , Portugal.,c Instituto de Investigação e Inovação em Saúde, University of Porto , Porto , Portugal
| | - Fábio Trindade
- a Department of Medical Sciences and Institute of Biomedicine - iBiMED , University of Aveiro , Aveiro , Portugal.,d Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine , University of Porto , Porto , Portugal
| | - Marta Teixeira Pinto
- b Expression Regulation in Cancer, Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP) , Porto , Portugal.,c Instituto de Investigação e Inovação em Saúde, University of Porto , Porto , Portugal
| | - Renata Bordeira-Carriço
- b Expression Regulation in Cancer, Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP) , Porto , Portugal.,c Instituto de Investigação e Inovação em Saúde, University of Porto , Porto , Portugal
| | - Fátima Carneiro
- b Expression Regulation in Cancer, Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP) , Porto , Portugal.,c Instituto de Investigação e Inovação em Saúde, University of Porto , Porto , Portugal.,e Dept. of Pathology, Faculty of Medicine , University of Porto , Porto , Portugal
| | - Rui Vitorino
- a Department of Medical Sciences and Institute of Biomedicine - iBiMED , University of Aveiro , Aveiro , Portugal
| | - Carla Oliveira
- b Expression Regulation in Cancer, Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP) , Porto , Portugal.,c Instituto de Investigação e Inovação em Saúde, University of Porto , Porto , Portugal.,e Dept. of Pathology, Faculty of Medicine , University of Porto , Porto , Portugal
| | - Manuel A S Santos
- a Department of Medical Sciences and Institute of Biomedicine - iBiMED , University of Aveiro , Aveiro , Portugal
| |
Collapse
|
69
|
Huang SQ, Sun B, Xiong ZP, Shu Y, Zhou HH, Zhang W, Xiong J, Li Q. The dysregulation of tRNAs and tRNA derivatives in cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:101. [PMID: 29743091 PMCID: PMC5944149 DOI: 10.1186/s13046-018-0745-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/29/2018] [Indexed: 11/14/2022]
Abstract
Transfer RNAs (tRNAs), traditionally considered to participate in protein translation, were interspersed in the entire genome. Recent studies suggested that dysregulation was observed in not only tRNAs, but also tRNA derivatives generated by the specific cleavage of pre- and mature tRNAs in the progression of cancer. Accumulating evidence had identified that certain tRNAs and tRNA derivatives were involved in proliferation, metastasis and invasiveness of cancer cell, as well as tumor growth and angiogenesis in several malignant human tumors. This paper reviews the importance of the dysregulation of tRNAs and tRNA derivatives during the development of cancer, such as breast cancer, lung cancer, and melanoma, aiming at a better understanding of the tumorigenesis and providing new ideas for the treatment of these cancers.
Collapse
Affiliation(s)
- Shi-Qiong Huang
- Department of Clinical Pharmacology, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China
| | - Bao Sun
- Department of Clinical Pharmacology, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China
| | - Zong-Ping Xiong
- Department of Clinical Pharmacology, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Baltimore, MD, USA
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China
| | - Wei Zhang
- Department of Clinical Pharmacology, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China
| | - Jing Xiong
- Department of gynaecology and obstetrics, The Second Xiangya Hospital of Central South University, Central South University, Changsha, 410078, People's Republic of China.
| | - Qing Li
- Department of Clinical Pharmacology, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, People's Republic of China. .,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China.
| |
Collapse
|
70
|
Sriskanthadevan-Pirahas S, Deshpande R, Lee B, Grewal SS. Ras/ERK-signalling promotes tRNA synthesis and growth via the RNA polymerase III repressor Maf1 in Drosophila. PLoS Genet 2018; 14:e1007202. [PMID: 29401457 PMCID: PMC5814106 DOI: 10.1371/journal.pgen.1007202] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 02/15/2018] [Accepted: 01/16/2018] [Indexed: 12/28/2022] Open
Abstract
The small G-protein Ras is a conserved regulator of cell and tissue growth. These effects of Ras are mediated largely through activation of a canonical RAF-MEK-ERK kinase cascade. An important challenge is to identify how this Ras/ERK pathway alters cellular metabolism to drive growth. Here we report on stimulation of RNA polymerase III (Pol III)-mediated tRNA synthesis as a growth effector of Ras/ERK signalling in Drosophila. We find that activation of Ras/ERK signalling promotes tRNA synthesis both in vivo and in cultured Drosophila S2 cells. We also show that Pol III function is required for Ras/ERK signalling to drive proliferation in both epithelial and stem cells in Drosophila tissues. We find that the transcription factor Myc is required but not sufficient for Ras-mediated stimulation of tRNA synthesis. Instead we show that Ras signalling promotes Pol III function and tRNA synthesis by phosphorylating, and inhibiting the nuclear localization and function of the Pol III repressor Maf1. We propose that inhibition of Maf1 and stimulation of tRNA synthesis is one way by which Ras signalling enhances protein synthesis to promote cell and tissue growth.
Collapse
Affiliation(s)
- Shrivani Sriskanthadevan-Pirahas
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Calgary, Alberta, Canada
| | - Rujuta Deshpande
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Calgary, Alberta, Canada
| | - Byoungchun Lee
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Calgary, Alberta, Canada
| | - Savraj S. Grewal
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
71
|
Roles of tRNA-derived fragments in human cancers. Cancer Lett 2018; 414:16-25. [DOI: 10.1016/j.canlet.2017.10.031] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 10/19/2017] [Indexed: 11/19/2022]
|
72
|
Kwon NH, Lee MR, Kong J, Park SK, Hwang BJ, Kim BG, Lee ES, Moon HG, Kim S. Transfer-RNA-mediated enhancement of ribosomal proteins S6 kinases signaling for cell proliferation. RNA Biol 2018; 15:635-648. [PMID: 28816616 PMCID: PMC6103689 DOI: 10.1080/15476286.2017.1356563] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
While transfer-RNAs (tRNAs) are known to transport amino acids to ribosome, new functions are being unveiled from tRNAs and their fragments beyond protein synthesis. Here we show that phosphorylation of 90-kDa RPS6K (ribosomal proteins S6 kinase) was enhanced by tRNALeu overexpression under amino acids starvation condition. The phosphorylation of 90-kDa RPS6K was decreased by siRNA specific to tRNALeu and was independent to mTOR (mammalian target of rapamycin) signaling. Among the 90-kDa RPS6K family, RSK1 (ribosomal S6 kinase 1) and MSK2 (mitogen-and stress-activated protein kinase 2) were the major kinases phosphorylated by tRNALeu overexpression. Through SILAC (stable isotope labeling by/with amino acids in cell culture) and combined mass spectrometry analysis, we identified EBP1 (ErbB3-binding protein 1) as the tRNALeu-binding protein. We suspected that the overexpression of free tRNALeu would reinforce ErbB2/ErbB3 signaling pathway by disturbing the interaction between ErbB3 and EBP1, resulting in RSK1/MSK2 phosphorylation, improving cell proliferation and resistance to death. Analysis of samples from patients with breast cancer also indicated an association between tRNALeu overexpression and the ErbB2-positive population. Our results suggested a possible link between tRNALeu overexpression and RSK1/MSK2 activation and ErbB2/ErbB3 signaling.
Collapse
Affiliation(s)
- Nam Hoon Kwon
- a Medicinal Bioconvergence Research Center , Seoul National University , Suwon , Gyeonggi , Korea
| | - Mi Ran Lee
- a Medicinal Bioconvergence Research Center , Seoul National University , Suwon , Gyeonggi , Korea
| | - Jiwon Kong
- a Medicinal Bioconvergence Research Center , Seoul National University , Suwon , Gyeonggi , Korea.,b Department of Pharmacy , Seoul National University , Seoul , Korea
| | - Seung Kyun Park
- c Department of Molecular Bioscience , College of Biomedical Science, Kangwon National University , Chuncheon , Kangwon , Korea
| | - Byung Joon Hwang
- c Department of Molecular Bioscience , College of Biomedical Science, Kangwon National University , Chuncheon , Kangwon , Korea
| | - Byung Gyu Kim
- a Medicinal Bioconvergence Research Center , Seoul National University , Suwon , Gyeonggi , Korea
| | - Eun-Shin Lee
- d Department of Surgery , Seoul National University College of Medicine , Seoul , Korea
| | - Hyeong-Gon Moon
- d Department of Surgery , Seoul National University College of Medicine , Seoul , Korea
| | - Sunghoon Kim
- a Medicinal Bioconvergence Research Center , Seoul National University , Suwon , Gyeonggi , Korea.,e Department of Molecular Medicine and Biopharmaceutical Sciences , Graduate School of Convergence Science and Technology, Seoul National University , Suwon , Gyeonggi , Korea
| |
Collapse
|
73
|
Willis IM, Moir RD. Signaling to and from the RNA Polymerase III Transcription and Processing Machinery. Annu Rev Biochem 2018; 87:75-100. [PMID: 29328783 DOI: 10.1146/annurev-biochem-062917-012624] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RNA polymerase (Pol) III has a specialized role in transcribing the most abundant RNAs in eukaryotic cells, transfer RNAs (tRNAs), along with other ubiquitous small noncoding RNAs, many of which have functions related to the ribosome and protein synthesis. The high energetic cost of producing these RNAs and their central role in protein synthesis underlie the robust regulation of Pol III transcription in response to nutrients and stress by growth regulatory pathways. Downstream of Pol III, signaling impacts posttranscriptional processes affecting tRNA function in translation and tRNA cleavage into smaller fragments that are increasingly attributed with novel cellular activities. In this review, we consider how nutrients and stress control Pol III transcription via its factors and its negative regulator, Maf1. We highlight recent work showing that the composition of the tRNA population and the function of individual tRNAs is dynamically controlled and that unrestrained Pol III transcription can reprogram central metabolic pathways.
Collapse
Affiliation(s)
- Ian M Willis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA; , .,Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Robyn D Moir
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA; ,
| |
Collapse
|
74
|
Martinez A, Yamashita S, Nagaike T, Sakaguchi Y, Suzuki T, Tomita K. Human BCDIN3D monomethylates cytoplasmic histidine transfer RNA. Nucleic Acids Res 2017; 45:5423-5436. [PMID: 28119416 PMCID: PMC5435960 DOI: 10.1093/nar/gkx051] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 01/19/2017] [Indexed: 11/13/2022] Open
Abstract
Human RNA methyltransferase BCDIN3D is overexpressed in breast cancer cells, and is related to the tumorigenic phenotype and poor prognosis of breast cancer. Here, we show that cytoplasmic tRNAHis is the primary target of BCDIN3D in human cells. Recombinant human BCDIN3D, expressed in Escherichia coli, monomethylates the 5΄-monophosphate of cytoplasmic tRNAHis efficiently in vitro. In BCDN3D-knockout cells, established by CRISPR/Cas9 editing, the methyl moiety at the 5΄-monophosphate of cytoplasmic tRNAHis is lost, and the exogenous expression of BCDIN3D in the knockout cells restores the modification in cytoplasmic tRNAHis. BCIDN3D recognizes the 5΄-guanosine nucleoside at position -1 (G-1) and the eight-nucleotide acceptor helix with the G-1-A73 mis-pair at the top of the acceptor stem of cytoplasmic tRNAHis, which are exceptional structural features among cytoplasmic tRNA species. While the monomethylation of the 5΄-monophosphate of cytoplasmic tRNAHis affects neither the overall aminoacylation process in vitro nor the steady-state level of cytoplasmic tRNAHisin vivo, it protects the cytoplasmic tRNAHis transcript from degradation in vitro. Thus, BCDIN3D acts as a cytoplasmic tRNAHis-specific 5΄-methylphosphate capping enzyme. The present results also suggest the possible involvement of the monomethylation of the 5΄-monophosphate of cytoplasmic tRNAHis and/or cytoplasmic tRNAHis itself in the tumorigenesis of breast cancer cells.
Collapse
Affiliation(s)
- Anna Martinez
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Seisuke Yamashita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Takashi Nagaike
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Yuriko Sakaguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kozo Tomita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| |
Collapse
|
75
|
Vaklavas C, Blume SW, Grizzle WE. Translational Dysregulation in Cancer: Molecular Insights and Potential Clinical Applications in Biomarker Development. Front Oncol 2017; 7:158. [PMID: 28798901 PMCID: PMC5526920 DOI: 10.3389/fonc.2017.00158] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 07/06/2017] [Indexed: 01/04/2023] Open
Abstract
Although transcript levels have been traditionally used as a surrogate measure of gene expression, it is increasingly recognized that the latter is extensively and dynamically modulated at the level of translation (messenger RNA to protein). Over the recent years, significant progress has been made in dissecting the complex posttranscriptional mechanisms that regulate gene expression. This advancement in knowledge came hand in hand with the progress made in the methodologies to study translation both at gene-specific as well as global genomic level. The majority of translational control is exerted at the level of initiation; nonetheless, protein synthesis can be modulated at the level of translation elongation, termination, and recycling. Sequence and structural elements and epitranscriptomic modifications of individual transcripts allow for dynamic gene-specific modulation of translation. Cancer cells usurp the regulatory mechanisms that govern translation to carry out translational programs that lead to the phenotypic hallmarks of cancer. Translation is a critical nexus in neoplastic transformation. Multiple oncogenes and signaling pathways that are activated, upregulated, or mutated in cancer converge on translation and their transformative impact "bottlenecks" at the level of translation. Moreover, this translational dysregulation allows cancer cells to adapt to a diverse array of stresses associated with a hostile microenviroment and antitumor therapies. All elements involved in the process of translation, from the transcriptional template, the components of the translational machinery, to the proteins that interact with the transcriptome, have been found to be qualitatively and/or quantitatively perturbed in cancer. This review discusses the regulatory mechanisms that govern translation in normal cells and how translation becomes dysregulated in cancer leading to the phenotypic hallmarks of malignancy. We also discuss how dysregulated mediators or components of translation can be utilized as biomarkers with potential diagnostic, prognostic, or predictive significance. Such biomarkers have the potential advantage of uniform applicability in the face of inherent tumor heterogeneity and deoxyribonucleic acid instability. As translation becomes increasingly recognized as a process gone awry in cancer and agents are developed to target it, the utility and significance of these potential biomarkers is expected to increase.
Collapse
Affiliation(s)
- Christos Vaklavas
- Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Scott W Blume
- Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - William E Grizzle
- Department of Anatomic Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
76
|
Finlay-Schultz J, Gillen AE, Brechbuhl HM, Ivie JJ, Matthews SB, Jacobsen BM, Bentley DL, Kabos P, Sartorius CA. Breast Cancer Suppression by Progesterone Receptors Is Mediated by Their Modulation of Estrogen Receptors and RNA Polymerase III. Cancer Res 2017; 77:4934-4946. [PMID: 28729413 DOI: 10.1158/0008-5472.can-16-3541] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 06/12/2017] [Accepted: 07/14/2017] [Indexed: 12/25/2022]
Abstract
Greater than 50% of estrogen receptor (ER)-positive breast cancers coexpress the progesterone receptor (PR), which can directly and globally modify ER action to attenuate tumor growth. However, whether this attenuation is mediated only through PR-ER interaction remains unknown. To address this question, we assessed tumor growth in ER/PR-positive patient-derived xenograft models of breast cancer, where both natural and synthetic progestins were found to antagonize the mitogenic effects of estrogens. Probing the genome-wide mechanisms by which this occurs, we documented that chronic progestin treatment blunted ER-mediated gene expression up to 2-fold at the level of mRNA transcripts. Unexpectedly, <25% of all ER DNA binding events were affected by the same treatment. The PR cistrome displayed a bimodal distribution. In one group, >50% of PR binding sites were co-occupied by ER, with a propensity for both receptors to coordinately gain or lose binding in the presence of progesterone. In the second group, PR but not ER was associated with a large fraction of RNA polymerase III-transcribed tRNA genes, independent of hormone treatment. Notably, we discovered that PR physically associated with the Pol III holoenzyme. Select pre-tRNAs and mature tRNAs with PR and POLR3A colocalized at their promoters were relatively decreased in estrogen + progestin-treated tumors. Our results illuminate how PR may indirectly impede ER action by reducing the bioavailability of translational molecules needed for tumor growth. Cancer Res; 77(18); 4934-46. ©2017 AACR.
Collapse
Affiliation(s)
- Jessica Finlay-Schultz
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| | - Austin E Gillen
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Heather M Brechbuhl
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Joshua J Ivie
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Shawna B Matthews
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Britta M Jacobsen
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - David L Bentley
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Peter Kabos
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Carol A Sartorius
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
77
|
Transcription by RNA polymerase III: insights into mechanism and regulation. Biochem Soc Trans 2017; 44:1367-1375. [PMID: 27911719 PMCID: PMC5095917 DOI: 10.1042/bst20160062] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 07/07/2016] [Accepted: 07/13/2016] [Indexed: 12/13/2022]
Abstract
The highly abundant, small stable RNAs that are synthesized by RNA polymerase III (RNAPIII) have key functional roles, particularly in the protein synthesis apparatus. Their expression is metabolically demanding, and is therefore coupled to changing demands for protein synthesis during cell growth and division. Here, we review the regulatory mechanisms that control the levels of RNAPIII transcripts and discuss their potential physiological relevance. Recent analyses have revealed differential regulation of tRNA expression at all steps on its biogenesis, with significant deregulation of mature tRNAs in cancer cells.
Collapse
|
78
|
Soares AR, Santos M. Discovery and function of transfer RNA-derived fragments and their role in disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28608481 DOI: 10.1002/wrna.1423] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/16/2017] [Accepted: 03/23/2017] [Indexed: 01/02/2023]
Abstract
Until recently, transfer RNAs (tRNAs) were thought to function in protein translation only. However, recent findings demonstrate that both pre- and mature tRNAs can undergo endonucleolytic cleavage by different ribonucleases originating different types of small non-coding RNAs, known as tRNA-derived fragments (tRFs). tRFs are classified according to their origin and are implicated in various cellular processes, namely apoptosis, protein synthesis control, and RNA interference. Although their functions are still poorly understood, their mechanisms of action vary according to the tRF sub-type. Several tRFs have been associated with cancer, neurodegenerative disorders, and viral infections and growing evidence shows that they may constitute novel molecular targets for modulating pathological processes. Here, we recapitulate the current knowledge of tRF biology, highlight the known functions and mechanisms of action of the different sub-classes of tRFs and discuss their implications in human disease. WIREs RNA 2017, 8:e1423. doi: 10.1002/wrna.1423 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Ana Raquel Soares
- Institute of Biomedicine iBiMED, University of Aveiro, Aveiro, Portugal
| | - Manuel Santos
- Institute of Biomedicine iBiMED, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
79
|
Abstract
Recent years have seen a burst in the number of studies investigating tRNA biology. With the transition from a gene-centred to a genome-centred perspective, tRNAs and other RNA polymerase III transcripts surfaced as active regulators of normal cell physiology and disease. Novel strategies removing some of the hurdles that prevent quantitative tRNA profiling revealed that the differential exploitation of the tRNA pool critically affects the ability of the cell to balance protein homeostasis during normal and stress conditions. Furthermore, growing evidence indicates that the adaptation of tRNA synthesis to cellular dynamics can influence translation and mRNA stability to drive carcinogenesis and other pathological disorders. This review explores the contribution given by genomics, transcriptomics and epitranscriptomics to the discovery of emerging tRNA functions, and gives insights into some of the technical challenges that still limit our understanding of the RNA polymerase III transcriptional machinery.
Collapse
Affiliation(s)
- Andrea Orioli
- Center for Integrative Genomics, Université de Lausanne, Lausanne, VD 1015, Switzerland
| |
Collapse
|
80
|
Birch J, Clarke CJ, Campbell AD, Campbell K, Mitchell L, Liko D, Kalna G, Strathdee D, Sansom OJ, Neilson M, Blyth K, Norman JC. The initiator methionine tRNA drives cell migration and invasion leading to increased metastatic potential in melanoma. Biol Open 2016; 5:1371-1379. [PMID: 27543055 PMCID: PMC5087684 DOI: 10.1242/bio.019075] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 08/12/2016] [Indexed: 12/19/2022] Open
Abstract
The cell's repertoire of transfer RNAs (tRNAs) has been linked to cancer. Recently, the level of the initiator methionine tRNA (tRNAiMet) in stromal fibroblasts has been shown to influence extracellular matrix (ECM) secretion to drive tumour growth and angiogenesis. Here we show that increased tRNAiMet within cancer cells does not influence tumour growth, but drives cell migration and invasion via a mechanism that is independent from ECM synthesis and dependent on α5β1 integrin and levels of the translation initiation ternary complex. In vivo and ex vivo migration (but not proliferation) of melanoblasts is significantly enhanced in transgenic mice which express additional copies of the tRNAiMet gene. We show that increased tRNAiMet in melanoma drives migratory, invasive behaviour and metastatic potential without affecting cell proliferation and primary tumour growth, and that expression of RNA polymerase III-associated genes (which drive tRNA expression) are elevated in metastases by comparison with primary tumours. Thus, specific alterations to the cancer cell tRNA repertoire drive a migration/invasion programme that may lead to metastasis.
Collapse
Affiliation(s)
- Joanna Birch
- Beatson Institute for Cancer Research, Garscube Estate, Glasgow G61 1BD, Scotland
| | - Cassie J Clarke
- Beatson Institute for Cancer Research, Garscube Estate, Glasgow G61 1BD, Scotland
| | - Andrew D Campbell
- Beatson Institute for Cancer Research, Garscube Estate, Glasgow G61 1BD, Scotland
| | - Kirsteen Campbell
- Beatson Institute for Cancer Research, Garscube Estate, Glasgow G61 1BD, Scotland
| | - Louise Mitchell
- Beatson Institute for Cancer Research, Garscube Estate, Glasgow G61 1BD, Scotland
| | - Dritan Liko
- Beatson Institute for Cancer Research, Garscube Estate, Glasgow G61 1BD, Scotland
| | - Gabriela Kalna
- Beatson Institute for Cancer Research, Garscube Estate, Glasgow G61 1BD, Scotland
| | - Douglas Strathdee
- Beatson Institute for Cancer Research, Garscube Estate, Glasgow G61 1BD, Scotland
| | - Owen J Sansom
- Beatson Institute for Cancer Research, Garscube Estate, Glasgow G61 1BD, Scotland
| | - Matthew Neilson
- Beatson Institute for Cancer Research, Garscube Estate, Glasgow G61 1BD, Scotland
| | - Karen Blyth
- Beatson Institute for Cancer Research, Garscube Estate, Glasgow G61 1BD, Scotland
| | - Jim C Norman
- Beatson Institute for Cancer Research, Garscube Estate, Glasgow G61 1BD, Scotland
| |
Collapse
|
81
|
Liu F, Clark W, Luo G, Wang X, Fu Y, Wei J, Wang X, Hao Z, Dai Q, Zheng G, Ma H, Han D, Evans M, Klungland A, Pan T, He C. ALKBH1-Mediated tRNA Demethylation Regulates Translation. Cell 2016; 167:816-828.e16. [PMID: 27745969 DOI: 10.1016/j.cell.2016.09.038] [Citation(s) in RCA: 346] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 08/14/2016] [Accepted: 09/22/2016] [Indexed: 12/27/2022]
Abstract
tRNA is a central component of protein synthesis and the cell signaling network. One salient feature of tRNA is its heavily modified status, which can critically impact its function. Here, we show that mammalian ALKBH1 is a tRNA demethylase. It mediates the demethylation of N1-methyladenosine (m1A) in tRNAs. The ALKBH1-catalyzed demethylation of the target tRNAs results in attenuated translation initiation and decreased usage of tRNAs in protein synthesis. This process is dynamic and responds to glucose availability to affect translation. Our results uncover reversible methylation of tRNA as a new mechanism of post-transcriptional gene expression regulation.
Collapse
Affiliation(s)
- Fange Liu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Wesley Clark
- Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA
| | - Guanzheng Luo
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Xiaoyun Wang
- Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA
| | - Ye Fu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Jiangbo Wei
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Xiao Wang
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Ziyang Hao
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Qing Dai
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Guanqun Zheng
- Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA
| | - Honghui Ma
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Dali Han
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Molly Evans
- Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA
| | - Arne Klungland
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, 0027 Oslo, Norway; Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway
| | - Tao Pan
- Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA.
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA.
| |
Collapse
|
82
|
Johnson DL, Stiles BL. Maf1, A New PTEN Target Linking RNA and Lipid Metabolism. Trends Endocrinol Metab 2016; 27:742-750. [PMID: 27296319 PMCID: PMC5035567 DOI: 10.1016/j.tem.2016.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/22/2016] [Accepted: 04/29/2016] [Indexed: 01/07/2023]
Abstract
PTEN is a critical tumor suppressor whose dysregulation leads to metabolic disease and cancer. How these diseases are linked at a molecular level is poorly understood. Maf1 is a novel PTEN target that connects PTEN's ability to repress intracellular lipid accumulation with its tumor suppressor function. Maf1 represses the expression of rRNAs and tRNAs to restrain biosynthetic capacity and oncogenic transformation. Recent studies demonstrate that Maf1 also controls intracellular lipid accumulation. In animal models, dysregulation of RNA polymerase I- and III-dependent transcription, and subsequent upregulation of rRNAs and tRNAs, leads to altered lipid metabolism and storage. Together these results identify unexpected connections between RNA and lipid metabolism that may help explain the strong epidemiological association between obesity and cancer.
Collapse
|
83
|
Genome-wide profiling of transfer RNAs and their role as novel prognostic markers for breast cancer. Sci Rep 2016; 6:32843. [PMID: 27604545 PMCID: PMC5015097 DOI: 10.1038/srep32843] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/11/2016] [Indexed: 11/25/2022] Open
Abstract
Transfer RNAs (tRNAs, key molecules in protein synthesis) have not been investigated as potential prognostic markers in breast cancer (BC), despite early findings of their dysregulation and diagnostic potential. We aim to comprehensively profile tRNAs from breast tissues and to evaluate their role as prognostic markers (Overall Survival, OS and Recurrence Free Survival, RFS). tRNAs were profiled from 11 normal breast and 104 breast tumor tissues using next generation sequencing. We adopted a Case-control (CC) and Case-Only (CO) association study designs. Risk scores constructed from tRNAs were subjected to univariate and multivariate Cox-proportional hazards regression to investigate their prognostic value. Of the 571 tRNAs profiled, 76 were differentially expressed (DE) and three were significant for OS in the CC approach. We identified an additional 11 tRNAs associated with OS and 14 tRNAs as significant for RFS in the CO approach, indicating that CC alone may not capture all discriminatory tRNAs in prognoses. In both the approaches, the risk scores were significant in the multivariate analysis as independent prognostic factors, and patients belonging to high-risk group were associated with poor prognosis. Our results confirmed global up-regulation of tRNAs in BC and identified tRNAs as potential novel prognostic markers for BC.
Collapse
|
84
|
Rode AB, Endoh T, Sugimoto N. tRNA Shifts the G-quadruplex-Hairpin Conformational Equilibrium in RNA towards the Hairpin Conformer. Angew Chem Int Ed Engl 2016; 55:14315-14319. [DOI: 10.1002/anie.201605431] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Ambadas B. Rode
- Frontier Institute for Biomolecular Engineering Research (FIBER); Konan University; 7-1-20 Minatojima-minamimachi, Chuo-ku Kobe 650-0047 Japan
| | - Tamaki Endoh
- Frontier Institute for Biomolecular Engineering Research (FIBER); Konan University; 7-1-20 Minatojima-minamimachi, Chuo-ku Kobe 650-0047 Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER); Konan University; 7-1-20 Minatojima-minamimachi, Chuo-ku Kobe 650-0047 Japan
| |
Collapse
|
85
|
Rode AB, Endoh T, Sugimoto N. tRNA Shifts the G-quadruplex-Hairpin Conformational Equilibrium in RNA towards the Hairpin Conformer. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201605431] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Ambadas B. Rode
- Frontier Institute for Biomolecular Engineering Research (FIBER); Konan University; 7-1-20 Minatojima-minamimachi, Chuo-ku Kobe 650-0047 Japan
| | - Tamaki Endoh
- Frontier Institute for Biomolecular Engineering Research (FIBER); Konan University; 7-1-20 Minatojima-minamimachi, Chuo-ku Kobe 650-0047 Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER); Konan University; 7-1-20 Minatojima-minamimachi, Chuo-ku Kobe 650-0047 Japan
| |
Collapse
|
86
|
Sagi D, Rak R, Gingold H, Adir I, Maayan G, Dahan O, Broday L, Pilpel Y, Rechavi O. Tissue- and Time-Specific Expression of Otherwise Identical tRNA Genes. PLoS Genet 2016; 12:e1006264. [PMID: 27560950 PMCID: PMC4999229 DOI: 10.1371/journal.pgen.1006264] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 07/27/2016] [Indexed: 11/18/2022] Open
Abstract
Codon usage bias affects protein translation because tRNAs that recognize synonymous codons differ in their abundance. Although the current dogma states that tRNA expression is exclusively regulated by intrinsic control elements (A- and B-box sequences), we revealed, using a reporter that monitors the levels of individual tRNA genes in Caenorhabditis elegans, that eight tryptophan tRNA genes, 100% identical in sequence, are expressed in different tissues and change their expression dynamically. Furthermore, the expression levels of the sup-7 tRNA gene at day 6 were found to predict the animal's lifespan. We discovered that the expression of tRNAs that reside within introns of protein-coding genes is affected by the host gene's promoter. Pairing between specific Pol II genes and the tRNAs that are contained in their introns is most likely adaptive, since a genome-wide analysis revealed that the presence of specific intronic tRNAs within specific orthologous genes is conserved across Caenorhabditis species.
Collapse
Affiliation(s)
- Dror Sagi
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Roni Rak
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Hila Gingold
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Idan Adir
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Gadi Maayan
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Orna Dahan
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Limor Broday
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Yitzhak Pilpel
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
87
|
Bhattacharyya S, Varshney U. Evolution of initiator tRNAs and selection of methionine as the initiating amino acid. RNA Biol 2016; 13:810-9. [PMID: 27322343 DOI: 10.1080/15476286.2016.1195943] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Transfer RNAs (tRNAs) have been important in shaping biomolecular evolution. Initiator tRNAs (tRNAi), a special class of tRNAs, carry methionine (or its derivative, formyl-methionine) to ribosomes to start an enormously energy consuming but a highly regulated process of protein synthesis. The processes of tRNAi evolution, and selection of methionine as the universal initiating amino acid remain an enigmatic problem. We constructed phylogenetic trees using the whole sequence, the acceptor-TψC arm ('minihelix'), and the anticodon-dihydrouridine arm regions of tRNAi from 158 species belonging to all 3 domains of life. All the trees distinctly assembled into 3 domains of life. Large trees, generated using data for all the tRNAs of a vast number of species, fail to reveal the major evolutionary events and identity of the probable elongator tRNA sequences that could be ancestor of tRNAi. Therefore, we constructed trees using the minihelix or the whole sequence of species specific tRNAs, and iterated our analysis on 50 eubacterial species. We identified tRNA(Pro), tRNA(Glu), or tRNA(Thr) (but surprisingly not elongator tRNA(Met)) as probable ancestors of tRNAi. We then determined the factors imposing selection of methionine as the initiating amino acid. Overall frequency of occurrence of methionine, whose metabolic cost of synthesis is the highest among all amino acids, remains almost unchanged across the 3 domains of life. Our correlation analysis shows that its high metabolic cost is independent of many physicochemical properties of the side chain. Our results indicate that selection of methionine, as the initiating amino acid was possibly a consequence of the evolution of one-carbon metabolism, which plays an important role in regulating translation initiation.
Collapse
Affiliation(s)
- Souvik Bhattacharyya
- a Department of Microbiology and Cell Biology , Indian Institute of Science , Bangalore , India
| | - Umesh Varshney
- a Department of Microbiology and Cell Biology , Indian Institute of Science , Bangalore , India.,b Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur , Bangalore , India
| |
Collapse
|
88
|
Interaction of tRNA with MEK2 in pancreatic cancer cells. Sci Rep 2016; 6:28260. [PMID: 27301426 PMCID: PMC4908586 DOI: 10.1038/srep28260] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/01/2016] [Indexed: 01/07/2023] Open
Abstract
Although the translational function of tRNA has long been established, extra translational functions of tRNA are still being discovered. We previously developed a computational method to systematically predict new tRNA-protein complexes and experimentally validated six candidate proteins, including the mitogen-activated protein kinase kinase 2 (MEK2), that interact with tRNA in HEK293T cells. However, consequences of the interaction between tRNA and these proteins remain to be elucidated. Here we tested the consequence of the interaction between tRNA and MEK2 in pancreatic cancer cell lines. We also generated disease and drug resistance-derived MEK2 mutants (Q60P, P128Q, S154F, E207K) to evaluate the function of the tRNA-MEK2 interaction. Our results demonstrate that tRNA interacts with the wild-type and mutant MEK2 in pancreatic cancer cells; furthermore, the MEK2 inhibitor U0126 significantly reduces the tRNA-MEK2 interaction. In addition, tRNA affects the catalytic activity of the wild type and mutant MEK2 proteins in different ways. Overall, our findings demonstrate the interaction of tRNA with MEK2 in pancreatic cancer cells and suggest that tRNA may impact MEK2 activity in cancer cells.
Collapse
|
89
|
Abstract
The past several years have seen dramatic leaps in our understanding of how gene expression is rewired at the translation level during tumorigenesis to support the transformed phenotype. This work has been driven by an explosion in technological advances and is revealing previously unimagined regulatory mechanisms that dictate functional expression of the cancer genome. In this Review we discuss emerging trends and exciting new discoveries that reveal how this translational circuitry contributes to specific aspects of tumorigenesis and cancer cell function, with a particular focus on recent insights into the role of translational control in the adaptive response to oncogenic stress conditions.
Collapse
Affiliation(s)
- Morgan L Truitt
- Department of Urology, University of California, San Francisco
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94158, USA
| | - Davide Ruggero
- Department of Urology, University of California, San Francisco
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
90
|
Huang HY, Hopper AK. Multiple Layers of Stress-Induced Regulation in tRNA Biology. Life (Basel) 2016; 6:life6020016. [PMID: 27023616 PMCID: PMC4931453 DOI: 10.3390/life6020016] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/14/2016] [Accepted: 03/17/2016] [Indexed: 01/28/2023] Open
Abstract
tRNAs are the fundamental components of the translation machinery as they deliver amino acids to the ribosomes during protein synthesis. Beyond their essential function in translation, tRNAs also function in regulating gene expression, modulating apoptosis and several other biological processes. There are multiple layers of regulatory mechanisms in each step of tRNA biogenesis. For example, tRNA 3′ trailer processing is altered upon nutrient stress; tRNA modification is reprogrammed under various stresses; nuclear accumulation of tRNAs occurs upon nutrient deprivation; tRNA halves accumulate upon oxidative stress. Here we address how environmental stresses can affect nearly every step of tRNA biology and we describe the possible regulatory mechanisms that influence the function or expression of tRNAs under stress conditions.
Collapse
Affiliation(s)
- Hsiao-Yun Huang
- Department of Biology, Indiana University, 915 E third St., Myers 300, Bloomington, IN 47405, USA.
| | - Anita K Hopper
- Department of Molecular Genetics and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
91
|
Clarke CJ, Berg TJ, Birch J, Ennis D, Mitchell L, Cloix C, Campbell A, Sumpton D, Nixon C, Campbell K, Bridgeman VL, Vermeulen PB, Foo S, Kostaras E, Jones JL, Haywood L, Pulleine E, Yin H, Strathdee D, Sansom O, Blyth K, McNeish I, Zanivan S, Reynolds AR, Norman JC. The Initiator Methionine tRNA Drives Secretion of Type II Collagen from Stromal Fibroblasts to Promote Tumor Growth and Angiogenesis. Curr Biol 2016; 26:755-65. [PMID: 26948875 PMCID: PMC4819511 DOI: 10.1016/j.cub.2016.01.045] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 12/07/2015] [Accepted: 01/19/2016] [Indexed: 11/18/2022]
Abstract
Expression of the initiator methionine tRNA (tRNAi(Met)) is deregulated in cancer. Despite this fact, it is not currently known how tRNAi(Met) expression levels influence tumor progression. We have found that tRNAi(Met) expression is increased in carcinoma-associated fibroblasts, implicating deregulated expression of tRNAi(Met) in the tumor stroma as a possible contributor to tumor progression. To investigate how elevated stromal tRNAi(Met) contributes to tumor progression, we generated a mouse expressing additional copies of the tRNAi(Met) gene (2+tRNAi(Met) mouse). Growth and vascularization of subcutaneous tumor allografts was enhanced in 2+tRNAi(Met) mice compared with wild-type littermate controls. Extracellular matrix (ECM) deposited by fibroblasts from 2+tRNAi(Met) mice supported enhanced endothelial cell and fibroblast migration. SILAC mass spectrometry indicated that elevated expression of tRNAi(Met) significantly increased synthesis and secretion of certain types of collagen, in particular type II collagen. Suppression of type II collagen opposed the ability of tRNAi(Met)-overexpressing fibroblasts to deposit pro-migratory ECM. We used the prolyl hydroxylase inhibitor ethyl-3,4-dihydroxybenzoate (DHB) to determine whether collagen synthesis contributes to the tRNAi(Met)-driven pro-tumorigenic stroma in vivo. DHB had no effect on the growth of syngeneic allografts in wild-type mice but opposed the ability of 2+tRNAi(Met) mice to support increased angiogenesis and tumor growth. Finally, collagen II expression predicts poor prognosis in high-grade serous ovarian carcinoma. Taken together, these data indicate that increased tRNAi(Met) levels contribute to tumor progression by enhancing the ability of stromal fibroblasts to synthesize and secrete a type II collagen-rich ECM that supports endothelial cell migration and angiogenesis.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Collagen Type II/genetics
- Collagen Type II/metabolism
- Extracellular Matrix/metabolism
- Extracellular Matrix/pathology
- Female
- Fibroblasts/metabolism
- Gene Expression Regulation, Neoplastic
- Humans
- Mice, Inbred C57BL
- Mice, Transgenic
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/pathology
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/pathology
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/mortality
- Ovarian Neoplasms/pathology
- RNA, Transfer, Met/genetics
- RNA, Transfer, Met/metabolism
- Stromal Cells/pathology
Collapse
Affiliation(s)
- Cassie J Clarke
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Tracy J Berg
- Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, Mary-Jean Mitchell Green Building, The Institute of Cancer Research, London SW3 6JB, UK
| | - Joanna Birch
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Darren Ennis
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G611QH, UK
| | - Louise Mitchell
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Catherine Cloix
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Andrew Campbell
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - David Sumpton
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Colin Nixon
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Kirsteen Campbell
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Victoria L Bridgeman
- Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, Mary-Jean Mitchell Green Building, The Institute of Cancer Research, London SW3 6JB, UK
| | - Peter B Vermeulen
- Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, Mary-Jean Mitchell Green Building, The Institute of Cancer Research, London SW3 6JB, UK; Translational Cancer Research Unit, GZA Hospitals St. Augustinus, Wilrijk 2610, Antwerp, Belgium
| | - Shane Foo
- Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, Mary-Jean Mitchell Green Building, The Institute of Cancer Research, London SW3 6JB, UK
| | - Eleftherios Kostaras
- Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, Mary-Jean Mitchell Green Building, The Institute of Cancer Research, London SW3 6JB, UK
| | - J Louise Jones
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Linda Haywood
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Ellie Pulleine
- School of Engineering, University of Glasgow, Glasgow G12 8LT, UK
| | - Huabing Yin
- School of Engineering, University of Glasgow, Glasgow G12 8LT, UK
| | - Douglas Strathdee
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Owen Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Iain McNeish
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G611QH, UK
| | - Sara Zanivan
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Andrew R Reynolds
- Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, Mary-Jean Mitchell Green Building, The Institute of Cancer Research, London SW3 6JB, UK.
| | - Jim C Norman
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK.
| |
Collapse
|
92
|
Willis A. Translational Control: Selective Upregulation of ECM Components Drives Tumour Growth. Curr Biol 2016; 26:R241-3. [DOI: 10.1016/j.cub.2016.01.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
93
|
Gomes AC, Kordala AJ, Strack R, Wang X, Geslain R, Delaney K, Clark WC, Keenan R, Pan T. A dual fluorescent reporter for the investigation of methionine mistranslation in live cells. RNA (NEW YORK, N.Y.) 2016; 22:467-476. [PMID: 26729921 PMCID: PMC4748823 DOI: 10.1261/rna.054163.115] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/25/2015] [Indexed: 06/03/2023]
Abstract
In mammalian cells under oxidative stress, the methionyl-tRNA synthetase (MetRS) misacylates noncognate tRNAs at frequencies as high as 10% distributed among up to 28 tRNA species. Instead of being detrimental for the cell, misincorporation of methionine residues in the proteome reduces the risk of oxidative damage to proteins, which aids the oxidative stress response. tRNA microarrays have been essential for the detection of the full pattern of misacylated tRNAs, but have limited capacity to investigate the misacylation and mistranslation mechanisms in live cells. Here we develop a dual-fluorescence reporter to specifically measure methionine misincorporation at glutamic acid codons GAA and GAG via tRNA(Glu) mismethionylation in human cells. Our method relies on mutating a specific Met codon in the active site of the fluorescent protein mCherry to a Glu codon that renders mCherry nonfluorescent when translation follows the genetic code. Mistranslation utilizing mismethionylated tRNA(Glu) restores fluorescence in proportion to the amount of misacylated tRNA(Glu). This cellular approach works well for both transient transfection and established stable HEK293 lines. It is rapid, straightforward, and well suited for high-throughput activity analysis under a wide range of physiological conditions. As a proof of concept, we apply this method to characterize the effect of human tRNA(Glu) isodecoders on mistranslation and discuss the implications of our findings.
Collapse
Affiliation(s)
- Ana Cristina Gomes
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA
| | - Anna J Kordala
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA
| | - Rita Strack
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA
| | - Xiaoyun Wang
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA
| | - Renaud Geslain
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA
| | - Kamila Delaney
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA
| | - Wesley C Clark
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA
| | - Robert Keenan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA
| | - Tao Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA Institute of Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
94
|
Honda S, Shigematsu M, Morichika K, Telonis AG, Kirino Y. Four-leaf clover qRT-PCR: A convenient method for selective quantification of mature tRNA. RNA Biol 2016; 12:501-8. [PMID: 25833336 DOI: 10.1080/15476286.2015.1031951] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Transfer RNAs (tRNAs) play a central role in translation and also recently appear to have a variety of other functions in biological processes beyond translation. Here we report the development of Four-Leaf clover qRT-PCR (FL-PCR), a convenient PCR-based method, which can specifically quantify individual mature tRNA species. In FL-PCR, T4 RNA ligase 2 specifically ligates a stem-loop adapter to mature tRNAs but not to precursor tRNAs or tRNA fragments. Subsequent TaqMan qRT-PCR amplifies only unmodified regions of the tRNA-adapter ligation products; therefore, FL-PCR quantification is not influenced by tRNA post-transcriptional modifications. FL-PCR has broad applicability for the quantification of various tRNAs in different cell types, and thus provides a much-needed simple method for analyzing tRNA abundance and heterogeneity.
Collapse
Affiliation(s)
- Shozo Honda
- a Computational Medicine Center ; Sidney Kimmel Medical College ; Thomas Jefferson University ; Philadelphia , PA USA
| | | | | | | | | |
Collapse
|
95
|
Affiliation(s)
- Jeremy E Wilusz
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
96
|
Abstract
Adaptation is the process in which organisms improve their fitness by changing their phenotype using genetic or non-genetic mechanisms. The adaptation toolbox consists of varied molecular and genetic means that we posit span an almost continuous "adaptation spectrum." Different adaptations are characterized by the time needed for organisms to attain them and by their duration. We suggest that organisms often adapt by progressing the adaptation spectrum, starting with rapidly attained physiological and epigenetic adaptations and culminating with slower long-lasting genetic ones. A tantalizing possibility is that earlier adaptations facilitate realization of later ones.
Collapse
|
97
|
Krishnan P, Ghosh S, Wang B, Li D, Narasimhan A, Berendt R, Graham K, Mackey JR, Kovalchuk O, Damaraju S. Next generation sequencing profiling identifies miR-574-3p and miR-660-5p as potential novel prognostic markers for breast cancer. BMC Genomics 2015; 16:735. [PMID: 26416693 PMCID: PMC4587870 DOI: 10.1186/s12864-015-1899-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/07/2015] [Indexed: 12/14/2022] Open
Abstract
Background Prognostication of Breast Cancer (BC) relies largely on traditional clinical factors and biomarkers such as hormone or growth factor receptors. Due to their suboptimal specificities, it is challenging to accurately identify the subset of patients who are likely to undergo recurrence and there remains a major need for markers of higher utility to guide therapeutic decisions. MicroRNAs (miRNAs) are small non-coding RNAs that function as post-transcriptional regulators of gene expression and have shown promise as potential prognostic markers in several cancer types including BC. Results In our study, we sequenced miRNAs from 104 BC samples and 11 apparently healthy normal (reduction mammoplasty) breast tissues. We used Case–control (CC) and Case-only (CO) statistical paradigm to identify prognostic markers. Cox-proportional hazards regression model was employed and risk score analysis was performed to identify miRNA signature independent of potential confounders. Representative miRNAs were validated using qRT-PCR. Gene targets for prognostic miRNAs were identified using in silico predictions and in-house BC transcriptome dataset. Gene ontology terms were identified using DAVID bioinformatics v6.7. A total of 1,423 miRNAs were captured. In the CC approach, 126 miRNAs were retained with predetermined criteria for good read counts, from which 80 miRNAs were differentially expressed. Of these, four and two miRNAs were significant for Overall Survival (OS) and Recurrence Free Survival (RFS), respectively. In the CO approach, from 147 miRNAs retained after filtering, 11 and 4 miRNAs were significant for OS and RFS, respectively. In both the approaches, the risk scores were significant after adjusting for potential confounders. The miRNAs associated with OS identified in our cohort were validated using an external dataset from The Cancer Genome Atlas (TCGA) project. Targets for the identified miRNAs were enriched for cell proliferation, invasion and migration. Conclusions The study identified twelve non-redundant miRNAs associated with OS and/or RFS. These signatures include those that were reported by others in BC or other cancers. Importantly we report for the first time two new candidate miRNAs (miR-574-3p and miR-660-5p) as promising prognostic markers. Independent validation of signatures (for OS) using an external dataset from TCGA further strengthened the study findings. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1899-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Preethi Krishnan
- Department of Laboratory Medicine and Pathology, University of Alberta, 11560-University Avenue, Edmonton, AB, T6G 1Z2, Canada.
| | - Sunita Ghosh
- Department of Oncology, University of Alberta, Edmonton, AB, Canada. .,Cross Cancer Institute, Edmonton, AB, Canada.
| | - Bo Wang
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada.
| | - Dongping Li
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada.
| | - Ashok Narasimhan
- Department of Laboratory Medicine and Pathology, University of Alberta, 11560-University Avenue, Edmonton, AB, T6G 1Z2, Canada.
| | - Richard Berendt
- Department of Oncology, University of Alberta, Edmonton, AB, Canada. .,Cross Cancer Institute, Edmonton, AB, Canada.
| | - Kathryn Graham
- Department of Oncology, University of Alberta, Edmonton, AB, Canada.
| | - John R Mackey
- Department of Oncology, University of Alberta, Edmonton, AB, Canada. .,Cross Cancer Institute, Edmonton, AB, Canada.
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada.
| | - Sambasivarao Damaraju
- Department of Laboratory Medicine and Pathology, University of Alberta, 11560-University Avenue, Edmonton, AB, T6G 1Z2, Canada. .,Cross Cancer Institute, Edmonton, AB, Canada.
| |
Collapse
|
98
|
TRM6/61 connects PKCα with translational control through tRNAiMet stabilization: impact on tumorigenesis. Oncogene 2015; 35:1785-96. [DOI: 10.1038/onc.2015.244] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 04/29/2015] [Accepted: 05/16/2015] [Indexed: 12/17/2022]
|
99
|
Bonhoure N, Byrnes A, Moir RD, Hodroj W, Preitner F, Praz V, Marcelin G, Chua SC, Martinez-Lopez N, Singh R, Moullan N, Auwerx J, Willemin G, Shah H, Hartil K, Vaitheesvaran B, Kurland I, Hernandez N, Willis IM. Loss of the RNA polymerase III repressor MAF1 confers obesity resistance. Genes Dev 2015; 29:934-47. [PMID: 25934505 PMCID: PMC4421982 DOI: 10.1101/gad.258350.115] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
MAF1 is a global repressor of RNA polymerase III transcription that regulates the expression of highly abundant noncoding RNAs in response to nutrient availability and cellular stress. Thus, MAF1 function is thought to be important for metabolic economy. Here we show that a whole-body knockout of Maf1 in mice confers resistance to diet-induced obesity and nonalcoholic fatty liver disease by reducing food intake and increasing metabolic inefficiency. Energy expenditure in Maf1(-/-) mice is increased by several mechanisms. Precursor tRNA synthesis was increased in multiple tissues without significant effects on mature tRNA levels, implying increased turnover in a futile tRNA cycle. Elevated futile cycling of hepatic lipids was also observed. Metabolite profiling of the liver and skeletal muscle revealed elevated levels of many amino acids and spermidine, which links the induction of autophagy in Maf1(-/-) mice with their extended life span. The increase in spermidine was accompanied by reduced levels of nicotinamide N-methyltransferase, which promotes polyamine synthesis, enables nicotinamide salvage to regenerate NAD(+), and is associated with obesity resistance. Consistent with this, NAD(+) levels were increased in muscle. The importance of MAF1 for metabolic economy reveals the potential for MAF1 modulators to protect against obesity and its harmful consequences.
Collapse
Affiliation(s)
- Nicolas Bonhoure
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Ashlee Byrnes
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Robyn D Moir
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Wassim Hodroj
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Frédéric Preitner
- Mouse Metabolic Evaluation Facility, Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Viviane Praz
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Genevieve Marcelin
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Streamson C Chua
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA; Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Nuria Martinez-Lopez
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Rajat Singh
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA; Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Norman Moullan
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Gilles Willemin
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland; Mouse Metabolic Evaluation Facility, Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Hardik Shah
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Kirsten Hartil
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Bhavapriya Vaitheesvaran
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Irwin Kurland
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA; Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Nouria Hernandez
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland;
| | - Ian M Willis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA; Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA;
| |
Collapse
|
100
|
Rojas-Benitez D, Thiaville PC, de Crécy-Lagard V, Glavic A. The Levels of a Universally Conserved tRNA Modification Regulate Cell Growth. J Biol Chem 2015; 290:18699-707. [PMID: 26063805 DOI: 10.1074/jbc.m115.665406] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Indexed: 01/05/2023] Open
Abstract
N(6)-Threonylcarbamoyl-adenosine (t(6)A) is a universal modification occurring at position 37 in nearly all tRNAs that decode A-starting codons, including the eukaryotic initiator tRNA (tRNAi (Met)). Yeast lacking central components of the t(6)A synthesis machinery, such as Tcs3p (Kae1p) or Tcs5p (Bud32p), show slow-growth phenotypes. In the present work, we show that loss of the Drosophila tcs3 homolog also leads to a severe reduction in size and demonstrate, for the first time in a non-microbe, that Tcs3 is required for t(6)A synthesis. In Drosophila and in mammals, tRNAi (Met) is a limiting factor for cell and animal growth. We report that the t(6)A-modified form of tRNAi (Met) is the actual limiting factor. We show that changing the proportion of t(6)A-modified tRNAi (Met), by expression of an un-modifiable tRNAi (Met) or changing the levels of Tcs3, regulate target of rapamycin (TOR) kinase activity and influences cell and animal growth in vivo. These findings reveal an unprecedented relationship between the translation machinery and TOR, where translation efficiency, limited by the availability of t(6)A-modified tRNA, determines growth potential in eukaryotic cells.
Collapse
Affiliation(s)
- Diego Rojas-Benitez
- From the Centro de Regulación del Genoma, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago, Chile 7800024 and
| | - Patrick C Thiaville
- the Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida32611-0700
| | - Valérie de Crécy-Lagard
- the Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida32611-0700
| | - Alvaro Glavic
- From the Centro de Regulación del Genoma, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago, Chile 7800024 and
| |
Collapse
|