51
|
Daws SE, Jamieson S, de Nijs L, Jones M, Snijders C, Klengel T, Joseph NF, Krauskopf J, Kleinjans J, Vinkers CH, Boks MPM, Geuze E, Vermetten E, Berretta S, Ressler KJ, Rutten BPF, Rumbaugh G, Miller CA. MicroRNA regulation of persistent stress-enhanced memory. Mol Psychiatry 2020; 25:965-976. [PMID: 31142820 PMCID: PMC6883139 DOI: 10.1038/s41380-019-0432-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/04/2019] [Accepted: 04/11/2019] [Indexed: 12/28/2022]
Abstract
Disruption of persistent, stress-associated memories is relevant for treating posttraumatic stress disorder (PTSD) and related syndromes, which develop in a subset of individuals following a traumatic event. We previously developed a stress-enhanced fear learning (SEFL) paradigm in inbred mice that produces PTSD-like characteristics in a subset of mice, including persistently enhanced memory and heightened cFos in the basolateral amygdala complex (BLC) with retrieval of the remote (30-day-old) stress memory. Here, the contribution of BLC microRNAs (miRNAs) to stress-enhanced memory was investigated because of the molecular complexity they achieve through their ability to regulate multiple targets simultaneously. We performed small-RNA sequencing (smRNA-Seq) and quantitative proteomics on BLC tissue collected from mice 1 month after SEFL and identified persistently changed microRNAs, including mir-135b-5p, and proteins associated with PTSD-like heightened fear expression. Viral-mediated overexpression of mir-135b-5p in the BLC of stress-resilient animals enhanced remote fear memory expression and promoted spontaneous renewal 14 days after extinction. Conversely, inhibition of BLC mir-135b-5p in stress-susceptible animals had the opposite effect, promoting a resilient-like phenotype. mir-135b-5p is highly conserved across mammals and was detected in post mortem human amygdala, as well as human serum samples. The mir-135b passenger strand, mir-135b-3p, was significantly elevated in serum from PTSD military veterans, relative to combat-exposed control subjects. Thus, miR-135b-5p may be an important therapeutic target for dampening persistent, stress-enhanced memory and its passenger strand a potential biomarker for responsivity to a mir-135-based therapeutic.
Collapse
Affiliation(s)
- Stephanie E Daws
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - Sarah Jamieson
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - Laurence de Nijs
- School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
| | - Meghan Jones
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - Clara Snijders
- School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
| | - Torsten Klengel
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Nadine F Joseph
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - Julian Krauskopf
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands
| | - Jos Kleinjans
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands
| | - Christiaan H Vinkers
- Department of Psychiatry, Amsterdam UMC (location VUmc), Amsterdam, The Netherlands
- Department of Anatomy and Neurosciences, Amsterdam UMC (location VUmc), Amsterdam, The Netherlands
| | - Marco P M Boks
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Elbert Geuze
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
- Research Centre for Military Mental Healthcare, Ministry of Defence, Utrecht, The Netherlands
| | - Eric Vermetten
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
- Research Centre for Military Mental Healthcare, Ministry of Defence, Utrecht, The Netherlands
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
| | - Sabina Berretta
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Bart P F Rutten
- School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
| | - Gavin Rumbaugh
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - Courtney A Miller
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA.
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA.
| |
Collapse
|
52
|
Leitão AL, Costa MC, Gabriel AF, Enguita FJ. Interspecies Communication in Holobionts by Non-Coding RNA Exchange. Int J Mol Sci 2020; 21:ijms21072333. [PMID: 32230931 PMCID: PMC7177868 DOI: 10.3390/ijms21072333] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/18/2022] Open
Abstract
Complex organisms are associations of different cells that coexist and collaborate creating a living consortium, the holobiont. The relationships between the holobiont members are essential for proper homeostasis of the organisms, and they are founded on the establishment of complex inter-connections between all the cells. Non-coding RNAs are regulatory molecules that can also act as communication signals between cells, being involved in either homeostasis or dysbiosis of the holobionts. Eukaryotic and prokaryotic cells can transmit signals via non-coding RNAs while using specific extracellular conveyors that travel to the target cell and can be translated into a regulatory response by dedicated molecular machinery. Within holobionts, non-coding RNA regulatory signaling is involved in symbiotic and pathogenic relationships among the cells. This review analyzes current knowledge regarding the role of non-coding RNAs in cell-to-cell communication, with a special focus on the signaling between cells in multi-organism consortia.
Collapse
Affiliation(s)
- Ana Lúcia Leitão
- Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal;
- MEtRICs, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
| | - Marina C. Costa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (M.C.C.); (A.F.G.)
| | - André F. Gabriel
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (M.C.C.); (A.F.G.)
| | - Francisco J. Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (M.C.C.); (A.F.G.)
- Correspondence: ; Tel.: +351-217999480
| |
Collapse
|
53
|
Murphy MR, Kleiman FE. Connections between 3' end processing and DNA damage response: Ten years later. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1571. [PMID: 31657151 PMCID: PMC7295566 DOI: 10.1002/wrna.1571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/10/2019] [Accepted: 09/17/2019] [Indexed: 12/23/2022]
Abstract
Ten years ago we reviewed how the cellular DNA damage response (DDR) is controlled by changes in the functional and structural properties of nuclear proteins, resulting in a timely coordinated control of gene expression that allows DNA repair. Expression of genes that play a role in DDR is regulated not only at transcriptional level during mRNA biosynthesis but also by changing steady-state levels due to turnover of the transcripts. The 3' end processing machinery, which is important in the regulation of mRNA stability, is involved in these gene-specific responses to DNA damage. Here, we review the latest mechanistic connections described between 3' end processing and DDR, with a special emphasis on alternative polyadenylation, microRNA and RNA binding proteins-mediated deadenylation, and discuss the implications of deregulation of these steps in DDR and human disease. This article is categorized under: RNA Processing > 3' End Processing RNA-Based Catalysis > Miscellaneous RNA-Catalyzed Reactions RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Michael Robert Murphy
- Department of Chemistry, Hunter College and Biochemistry Program, The Graduate Center, City University of New York, New York, New York
| | - Frida Esther Kleiman
- Department of Chemistry, Hunter College and Biochemistry Program, The Graduate Center, City University of New York, New York, New York
| |
Collapse
|
54
|
Xu M, Mazur MJ, Tao X, Kormelink R. Cellular RNA Hubs: Friends and Foes of Plant Viruses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:40-54. [PMID: 31415225 DOI: 10.1094/mpmi-06-19-0161-fi] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
RNA granules are dynamic cellular foci that are widely spread in eukaryotic cells and play essential roles in cell growth and development, and immune and stress responses. Different types of granules can be distinguished, each with a specific function and playing a role in, for example, RNA transcription, modification, processing, decay, translation, and arrest. By means of communication and exchange of (shared) components, they form a large regulatory network in cells. Viruses have been reported to interact with one or more of these either cytoplasmic or nuclear granules, and act either proviral, to enable and support viral infection and facilitate viral movement, or antiviral, protecting or clearing hosts from viral infection. This review describes an overview and recent progress on cytoplasmic and nuclear RNA granules and their interplay with virus infection, first in animal systems and as a prelude to the status and current developments on plant viruses, which have been less well studied on this thus far.
Collapse
Affiliation(s)
- Min Xu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Laboratory of Virology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Magdalena J Mazur
- Laboratory of Virology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Xiaorong Tao
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Richard Kormelink
- Laboratory of Virology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| |
Collapse
|
55
|
Hashimoto-Gotoh A, Kitao K, Miyazawa T. Persistent Infection of Simian Foamy Virus Derived from the Japanese Macaque Leads to the High-Level Expression of microRNA that Resembles the miR-1 microRNA Precursor Family. Microbes Environ 2020; 35:ME19130. [PMID: 31969530 PMCID: PMC7104284 DOI: 10.1264/jsme2.me19130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are a group of small non-coding RNAs that suppress the expression of target mRNAs. The seed sequence of miRNA plays a crucial role in recognizing the 3'-untranslated region of the target mRNA. Cells infected with a simian foamy virus (SFV) isolated from an African green monkey (Chlorocebus aethiops) (SFVcae) showed high expression levels of viral miRNAs encoded in the long terminal repeat of SFVcae. In the present study, we investigated the roles and expression of miRNAs derived from an SFV isolated from a Japanese macaque (Macaca fuscata) (SFVmfu) using next-generation sequencing technologies. The results obtained showed that SFVmfu also expressed viral miRNAs; however, the seed sequences of most miRNAs derived from SFVmfu differed from those reported previously from SFVcae. Cells persistently infected with SFVmfu strongly expressed an miRNA with the same seed sequence as the miR-1 microRNA precursor family. Luciferase reporter assays indicated that this miRNA down-regulates the expression of adenylyl cyclase-associated protein 1, which is up-regulated in several solid tumors. The present results suggest that SFVmfu utilizes viral miRNAs to establish long-term co-existence with the Japanese macaque.
Collapse
Affiliation(s)
- Akira Hashimoto-Gotoh
- Laboratory of Virus-Host Coevolution, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606–8507, Japan
| | - Koichi Kitao
- Laboratory of Virus-Host Coevolution, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606–8507, Japan
| | - Takayuki Miyazawa
- Laboratory of Virus-Host Coevolution, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606–8507, Japan
- International Research Unit of Advanced Future Studies, Kyoto University, Kyoto 606–8502, Japan
| |
Collapse
|
56
|
Wilczynska A, Gillen SL, Schmidt T, Meijer HA, Jukes-Jones R, Langlais C, Kopra K, Lu WT, Godfrey JD, Hawley BR, Hodge K, Zanivan S, Cain K, Le Quesne J, Bushell M. eIF4A2 drives repression of translation at initiation by Ccr4-Not through purine-rich motifs in the 5'UTR. Genome Biol 2019; 20:262. [PMID: 31791371 PMCID: PMC6886185 DOI: 10.1186/s13059-019-1857-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/10/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Regulation of the mRNA life cycle is central to gene expression control and determination of cell fate. miRNAs represent a critical mRNA regulatory mechanism, but despite decades of research, their mode of action is still not fully understood. RESULTS Here, we show that eIF4A2 is a major effector of the repressive miRNA pathway functioning via the Ccr4-Not complex. We demonstrate that while DDX6 interacts with Ccr4-Not, its effects in the mechanism are not as pronounced. Through its interaction with the Ccr4-Not complex, eIF4A2 represses mRNAs at translation initiation. We show evidence that native eIF4A2 has similar RNA selectivity to chemically inhibited eIF4A1. eIF4A2 exerts its repressive effect by binding purine-rich motifs which are enriched in the 5'UTR of target mRNAs directly upstream of the AUG start codon. CONCLUSIONS Our data support a model whereby purine motifs towards the 3' end of the 5'UTR are associated with increased ribosome occupancy and possible uORF activation upon eIF4A2 binding.
Collapse
Affiliation(s)
- Ania Wilczynska
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| | - Sarah L Gillen
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- MRC Toxicology Unit, Lancaster Road, Leicester, LE1 9HN, UK
| | - Tobias Schmidt
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Hedda A Meijer
- MRC Toxicology Unit, Lancaster Road, Leicester, LE1 9HN, UK
- Present Address: Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | | | | | - Kari Kopra
- MRC Toxicology Unit, Lancaster Road, Leicester, LE1 9HN, UK
- Present Address: Department of Chemistry, University of Turku, Vatselankatu 2, FI-20500, Turku, Finland
| | - Wei-Ting Lu
- MRC Toxicology Unit, Lancaster Road, Leicester, LE1 9HN, UK
| | - Jack D Godfrey
- MRC Toxicology Unit, Lancaster Road, Leicester, LE1 9HN, UK
| | | | - Kelly Hodge
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Sara Zanivan
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Kelvin Cain
- MRC Toxicology Unit, Lancaster Road, Leicester, LE1 9HN, UK
| | - John Le Quesne
- MRC Toxicology Unit, Lancaster Road, Leicester, LE1 9HN, UK
| | - Martin Bushell
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
57
|
Narula A, Ellis J, Taliaferro JM, Rissland OS. Coding regions affect mRNA stability in human cells. RNA (NEW YORK, N.Y.) 2019; 25:1751-1764. [PMID: 31527111 PMCID: PMC6859850 DOI: 10.1261/rna.073239.119] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 09/09/2019] [Indexed: 05/05/2023]
Abstract
A new paradigm has emerged that coding regions can regulate mRNA stability in model organisms. Here, due to differences in cognate tRNA abundance, synonymous codons are translated at different speeds, and slow codons then stimulate mRNA decay. To ask if this phenomenon also occurs in humans, we isolated RNA stability effects due to coding regions using the human ORFeome collection. We find that many open reading frame (ORF) characteristics, such as length and secondary structure, fail to provide explanations for how coding regions alter mRNA stability, and, instead, that the ORF relies on translation to impact mRNA stability. Consistent with what has been seen in other organisms, codon use is related to the effects of ORFs on transcript stability. Importantly, we found instability-associated codons have longer A-site dwell times, suggesting for the first time in humans a connection between elongation speed and mRNA decay. Thus, we propose that codon usage alters decoding speeds and so affects human mRNA stability.
Collapse
Affiliation(s)
- Ashrut Narula
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - James Ellis
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - J Matthew Taliaferro
- RNA Bioscience Initiative and Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Olivia S Rissland
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
58
|
Im J, Kim HS. Genetic features of Haliotis discus hannai by infection of vibrio and virus. Genes Genomics 2019; 42:117-125. [PMID: 31776802 DOI: 10.1007/s13258-019-00892-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 11/14/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Haliotis discus hannai more commonly referred to as the Pacific Abalone is of significant commercial and economical value in South Korea, with it being the second largest producer in the world. Despite this significance there is a lack of genetic studies with regards to the species. Most existing studies focused mainly on environmental factors. OBJECTIVE To provide a comprehensive review describing the genetic feature of Haliotis discus hannai by infection of vibrio and virus. METHODS This review summarized the immune response in the Haliotis spp. with regards to immunological genes such as Cathepsin B, C-type lectin and Toll-like receptors. Genetic studies with regards to transposable elements and miRNAs are few and far between. A study identified LTR retrotransposon Ty3/gypsy in the species. As to miRNA, a single study identified numerous miRNAs in the Haliotis discus hannai. CONCLUSION This paper sought to provide an overview of genetic perspective with regards to immune response genes, transposable elements and miRNAs.
Collapse
Affiliation(s)
- Jennifer Im
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea.,Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea. .,Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
59
|
Im J, Kim WR, Lee HE, Kim A, Kim DH, Choi YH, Cha HJ, Kim S, Kim HS. Expression analysis of LTR-derived miR-1269a and target gene, KSR2 in Sebastes schlegelii. Genes Genomics 2019; 42:55-65. [PMID: 31721105 DOI: 10.1007/s13258-019-00880-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 10/24/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND Sebastes schlegelii are an important species of fish found in the coastal areas of the Korea with significant commercial importance. Most studies thus far have been primarily focused on environmental factors; behavioural patterns, aquaculture, diseases and limited genetic studies with little to none related to either microRNAs (miRNAs) or transposable elements (TE). OBJECTIVES In order to understand biological roles of TE-derived miR-1269a, we examined expression pattern for miR-1269a and its target gene, KSR2, in various tissues of Sebastes schlegelii. Also, we performed luciferase reporter assay in HINAE cells. METHODS UCSC Genome Browser (https://genome.ucsc.edu/) was used to examine which TE is associated with miR-1269a. For the target genes for miR-1269a, the target genes associated with the miRNA were identified using miRDB (http://www.mirdb.org/) and TargetScan 7.1 (http://www.targetscan.org/vert_71/). A two-step miRNA kit, HB miR Multi Assay Kit™ System. I was used for the analysis of TE-derived miRNA expression patterns. The 3'UTR of KSR2 gene was cloned into the psiCHECK-2 vector. Subsequently co-transfected with miR-1269a mimics to HINAE cells for luciferase reporter assay. RESULTS MiR-1269a was found to be derived from LTR retrotransposon, MLT2B. LTR-derived miR-1269a was highly expressed in the muscle, liver and gonad tissues of Sebastes schlegelii, but KSR2 revealed high expression in the brain. Co-transfection of KSR2 and miR-1269a mimic to HINAE cells showed high activity of miR-1269a in relation to KSR2. CONCLUSION LTR-derived miR-1269a showed enhancer activity with relation to KSR2 in Sebastes schlegelii. The data may be used as a foundation for further investigation regarding correlation of miRNA and target genes in addition to other functional studies of biological significance in Sebastes schlegelii.
Collapse
Affiliation(s)
- Jennifer Im
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea.,Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Woo Ryung Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea.,Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Hee-Eun Lee
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea.,Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Ahran Kim
- Department of Aquatic Life Medicine, College of Fisheries Sciences, Pukyong National University, Busan, 48513, Republic of Korea
| | - Do-Hyung Kim
- Department of Aquatic Life Medicine, College of Fisheries Sciences, Pukyong National University, Busan, 48513, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan, 47340, Republic of Korea
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, College of Medicine, Kosin University, Busan, 49267, Republic of Korea
| | - Suhkmann Kim
- Department of Chemistry, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea. .,Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
60
|
Tiane A, Schepers M, Rombaut B, Hupperts R, Prickaerts J, Hellings N, van den Hove D, Vanmierlo T. From OPC to Oligodendrocyte: An Epigenetic Journey. Cells 2019; 8:E1236. [PMID: 31614602 PMCID: PMC6830107 DOI: 10.3390/cells8101236] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022] Open
Abstract
Oligodendrocytes provide metabolic and functional support to neuronal cells, rendering them key players in the functioning of the central nervous system. Oligodendrocytes need to be newly formed from a pool of oligodendrocyte precursor cells (OPCs). The differentiation of OPCs into mature and myelinating cells is a multistep process, tightly controlled by spatiotemporal activation and repression of specific growth and transcription factors. While oligodendrocyte turnover is rather slow under physiological conditions, a disruption in this balanced differentiation process, for example in case of a differentiation block, could have devastating consequences during ageing and in pathological conditions, such as multiple sclerosis. Over the recent years, increasing evidence has shown that epigenetic mechanisms, such as DNA methylation, histone modifications, and microRNAs, are major contributors to OPC differentiation. In this review, we discuss how these epigenetic mechanisms orchestrate and influence oligodendrocyte maturation. These insights are a crucial starting point for studies that aim to identify the contribution of epigenetics in demyelinating diseases and may thus provide new therapeutic targets to induce myelin repair in the long run.
Collapse
Affiliation(s)
- Assia Tiane
- Department of Immunology, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium.
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
| | - Melissa Schepers
- Department of Immunology, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium.
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
| | - Ben Rombaut
- Department of Immunology, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium.
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
| | - Raymond Hupperts
- Department of Neurology, Zuyderland Medical Center, Sittard-Geleen 6130 MB, The Netherlands.
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
| | - Jos Prickaerts
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
| | - Niels Hellings
- Department of Immunology, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium.
| | - Daniel van den Hove
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg 97080, Germany.
| | - Tim Vanmierlo
- Department of Immunology, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium.
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
| |
Collapse
|
61
|
Meijer HA, Schmidt T, Gillen SL, Langlais C, Jukes-Jones R, de Moor CH, Cain K, Wilczynska A, Bushell M. DEAD-box helicase eIF4A2 inhibits CNOT7 deadenylation activity. Nucleic Acids Res 2019; 47:8224-8238. [PMID: 31180491 PMCID: PMC6736043 DOI: 10.1093/nar/gkz509] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 05/26/2019] [Accepted: 06/05/2019] [Indexed: 01/16/2023] Open
Abstract
The CCR4-NOT complex plays an important role in the translational repression and deadenylation of mRNAs. However, little is known about the specific roles of interacting factors. We demonstrate that the DEAD-box helicases eIF4A2 and DDX6 interact directly with the MA3 and MIF domains of CNOT1 and compete for binding. Furthermore, we now show that incorporation of eIF4A2 into the CCR4-NOT complex inhibits CNOT7 deadenylation activity in contrast to DDX6 which enhances CNOT7 activity. Polyadenylation tests (PAT) on endogenous mRNAs determined that eIF4A2 bound mRNAs have longer poly(A) tails than DDX6 bound mRNAs. Immunoprecipitation experiments show that eIF4A2 does not inhibit CNOT7 association with the CCR4-NOT complex but instead inhibits CNOT7 activity. We identified a CCR4-NOT interacting factor, TAB182, that modulates helicase recruitment into the CCR4-NOT complex, potentially affecting the outcome for the targeted mRNA. Together, these data show that the fate of an mRNA is dependent on the specific recruitment of either eIF4A2 or DDX6 to the CCR4-NOT complex which results in different pathways for translational repression and mRNA deadenylation.
Collapse
Affiliation(s)
- Hedda A Meijer
- Medical Research Council (MRC), Toxicology Unit, University of Cambridge, Hodgkin Building, Leicester LE1 9HN, UK
| | - Tobias Schmidt
- Medical Research Council (MRC), Toxicology Unit, University of Cambridge, Hodgkin Building, Leicester LE1 9HN, UK
| | - Sarah L Gillen
- Medical Research Council (MRC), Toxicology Unit, University of Cambridge, Hodgkin Building, Leicester LE1 9HN, UK
| | - Claudia Langlais
- Medical Research Council (MRC), Toxicology Unit, University of Cambridge, Hodgkin Building, Leicester LE1 9HN, UK
| | - Rebekah Jukes-Jones
- Medical Research Council (MRC), Toxicology Unit, University of Cambridge, Hodgkin Building, Leicester LE1 9HN, UK
| | - Cornelia H de Moor
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Kelvin Cain
- Medical Research Council (MRC), Toxicology Unit, University of Cambridge, Hodgkin Building, Leicester LE1 9HN, UK
| | - Ania Wilczynska
- Medical Research Council (MRC), Toxicology Unit, University of Cambridge, Hodgkin Building, Leicester LE1 9HN, UK
| | - Martin Bushell
- Medical Research Council (MRC), Toxicology Unit, University of Cambridge, Hodgkin Building, Leicester LE1 9HN, UK
| |
Collapse
|
62
|
Naser Al Deen N, Nassar F, Nasr R, Talhouk R. Cross-Roads to Drug Resistance and Metastasis in Breast Cancer: miRNAs Regulatory Function and Biomarker Capability. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1152:335-364. [DOI: 10.1007/978-3-030-20301-6_18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
63
|
Kim M, Zhang X. The Profiling and Role of miRNAs in Diabetes Mellitus. JOURNAL OF DIABETES AND CLINICAL RESEARCH 2019; 1:5-23. [PMID: 32432227 PMCID: PMC7236805 DOI: 10.33696/diabetes.1.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus (DM), a complex metabolic disease, has become a global threat to human health worldwide. Over the past decades, an enormous amount of effort has been devoted to understand how microRNAs (miRNAs), a class of small non-coding RNA regulators of gene expression at the post-transcriptional level, are implicated in DM pathology. Growing evidence suggests that the expression signature of a specific set of miRNAs has been altered in the progression of DM. In the present review, we summarize the recent investigations on the miRNA profiles as novel DM biomarkers in clinical studies and in animal models, and highlight recent discoveries on the complex regulatory effect and functional role of miRNAs in DM.
Collapse
Affiliation(s)
- Michael Kim
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY, USA
| | - Xiaokan Zhang
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
64
|
Stratton MS, Farina FM, Elia L. Epigenetics and vascular diseases. J Mol Cell Cardiol 2019; 133:148-163. [PMID: 31211956 DOI: 10.1016/j.yjmcc.2019.06.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/17/2019] [Accepted: 06/14/2019] [Indexed: 12/28/2022]
Abstract
Cardiovascular disease remains the number one cause of death and disability worldwide despite significant improvements in diagnosis, prevention, and early intervention efforts. There is an urgent need for improved understanding of cardiovascular processes responsible for disease development in order to develop more effective therapeutic strategies. Recent knowledge gleaned from the study of epigenetic mechanisms in the vasculature has uncovered new potential targets for intervention. Herein, we provide an overview of epigenetic mechanism, and review recent findings related to epigenetics in vascular diseases, highlighting classical epigenetic mechanism such as DNA methylation and histone modification as well as the newly discovered non-coding RNA mechanisms.
Collapse
Affiliation(s)
- Matthew S Stratton
- Department of Physiology and Cell Biology, Ohio State University, Columbus, OH 43210, United States of America.
| | - Floriana Maria Farina
- Humanitas Clinical and Research Center, Via Manzoni 113, 20089 Rozzano, MI, Italy; Department of Medical Biotechnology and Translational Medicine, University of Milan, Italy
| | - Leonardo Elia
- Humanitas Clinical and Research Center, Via Manzoni 113, 20089 Rozzano, MI, Italy; Department of Molecular and Translational Medicine, University of Brescia, Italy.
| |
Collapse
|
65
|
Skuratovskaia D, Vulf M, Komar A, Kirienkova E, Litvinova L. Promising Directions in Atherosclerosis Treatment Based on Epigenetic Regulation Using MicroRNAs and Long Noncoding RNAs. Biomolecules 2019; 9:E226. [PMID: 31212708 PMCID: PMC6627269 DOI: 10.3390/biom9060226] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/03/2019] [Accepted: 06/07/2019] [Indexed: 12/22/2022] Open
Abstract
Atherosclerosis is one of the leading causes of mortality from cardiovascular disease (CVD) and is a chronic inflammatory disease of the middle and large arteries caused by a disruption of lipid metabolism. Noncoding RNA (ncRNA), including microRNA (miRNA), small interfering RNA (siRNA) and long noncoding RNA (lncRNA), was investigated for the treatment of atherosclerosis. Regulation of the expression of noncoding RNA targets the constituent element of the pathogenesis of atherosclerosis. Currently, miRNA therapy commonly employs miRNA antagonists and mimic compounds. In this review, attention is focused on approaches to correcting molecular disorders based on the genetic regulation of the transcription of key genes responsible for the development of atherosclerosis. Promising technologies were considered for the treatment of atherosclerosis, and examples are given for technologies that have been shown to be effective in clinical trials.
Collapse
Affiliation(s)
- Daria Skuratovskaia
- Laboratory of Immunology and Cell Biotechnology, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia.
| | - Maria Vulf
- Laboratory of Immunology and Cell Biotechnology, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia.
| | - Aleksandra Komar
- Laboratory of Immunology and Cell Biotechnology, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia.
| | - Elena Kirienkova
- Laboratory of Immunology and Cell Biotechnology, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia.
| | - Larisa Litvinova
- Laboratory of Immunology and Cell Biotechnology, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia.
| |
Collapse
|
66
|
Getaneh Z, Asrie F, Melku M. MicroRNA profiles in B-cell non-Hodgkin lymphoma. EJIFCC 2019; 30:195-214. [PMID: 31263393 PMCID: PMC6599190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
B-cell non-Hodgkin's lymphomas are tumors of B-cells that arise following clonal expansion and consequent invasion of immune organs by B-cells blocked at a certain step of the differentiation process. Genetic abnormalities with altered gene expression are common in the transformed state of B-cells at any stage of B-cell development. These stages are regulated by a combination of transcription factors, epigenetic modifications, microRNAs, and extrinsic signals. MicroRNAs are a class of short non-coding single-stranded RNAs implicated in the regulation of mRNA function and translation. Each microRNA can regulate multiple transcripts; and a transcript is under potential control by multiple microRNAs. Their dysregulation can contribute to the pathogenesis of B-cell non-Hodgkin lymphomas, and they could be used as a potential target for diagnosis, evaluation of prognosis and therapy monitoring. The mechanisms of microRNA dysregulation range from dysregulation of the DNA sequences encoding the microRNAs to transcriptional regulation of microRNA loci. In this review, we summarized the microRNA profiles of the most common B-cell Non-Hodgkin Lymphomas for the pathogenesis, diagnosis and their potential therapeutic implications.
Collapse
Affiliation(s)
- Zegeye Getaneh
- Department of Hematology and Immunohematology, School of Biomedical and Laboratory Science, College of Medicine and Health Sciences, University of Gondar, Ethiopia
| | | | | |
Collapse
|
67
|
Jiao Y, Wang J, Deng R, Yu X, Wang X. AcMNPV-miR-3 is a miRNA encoded by Autographa californica nucleopolyhedrovirus and regulates the viral infection by targeting ac101. Virus Res 2019; 267:49-58. [PMID: 31077766 DOI: 10.1016/j.virusres.2019.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/04/2019] [Accepted: 05/07/2019] [Indexed: 01/04/2023]
Abstract
MicroRNAs (miRNAs), which are small noncoding RNAs found in plants, animals, and many viruses, regulate various biological processes. Our group has previously reported the first miRNA encoded by Autographa californica multiple Nucleopolyhedrovirus (AcMNPV), AcMNPV-miR-1, which regulates the expression of three viral genes. This study characterizes another miRNA encoded by AcMNPV, AcMNPV-miR-3. This miRNA is located on the opposite strand of the viral gene ac101 coding sequence in the AcMNPV genome, and it can be detected at 6 h post-infection and accumulated to a peak around 12 h post-infection in AcMNPV infected Sf9 cells. Five viral genes (ac101, ac23, ac25, ac86, and ac98) were verified to be regulated by AcMNPV-miR-3. Ac101 was markedly down-regulated by AcMNPV-miR-3 that may be via a siRNA-like cleavage mode. Administrating excessive AcMNPV-miR-3 resulted in decreased production of infectious budded virions (BV) and accelerated the formation of occlusion-derived virions (ODV). These results suggest that AcMNPV-miR-3 may play a regulatory role in BV and ODV production.
Collapse
Affiliation(s)
- Yingzhen Jiao
- School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jinwen Wang
- School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Riqiang Deng
- School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xinghua Yu
- School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xunzhang Wang
- School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
68
|
Circulating microRNAs and Their Role in Multiple Myeloma. Noncoding RNA 2019; 5:ncrna5020037. [PMID: 31052608 PMCID: PMC6631121 DOI: 10.3390/ncrna5020037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 12/14/2022] Open
Abstract
Multiple myeloma (MM) is a plasma cell dyscrasia characterized by bone marrow infiltration of clonal plasma cells. The recent literature has clearly demonstrated clonal heterogeneity in terms of both the genomic and transcriptomic signature of the tumor. Of note, novel studies have also highlighted the importance of the functional cross-talk between the tumor clone and the surrounding bone marrow milieu, as a relevant player of MM pathogenesis. These findings have certainly enhanced our understanding of the underlying mechanisms supporting MM pathogenesis and disease progression. Within the specific field of small non-coding RNA-research, recent studies have provided evidence for considering microRNAs as a crucial regulator of MM biology and, in this context, circulating microRNAs have been shown to potentially contribute to prognostic stratification of MM patients. The present review will summarize the most recent studies within the specific topic of microRNAs and circulating microRNAs in MM.
Collapse
|
69
|
Zapalska-Sozoniuk M, Chrobak L, Kowalczyk K, Kankofer M. Is it useful to use several "omics" for obtaining valuable results? Mol Biol Rep 2019; 46:3597-3606. [PMID: 30989558 DOI: 10.1007/s11033-019-04793-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 04/02/2019] [Indexed: 01/23/2023]
Abstract
The integration of cell communication and the transfer of signals from stimuli via transcription to translation and further to activation of new protein is crucial for appropriate metabolism and function of living organisms. The overall elucidation and the examination of these complex processes require multistep laboratory approaches in order to obtain results which will not only detect particular stage but also indicate the mechanisms lying upon this process. Such results will be reliable because they will cover multidirectional methods and approaches. The analysis of currently available results already provided with the conclusion that often single omics approach does not correspond with other expected information and may bring misinterpretations. That is why the integration of several "omics" is useful for searching entire explanations and answers as well as appropriate interpretation of obtained complex results. The hypothesis was stated that "from transcriptomics can not be concluded to proteomics". This review focuses on the reasons for the integration of transcriptomic, proteomic and other-omics analysis. Moreover it also describes the examples of clinical meanings and mentions some methods used in these approaches.
Collapse
Affiliation(s)
- Magdalena Zapalska-Sozoniuk
- Departament of Biochemistry, Faculty of Veterinary Medicine, University of Life Science in Lublin, Akademicka Street 12, 20-033, Lublin, Poland
| | - Lukasz Chrobak
- Departament of Biochemistry, Faculty of Veterinary Medicine, University of Life Science in Lublin, Akademicka Street 12, 20-033, Lublin, Poland
| | - Krzysztof Kowalczyk
- Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences in Lublin, Akademicka Street 15, 20-950, Lublin, Poland
| | - Marta Kankofer
- Departament of Biochemistry, Faculty of Veterinary Medicine, University of Life Science in Lublin, Akademicka Street 12, 20-033, Lublin, Poland.
| |
Collapse
|
70
|
PABP Cooperates with the CCR4-NOT Complex to Promote mRNA Deadenylation and Block Precocious Decay. Mol Cell 2019; 70:1081-1088.e5. [PMID: 29932901 DOI: 10.1016/j.molcel.2018.05.009] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/16/2018] [Accepted: 05/04/2018] [Indexed: 12/18/2022]
Abstract
Multiple deadenylases are known in vertebrates, the PAN2-PAN3 (PAN2/3) and CCR4-NOT (CNOT) complexes, and PARN, yet their differential functions remain ambiguous. Moreover, the role of poly(A) binding protein (PABP) is obscure, limiting our understanding of the deadenylation mechanism. Here, we show that CNOT serves as a predominant nonspecific deadenylase for cytoplasmic poly(A)+ RNAs, and PABP promotes deadenylation while preventing premature uridylation and decay. PAN2/3 selectively trims long tails (>∼150 nt) with minimal effect on transcriptome, whereas PARN does not affect mRNA deadenylation. CAF1 and CCR4, catalytic subunits of CNOT, display distinct activities: CAF1 trims naked poly(A) segments and is blocked by PABPC, whereas CCR4 is activated by PABPC to shorten PABPC-protected sequences. Concerted actions of CAF1 and CCR4 delineate the ∼27 nt periodic PABPC footprints along shortening tail. Our study unveils distinct functions of deadenylases and PABPC, re-drawing the view on mRNA deadenylation and regulation.
Collapse
|
71
|
Mohamed ZI, Tee SF, Chow TJ, Loh SY, Yong HS, Bakar AKA, Tang PY. Functional characterization of two variants in the 3'-untranslated region (UTR) of transcription factor 4 gene and their association with schizophrenia in sib-pairs from multiplex families. Asian J Psychiatr 2019; 40:76-81. [PMID: 30771755 DOI: 10.1016/j.ajp.2019.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 01/30/2019] [Accepted: 02/07/2019] [Indexed: 12/12/2022]
Abstract
Transcription factor 4 (TCF4) gene plays an important role in nervous system development and it always associated with the risk of schizophrenia. Since miRNAs regulate targetgenes by binding to 3'UTRs of target mRNAs, the functional variants located in 3'UTR of TCF4 are highly suggested to affect the gene expressions in schizophrenia. To test the hypothesis regarding the effects of the variants located in 3'UTR of TCF4, we conducted an in silico analysis to identify the functional variants and their predicted functions. In this study, we sequenced the 3'UTR of TCF4 in 13 multiplex schizophrenia families and 14 control families. We found two functional variants carried by three unrelated patients. We determined that the C allele of rs1272363 and the TC insert of rs373174214 might suppress post- transcriptional expression. Secondly, we cloned the region that flanked these two variants into a dual luciferase reporter system and compared the luciferase activities between the pmirGLO-TCF4 (control), pmirGLO-TCF4-rs373174214 and pmirGLO-TCF4-rs1273263. Both pmirGLO-TCF4-rs373174214 and pmirGLO-TCF4-rs1273263 caused lower reporter gene activities, as compared to the control. However, only the C allele of rs1272363 reduced the luciferase activity significantly (p = 0.0231). Our results suggested that rs1273263 is a potential regulator of TCF4 expression, and might be associated with schizophrenia.
Collapse
Affiliation(s)
- Zahra Isnaini Mohamed
- Department of Mechatronics and Biomedical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Cheras 43000 Kajang, Malaysia
| | - Shiau Foon Tee
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Cheras 43000 Kajang, Malaysia
| | - Tze Jen Chow
- Department of Mechatronics and Biomedical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Cheras 43000 Kajang, Malaysia
| | - Siew Yim Loh
- Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hoi Sen Yong
- Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Pek Yee Tang
- Department of Mechatronics and Biomedical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Cheras 43000 Kajang, Malaysia.
| |
Collapse
|
72
|
Mayya VK, Duchaine TF. Ciphers and Executioners: How 3'-Untranslated Regions Determine the Fate of Messenger RNAs. Front Genet 2019; 10:6. [PMID: 30740123 PMCID: PMC6357968 DOI: 10.3389/fgene.2019.00006] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/07/2019] [Indexed: 12/29/2022] Open
Abstract
The sequences and structures of 3'-untranslated regions (3'UTRs) of messenger RNAs govern their stability, localization, and expression. 3'UTR regulatory elements are recognized by a wide variety of trans-acting factors that include microRNAs (miRNAs), their associated machinery, and RNA-binding proteins (RBPs). In turn, these factors instigate common mechanistic strategies to execute the regulatory programs encoded by 3'UTRs. Here, we review classes of factors that recognize 3'UTR regulatory elements and the effector machineries they guide toward mRNAs to dictate their expression and fate. We outline illustrative examples of competitive, cooperative, and coordinated interplay such as mRNA localization and localized translation. We further review the recent advances in the study of mRNP granules and phase transition, and their possible significance for the functions of 3'UTRs. Finally, we highlight some of the most recent strategies aimed at deciphering the complexity of the regulatory codes of 3'UTRs, and identify some of the important remaining challenges.
Collapse
Affiliation(s)
| | - Thomas F. Duchaine
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, QC, Canada
| |
Collapse
|
73
|
Jiang W, Zhang L, Guo Q, Wang H, Ma M, Sun J, Chen C. Identification of the Pathogenic Biomarkers for Hepatocellular Carcinoma Based on RNA-seq Analyses. Pathol Oncol Res 2019; 25:1207-1213. [PMID: 30680535 DOI: 10.1007/s12253-019-00596-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 01/15/2019] [Indexed: 01/29/2023]
Abstract
The purpose of this study was to explore potential biomarkers in the diagnosis of hepatocellular carcinoma (HCC) based on RNA-seq. The microarray data GSE98269 were downloaded from the GEO database, including the miRNA, mRNA and lncRNA expression profiles of 3 HCC tissues and 3 normal liver tissues from 3 HCC patients. The limma package was used to identify the differentially expressed miRNAs (DEMs) and the differentially expressed lncRNAs in HCC tissues compared with normal liver tissues. Database of DAVID, KEGG PATHWAY and Reactome were used to perform the functional and pathway enrichment. Putative targets for DEMs, and the miRNA-gene pairs were predicted via the miRWalk V2.0 database. The protein-protein pairs of DEGs were screened via String software. The expression features of the differentially expressed lncRNAs were analyzed. The regulated network of DEGs and DEMs were constructed, and related genes and miRNAs were detected in the HCC tissues and normal liver samples with Q-PCR. A total of 678 DEGs, 32 DEMs and 411 differential expressed lncRNAs were identified. The DEGs were enriched in 196 GO terms and 79 pathways. 38 negative regulation miRNA-gene pairs and 1205 protein-protein interactions were screened out, and the regulated network was constructed based on them. KNG1, CDK1, EHHADH, CYP3A4, hsa-miR-199a-5p and hsa-miR-455-3p might be biomarkers in the occurrence of HCC.
Collapse
Affiliation(s)
- Wentao Jiang
- Department of Liver Transplantation, Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin Key Laboratory for Organ Transplantation, Tianjin First Center Hospital, 24 Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China.
| | - Li Zhang
- Department of Liver Transplantation, Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin Key Laboratory for Organ Transplantation, Tianjin First Center Hospital, 24 Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China
| | - Qingjun Guo
- Department of Liver Transplantation, Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin Key Laboratory for Organ Transplantation, Tianjin First Center Hospital, 24 Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China
| | - Honghai Wang
- Department of Liver Transplantation, Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin Key Laboratory for Organ Transplantation, Tianjin First Center Hospital, 24 Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China
| | - Ming Ma
- Department of Liver Transplantation, Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin Key Laboratory for Organ Transplantation, Tianjin First Center Hospital, 24 Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China
| | - Jisan Sun
- Department of Liver Transplantation, Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin Key Laboratory for Organ Transplantation, Tianjin First Center Hospital, 24 Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China
| | - Chiyi Chen
- Department of Liver Transplantation, Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin Key Laboratory for Organ Transplantation, Tianjin First Center Hospital, 24 Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China
| |
Collapse
|
74
|
Sadik N, Cruz L, Gurtner A, Rodosthenous RS, Dusoswa SA, Ziegler O, Van Solinge TS, Wei Z, Salvador-Garicano AM, Gyorgy B, Broekman M, Balaj L. Extracellular RNAs: A New Awareness of Old Perspectives. Methods Mol Biol 2019; 1740:1-15. [PMID: 29388131 DOI: 10.1007/978-1-4939-7652-2_1] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Extracellular RNA (exRNA) has recently expanded as a highly important area of study in biomarker discovery and cancer therapeutics. exRNA consists of diverse RNA subpopulations that are normally protected from degradation by incorporation into membranous vesicles or by lipid/protein association. They are found circulating in biofluids, and have proven highly promising for minimally invasive diagnostic and prognostic purposes, particularly in oncology. Recent work has made progress in our understanding of exRNAs-from their biogenesis, compartmentalization, and vesicle packaging to their various applications as biomarkers and therapeutics, as well as the new challenges that arise in isolation and purification for accurate and reproducible analysis. Here we review the most recent advancements in exRNA research.
Collapse
Affiliation(s)
- Noah Sadik
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lilian Cruz
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Alessandra Gurtner
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Rodosthenis S Rodosthenous
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sophie A Dusoswa
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands.,Amsterdam Infection & Immunity Institute, VU University Medical Center, Amsterdam, The Netherlands.,Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Olivia Ziegler
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Thomas Sebastiaan Van Solinge
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA.,Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Zhiyun Wei
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Bence Gyorgy
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Marike Broekman
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Department of Neurosurgery, Brain Center Rudolf Magnus University Medical Center Utrecht, Utrecht, The Netherlands
| | - Leonora Balaj
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
75
|
Saramago M, da Costa PJ, Viegas SC, Arraiano CM. The Implication of mRNA Degradation Disorders on Human DISease: Focus on DIS3 and DIS3-Like Enzymes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1157:85-98. [PMID: 31342438 DOI: 10.1007/978-3-030-19966-1_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
RNA degradation is considered a critical posttranscriptional regulatory checkpoint, maintaining the correct functioning of organisms. When a specific RNA transcript is no longer required in the cell, it is signaled for degradation through a number of highly regulated steps. Ribonucleases (or simply RNases) are key enzymes involved in the control of RNA stability. These enzymes can perform the RNA degradation alone or cooperate with other proteins in RNA degradation complexes. Important findings over the last years have shed light into eukaryotic RNA degradation by members of the RNase II/RNB family of enzymes. DIS3 enzyme belongs to this family and represents one of the catalytic subunits of the multiprotein complex exosome. This RNase has a diverse range of functions, mainly within nuclear RNA metabolism. Humans encode two other DIS3-like enzymes: DIS3L (DIS3L1) and DIS3L2. DIS3L1 also acts in association with the exosome but is strictly cytoplasmic. In contrast, DIS3L2 acts independently of the exosome and shows a distinctive preference for uridylated RNAs. These enzymes have been shown to be involved in important cellular processes, such as mitotic control, and associated with human disorders like cancer. This review shows how the impairment of function of each of these enzymes is implicated in human disease.
Collapse
Affiliation(s)
- Margarida Saramago
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Paulo J da Costa
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Lisboa, Portugal.,Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisbon, Lisboa, Portugal
| | - Sandra C Viegas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| | - Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
76
|
Abstract
As a newly discovered type of RNA, circular RNAs (circRNAs) are widespread throughout the eukaryotic genome. The expression of circRNAs is regulated by both cis-elements and trans-factors, and the expression pattern of circRNAs is cell type- and disease-specific. Similar to other types of non-coding RNAs, functions of circRNAs are also versatile. CircRNAs have been reported previously to function as microRNA (miRNA) sponges, protein sponges, coding RNAs or scaffolds for protein complexes. Recently, several circRNAs have been reported to play important roles in human malignancies, including glioma. Here, we reviewed several reports related to circRNAs and glioma, as well as the potential diagnostic and therapeutic applications of circRNAs in brain cancer. In general, some circRNAs, such as circSMARCA5 and circCFH, are found to be expressed in a glioma-specific pattern, these circRNAs may be used as tumor biomarkers. In addition, some circRNAs have been found to play oncogenic roles in glioma (e.g., circNFIX and circNT5E), whereas others have been reported to function as tumor suppressors (e.g., circFBXW7 and circSHPRH). Furthermore, circRNA is a good tool for protein expression because of its higher stability compared to linear RNAs. Thus, circRNAs may also be an ideal choice for gene/protein delivery in future brain cancer therapies. There are some challenges in circRNA research in glioma and other diseases. Research related to circRNAs in glioma is comparatively new and many mysteries remain to be solved.
Collapse
Affiliation(s)
- Jinglei Liu
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou 510080, China
| | - Kun Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou 510080, China
| | - Nunu Huang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou 510080, China
| | - Nu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou 510080, China
| |
Collapse
|
77
|
Gong Y, Ju C, Zhang X. Shrimp miR-1000 Functions in Antiviral Immunity by Simultaneously Triggering the Degradation of Two Viral mRNAs. Front Immunol 2018; 9:2999. [PMID: 30619352 PMCID: PMC6305465 DOI: 10.3389/fimmu.2018.02999] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 12/04/2018] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) function as crucial suppressors of gene expression via translational repression or direct mRNA degradation. However, the mechanism of multi-gene regulation by a host miRNA in antiviral immunity has not been extensively explored. In this study, the regulation of two white spot syndrome virus (WSSV) genes by its host (Marsupenaeus japonicus shrimp) miRNA (shrimp miR-1000) was characterized. The miRNA target gene prediction showed that only two virus genes (wsv191 and wsv407) might be the targets of miR-1000. The results of insect cell transfection assays revealed that shrimp miR-1000 could target multiple virus genes (wsv191 and wsv407). The mRNA degradation analysis and RNA FISH (fluorescence in situ hybridization) analysis indicated that miR-1000 triggered the mRNA degradation of target genes through 5′-3′ exonucleolytic digestion in vivo and thereby inhibited the virus infection in shrimp. The miRNA-mediated 5′-3′ exonucleolytic digestion of target mRNAs stopped near the 3′UTR (3′untranslated region) sequence complementary to the seed sequence of miR-1000. Therefore, our study provided novel insights into how a host miRNA targeted multiple viral genes and prevented host from virus infection.
Collapse
Affiliation(s)
- Yi Gong
- Laboratory for Marine Biology and Biotechnology of Qingdao National Laboratory for Marine Science and Technology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Chenyu Ju
- Laboratory for Marine Biology and Biotechnology of Qingdao National Laboratory for Marine Science and Technology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xiaobo Zhang
- Laboratory for Marine Biology and Biotechnology of Qingdao National Laboratory for Marine Science and Technology, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
78
|
Alizad-Rahvar AR, Sadeghi M. Ambiguity in logic-based models of gene regulatory networks: An integrative multi-perturbation analysis. PLoS One 2018; 13:e0206976. [PMID: 30458000 PMCID: PMC6245684 DOI: 10.1371/journal.pone.0206976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/23/2018] [Indexed: 01/13/2023] Open
Abstract
Most studies of gene regulatory network (GRN) inference have focused extensively on identifying the interaction map of the GRNs. However, in order to predict the cellular behavior, modeling the GRN in terms of logic circuits, i.e., Boolean networks, is necessary. The perturbation techniques, e.g., knock-down and over-expression, should be utilized for identifying the underlying logic behind the interactions. However, we will show that by using only transcriptomic data obtained by single-perturbation experiments, we cannot observe all regulatory interactions, and this invisibility causes ambiguity in our model. Consequently, we need to employ the data of multiple omics layers (genome, transcriptome, and proteome) as well as multiple perturbation experiments to reduce or eliminate ambiguity in our modeling. In this paper, we introduce a multi-step perturbation experiment to deal with ambiguity. Moreover, we perform a thorough analysis to investigate which types of perturbations and omics layers play the most important role in the unambiguous modeling of the GRNs and how much ambiguity will be eliminated by considering more perturbations and more omics layers. Our analysis shows that performing both knock-down and over-expression is necessary in order to achieve the least ambiguous model. Moreover, the more steps of the perturbation are taken, the more ambiguity is eliminated. In addition, we can even achieve an unambiguous model of the GRN by using multi-step perturbation and integrating transcriptomic, protein-protein interaction, and cis-element data. Finally, we demonstrate the effect of utilizing different types of perturbation experiment and integrating multi-omics data on identifying the logic behind the regulatory interactions in a synthetic GRN. In conclusion, relying on the results of only knock-down experiments and not including as many omics layers as possible in the GRN inference, makes the results ambiguous, unreliable, and less accurate.
Collapse
Affiliation(s)
- Amir Reza Alizad-Rahvar
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- * E-mail: (ARA); (MS)
| | - Mehdi Sadeghi
- National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
- * E-mail: (ARA); (MS)
| |
Collapse
|
79
|
Wu E, Vashisht AA, Chapat C, Flamand MN, Cohen E, Sarov M, Tabach Y, Sonenberg N, Wohlschlegel J, Duchaine TF. A continuum of mRNP complexes in embryonic microRNA-mediated silencing. Nucleic Acids Res 2018; 45:2081-2098. [PMID: 28204614 PMCID: PMC5389717 DOI: 10.1093/nar/gkw872] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/21/2016] [Accepted: 09/28/2016] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) impinge on the translation and stability of their target mRNAs, and play key roles in development, homeostasis and disease. The gene regulation mechanisms they instigate are largely mediated through the CCR4–NOT deadenylase complex, but the molecular events that occur on target mRNAs are poorly resolved. We observed a broad convergence of interactions of germ granule and P body mRNP components on AIN-1/GW182 and NTL-1/CNOT1 in Caenorhabditis elegans embryos. We show that the miRISC progressively matures on the target mRNA from a scanning form into an effector mRNP particle by sequentially recruiting the CCR4–NOT complex, decapping and decay, or germ granule proteins. Finally, we implicate intrinsically disordered proteins, key components in mRNP architectures, in the embryonic function of lsy-6 miRNA. Our findings define dynamic steps of effector mRNP assembly in miRNA-mediated silencing, and identify a functional continuum between germ granules and P bodies in the C. elegans embryo.
Collapse
Affiliation(s)
| | - Ajay A Vashisht
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Clément Chapat
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, H3G 1Y6 Canada
| | - Mathieu N Flamand
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, H3G 1Y6 Canada
| | - Emiliano Cohen
- Department of Developmental Biology and Cancer Research, The Institute For Medical Research-Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem 91120, Israel
| | - Mihail Sarov
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | - Yuval Tabach
- Department of Developmental Biology and Cancer Research, The Institute For Medical Research-Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem 91120, Israel
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, H3G 1Y6 Canada
| | - James Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | |
Collapse
|
80
|
Noruzi S, Azizian M, Mohammadi R, Hosseini SA, Rashidi B, Mohamadi Y, Nesaei A, Seiri P, Sahebkar A, Salarinia R, Aghdam AM, Mirzaei H. Micro-RNAs as critical regulators of matrix metalloproteinases in cancer. J Cell Biochem 2018; 119:8694-8712. [PMID: 30132957 DOI: 10.1002/jcb.27182] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 05/24/2018] [Indexed: 12/25/2022]
Abstract
Metastasis is known to be one of the important factors associated with cancer-related deaths worldwide. Several cellular and molecular targets are involved in the metastasis process. Among these targets, matrix metalloproteinases (MMPs) play central roles in promoting cancer metastasis. MMPs could contribute toward tumor growth, angiogenesis, migration, and invasion via degradation of the extracellular matrix and activation of pre-pro-growth factors. Therefore, identification of various cellular and molecular pathways that affect MMPs could contribute toward a better understanding of the metastatic pathways involved in various tumors. Micro-RNAs are important targets that could affect MMPs. Multiple lines of evidence have indicated that deregulation of various micro-RNAs, including miR-9, Let-7, miR-10b, and miR-15b, affects metastasis of tumor cells via targeting MMPs.
Collapse
Affiliation(s)
- Somaye Noruzi
- Department of Medical Biotechnology and Molecular Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnourd, Iran
| | - Mitra Azizian
- Department of Clinical Biochemistry, Ftabaculty of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Rezvan Mohammadi
- Department of Medical Biotechnology and Molecular Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnourd, Iran
| | - Seyede Atefe Hosseini
- Department of Medical Biotechnology and Molecular Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnourd, Iran
| | - Bahman Rashidi
- Department of Anatomical Sciences, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yousef Mohamadi
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Anatomy, Faculty of medicine, Qom University of Medical Sciences, Qom, Iran
| | - Abolfazl Nesaei
- Department of Basic Sciences, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Parvaneh Seiri
- Department of Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Salarinia
- Department of Medical Biotechnology and Molecular Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnourd, Iran
| | - Arad Mobasher Aghdam
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Department of Biomaterials, Tissue Engineering and Nanotechnology, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
81
|
Olina AV, Kulbachinskiy AV, Aravin AA, Esyunina DM. Argonaute Proteins and Mechanisms of RNA Interference in Eukaryotes and Prokaryotes. BIOCHEMISTRY (MOSCOW) 2018; 83:483-497. [PMID: 29738683 DOI: 10.1134/s0006297918050024] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Noncoding RNAs play essential roles in genetic regulation in all organisms. In eukaryotic cells, many small noncoding RNAs act in complex with Argonaute proteins and regulate gene expression by recognizing complementary RNA targets. The complexes of Argonaute proteins with small RNAs also play a key role in silencing of mobile genetic elements and, in some cases, viruses. These processes are collectively called RNA interference. RNA interference is a powerful tool for specific gene silencing in both basic research and therapeutic applications. Argonaute proteins are also found in prokaryotic organisms. Recent studies have shown that prokaryotic Argonautes can also cleave their target nucleic acids, in particular DNA. This activity of prokaryotic Argonautes might potentially be used to edit eukaryotic genomes. However, the molecular mechanisms of small nucleic acid biogenesis and the functions of Argonaute proteins, in particular in bacteria and archaea, remain largely unknown. Here we briefly review available data on the RNA interference processes and Argonaute proteins in eukaryotes and prokaryotes.
Collapse
Affiliation(s)
- A V Olina
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
| | - A V Kulbachinskiy
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | - A A Aravin
- California Institute of Technology, Division of Biology, Pasadena, CA 91125, USA
| | - D M Esyunina
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
| |
Collapse
|
82
|
The Kat in the HAT: The Histone Acetyl Transferase Kat6b (MYST4) Is Downregulated in Murine Macrophages in Response to LPS. Mediators Inflamm 2018; 2018:7852742. [PMID: 29977151 PMCID: PMC6011073 DOI: 10.1155/2018/7852742] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/03/2018] [Accepted: 05/08/2018] [Indexed: 12/31/2022] Open
Abstract
Epigenetic modulators, including histone methylases, demethylases, and deacetylases, have been implicated previously in the regulation of classical and alternative macrophage activation pathways. In this study, we show that the histone acetyl transferase (HAT) Kat6B (MYST4) is strongly suppressed (>80%) in macrophages by lipopolysaccharide (LPS) (M1 activation), while Kat6A, its partner in the MOZ/MORF complex, is reciprocally upregulated. This pattern of expression is not altered by LPS together with the adenosine receptor agonist NECA (M2d activation). This is despite the observation that miR-487b, a putative regulator of Kat6B expression, is mildly stimulated by LPS, but strongly suppressed by LPS/NECA. Other members of the MYST family of HATs (Kat5, Kat7, and Kat8) are unaffected by LPS treatment. Using the pLightswitch 3′UTR reporter plasmid, the miR-487b binding site in the Kat6b 3′UTR was found to play a role in the LPS-mediated suppression of Kat6B expression, but other as-yet unidentified factors are also involved. As Kat6B is a HAT that has the potential to modulate gene expression by its effects on chromatin accessibility, we are continuing our studies into the potential roles of this epigenetic modulator in macrophage activation pathways.
Collapse
|
83
|
Role of GW182 protein in the cell. Int J Biochem Cell Biol 2018; 101:29-38. [PMID: 29791863 DOI: 10.1016/j.biocel.2018.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/23/2018] [Accepted: 05/17/2018] [Indexed: 12/27/2022]
Abstract
GW182 proteins interact directly with the argonaute proteins and constitute key components of miRNA repressor complexes (miRISC) in metazoans. As argonautes are insufficient for silencing they recruit the GW182 s that act as scaffold proteins inducing downstream translational repression, target mRNA deadenylation and exonucleolytic mRNA degradation. Besides their role as part of repressor complexes inside the cell, they function in wide variety of cellular processes as highlighted in this review. The present review summarises and discusses in detail our current knowledge of the GW182 s and their role inside the cell.
Collapse
|
84
|
Nejad C, Stunden HJ, Gantier MP. A guide to miRNAs in inflammation and innate immune responses. FEBS J 2018; 285:3695-3716. [DOI: 10.1111/febs.14482] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/08/2018] [Accepted: 04/18/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Charlotte Nejad
- Centre for Innate Immunity and Infectious Diseases Hudson Institute of Medical Research Clayton Australia
- Department of Molecular and Translational Science Monash University Clayton Australia
| | - H. James Stunden
- Institute of Innate Immunity Biomedical Center University Hospitals Bonn Bonn Germany
| | - Michael P. Gantier
- Centre for Innate Immunity and Infectious Diseases Hudson Institute of Medical Research Clayton Australia
- Department of Molecular and Translational Science Monash University Clayton Australia
| |
Collapse
|
85
|
3'-UTR Polymorphisms of MTHFR and TS Associated with Osteoporotic Vertebral Compression Fracture Susceptibility in Postmenopausal Women. Int J Mol Sci 2018. [PMID: 29534533 PMCID: PMC5877685 DOI: 10.3390/ijms19030824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Postmenopausal osteoporosis is one of the most prominent diseases in postmenopausal women and it is increasing in prevalence with the aging population. Furthermore, osteoporosis and osteoporotic vertebral compression fractures (OVCFs) are related to mortality and decreased quality of life. Therefore, searching for biomarkers that are able to identify postmenopausal women who are at high risk of developing OVCFs is an effective strategy for improving the quality of life of patients and alleviating social and economic burdens. In this study, we investigated methylenetetrahydrofolate reductase (MTHFR) and thymidylate synthase (TS) gene polymorphisms in postmenopausal women with OVCF. We recruited 301 postmenopausal women and performed genotyping for the presence of MTHFR 2572C>A, 4869C>G and TS 1100C>T, 1170A>G. Genotyping was analyzed using the polymerization chain reaction restriction fragment length polymorphism assay. MTHFR 2572C>A and TS 1100C>T were associated with the prevalence of osteoporosis (MTHFR 2572CC versus CA+AA: odd ratio [OR] adjusted age, hypertention [HTN], and diabetes mellitus [DM] = 0.49, p = 0.012) and the occurrence of OVCFs (MTHFR 2572CC versus CA+AA: OR adjusted age, HTN, and DM = 0.38, p = 0.013; TS 1100CC versus CT+TT: OR adjusted age, HTN, and DM = 0.46, p = 0.02). Our novel finding is the identification of MTHFR and TS genetic variants that decrease susceptibility to OVCFs. Our findings suggest that polymorphisms in the MTHFR and TS genes are associated with susceptibility to osteoporosis and OVCFs in postmenopausal women.
Collapse
|
86
|
Roh MS, Lee HW, Jung SB, Kim K, Lee EH, Park MI, Lee JS, Kim MS. Expression of miR-200c and its clinicopathological significance in patients with colorectal cancer. Pathol Res Pract 2018; 214:350-355. [PMID: 29496312 DOI: 10.1016/j.prp.2018.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/06/2018] [Accepted: 01/24/2018] [Indexed: 01/21/2023]
Abstract
MicroRNA-200c (miR-200c) is known to play a pivotal role in the regulation of epithelial-to-mesenchymal and mesenchymal-to-epithelial transition processes. However, the biological function of miR-200c in human carcinogenesis remains controversial. We examined the association of miR-200c expression with various clinicopathological factors, including KRAS mutation status and survival, in patients with colorectal cancer (CRC). The expression level of miR-200c was evaluated in 109 paired CRC and normal tissue samples using quantitative reverse transcription polymerase chain reaction. The KRAS mutation status of the CRC samples was determined using the PNAClamp™ KRAS Mutation Detection kit. Compared with the normal tissue group, miR-200c expression was significantly upregulated in the CRCs (P < .001). The expression of miR-200c was increased in CRCs with higher grade (P = .009), advanced stage (P = .042), and lymphovascular invasion (P = .003). Thirty-one CRCs (28.4%) had KRAS mutations in codon 12 or 13. CRCs with KRAS mutations had significantly higher miR-200c expression than CRCs with wild-type KRAS (P = .003). In survival analysis, high miR-200c expression was correlated with worse overall survival (P = .017) and recurrence-free survival (P = .048). Our results indicate that miR-200c is involved in tumor progression and aggressiveness in CRCs, and this oncogenic role of miR-200c may be triggered by activation of the KRAS signaling pathway.
Collapse
Affiliation(s)
- Mee Sook Roh
- Department of Pathology, Dong-A University College of Medicine, Busan, South Korea
| | - Hyoun Wook Lee
- Department of Pathology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, South Korea.
| | - Sang Bong Jung
- Department of Clinical Laboratory Science, Dong-Eui Institute of Technology, Busan, South Korea
| | - Kyungeun Kim
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Eun Hee Lee
- Department of Pathology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, South Korea
| | - Moon-Il Park
- Department of Pathology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, South Korea
| | - Jae Seok Lee
- Department of Pathology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, South Korea
| | - Mee-Seon Kim
- Department of Pathology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, South Korea
| |
Collapse
|
87
|
PTRE-seq reveals mechanism and interactions of RNA binding proteins and miRNAs. Nat Commun 2018; 9:301. [PMID: 29352242 PMCID: PMC5775260 DOI: 10.1038/s41467-017-02745-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 12/22/2017] [Indexed: 11/08/2022] Open
Abstract
RNA binding proteins (RBP) and microRNAs (miRNAs) often bind sequences in 3' untranslated regions (UTRs) of mRNAs, and regulate stability and translation efficiency. With the identification of numerous RBPs and miRNAs, there is an urgent need for new technologies to dissect the function of the cis-acting elements of RBPs and miRNAs. We describe post-transcriptional regulatory element sequencing (PTRE-seq), a massively parallel method for assaying the target sequences of miRNAs and RBPs. We use PTRE-seq to dissect sequence preferences and interactions between miRNAs and RBPs. The binding sites for these effector molecules influenced different aspects of the RNA lifecycle: RNA stability, translation efficiency, and translation initiation. In some cases, post-transcriptional control is modular, with different factors acting independently of each other, while in other cases factors show specific epistatic interactions. The throughput, flexibility, and reproducibility of PTRE-seq make it a valuable tool to study post-transcriptional regulation by 3'UTR elements.
Collapse
|
88
|
Liang C, Sun W, He H, Zhang B, Ling C, Wang B, Huang T, Hou B, Guo Y. Antitumor effect of a new nano-vector with miRNA-135a on malignant glioma. Int J Nanomedicine 2017; 13:209-220. [PMID: 29343959 PMCID: PMC5749566 DOI: 10.2147/ijn.s148142] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Introduction MiR-135a is found to selectively induce apoptosis in glioma cell but not in normal neurons and glial cells. However, low transfection efficacy limits its application in vivo as other miRNAs. We prepared a new kind of nano-vector based on polyethylene glycol methyl ether (mPEG) and hyper-branched polyethylenimine (hy-PEI) in order to improve the miRNA delivery system into the glioma cells. Methods The mPEG-g-PEI/miR-135a was constructed and detected by 1H NMR and FTIR analyses. Transmission electron microscope was utilized for its characteristics. Stability and release efficiency was assessed by electrophoresis. Biocompatibility was observed and analyzed through co-culture with astrocytes and malignant glioma cells (C6). Transfection rate was monitored by laser confocal microscopy and flow cytometry. The antitumor effect of mPEG-g-PEI/miR-135a to C6 was confirmed in vivo by MR scanning, pathology and survival curve. RT-PCR was used to assay transfection efficiency of mPEG-g-PEI/miR-135a in vitro and in vivo. And Western blotting was used to assess the expressions of the targeted proteins of miR-135a. Results In this experiment, we found the optimal N/P ratio of mPEG-g-PEI/miR-135a was about 6 judged by Zeta potential, particle size and encapsulation ability. The stability of mPEG-g-PEI/miR-135a in serum and the release efficiency in acid(pH=5.0) of mPEG-g-PEI/miR-135a were simulated the environment in vivo and in tumor. The mPEG-g-PEI nano-vector was co-cultured with malignant glioma cell C6 and normal astrocytes in vitro and showed good biocompatibility evaluated by CCK8 assay. The cell experiments in vitro indicated that mPEG-g-PEI could significantly improve miR-135a transfection by enhancing uptake effect of both normal glial and glioma cells. Given the C6 implanted in situ model, we discovered that the mPEG-g-PEI/miR-135a could obviously increase the survival period and inhibit the growth of glioma confirmed by MRI and histochemistry. In addition, the transfection efficiency of mPEG-g-PEI was better than that of other transfection agents either in vitro or in vivo confirmed by RT-PCR. Moreover, the expressions of the targeted proteins of miR-135a were consistent with the in vitro results. Conclusion These results suggest that mPEG-g-PEI is expected to provide a new effective intracellular miRNA delivery system with low toxicity for glioma therapy.
Collapse
Affiliation(s)
- Chaofeng Liang
- Department of Neurosurgery, 3rd Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangdong, China
| | - Weitong Sun
- The Pharmaceutical College of Jiamusi University, Jiamusi University, Jiamusi, China
| | - Haiyong He
- Department of Neurosurgery, 3rd Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangdong, China
| | - Baoyu Zhang
- Department of Neurosurgery, 3rd Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangdong, China
| | - Cong Ling
- Department of Neurosurgery, 3rd Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangdong, China
| | - Bocheng Wang
- Department of Neurosurgery, 3rd Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangdong, China
| | - Tengchao Huang
- Department of Neurosurgery, 3rd Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangdong, China
| | - Bo Hou
- Department of Neurosurgery, 3rd Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangdong, China
| | - Ying Guo
- Department of Neurosurgery, 3rd Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangdong, China
| |
Collapse
|
89
|
Raimondi L, De Luca A, Costa V, Amodio N, Carina V, Bellavia D, Tassone P, Pagani S, Fini M, Alessandro R, Giavaresi G. Circulating biomarkers in osteosarcoma: new translational tools for diagnosis and treatment. Oncotarget 2017; 8:100831-100851. [PMID: 29246026 PMCID: PMC5725068 DOI: 10.18632/oncotarget.19852] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/25/2017] [Indexed: 12/24/2022] Open
Abstract
Osteosarcoma (OS) is a rare primary malignant bone tumour arising from primitive bone-forming mesenchymal cells, with high incidence in children and young adults, accounting for approximately 60% of all malignant bone tumours. Currently, long-term disease-free survival can be achieved by surgical treatment plus chemotherapy in approximately 60% of patients with localized extremity disease, and in 20-30% of patients with metastatic lung or bone disease. Diagnosis of primary lesions and recurrences is achieved by using radiological investigations and standard tissue biopsy, the latter being costly, painful and hardly repeatable for patients. Therefore, despite some recent advances, novel biomarkers for OS diagnosis, prediction of response to therapy, disease progression and chemoresistance, are urgently needed. Biological fluids such as blood represent a rich source of non-invasive cancer biomarkers, which allow to understand what is really happening inside the tumour, either at diagnosis or during disease progression. In this regard, liquid biopsy potentially represents an alternative and non-invasive method to detect tumour onset, progression and response to therapy. In this review, we will summarize the state of the art in this novel area, illustrating recent studies on OS. Although the data reported in literature seem preliminary, liquid biopsy represents a promising tool with the potential to be rapidly translated in the clinical practice.
Collapse
Affiliation(s)
- Lavinia Raimondi
- Rizzoli Orthopedic Institute, Bologna, Italy
- Rizzoli Orthopedic Institute, Innovative Technology Platforms for Tissue Engineering, Theranostic and Oncology, Palermo, Italy
| | - Angela De Luca
- Rizzoli Orthopedic Institute, Bologna, Italy
- Rizzoli Orthopedic Institute, Innovative Technology Platforms for Tissue Engineering, Theranostic and Oncology, Palermo, Italy
| | - Viviana Costa
- Rizzoli Orthopedic Institute, Bologna, Italy
- Rizzoli Orthopedic Institute, Innovative Technology Platforms for Tissue Engineering, Theranostic and Oncology, Palermo, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Valeria Carina
- Rizzoli Orthopedic Institute, Bologna, Italy
- Rizzoli Orthopedic Institute, Innovative Technology Platforms for Tissue Engineering, Theranostic and Oncology, Palermo, Italy
| | - Daniele Bellavia
- Rizzoli Orthopedic Institute, Bologna, Italy
- Rizzoli Orthopedic Institute, Innovative Technology Platforms for Tissue Engineering, Theranostic and Oncology, Palermo, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Stefania Pagani
- Rizzoli Orthopedic Institute, Laboratory of Preclinical and Surgical Studies, Bologna, Italy
| | - Milena Fini
- Rizzoli Orthopedic Institute, Laboratory of Preclinical and Surgical Studies, Bologna, Italy
| | - Riccardo Alessandro
- Biology and Genetics Unit, Department of Biopathology and Medical Biotechnology, University of Palermo, Palermo, Italy
- Institute of Biomedicine and Molecular Immunology (IBIM), National Research Council, Palermo, Italy
| | - Gianluca Giavaresi
- Rizzoli Orthopedic Institute, Innovative Technology Platforms for Tissue Engineering, Theranostic and Oncology, Palermo, Italy
- Rizzoli Orthopedic Institute, Laboratory of Preclinical and Surgical Studies, Bologna, Italy
| |
Collapse
|
90
|
Translation efficiency is a determinant of the magnitude of miRNA-mediated repression. Sci Rep 2017; 7:14884. [PMID: 29097662 PMCID: PMC5668238 DOI: 10.1038/s41598-017-13851-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/02/2017] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs are well known regulators of mRNA stability and translation. However, the magnitude of both translational repression and mRNA decay induced by miRNA binding varies greatly between miRNA targets. This can be the result of cis and trans factors that affect miRNA binding or action. We set out to address this issue by studying how various mRNA characteristics affect miRNA-mediated repression. Using a dual luciferase reporter system, we systematically analyzed the ability of selected mRNA elements to modulate miRNA-mediated repression. We found that changing the 3'UTR of a miRNA-targeted reporter modulates translational repression by affecting the translation efficiency. This 3'UTR dependent modulation can be further altered by changing the codon-optimality or 5'UTR of the luciferase reporter. We observed maximal repression with intermediate codon optimality and weak repression with very high or low codon optimality. Analysis of ribosome profiling and RNA-seq data for endogenous miRNA targets revealed translation efficiency as a key determinant of the magnitude of miRNA-mediated translational repression. Messages with high translation efficiency were more robustly repressed. Together our results reveal modulation of miRNA-mediated repression by characteristics and features of the 5'UTR, CDS and 3'UTR.
Collapse
|
91
|
Liu K, Sun X, Zhang Y, Liu L, Yuan Q. MiR-598: A tumor suppressor with biomarker significance in osteosarcoma. Life Sci 2017; 188:141-148. [DOI: 10.1016/j.lfs.2017.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 01/26/2023]
|
92
|
Rissland OS, Subtelny AO, Wang M, Lugowski A, Nicholson B, Laver JD, Sidhu SS, Smibert CA, Lipshitz HD, Bartel DP. The influence of microRNAs and poly(A) tail length on endogenous mRNA-protein complexes. Genome Biol 2017; 18:211. [PMID: 29089021 PMCID: PMC5664449 DOI: 10.1186/s13059-017-1330-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/29/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND All mRNAs are bound in vivo by proteins to form mRNA-protein complexes (mRNPs), but changes in the composition of mRNPs during posttranscriptional regulation remain largely unexplored. Here, we have analyzed, on a transcriptome-wide scale, how microRNA-mediated repression modulates the associations of the core mRNP components eIF4E, eIF4G, and PABP and of the decay factor DDX6 in human cells. RESULTS Despite the transient nature of repressed intermediates, we detect significant changes in mRNP composition, marked by dissociation of eIF4G and PABP, and by recruitment of DDX6. Furthermore, although poly(A)-tail length has been considered critical in post-transcriptional regulation, differences in steady-state tail length explain little of the variation in either PABP association or mRNP organization more generally. Instead, relative occupancy of core components correlates best with gene expression. CONCLUSIONS These results indicate that posttranscriptional regulatory factors, such as microRNAs, influence the associations of PABP and other core factors, and do so without substantially affecting steady-state tail length.
Collapse
Affiliation(s)
- Olivia S Rissland
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA.
- Howard Hughes Medical Institute, Cambridge, MA, 02142, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Present address: Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| | - Alexander O Subtelny
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
- Howard Hughes Medical Institute, Cambridge, MA, 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Miranda Wang
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Andrew Lugowski
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Beth Nicholson
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - John D Laver
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Sachdev S Sidhu
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Craig A Smibert
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Howard D Lipshitz
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - David P Bartel
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA.
- Howard Hughes Medical Institute, Cambridge, MA, 02142, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
93
|
Flamand MN, Gan HH, Mayya VK, Gunsalus KC, Duchaine TF. A non-canonical site reveals the cooperative mechanisms of microRNA-mediated silencing. Nucleic Acids Res 2017; 45:7212-7225. [PMID: 28482037 PMCID: PMC5499589 DOI: 10.1093/nar/gkx340] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/18/2017] [Indexed: 01/08/2023] Open
Abstract
Although strong evidence supports the importance of their cooperative interactions, microRNA (miRNA)-binding sites are still largely investigated as functionally independent regulatory units. Here, a survey of alternative 3΄UTR isoforms implicates a non-canonical seedless site in cooperative miRNA-mediated silencing. While required for target mRNA deadenylation and silencing, this site is not sufficient on its own to physically recruit miRISC. Instead, it relies on facilitating interactions with a nearby canonical seed-pairing site to recruit the Argonaute complexes. We further show that cooperation between miRNA target sites is necessary for silencing in vivo in the C. elegans embryo, and for the recruitment of the Ccr4-Not effector complex. Using a structural model of cooperating miRISCs, we identified allosteric determinants of cooperative miRNA-mediated silencing that are required for both embryonic and larval miRNA functions. Our results delineate multiple cooperative mechanisms in miRNA-mediated silencing and further support the consideration of target site cooperation as a fundamental characteristic of miRNA function.
Collapse
Affiliation(s)
- Mathieu N Flamand
- Department of Biochemistry & Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3G 1Y6 Canada
| | - Hin Hark Gan
- Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, USA
| | - Vinay K Mayya
- Department of Biochemistry & Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3G 1Y6 Canada
| | - Kristin C Gunsalus
- Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, USA.,Division of Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Thomas F Duchaine
- Department of Biochemistry & Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3G 1Y6 Canada
| |
Collapse
|
94
|
Monteleone NJ, Lutz CS. miR-708-5p: a microRNA with emerging roles in cancer. Oncotarget 2017; 8:71292-71316. [PMID: 29050362 PMCID: PMC5642637 DOI: 10.18632/oncotarget.19772] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/16/2017] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate gene expression post-transcriptionally. They are crucial for normal development and maintaining homeostasis. Researchers have discovered that dysregulated miRNA expression contributes to many pathological conditions, including cancer. miRNAs can augment or suppress tumorigenesis based on their expression and transcribed targetome in various cell types. In recent years, researchers have begun to identify miRNAs commonly dysregulated in cancer. One recently identified miRNA, miR-708-5p, has been shown to have profound roles in promoting or suppressing oncogenesis in a myriad of solid and hematological tumors. This review highlights the diverse, sometimes controversial findings reported for miR-708-5p in cancer, and the importance of further exploring this exciting miRNA.
Collapse
Affiliation(s)
- Nicholas J. Monteleone
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, and the School of Graduate Studies, Health Sciences Campus - Newark, Newark, NJ 07103, USA
| | - Carol S. Lutz
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, and the School of Graduate Studies, Health Sciences Campus - Newark, Newark, NJ 07103, USA
| |
Collapse
|
95
|
Lee J, Yoo E, Lee H, Park K, Hur JH, Lim C. LSM12 and ME31B/DDX6 Define Distinct Modes of Posttranscriptional Regulation by ATAXIN-2 Protein Complex in Drosophila Circadian Pacemaker Neurons. Mol Cell 2017; 66:129-140.e7. [PMID: 28388438 DOI: 10.1016/j.molcel.2017.03.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 01/04/2017] [Accepted: 03/03/2017] [Indexed: 01/12/2023]
Abstract
ATAXIN-2 (ATX2) has been implicated in human neurodegenerative diseases, yet it remains elusive how ATX2 assembles specific protein complexes to execute its physiological roles. Here we employ the posttranscriptional co-activator function of Drosophila ATX2 to demonstrate that LSM12 and ME31B/DDX6 are two ATX2-associating factors crucial for sustaining circadian rhythms. LSM12 acts as a molecular adaptor for the recruitment of TWENTY-FOUR (TYF) to ATX2. The ATX2-LSM12-TYF complex thereby stimulates TYF-dependent translation of the rate-limiting clock gene period (per) to maintain 24 hr periodicity in circadian behaviors. In contrast, ATX2 contributes to NOT1-mediated gene silencing and associates with NOT1 in a ME31B/DDX6-dependent manner. The ME31B/DDX6-NOT1 complex does not affect PER translation but supports high-amplitude behavioral rhythms along with ATX2, indicating a PER-independent clock function of ATX2. Taken together, these data suggest that the ATX2 complex may switch distinct modes of posttranscriptional regulation through its associating factors to control circadian clocks and ATX2-related physiology.
Collapse
Affiliation(s)
- Jongbo Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Eunseok Yoo
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hoyeon Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Keunhee Park
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jin-Hoe Hur
- UNIST-Olympus Biomed Imaging Center, UNIST, Ulsan 44919, Republic of Korea
| | - Chunghun Lim
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
96
|
Yang F, Wei J, Zhang S, Zhang X. Shrimp miR-S8 Suppresses the Stemness of Human Melanoma Stem-like Cells by Targeting the Transcription Factor YB-1. Cancer Res 2017; 77:5543-5553. [PMID: 28855207 DOI: 10.1158/0008-5472.can-17-1375] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/01/2017] [Accepted: 08/22/2017] [Indexed: 11/16/2022]
Abstract
Cross-species regulation of gene expression by microRNA is a possible untapped opportunity for miRNA-based therapy. In this study, we report a novel approach to ablate melanoma stem-like cells by targeting the transcription factor YB-1, which is significantly and selectively upregulated in these cells in melanoma. Silencing YB-1 expression was sufficient to significantly inhibit the stemness of melanoma stem-like cells. In exploring YB-1 targeting, we discovered that the shrimp microRNA miR-S8 could suppress human YB-1 expression in melanoma stem-like cells. Mechanistic investigations revealed that miR-S8 recognized the 3'UTR of YB-1 mRNA and mediated its degradation. In tumor cell and xenograft experiments, miR-S8 suppressed the tumorigenic capacity of melanoma stem-like cells by targeting human YB-1. Overall, our results illuminated a novel aspect of miRNA-mediated cross-species gene expression and its use in regulating cancer stem-like cells. Cancer Res; 77(20); 5543-53. ©2017 AACR.
Collapse
Affiliation(s)
- Fan Yang
- College of Life Sciences and Laboratory for Marine Biology and Biotechnology of Qingdao National Laboratory for Marine Science and Technology, Zhejiang University, Hangzhou, People's Republic of China
| | - Jun Wei
- College of Life Sciences and Laboratory for Marine Biology and Biotechnology of Qingdao National Laboratory for Marine Science and Technology, Zhejiang University, Hangzhou, People's Republic of China
| | - Song Zhang
- College of Life Sciences and Laboratory for Marine Biology and Biotechnology of Qingdao National Laboratory for Marine Science and Technology, Zhejiang University, Hangzhou, People's Republic of China
| | - Xiaobo Zhang
- College of Life Sciences and Laboratory for Marine Biology and Biotechnology of Qingdao National Laboratory for Marine Science and Technology, Zhejiang University, Hangzhou, People's Republic of China.
| |
Collapse
|
97
|
Modeling miRNA-mRNA interactions that cause phenotypic abnormality in breast cancer patients. PLoS One 2017; 12:e0182666. [PMID: 28793339 PMCID: PMC5549916 DOI: 10.1371/journal.pone.0182666] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/13/2017] [Indexed: 01/04/2023] Open
Abstract
Background The dysregulation of microRNAs (miRNAs) alters expression level of pro-oncogenic or tumor suppressive mRNAs in breast cancer, and in the long run, causes multiple biological abnormalities. Identification of such interactions of miRNA-mRNA requires integrative analysis of miRNA-mRNA expression profile data. However, current approaches have limitations to consider the regulatory relationship between miRNAs and mRNAs and to implicate the relationship with phenotypic abnormality and cancer pathogenesis. Methodology/Findings We modeled causal relationships between genomic expression and clinical data using a Bayesian Network (BN), with the goal of discovering miRNA-mRNA interactions that are associated with cancer pathogenesis. The Multiple Beam Search (MBS) algorithm learned interactions from data and discovered that hsa-miR-21, hsa-miR-10b, hsa-miR-448, and hsa-miR-96 interact with oncogenes, such as, CCND2, ESR1, MET, NOTCH1, TGFBR2 and TGFB1 that promote tumor metastasis, invasion, and cell proliferation. We also calculated Bayesian network posterior probability (BNPP) for the models discovered by the MBS algorithm to validate true models with high likelihood. Conclusion/Significance The MBS algorithm successfully learned miRNA and mRNA expression profile data using a BN, and identified miRNA-mRNA interactions that probabilistically affect breast cancer pathogenesis. The MBS algorithm is a potentially useful tool for identifying interacting gene pairs implicated by the deregulation of expression.
Collapse
|
98
|
Abstract
PURPOSE OF REVIEW Osteogenesis is a complex process involving the specification of multiple progenitor cells and their maturation and differentiation into matrix-secreting osteoblasts. Osteogenesis occurs not only during embryogenesis but also during growth, after an injury, and in normal homeostatic maintenance. While much is known about osteogenesis-associated regulatory genes, the role of microRNAs (miRNAs), which are epigenetic regulators of protein expression, is just beginning to be explored. While miRNAs do not abrogate all protein expression, their purpose is to finely tune it, allowing for a timely and temporary protein down-regulation. RECENT FINDINGS The last decade has unveiled a multitude of miRNAs that regulate key proteins within the osteogenic lineage, thus qualifying them as "ostemiRs." These miRNAs may endogenously target an activator or inhibitor of differentiation, and depending on the target, may either lead to the prolongation of a progenitor maintenance state or to early differentiation. Interestingly, cellular identity seems intimately coupled to the expression of miRNAs, which participate in the suppression of previous and subsequent differentiation steps. In such cases where key osteogenic proteins were identified as direct targets of miRNAs in non-bone cell types, or through bioinformatic prediction, future research illuminating the activity of these miRNAs during osteogenesis will be extremely valuable. Many bone-related diseases involve the dysregulation of transcription factors or other proteins found within osteoblasts and their progenitors, and the dysregulation of miRNAs, which target such factors, may play a pivotal role in disease etiology, or even as a possible therapy.
Collapse
Affiliation(s)
- Steven R Sera
- Department of Cell Biology and Neuroscience and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, 1113 Biological Sciences Building, Riverside, CA, 92521, USA
| | - Nicole I Zur Nieden
- Department of Cell Biology and Neuroscience and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, 1113 Biological Sciences Building, Riverside, CA, 92521, USA.
| |
Collapse
|
99
|
Jain S, Arrais J, Venkatachari NJ, Ayyavoo V, Bar-Joseph Z. Reconstructing the temporal progression of HIV-1 immune response pathways. Bioinformatics 2017; 32:i253-i261. [PMID: 27307624 PMCID: PMC4908338 DOI: 10.1093/bioinformatics/btw254] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Motivation: Most methods for reconstructing response networks from high throughput data generate static models which cannot distinguish between early and late response stages. Results: We present TimePath, a new method that integrates time series and static datasets to reconstruct dynamic models of host response to stimulus. TimePath uses an Integer Programming formulation to select a subset of pathways that, together, explain the observed dynamic responses. Applying TimePath to study human response to HIV-1 led to accurate reconstruction of several known regulatory and signaling pathways and to novel mechanistic insights. We experimentally validated several of TimePaths’ predictions highlighting the usefulness of temporal models. Availability and Implementation: Data, Supplementary text and the TimePath software are available from http://sb.cs.cmu.edu/timepath Contact:zivbj@cs.cmu.edu Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Siddhartha Jain
- Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Joel Arrais
- Department of Computer Science, University of Coimbra, Coimbra, Portugal
| | | | - Velpandi Ayyavoo
- Department of Infectious Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ziv Bar-Joseph
- Computational Biology and Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
100
|
Shu L, Zhang X. Shrimp miR-12 Suppresses White Spot Syndrome Virus Infection by Synchronously Triggering Antiviral Phagocytosis and Apoptosis Pathways. Front Immunol 2017; 8:855. [PMID: 28824612 PMCID: PMC5534442 DOI: 10.3389/fimmu.2017.00855] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/06/2017] [Indexed: 01/04/2023] Open
Abstract
Growing evidence has indicated that the innate immune system can be regulated by microRNAs (miRNAs). However, the mechanism underlying miRNA-mediated simultaneous activation of multiple immune pathways remains unknown. To address this issue, the role of host miR-12 in shrimp (Marsupenaeus japonicus) antiviral immune responses was characterized in the present study. The results indicated that miR-12 participated in virus infection, host phagocytosis, and apoptosis in defense against white spot syndrome virus invasion. miR-12 could simultaneously trigger phagocytosis, apoptosis, and antiviral immunity through the synchronous downregulation of the expression of shrimp genes [PTEN (phosphatase and tensin homolog) and BI-1(transmembrane BAX inhibitor motif containing 6)] and the viral gene (wsv024). Further analysis showed that miR-12 could synchronously mediate the 5′–3′ exonucleolytic degradation of its target mRNAs, and this degradation terminated in the vicinity of the 3′ untranslated region sequence complementary to the seed sequence of miR-12. Therefore, the present study showed novel aspects of the miRNA-mediated simultaneous regulation of multiple immune pathways.
Collapse
Affiliation(s)
- Le Shu
- College of Life Sciences, Laboratory for Marine Biology and Biotechnology of Qingdao National Laboratory for Marine Science and Technology, Zhejiang University, Hangzhou, China
| | - Xiaobo Zhang
- College of Life Sciences, Laboratory for Marine Biology and Biotechnology of Qingdao National Laboratory for Marine Science and Technology, Zhejiang University, Hangzhou, China
| |
Collapse
|