51
|
Gorbenko IV, Tarasenko VI, Garnik EY, Yakovleva TV, Katyshev AI, Belkov VI, Orlov YL, Konstantinov YM, Koulintchenko MV. Overexpression of RPOTmp Being Targeted to Either Mitochondria or Chloroplasts in Arabidopsis Leads to Overall Transcriptome Changes and Faster Growth. Int J Mol Sci 2024; 25:8164. [PMID: 39125738 PMCID: PMC11312007 DOI: 10.3390/ijms25158164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
The transcription of Arabidopsis organellar genes is performed by three nuclear-encoded RNA polymerases: RPOTm, RPOTmp, and RPOTp. The RPOTmp protein possesses ambiguous transit peptides, allowing participation in gene expression control in both mitochondria and chloroplasts, although its function in plastids is still under discussion. Here, we show that the overexpression of RPOTmp in Arabidopsis, targeted either to mitochondria or chloroplasts, disturbs the dormant seed state, and it causes the following effects: earlier germination, decreased ABA sensitivity, faster seedling growth, and earlier flowering. The germination of RPOTmp overexpressors is less sensitive to NaCl, while rpotmp knockout is highly vulnerable to salt stress. We found that mitochondrial dysfunction in the rpotmp mutant induces an unknown retrograde response pathway that bypasses AOX and ANAC017. Here, we show that RPOTmp transcribes the accD, clpP, and rpoB genes in plastids and up to 22 genes in mitochondria.
Collapse
Affiliation(s)
- Igor V. Gorbenko
- Siberian Institute of Plant Physiology and Biochemistry of Siberian Branch of Russian Academy of Sciences, Irkutsk 664033, Russia; (V.I.T.); (T.V.Y.); (A.I.K.); (Y.M.K.); (M.V.K.)
| | - Vladislav I. Tarasenko
- Siberian Institute of Plant Physiology and Biochemistry of Siberian Branch of Russian Academy of Sciences, Irkutsk 664033, Russia; (V.I.T.); (T.V.Y.); (A.I.K.); (Y.M.K.); (M.V.K.)
| | - Elena Y. Garnik
- Siberian Institute of Plant Physiology and Biochemistry of Siberian Branch of Russian Academy of Sciences, Irkutsk 664033, Russia; (V.I.T.); (T.V.Y.); (A.I.K.); (Y.M.K.); (M.V.K.)
| | - Tatiana V. Yakovleva
- Siberian Institute of Plant Physiology and Biochemistry of Siberian Branch of Russian Academy of Sciences, Irkutsk 664033, Russia; (V.I.T.); (T.V.Y.); (A.I.K.); (Y.M.K.); (M.V.K.)
| | - Alexander I. Katyshev
- Siberian Institute of Plant Physiology and Biochemistry of Siberian Branch of Russian Academy of Sciences, Irkutsk 664033, Russia; (V.I.T.); (T.V.Y.); (A.I.K.); (Y.M.K.); (M.V.K.)
| | - Vadim I. Belkov
- Siberian Institute of Plant Physiology and Biochemistry of Siberian Branch of Russian Academy of Sciences, Irkutsk 664033, Russia; (V.I.T.); (T.V.Y.); (A.I.K.); (Y.M.K.); (M.V.K.)
| | - Yuriy L. Orlov
- The Digital Health Center, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow 119991, Russia
- Agrarian and Technological Institute, Peoples’ Friendship University of Russia, Moscow 117198, Russia
| | - Yuri M. Konstantinov
- Siberian Institute of Plant Physiology and Biochemistry of Siberian Branch of Russian Academy of Sciences, Irkutsk 664033, Russia; (V.I.T.); (T.V.Y.); (A.I.K.); (Y.M.K.); (M.V.K.)
- Biosoil Department, Irkutsk State University, Irkutsk 664003, Russia
| | - Milana V. Koulintchenko
- Siberian Institute of Plant Physiology and Biochemistry of Siberian Branch of Russian Academy of Sciences, Irkutsk 664033, Russia; (V.I.T.); (T.V.Y.); (A.I.K.); (Y.M.K.); (M.V.K.)
- Kazan Institute of Biochemistry and Biophysics of the Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences” (KIBB FRC KazSC RAS), Kazan 420111, Russia
| |
Collapse
|
52
|
Michalik A, C. Franco D, Szklarzewicz T, Stroiński A, Łukasik P. Facultatively intrabacterial localization of a planthopper endosymbiont as an adaptation to its vertical transmission. mSystems 2024; 9:e0063424. [PMID: 38934538 PMCID: PMC11264691 DOI: 10.1128/msystems.00634-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Transovarial transmission is the most reliable way of passing on essential nutrient-providing endosymbionts from mothers to offspring. However, not all endosymbiotic microbes follow the complex path through the female host tissues to oocytes on their own. Here, we demonstrate an unusual transmission strategy adopted by one of the endosymbionts of the planthopper Trypetimorpha occidentalis (Hemiptera: Tropiduchidae) from Bulgaria. In this species, an Acetobacteraceae endosymbiont is transmitted transovarially within deep invaginations of cellular membranes of an ancient endosymbiont Sulcia-strikingly resembling recently described plant virus transmission. However, in males, Acetobacteraceae colonizes the same bacteriocytes as Sulcia but remains unenveloped. Then, the unusual endobacterial localization of Acetobacteraceae observed in females appears to be a unique adaptation to maternal transmission. Further, the symbiont's genomic features, including encoding essential amino acid biosynthetic pathways and its similarity to a recently described psyllid symbiont, suggest a unique combination of the ability to horizontally transmit among species and confer nutritional benefits. The close association with Acetobacteraceae symbiont correlates with the so-far-unreported level of genomic erosion of ancient nutritional symbionts of this planthopper. In Sulcia, this is reflected in substantial changes in genomic organization, reported for the first time in the symbiont renowned for its genomic stability. In Vidania, substantial gene loss resulted in one of the smallest genomes known, at 108.6 kb. Thus, the symbionts of T. occidentalis display a combination of unusual adaptations and genomic features that expand our understanding of how insect-microbe symbioses may transmit and evolve.IMPORTANCEReliable transmission across host generations is a major challenge for bacteria that associate with insects, and independently established symbionts have addressed this challenge in different ways. The facultatively endobacterial localization of Acetobacteraceae symbiont, enveloped by cells of ancient nutritional endosymbiont Sulcia in females but not males of the planthopper Trypetimorpha occidentalis, appears to be a unique adaptation to maternal transmission. Acetobacteraceae's genomic features indicate its unusual evolutionary history, and the genomic erosion experienced by ancient nutritional symbionts demonstrates the apparent consequences of such close association. Combined, this multi-partite symbiosis expands our understanding of the diversity of strategies that insect symbioses form and some of their evolutionary consequences.
Collapse
Affiliation(s)
- Anna Michalik
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Diego C. Franco
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Teresa Szklarzewicz
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Adam Stroiński
- Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Łukasik
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
53
|
Hao Z, Zhang Z, Jiang J, Pan L, Zhang J, Cui X, Li Y, Li J, Luo L. Complete mitochondrial genome of Melia azedarach L., reveals two conformations generated by the repeat sequence mediated recombination. BMC PLANT BIOLOGY 2024; 24:645. [PMID: 38972991 PMCID: PMC11229266 DOI: 10.1186/s12870-024-05319-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/21/2024] [Indexed: 07/09/2024]
Abstract
Melia azedarach is a species of enormous value of pharmaceutical industries. Although the chloroplast genome of M. azedarach has been explored, the information of mitochondrial genome (Mt genome) remains surprisingly limited. In this study, we used a hybrid assembly strategy of BGI short-reads and Nanopore long-reads to assemble the Mt genome of M. azedarach. The Mt genome of M. azedarach is characterized by two circular chromosomes with 350,142 bp and 290,387 bp in length, respectively, which encodes 35 protein-coding genes (PCGs), 23 tRNA genes, and 3 rRNA genes. A pair of direct repeats (R1 and R2) were associated with genome recombination, resulting in two conformations based on the Sanger sequencing and Oxford Nanopore sequencing. Comparative analysis identified 19 homologous fragments between Mt and chloroplast genome, with the longest fragment of 12,142 bp. The phylogenetic analysis based on PCGs were consist with the latest classification of the Angiosperm Phylogeny Group. Notably, a total of 356 potential RNA editing sites were predicted based on 35 PCGs, and the editing events lead to the formation of the stop codon in the rps10 gene and the start codons in the nad4L and atp9 genes, which were verified by PCR amplification and Sanger sequencing. Taken together, the exploration of M. azedarach gap-free Mt genome provides a new insight into the evolution research and complex mitogenome architecture.
Collapse
Affiliation(s)
- Zhigang Hao
- Sanya Institute of China Agricultural University, Sanya, Hainan, 572025, China
- Department of Plant Pathology, Beijing Key Laboratory of Seed Disease Testing and Control, MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
- Hainan Seed Industry Laboratory, Sanya, Hainan, 572025, China
| | - Zhiping Zhang
- Department of Pesticide Science, College of Plant Protection, State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Juan Jiang
- Sanya Institute of China Agricultural University, Sanya, Hainan, 572025, China
| | - Lei Pan
- CAIQ Center for Biosafety in Sanya, Sanya, Hainan, 572000, China
| | - Jinan Zhang
- Sanya Institute of China Agricultural University, Sanya, Hainan, 572025, China
- Department of Plant Pathology, Beijing Key Laboratory of Seed Disease Testing and Control, MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Xiufen Cui
- Sanya Institute of China Agricultural University, Sanya, Hainan, 572025, China
- Department of Plant Pathology, Beijing Key Laboratory of Seed Disease Testing and Control, MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Yingbin Li
- Department of Pesticide Science, College of Plant Protection, State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Jianqiang Li
- Sanya Institute of China Agricultural University, Sanya, Hainan, 572025, China.
- Department of Plant Pathology, Beijing Key Laboratory of Seed Disease Testing and Control, MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China.
| | - Laixin Luo
- Sanya Institute of China Agricultural University, Sanya, Hainan, 572025, China.
- Department of Plant Pathology, Beijing Key Laboratory of Seed Disease Testing and Control, MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
54
|
Doré G, Barloy D, Barloy-Hubler F. De Novo Hybrid Assembly Unveils Multi-Chromosomal Mitochondrial Genomes in Ludwigia Species, Highlighting Genomic Recombination, Gene Transfer, and RNA Editing Events. Int J Mol Sci 2024; 25:7283. [PMID: 39000388 PMCID: PMC11242644 DOI: 10.3390/ijms25137283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
Biological invasions have been identified as the fifth cause of biodiversity loss, and their subsequent dispersal represents a major ecological challenge. The aquatic invasive species Ludwigia grandiflora subsp. hexapetala (Lgh) and Ludwigia peploides subsp. montevidensis (Lpm) are largely distributed in aquatic environments in North America and in Europe. However, they also present worrying terrestrial forms that are able to colonize wet meadows. To comprehend the mechanisms of the terrestrial adaptation of Lgh and Lpm, it is necessary to develop their genomic resources, which are currently poorly documented. We performed de novo assembly of the mitogenomes of Lgh and Lpm through hybrid assemblies, combining short reads (SR) and/or long reads (LR) before annotating both mitogenomes. We successfully assembled the mitogenomes of Lgh and Lpm into two circular molecules each, resulting in a combined total length of 711,578 bp and 722,518 bp, respectively. Notably, both the Lgh and Lpm molecules contained plastome-origin sequences, comprising 7.8% of the mitochondrial genome length. Additionally, we identified recombinations that were mediated by large repeats, suggesting the presence of multiple alternative conformations. In conclusion, our study presents the first high-quality mitogenomes of Lpm and Lgh, which are the only ones in the Myrtales order found as two circular molecules.
Collapse
Affiliation(s)
- Guillaume Doré
- DECOD (Ecosystem Dynamics and Sustainability), Institut Agro, INRAE, IFREMER, 35042 Rennes, France
| | - Dominique Barloy
- DECOD (Ecosystem Dynamics and Sustainability), Institut Agro, INRAE, IFREMER, 35042 Rennes, France
| | | |
Collapse
|
55
|
Wang J, Kan S, Liao X, Zhou J, Tembrock LR, Daniell H, Jin S, Wu Z. Plant organellar genomes: much done, much more to do. TRENDS IN PLANT SCIENCE 2024; 29:754-769. [PMID: 38220520 DOI: 10.1016/j.tplants.2023.12.014] [Citation(s) in RCA: 89] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 01/16/2024]
Abstract
Plastids and mitochondria are the only organelles that possess genomes of endosymbiotic origin. In recent decades, advances in sequencing technologies have contributed to a meteoric rise in the number of published organellar genomes, and have revealed greatly divergent evolutionary trajectories. In this review, we quantify the abundance and distribution of sequenced plant organellar genomes across the plant tree of life. We compare numerous genomic features between the two organellar genomes, with an emphasis on evolutionary trajectories, transfers, the current state of organellar genome editing by transcriptional activator-like effector nucleases (TALENs), transcription activator-like effector (TALE)-mediated deaminase, and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas), as well as genetic transformation. Finally, we propose future research to understand these different evolutionary trajectories, and genome-editing strategies to promote functional studies and eventually improve organellar genomes.
Collapse
Affiliation(s)
- Jie Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6000-6999, Australia
| | - Shenglong Kan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; Marine College, Shandong University, Weihai, 264209, China
| | - Xuezhu Liao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Jiawei Zhou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Luke R Tembrock
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104-6030, USA.
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
56
|
Sanita Lima M, Silva Domingues D, Rossi Paschoal A, Smith DR. Long-read RNA-Seq for the discovery of long noncoding and antisense RNAs in plant organelles. PHYSIOLOGIA PLANTARUM 2024; 176:e14418. [PMID: 39004808 DOI: 10.1111/ppl.14418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/28/2024] [Indexed: 07/16/2024]
Abstract
Plant organelle transcription has been studied for decades. As techniques advanced, so did the fields of mitochondrial and plastid transcriptomics. The current view is that organelle genomes are pervasively transcribed, irrespective of their size, content, structure, and taxonomic origin. However, little is known about the nature of organelle noncoding transcriptomes, including pervasively transcribed noncoding RNAs (ncRNAs). Next-generation sequencing data have uncovered small ncRNAs in the organelles of plants and other organisms, but long ncRNAs remain poorly understood. Here, we argue that publicly available third-generation long-read RNA sequencing data from plants can provide a fine-tuned picture of long ncRNAs within organelles. Indeed, given their bloated architectures, plant mitochondrial genomes are well suited for studying pervasive transcription of ncRNAs. Ultimately, we hope to showcase this new avenue of plant research while also underlining the limitations of the proposed approach.
Collapse
Affiliation(s)
| | - Douglas Silva Domingues
- Department of Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Alexandre Rossi Paschoal
- Department of Computer Science, Bioinformatics and Pattern Recognition Group (BIOINFO-CP), Federal University of Technology-Paraná-UTFPR, Cornélio Procópio, PR, Brazil
| | - David Roy Smith
- Department of Biology, Western University, London, ON, Canada
| |
Collapse
|
57
|
Hao Z, Jiang X, Pan L, Guo J, Chen Y, Li J, Liu B, Guo A, Luo L, Jia R. The complete mitochondrial genome of Pontederia crassipes: using HiFi reads to investigate genome recombination and gene transfer from chloroplast genome. FRONTIERS IN PLANT SCIENCE 2024; 15:1407309. [PMID: 39006960 PMCID: PMC11240117 DOI: 10.3389/fpls.2024.1407309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024]
Abstract
Water hyacinth (Pontederia crassipes Mart.) is a monocotyledonous aquatic plant renowned for its rapid growth, extensive proliferation, biological invasiveness, and ecological resilience to variations in pH, nutrients, and temperature. The International Union for Conservation of Nature (IUCN) has listed P. crassipes among the top 100 invasive species. However, comprehensive genomic information, particularly concerning its mitochondrial genome (mitogenome), remains surprisingly limited. In this study, the complete mitogenome of P. crassipes was analyzed using bioinformatics approaches. The mitogenome is 399,263 bp long and contains 38 protein-coding genes (PCGs), 24 tRNA genes, and 3 rRNA genes. Sequence analysis revealed that the complete mitogenome of the species contains 3,289 dispersed repeats, and 765 RNA editing sites in protein-coding genes. The P. crassipes mitogenome possessed un-conserved structures, including extensive sequence transfer between its chloroplasts and mitochondria. Our study on the mitogenome of P. crassipes offers critical insights into its evolutionary patterns and phylogenetic relationships with related taxa. This research enhances our understanding of this invasive species, known for its significant biomass and rapid overgrowth in aquatic environments.
Collapse
Affiliation(s)
- Zhigang Hao
- Sanya Research Institution, Chinese Academy of Tropical Agriculture Sciences/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
- Hainan Seed Industry Laboratory, Sanya, Hainan, China
- Department of Plant Pathology, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| | - Xiaoqi Jiang
- Sanya Research Institution, Chinese Academy of Tropical Agriculture Sciences/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| | - Lei Pan
- CAIQ Center for Biosafety in Sanya, Sanya, Hainan, China
| | - Jingyuan Guo
- Sanya Research Institution, Chinese Academy of Tropical Agriculture Sciences/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| | - Yi Chen
- Sanya Research Institution, Chinese Academy of Tropical Agriculture Sciences/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| | - Jianqiang Li
- Department of Plant Pathology, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| | - Biao Liu
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, China
| | - Anping Guo
- Sanya Research Institution, Chinese Academy of Tropical Agriculture Sciences/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| | - Laixin Luo
- Department of Plant Pathology, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| | - Ruizong Jia
- Sanya Research Institution, Chinese Academy of Tropical Agriculture Sciences/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| |
Collapse
|
58
|
Ma Y, Zhang L, Yang M, Qi Q, Yang Q, López-Pujol J, Wang L, Zhao D. Complete Organelle Genome of the Desiccation-Tolerant (DT) Moss Tortula atrovirens and Comparative Analysis of the Pottiaceae Family. Genes (Basel) 2024; 15:782. [PMID: 38927718 PMCID: PMC11202921 DOI: 10.3390/genes15060782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Tortula atrovirens (Sm.) Lindb. is an important component of biological soil crusts and possesses an extraordinary tolerance against desiccation in dryland habitats. However, knowledge of the organelle genome of this desiccation-tolerant (DT) moss is still lacking. Here, we assembled the first reported Tortula organelle genome and conducted a comprehensive analysis within the Pottiaceae family. T. atrovirens exhibited the second largest chloroplast genome (129,646 bp) within the Pottiaceae, whereas its mitogenome (105,877 bp) and those of other mosses were smaller in size compared to other land plants. The chloroplast and mitochondrial genomes of T. atrovirens were characterized by the expansion of IR boundaries and the absence of homologous recombination-mediated by large repeats. A total of 57 RNA editing sites were detected through mapping RNA-seq data. Moreover, the gene content and order were highly conserved among the Pottiaceae organelle genomes. Phylogenetic analysis showed that bryophytes are paraphyletic, with their three lineages (hornworts, mosses, and liverworts) and vascular plants forming successive sister clades. Timmiella anomala is clearly separated from the monophyletic Pottiaceae, and T. atrovirens is closely related to Syntrichia filaris within the Pottioideae. In addition, we detected four hypervariable regions for candidate-molecular markers. Our findings provide valuable insights into the organelle genomes of T. atrovirens and the evolutionary relationships within the Pottiaceae family, facilitating future discovery of DT genetic resources from bryophytes.
Collapse
Affiliation(s)
- Yang Ma
- School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (Y.M.)
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010020, China
| | - Lifang Zhang
- School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (Y.M.)
| | - Min Yang
- School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (Y.M.)
| | - Qin Qi
- School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (Y.M.)
| | - Qian Yang
- School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (Y.M.)
| | - Jordi López-Pujol
- Botanic Institute of Barcelona (IBB), CSIC-CMCNB, 08038 Barcelona, Spain;
- Escuela de Ciencias Ambientales, Universidad Espíritu Santo (UEES), Samborondón 091650, Ecuador
| | - Lihong Wang
- School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (Y.M.)
| | - Dongping Zhao
- School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (Y.M.)
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
59
|
Zhang J, Liu G, Wei J. Assembly and comparative analysis of the first complete mitochondrial genome of Setaria italica. PLANTA 2024; 260:23. [PMID: 38850310 DOI: 10.1007/s00425-024-04386-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/10/2024] [Indexed: 06/10/2024]
Abstract
MAIN CONCLUSION In this study, we assembled the first complete mitochondrial genome of Setaria italica and confirmed the multi-branched architecture. The foxtail millet (Setaria italica) holds significant agricultural importance, particularly in arid and semi-arid regions. It plays a pivotal role in diversifying dietary patterns and shaping planting strategies. Although the chloroplast genome of S. italica has been elucidated in recent studies, the complete mitochondrial genome remains largely unexplored. In this study, we employed PacBio HiFi sequencing platforms to sequence and assemble the complete mitochondrial genome. The mitochondrial genome spans a total length of 446,614 base pairs and harbors a comprehensive set of genetic elements, including 33 unique protein-coding genes (PCGs), encompassing 24 unique mitochondrial core genes and 9 variable genes, along with 20 transfer RNA (tRNA) genes and 3 ribosomal RNA (rRNA) genes. Our analysis of mitochondrial PCGs revealed a pronounced codon usage preference. For instance, the termination codon exhibits a marked preference for UAA, while alanine (Ala) exhibits a preference for GCU, and glutamine (Gln) favors CAA. Notably, the maximum Relative Synonymous Codon Usage (RSCU) values for cysteine (Cys) and phenylalanine (Phe) are both below 1.2, indicating a lack of strong codon usage preference for these amino acids. Phylogenetic analyses consistently place S. italica in close evolutionary proximity to Chrysopogon zizanioides, relative to other Panicoideae plants. Collinearity analysis showed that a total of 39 fragments were identified to display homology with both the mitochondrial and chloroplast genomes. A total of 417 potential RNA-editing sites were discovered across the 33 mitochondrial PCGs. Notably, all these editing events involved the conversion of cytosine (C) to uracil (U). Through the employment of PCR validation coupled with Sanger sequencing for the anticipated editing sites of these codons, RNA-editing events were conclusively identified at two specific loci: nad4L-2 and atp6-1030. The results of this study provide a pivotal foundation for advanced genomic breeding research in foxtail millet. Furthermore, they impart essential insights that will be instrumental for forthcoming investigations into the evolutionary and molecular dynamics of Panicoideae species.
Collapse
Affiliation(s)
- Jiewei Zhang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Guiming Liu
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Jianhua Wei
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
60
|
Waneka G, Broz AK, Wold-McGimsey F, Zou Y, Wu Z, Sloan DB. Disruption of recombination machinery alters the mutational landscape in plant organellar genomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597120. [PMID: 38895361 PMCID: PMC11185577 DOI: 10.1101/2024.06.03.597120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Land plant organellar genomes have extremely low rates of point mutation yet also experience high rates of recombination and genome instability. Characterizing the molecular machinery responsible for these patterns is critical for understanding the evolution of these genomes. While much progress has been made towards understanding recombination activity in land plant organellar genomes, the relationship between recombination pathways and point mutation rates remains uncertain. The organellar targeted mutS homolog MSH1 has previously been shown to suppress point mutations as well as non-allelic recombination between short repeats in Arabidopsis thaliana. We therefore implemented high-fidelity Duplex Sequencing to test if other genes that function in recombination and maintenance of genome stability also affect point mutation rates. We found small to moderate increases in the frequency of single nucleotide variants (SNVs) and indels in mitochondrial and/or plastid genomes of A. thaliana mutant lines lacking radA, recA1, or recA3. In contrast, osb2 and why2 mutants did not exhibit an increase in point mutations compared to wild type (WT) controls. In addition, we analyzed the distribution of SNVs in previously generated Duplex Sequencing data from A. thaliana organellar genomes and found unexpected strand asymmetries and large effects of flanking nucleotides on mutation rates in WT plants and msh1 mutants. Finally, using long-read Oxford Nanopore sequencing, we characterized structural variants in organellar genomes of the mutant lines and show that different short repeat sequences become recombinationally active in different mutant backgrounds. Together, these complementary sequencing approaches shed light on how recombination may impact the extraordinarily low point mutation rates in plant organellar genomes.
Collapse
Affiliation(s)
- Gus Waneka
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Amanda K Broz
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | | | - Yi Zou
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Zhiqiang Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
61
|
Gong Y, Xie X, Zhou G, Chen M, Chen Z, Li P, Huang H. Assembly and comparative analysis of the complete mitochondrial genome of Brassica rapa var. Purpuraria. BMC Genomics 2024; 25:546. [PMID: 38824587 PMCID: PMC11143693 DOI: 10.1186/s12864-024-10457-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Purple flowering stalk (Brassica rapa var. purpuraria) is a widely cultivated plant with high nutritional and medicinal value and exhibiting strong adaptability during growing. Mitochondrial (mt) play important role in plant cells for energy production, developing with an independent genetic system. Therefore, it is meaningful to assemble and annotate the functions for the mt genome of plants independently. Though there have been several reports referring the mt genome of in Brassica species, the genome of mt in B. rapa var. purpuraria and its functional gene variations when compared to its closely related species has not yet been addressed. RESULTS The mt genome of B. rapa var. purpuraria was assembled through the Illumina and Nanopore sequencing platforms, which revealed a length of 219,775 bp with a typical circular structure. The base composition of the whole B. rapa var. purpuraria mt genome revealed A (27.45%), T (27.31%), C (22.91%), and G (22.32%). 59 functional genes, composing of 33 protein-coding genes (PCGs), 23 tRNA genes, and 3 rRNA genes, were annotated. The sequence repeats, codon usage, RNA editing, nucleotide diversity and gene transfer between the cp genome and mt genome were examined in the B. rapa var. purpuraria mt genome. Phylogenetic analysis show that B. rapa var. Purpuraria was closely related to B. rapa subsp. Oleifera and B. juncea. Ka/Ks analysis reflected that most of the PCGs in the B. rapa var. Purpuraria were negatively selected, illustrating that those mt genes were conserved during evolution. CONCLUSIONS The results of our findings provide valuable information on the B.rapa var. Purpuraria genome, which might facilitate molecular breeding, genetic variation and evolutionary researches for Brassica species in the future.
Collapse
Affiliation(s)
- Yihui Gong
- Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan, College of Agriculture and Biotechnology , Hunan University of Humanities, Science and Technology, Loudi, 417000, China.
| | - Xin Xie
- Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan, College of Agriculture and Biotechnology , Hunan University of Humanities, Science and Technology, Loudi, 417000, China
| | - Guihua Zhou
- Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan, College of Agriculture and Biotechnology , Hunan University of Humanities, Science and Technology, Loudi, 417000, China
| | - Meiyu Chen
- Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan, College of Agriculture and Biotechnology , Hunan University of Humanities, Science and Technology, Loudi, 417000, China
| | - Zhiyin Chen
- Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan, College of Agriculture and Biotechnology , Hunan University of Humanities, Science and Technology, Loudi, 417000, China
| | - Peng Li
- Xiangtan Agricultural Science Research Institute, Xiangtan, 411100, China
| | - Hua Huang
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| |
Collapse
|
62
|
Zhang X, Li P, Wang J, Fu D, Zhao B, Dong W, Liu Y. Comparative genomic and phylogenetic analyses of mitochondrial genomes of hawthorn (Crataegus spp.) in Northeast China. Int J Biol Macromol 2024; 272:132795. [PMID: 38830497 DOI: 10.1016/j.ijbiomac.2024.132795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/18/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
Hawthorn (Crataegus spp.) plants are major sources of health food and medicines. Twenty species and seven variations of Crataegus are present in China. A variety of unique Crataegus species was found in their natural distribution in northeast China. In the present study, we assembled and annotated the mitochondrial genomes of five Crataegus species from northeastern China. The sizes of the newly sequenced mitochondrial genomes ranged from 245,907 bp to 410,837 bp. A total of 45-55 genes, including 12-19 transfer RNA genes, three ribosomal RNA genes, and 29-33 protein-coding genes (PCGs) were encoded by these mitochondrial genomes. Seven divergent hotspot regions were identified by comparative analyses: atp6, nad3, ccmFN, matR, nad1, nad5, and rps1. The most conserved genes among the Crataegus species, according to the whole-genome correlation analysis, were nad1, matR, nad5, ccmFN, cox1, nad4, trnQ-TTG, trnK-TTT, trnE-TTC, and trnM-CAT. Horizontal gene transfer between organellar genomes was common in Crataegus plants. Based on the phylogenetic trees of mitochondrial PCGs, C. maximowiczii, C. maximowiczii var. ninganensis, and C. bretschneideri shared similar maternal relationships. This study improves Crataegus mitochondrial genome resources and offers important insights into the taxonomy and species identification of this genus.
Collapse
Affiliation(s)
- Xiao Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; National Field Genebank for Hawthorn, Shenyang, Liaoning 110866, China
| | - Peihao Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jian Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Dongxu Fu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Baipeng Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Wenxuan Dong
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; National Field Genebank for Hawthorn, Shenyang, Liaoning 110866, China
| | - Yuexue Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; National Field Genebank for Hawthorn, Shenyang, Liaoning 110866, China.
| |
Collapse
|
63
|
Yu X, Ma Z, Liu S, Duan Z. Analysis of the Rhodomyrtus tomentosa mitochondrial genome: Insights into repeat-mediated recombination and intra-cellular DNA transfer. Gene 2024; 909:148288. [PMID: 38367854 DOI: 10.1016/j.gene.2024.148288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Plant mitochondrial genomes participate in encoding proteins crucial to the major producers of ATP in the cell and replication and heredity of their own DNA. The sequences and structure of the plant mitochondrial genomes profoundly impact these fundamental processes, and studies of plant mitochondrial genomes are needed. We reported the complete sequences of the Rhodomyrtus tomentosa mitochondrial genome here, totaling 400,482 bp. Nanopore ONT reads and PCR amplification provided evidence for recombination mediated by the eight repeat pairs for the R. tomentosa mitochondrial genome. Thirty-eight genes were identified in the R. tomentosa mitochondrial genome. Comparative analyses of the mitochondrial genome and plastome and PCR amplification suggest that five fragments of mitochondrial plastid DNA were unfunctional sequences resulting from intracellular gene transfer. Phylogenetic analysis based on each and all of the 27 mitochondrial protein-coding genes of nine Myrtales species revealed that R. tomentosa always clustered with other species of Myrtaceae. This study uncovered the enormous complexity of the R. tomentosa mitochondrial genome, the active repeat-mediated recombinations, the presence of mitochondrial plastid DNAs, and the topological incongruence of Myrtales among the single-gene trees.
Collapse
Affiliation(s)
- Xiaoli Yu
- School of Life Science, Huizhou University, Huizhou 516007, Guangdong, China.
| | - Zhengbing Ma
- Forestry Technology Extension Station of Huiyang, Huizhou 516211, Guangdong, China.
| | - Shu Liu
- School of Life Science, Huizhou University, Huizhou 516007, Guangdong, China.
| | - Zhonggang Duan
- School of Life Science, Huizhou University, Huizhou 516007, Guangdong, China.
| |
Collapse
|
64
|
Cox RM, Papoulas O, Shril S, Lee C, Gardner T, Battenhouse AM, Lee M, Drew K, McWhite CD, Yang D, Leggere JC, Durand D, Hildebrandt F, Wallingford JB, Marcotte EM. Ancient eukaryotic protein interactions illuminate modern genetic traits and disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.26.595818. [PMID: 38853926 PMCID: PMC11160598 DOI: 10.1101/2024.05.26.595818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
All eukaryotes share a common ancestor from roughly 1.5 - 1.8 billion years ago, a single-celled, swimming microbe known as LECA, the Last Eukaryotic Common Ancestor. Nearly half of the genes in modern eukaryotes were present in LECA, and many current genetic diseases and traits stem from these ancient molecular systems. To better understand these systems, we compared genes across modern organisms and identified a core set of 10,092 shared protein-coding gene families likely present in LECA, a quarter of which are uncharacterized. We then integrated >26,000 mass spectrometry proteomics analyses from 31 species to infer how these proteins interact in higher-order complexes. The resulting interactome describes the biochemical organization of LECA, revealing both known and new assemblies. We analyzed these ancient protein interactions to find new human gene-disease relationships for bone density and congenital birth defects, demonstrating the value of ancestral protein interactions for guiding functional genetics today.
Collapse
Affiliation(s)
- Rachael M Cox
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ophelia Papoulas
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Shirlee Shril
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Chanjae Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Tynan Gardner
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Anna M Battenhouse
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Muyoung Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kevin Drew
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Claire D McWhite
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - David Yang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Janelle C Leggere
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Dannie Durand
- Department of Biological Sciences, Carnegie Mellon University, 4400 5th Avenue Pittsburgh, PA 15213, USA
| | - Friedhelm Hildebrandt
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - John B Wallingford
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Edward M Marcotte
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
65
|
Qu K, Chen Y, Liu D, Guo H, Xu T, Jing Q, Ge L, Shu X, Xin X, Xie X, Tong B. Comprehensive analysis of the complete mitochondrial genome of Lilium tsingtauense reveals a novel multichromosome structure. PLANT CELL REPORTS 2024; 43:150. [PMID: 38789593 DOI: 10.1007/s00299-024-03232-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024]
Abstract
KEY MESSAGE Lilium tsingtauense mitogenome comprises 27 independent chromosome molecules, it undergoes frequent genomic recombination, and the rate of recombination and mutation between different repetitive sequences affects the formation of multichromosomal structures. Given the extremely large genome of Lily, which likely harbors additional genetic resources, it serves as an ideal material for studying the phylogenetic evolution of organisms. Although the Lilium chloroplast genome has been documented, the sequence of its mitochondrial genome (mitogenome) remains uncharted. Using BGI short reads and Nanopore long reads, we sequenced, assembled, and annotated the mitogenome of Lilium tsingtauense. This effort culminated in the characterization of Lilium's first complete mitogenome. Comparative analysis with other angiosperms revealed the unique multichromosomal structure of the L. tsingtauense mitogenome, spanning 1,125,108 bp and comprising 27 independent circular chromosomes. It contains 36 protein-coding genes, 12 tRNA genes, and 3 rRNA genes, with a GC content of 44.90%. Notably, three chromosomes in the L. tsingtauense mitogenome lack identifiable genes, hinting at the potential existence of novel genes and noncoding elements. The high degree of observed genome fragmentation implies frequent reorganization, with recombination and mutation rates among diverse repetitive sequences likely driving the formation of multichromosomal structures. Our comprehensive analysis, covering genome size, coding genes, structure, RNA editing, repetitive sequences, and sequence migration, sheds light on the evolutionary and molecular biology of multichromosomal mitochondria in Lilium. This high-quality mitogenome of L. tsingtauense not only enriches our understanding of multichromosomal mitogenomes but also establishes a solid foundation for future genome breeding and germplasm innovation in Lilium.
Collapse
Affiliation(s)
- Kai Qu
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, 250102, China
- National Engineering Laboratory of Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Ying Chen
- Forestry Protection and Development Service Center of Shandong Province, Jinan, 250109, China
| | - Dan Liu
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, 250102, China.
- National Engineering Laboratory of Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| | - Haili Guo
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, 250102, China
| | - Ting Xu
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, 250102, China
| | - Qi Jing
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, 250102, China
| | - Lei Ge
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, 250102, China
| | - Xiuge Shu
- Shandong Academy of Forestry, Jinan, 250014, China
| | - Xiaowei Xin
- Shandong Drug and Food Vocational College, Weihai, 264210, China
| | - Xiaoman Xie
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, 250102, China.
| | - Boqiang Tong
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, 250102, China.
| |
Collapse
|
66
|
Peñafiel-Ayala A, Peralta-Castro A, Mora-Garduño J, García-Medel P, Zambrano-Pereira AG, Díaz-Quezada C, Abraham-Juárez MJ, Benítez-Cardoza CG, Sloan DB, Brieba LG. Plant Organellar MSH1 Is a Displacement Loop-Specific Endonuclease. PLANT & CELL PHYSIOLOGY 2024; 65:560-575. [PMID: 37756637 PMCID: PMC11494383 DOI: 10.1093/pcp/pcad112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/09/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
MutS HOMOLOG 1 (MSH1) is an organellar-targeted protein that obstructs ectopic recombination and the accumulation of mutations in plant organellar genomes. MSH1 also modulates the epigenetic status of nuclear DNA, and its absence induces a variety of phenotypic responses. MSH1 is a member of the MutS family of DNA mismatch repair proteins but harbors an additional GIY-YIG nuclease domain that distinguishes it from the rest of this family. How MSH1 hampers recombination and promotes fidelity in organellar DNA inheritance is unknown. Here, we elucidate its enzymatic activities by recombinantly expressing and purifying full-length MSH1 from Arabidopsis thaliana (AtMSH1). AtMSH1 is a metalloenzyme that shows a strong binding affinity for displacement loops (D-loops). The DNA-binding abilities of AtMSH1 reside in its MutS domain and not in its GIY-YIG domain, which is the ancillary nickase of AtMSH1. In the presence of divalent metal ions, AtMSH1 selectively executes multiple incisions at D-loops, but not other DNA structures including Holliday junctions or dsDNA, regardless of the presence or absence of mismatches. The selectivity of AtMSH1 to dismantle D-loops supports the role of this enzyme in preventing recombination between short repeats. Our results suggest that plant organelles have evolved novel DNA repair routes centered around the anti-recombinogenic activity of MSH1.
Collapse
Affiliation(s)
- Alejandro Peñafiel-Ayala
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, Irapuato, Guanajuato 36821, México
| | - Antolin Peralta-Castro
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, Irapuato, Guanajuato 36821, México
| | - Josue Mora-Garduño
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, Irapuato, Guanajuato 36821, México
| | - Paola García-Medel
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, Irapuato, Guanajuato 36821, México
| | - Angie G Zambrano-Pereira
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, Irapuato, Guanajuato 36821, México
| | - Corina Díaz-Quezada
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, Irapuato, Guanajuato 36821, México
| | - María Jazmín Abraham-Juárez
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, Irapuato, Guanajuato 36821, México
| | - Claudia G Benítez-Cardoza
- Laboratorio de Investigación Bioquímica, Programa Institucional en Biomedicina Molecular ENMyH-IPN, Guillermo Massieu Helguera No. 239, La Escalera Ticoman 07320 DF, México
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Luis G Brieba
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, Irapuato, Guanajuato 36821, México
| |
Collapse
|
67
|
Gong Y, Luo X, Zhang T, Zhou G, Li J, Zhang B, Li P, Huang H. Assembly and comparative analysis of the complete mitochondrial genome of white towel gourd (Luffa cylindrica). Genomics 2024; 116:110859. [PMID: 38750703 DOI: 10.1016/j.ygeno.2024.110859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/19/2024]
Abstract
Mitochondria play an important role in the energy production of plant cells through independent genetic systems. This study has aimed to assemble and annotate the functions of the mitochondrial (mt) genome of Luffa cylindrica. The mt genome of L. cylindrica contained two chromosomes with lengths of 380,879 bp and 67,982 bp, respectively. Seventy-seven genes including 39 protein-coding genes, 34 tRNA genes, 3 rRNA genes, and 1 pseudogene, were identified. About 90.63% of the codons ended with A or U bases, and 98.63% of monomers contained A/T, which contributed to the high A/T content (55.91%) of the complete mt genome. Six genes (ATP8, CCMFC, NAD4, RPL10, RPL5 and RPS4) showed positive selection. Phylogenetic analysis indicates that L. cylindrica is closely related to L. acutangula. The present results provide the mt genome of L. cylindrica, which may facilitate possible genetic variation, evolutionary, and molecular breeding studies of L. cylindrica.
Collapse
Affiliation(s)
- Yihui Gong
- Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan, College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China,.
| | - Xuan Luo
- Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan, College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Ting Zhang
- Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan, College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Guihua Zhou
- Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan, College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Jingyi Li
- Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan, College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Bin Zhang
- Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan, College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Peng Li
- Xiangtan Agricultural Science Research Institute, Xiangtan 411100, China
| | - Hua Huang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical, Fruit Tree Research, Guangzhou 510640, China.
| |
Collapse
|
68
|
Najer T, Doña J, Buček A, Sweet AD, Sychra O, Johnson KP. Mitochondrial genome fragmentation is correlated with increased rates of molecular evolution. PLoS Genet 2024; 20:e1011266. [PMID: 38701107 PMCID: PMC11095710 DOI: 10.1371/journal.pgen.1011266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/15/2024] [Accepted: 04/20/2024] [Indexed: 05/05/2024] Open
Abstract
While mitochondrial genome content and organization is quite diverse across all Eukaryotes, most bilaterian animal mitochondrial genomes (mitogenomes) exhibit highly conserved gene content and organisation, with genes typically encoded on a single circular chromosome. However, many species of parasitic lice (Insecta: Phthiraptera) are among the notable exceptions, having mitogenomes fragmented into multiple circular chromosomes. To better understand the process of mitogenome fragmentation, we conducted a large-scale genomic study of a major group of lice, Amblycera, with extensive taxon sampling. Analyses of the evolution of mitogenome structure across a phylogenomic tree of 90 samples from 53 genera revealed evidence for multiple independent origins of mitogenome fragmentation, some inferred to have occurred less than five million years ago. We leveraged these many independent origins of fragmentation to compare the rates of DNA substitution and gene rearrangement, specifically contrasting branches with fragmented and non-fragmented mitogenomes. We found that lineages with fragmented mitochondrial genomes had significantly higher rates of mitochondrial sequence evolution. In addition, lineages with fragmented mitochondrial genomes were more likely to have mitogenome gene rearrangements than those with single-chromosome mitochondrial genomes. By combining phylogenomics and mitochondrial genomics we provide a detailed portrait of mitogenome evolution across this group of insects with a remarkably unstable mitogenome structure, identifying processes of molecular evolution that are correlated with mitogenome fragmentation.
Collapse
Affiliation(s)
- Tomáš Najer
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, Illinois, United States of America
| | - Jorge Doña
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, Illinois, United States of America
- Departamento de Biología Animal, Universidad de Granada, Granada, Spain
| | - Aleš Buček
- Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Okinawa Institute of Science & Technology Graduate University, Onna-son, Okinawa, Japan
| | - Andrew D. Sweet
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, United States of America
| | - Oldřich Sychra
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czechia
| | - Kevin P. Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, Illinois, United States of America
| |
Collapse
|
69
|
Shan Y, Li J, Duan X, Zhang X, Yu J. Elucidating the multichromosomal structure within the Brasenia schreberi mitochondrial genome through assembly and analysis. BMC Genomics 2024; 25:422. [PMID: 38684976 PMCID: PMC11059650 DOI: 10.1186/s12864-024-10331-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/22/2024] [Indexed: 05/02/2024] Open
Abstract
Brasenia schreberi, a plant species traditionally utilized in Chinese medicine and cuisine, represents an early evolutionary stage among flowering plants (angiosperms). While the plastid genome of this species has been published, its mitochondrial genome (mitogenome) has not been extensively explored, with a notable absence of thorough comparative analyses of its organellar genomes. In our study, we had assembled the entire mitogenome of B. schreberi utilizing the sequencing data derived from both Illumina platform and Oxford Nanopore. The B. schreberi mitogenome mostly exists as six circular DNA molecules, with the largest being 628,257 base pairs (bp) and the smallest 110,220 bp, amounting to 1.49 megabases (Mb). Then we annotated the mitogenome of B. schreberi. The mitogenome encompasses a total of 71 genes: 40 of these are coding proteins genes (PCGs), 28 are genes for transfer RNA (tRNA), and the remaining 3 are genes for ribosomal RNA (rRNA). In the analysis of codon usage, we noted a unique codon preference specific to each amino acid. The most commonly used codons exhibited an average RSCU of 1.36, indicating a noticeable bias in codon selection. In the repeat sequence analysis, a total of 553 simple sequence repeats (SSRs) were identified, 1,822 dispersed repeats (comprising 1,015 forward and 807 palindromic repeats), and 608 long terminal repeats (LTRs). Additionally, in the analysis of homologous sequences between organelle genomes, we detected 38 homologous sequences derived from the plastid genome, each exceeding 500 bp, within the B. schreberi mitochondrial genome. Notably, ten tRNA genes (trnC-GCA, trnM-CAU, trnI-CAU, trnQ-UUG, trnN-GUU, trnT-GGU, trnW-CCA, trnA-UGC, trnI-GAU, and trnV-GAC) appear to have been completely transferred from the chloroplast to the mitogenome. Utilizing the Deepred-mt to predict the RNA editing sites in the mitogenome, we have identified 675 high-quality RNA editing sites in the 40 mitochondrial PCGs. In the final stage of our study, we performed an analysis of colinearity and inferred the phylogenetic relationship of B. schreberi with other angiosperms, utilizing the mitochondrial PCGs as a basis. The results showed that the non-coding regions of the B. schreberi mitogenome are characterized by an abundance of repetitive sequences and exogenous sequences, and B. schreberi is more closely related with Euryale ferox.
Collapse
Affiliation(s)
- Yuanyu Shan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China
| | - Jingling Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China
| | - Xinmei Duan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China
| | - Xue Zhang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China
| | - Jie Yu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China.
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, 400715, China.
| |
Collapse
|
70
|
Park S, An B, Park S. Dynamic changes in the plastid and mitochondrial genomes of the angiosperm Corydalis pauciovulata (Papaveraceae). BMC PLANT BIOLOGY 2024; 24:303. [PMID: 38644497 PMCID: PMC11034061 DOI: 10.1186/s12870-024-05025-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
BACKGROUND Corydalis DC., the largest genus in the family Papaveraceae, comprises > 465 species. Complete plastid genomes (plastomes) of Corydalis show evolutionary changes, including syntenic arrangements, gene losses and duplications, and IR boundary shifts. However, little is known about the evolution of the mitochondrial genome (mitogenome) in Corydalis. Both the organelle genomes and transcriptomes are needed to better understand the relationships between the patterns of evolution in mitochondrial and plastid genomes. RESULTS We obtained complete plastid and mitochondrial genomes from Corydalis pauciovulata using a hybrid assembly of Illumina and Oxford Nanopore Technologies reads to assess the evolutionary parallels between the organelle genomes. The mitogenome and plastome of C. pauciovulata had sizes of 675,483 bp and 185,814 bp, respectively. Three ancestral gene clusters were missing from the mitogenome, and expanded IR (46,060 bp) and miniaturized SSC (202 bp) regions were identified in the plastome. The mitogenome and plastome of C. pauciovulata contained 41 and 67 protein-coding genes, respectively; the loss of genes was a plastid-specific event. We also generated a draft genome and transcriptome for C. pauciovulata. A combination of genomic and transcriptomic data supported the functional replacement of acetyl-CoA carboxylase subunit β (accD) by intracellular transfer to the nucleus in C. pauciovulata. In contrast, our analyses suggested a concurrent loss of the NADH-plastoquinone oxidoreductase (ndh) complex in both the nuclear and plastid genomes. Finally, we performed genomic and transcriptomic analyses to characterize DNA replication, recombination, and repair (DNA-RRR) genes in C. pauciovulata as well as the transcriptomes of Liriodendron tulipifera and Nelumbo nuicifera. We obtained 25 DNA-RRR genes and identified their structure in C. pauciovulata. Pairwise comparisons of nonsynonymous (dN) and synonymous (dS) substitution rates revealed that several DNA-RRR genes in C. pauciovulata have higher dN and dS values than those in N. nuicifera. CONCLUSIONS The C. pauciovulata genomic data generated here provide a valuable resource for understanding the evolution of Corydalis organelle genomes. The first mitogenome of Papaveraceae provides an example that can be explored by other researchers sequencing the mitogenomes of related plants. Our results also provide fundamental information about DNA-RRR genes in Corydalis and their related rate variation, which elucidates the relationships between DNA-RRR genes and organelle genome stability.
Collapse
Affiliation(s)
- Seongjun Park
- Institute of Natural Science, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea.
| | - Boram An
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea.
| |
Collapse
|
71
|
Shen B, Shen A, Liu L, Tan Y, Li S, Tan Z. Assembly and comparative analysis of the complete multichromosomal mitochondrial genome of Cymbidium ensifolium, an orchid of high economic and ornamental value. BMC PLANT BIOLOGY 2024; 24:255. [PMID: 38594641 PMCID: PMC11003039 DOI: 10.1186/s12870-024-04962-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Orchidaceae is one of the largest groups of angiosperms, and most species have high economic value and scientific research value due to their ornamental and medicinal properties. In China, Chinese Cymbidium is a popular ornamental orchid with high economic value and a long history. However, to date, no detailed information on the mitochondrial genome of any species of Chinese Cymbidium has been published. RESULTS Here, we present the complete assembly and annotation of the mitochondrial genome of Cymbidium ensifolium (L.) Sw. The mitogenome of C. ensifolium was 560,647 bp in length and consisted of 19 circular subgenomes ranging in size from 21,995 bp to 48,212 bp. The genome encoded 35 protein-coding genes, 36 tRNAs, 3 rRNAs, and 3405 ORFs. Repeat sequence analysis and prediction of RNA editing sites revealed a total of 915 dispersed repeats, 162 simple repeats, 45 tandem repeats, and 530 RNA editing sites. Analysis of codon usage showed a preference for codons ending in A/T. Interorganellar DNA transfer was identified in 13 of the 19 chromosomes, with plastid-derived DNA fragments representing 6.81% of the C. ensifolium mitochondrial genome. The homologous fragments of the mitochondrial genome and nuclear genome were also analysed. Comparative analysis showed that the GC content was conserved, but the size, structure, and gene content of the mitogenomes varied greatly among plants with multichromosomal mitogenome structure. Phylogenetic analysis based on the mitogenomes reflected the evolutionary and taxonomic statuses of C. ensifolium. Interestingly, compared with the mitogenomes of Cymbidium lancifolium Hook. and Cymbidium macrorhizon Lindl., the mitogenome of C. ensifolium lost 8 ribosomal protein-coding genes. CONCLUSION In this study, we assembled and annotated the mitogenome of C. ensifolium and compared it with the mitogenomes of other Liliidae and plants with multichromosomal mitogenome structures. Our findings enrich the mitochondrial genome database of orchid plants and reveal the rapid structural evolution of Cymbidium mitochondrial genomes, highlighting the potential for mitochondrial genes to help decipher plant evolutionary history.
Collapse
Affiliation(s)
- Baoming Shen
- Institute of Forest and Grass Cultivation, Hunan Academy of Forestry, 658 Shaoshan South Road, Tianxin District, Changsha City, 410004, China
| | - Airong Shen
- Institute of Forest and Grass Cultivation, Hunan Academy of Forestry, 658 Shaoshan South Road, Tianxin District, Changsha City, 410004, China
| | - Lina Liu
- Institute of Forest and Grass Cultivation, Hunan Academy of Forestry, 658 Shaoshan South Road, Tianxin District, Changsha City, 410004, China
| | - Yun Tan
- Institute of Forest and Grass Cultivation, Hunan Academy of Forestry, 658 Shaoshan South Road, Tianxin District, Changsha City, 410004, China
| | - Sainan Li
- Institute of Forest and Grass Cultivation, Hunan Academy of Forestry, 658 Shaoshan South Road, Tianxin District, Changsha City, 410004, China
| | - Zhuming Tan
- Institute of Forest and Grass Cultivation, Hunan Academy of Forestry, 658 Shaoshan South Road, Tianxin District, Changsha City, 410004, China.
| |
Collapse
|
72
|
Chen L, Dong X, Huang H, Xu H, Rono PC, Cai X, Hu G. Assembly and comparative analysis of the initial complete mitochondrial genome of Primulina hunanensis (Gesneriaceae): a cave-dwelling endangered plant. BMC Genomics 2024; 25:322. [PMID: 38561677 PMCID: PMC10983754 DOI: 10.1186/s12864-024-10247-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Primulina hunanensis, a troglobitic plant within the Primulina genus of Gesneriaceae family, exhibits robust resilience to arid conditions and holds great horticultural potential as an ornamental plant. The work of chloroplast genome (cpDNA) has been recently accomplished, however, the mitochondrial genome (mtDNA) that is crucial for plant evolution has not been reported. RESULTS In this study, we sequenced and assembled the P. hunanensis complete mtDNA, and elucidated its evolutionary and phylogenetic relationships. The assembled mtDNA spans 575,242 bp with 43.54% GC content, encompassing 60 genes, including 37 protein-coding genes (PCGs), 20 tRNA genes, and 3 rRNA genes. Notably, high number of repetitive sequences in the mtDNA and substantial sequence translocation from chloroplasts to mitochondria were observed. To determine the evolutionary and taxonomic positioning of P. hunanensis, a phylogenetic tree was constructed using mitochondrial PCGs from P. hunanensis and 32 other taxa. Furthermore, an exploration of PCGs relative synonymous codon usage, identification of RNA editing events, and an investigation of collinearity with closely related species were conducted. CONCLUSIONS This study reports the initial assembly and annotation of P. hunanensis mtDNA, contributing to the limited mtDNA repository for Gesneriaceae plants and advancing our understanding of their evolution for improved utilization and conservation.
Collapse
Affiliation(s)
- Lingling Chen
- Department of Botany, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Xiang Dong
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hang Huang
- Department of Botany, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Haixia Xu
- Department of Botany, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Peninah Cheptoo Rono
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Xiuzhen Cai
- Department of Botany, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
| | - Guangwan Hu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Hubei Jiangxia Laboratory, Wuhan, 430200, China.
| |
Collapse
|
73
|
Yang Y, Duan C. Mitochondrial genome features and systematic evolution of diospyros kaki thunb 'Taishuu'. BMC Genomics 2024; 25:285. [PMID: 38500026 PMCID: PMC10946091 DOI: 10.1186/s12864-024-10199-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 03/08/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND 'Taishuu' has a crisp texture, abundant juice, and sweet flavor with hints of cantaloupe. The availability of mitochondrial genome data of Diospyros species is far from the known number of species. RESULTS The sequencing data were assembled into a closed circular mitochondrial chromosome with a 421,308 bp length and a 45.79% GC content. The mitochondrial genome comprised 40 protein-coding, 24 tRNA, and three rRNA genes. The most common codons for arginine (Arg), proline (Pro), glycine (Gly), tryptophan (Trp), valine (Val), alanine (Ala), and leucine (Leu) were AGA, CCA, GGA, UGG, GUA, GCA, and CUA, respectively. The start codon for cox1 and nad4L protein-coding genes was ACG (ATG), whereas the remaining protein-coding genes started with ATG. There are four types of stop codons: CGA, TAA, TAG, and TGA, with TAA being the most frequently used stop codon (45.24%). In the D. kaki Thunb. 'Taishuu' mitochondrial genome, a total of 645 repeat sequences were identified, including 125 SSRs, 7 tandem repeats, and 513 dispersed repeats. Collinearity analysis revealed a close relationship between D. kaki Thunb. 'Taishuu' and Diospyros oleifera, with conserved homologous gene fragments shared among these species in large regions of the mitochondrial genome. The protein-coding genes ccmB and nad4L were observed to undergo positive selection. Analysis of homologous sequences between chloroplasts and mitochondria identified 28 homologous segments, with a total length of 24,075 bp, accounting for 5.71% of the mitochondrial genome. These homologous segments contain 8 annotated genes, including 6 tRNA genes and 2 protein-coding genes (rrn18 and ccmC). There are 23 homologous genes between chloroplasts and nuclei. Mitochondria, chloroplasts, and nuclei share two homologous genes, which are trnV-GAC and trnW-CCA. CONCLUSION In conclusion, a high-quality chromosome-level draft genome for D. kaki was generated in this study, which will contribute to further studies of major economic traits in the genus Diospyros.
Collapse
Affiliation(s)
- Yunliang Yang
- Cotton Research Institute of Shanxi Agricultural University, Yuncheng, 044000, China
| | - Chao Duan
- Cotton Research Institute of Shanxi Agricultural University, Yuncheng, 044000, China.
| |
Collapse
|
74
|
Hao Z, Zhang Z, Zhang J, Cui X, Li J, Luo L, Li Y. The complete mitochondrial genome of Aglaia odorata, insights into its genomic structure and RNA editing sites. FRONTIERS IN PLANT SCIENCE 2024; 15:1362045. [PMID: 38510436 PMCID: PMC10950942 DOI: 10.3389/fpls.2024.1362045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/21/2024] [Indexed: 03/22/2024]
Abstract
Aglaia odorata, native to Guangdong, Guangxi, and Hainan provinces in China, has long been utilized as an herbal remedy in ancient China. In this study, we assembled and annotated the complete mitochondrial genome (mitogenome) of A. odorata, which spans a total length of 537,321 bp. Conformation of the A. odorata recombination was verified through PCR experiments and Sanger sequencing. We identified and annotated 35 protein-coding genes (PCGs), 22 tRNA genes, and 3 rRNA genes within the mitogenome. Analysis of repeated elements revealed the presence of 192 SSRs, 29 pairs of tandem repeats, and 333 pairs of dispersed repeats in the A. odorata mitogenome. Additionally, we analyzed codon usage and mitochondrial plastid DNAs (MTPTs). Twelve MTPTs between the plastome and mitogenome of A. odorata were identified, with a combined length of 2,501 bp, accounting for 0.47% of the mitogenome. Furthermore, 359 high-confidence C to U RNA editing sites were predicted on PCGs, and four selected RNA editing sites were specially examined to verify the creation of start and/or stop codons. Extensive genomic rearrangement was observed between A. odorata and related mitogenomes. Phylogenetic analysis based on mitochondrial PCGs were conducted to elucidate the evolutionary relationships between A. odorata and other angiosperms.
Collapse
Affiliation(s)
- Zhigang Hao
- Department of Pesticide Science, State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, China
- Sanya Institute of China Agricultural University, Sanya, Hainan, China
- Hainan Seed Industry Laboratory, Sanya, Hainan, China
| | - Zhiping Zhang
- Department of Pesticide Science, State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Jinan Zhang
- Sanya Institute of China Agricultural University, Sanya, Hainan, China
| | - Xiufen Cui
- Hainan Seed Industry Laboratory, Sanya, Hainan, China
- Department of Plant Pathology, Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University, Beijing, China
| | - Jianqiang Li
- Hainan Seed Industry Laboratory, Sanya, Hainan, China
- Department of Plant Pathology, Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University, Beijing, China
| | - Laixin Luo
- Hainan Seed Industry Laboratory, Sanya, Hainan, China
- MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, Beijing, China
| | - Yingbin Li
- Department of Pesticide Science, State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
75
|
Zwonitzer KD, Tressel LG, Wu Z, Kan S, Broz AK, Mower JP, Ruhlman TA, Jansen RK, Sloan DB, Havird JC. Genome copy number predicts extreme evolutionary rate variation in plant mitochondrial DNA. Proc Natl Acad Sci U S A 2024; 121:e2317240121. [PMID: 38427600 PMCID: PMC10927533 DOI: 10.1073/pnas.2317240121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/22/2024] [Indexed: 03/03/2024] Open
Abstract
Nuclear and organellar genomes can evolve at vastly different rates despite occupying the same cell. In most bilaterian animals, mitochondrial DNA (mtDNA) evolves faster than nuclear DNA, whereas this trend is generally reversed in plants. However, in some exceptional angiosperm clades, mtDNA substitution rates have increased up to 5,000-fold compared with closely related lineages. The mechanisms responsible for this acceleration are generally unknown. Because plants rely on homologous recombination to repair mtDNA damage, we hypothesized that mtDNA copy numbers may predict evolutionary rates, as lower copy numbers may provide fewer templates for such repair mechanisms. In support of this hypothesis, we found that copy number explains 47% of the variation in synonymous substitution rates of mtDNA across 60 diverse seed plant species representing ~300 million years of evolution. Copy number was also negatively correlated with mitogenome size, which may be a cause or consequence of mutation rate variation. Both relationships were unique to mtDNA and not observed in plastid DNA. These results suggest that homologous recombinational repair plays a role in driving mtDNA substitution rates in plants and may explain variation in mtDNA evolution more broadly across eukaryotes. Our findings also contribute to broader questions about the relationships between mutation rates, genome size, selection efficiency, and the drift-barrier hypothesis.
Collapse
Affiliation(s)
- Kendra D. Zwonitzer
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX78712
| | - Lydia G. Tressel
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX78712
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518000, China
| | - Shenglong Kan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518000, China
- Marine College, Shandong University, Weihai264209, China
| | - Amanda K. Broz
- Department of Biology, Colorado State University, Fort Collins, CO80523
| | - Jeffrey P. Mower
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE68588
| | - Tracey A. Ruhlman
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX78712
| | - Robert K. Jansen
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX78712
| | - Daniel B. Sloan
- Department of Biology, Colorado State University, Fort Collins, CO80523
| | - Justin C. Havird
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX78712
| |
Collapse
|
76
|
Bi C, Shen F, Han F, Qu Y, Hou J, Xu K, Xu LA, He W, Wu Z, Yin T. PMAT: an efficient plant mitogenome assembly toolkit using low-coverage HiFi sequencing data. HORTICULTURE RESEARCH 2024; 11:uhae023. [PMID: 38469379 PMCID: PMC10925850 DOI: 10.1093/hr/uhae023] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/14/2024] [Indexed: 03/13/2024]
Abstract
Complete mitochondrial genomes (mitogenomes) of plants are valuable resources for nucleocytoplasmic interactions, plant evolution, and plant cytoplasmic male sterile line breeding. However, the complete assembly of plant mitogenomes is challenging due to frequent recombination events and horizontal gene transfers. Previous studies have adopted Illumina, PacBio, and Nanopore sequencing data to assemble plant mitogenomes, but the poor assembly completeness, low sequencing accuracy, and high cost limit the sampling capacity. Here, we present an efficient assembly toolkit (PMAT) for de novo assembly of plant mitogenomes using low-coverage HiFi sequencing data. PMAT has been applied to the de novo assembly of 13 broadly representative plant mitogenomes, outperforming existing organelle genome assemblers in terms of assembly accuracy and completeness. By evaluating the assembly of plant mitogenomes from different sequencing data, it was confirmed that PMAT only requires 1× HiFi sequencing data to obtain a complete plant mitogenome. The source code for PMAT is available at https://github.com/bichangwei/PMAT. The developed PMAT toolkit will indeed accelerate the understanding of evolutionary variation and breeding application of plant mitogenomes.
Collapse
Affiliation(s)
- Changwei Bi
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
- Department of artificial intelligence, College of Information Science and Technology, College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Fei Shen
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Fuchuan Han
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Yanshu Qu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Jing Hou
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Kewang Xu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Li-an Xu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Wenchuang He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Tongming Yin
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
77
|
Guo S, Li Z, Li C, Liu Y, Liang X, Qin Y. Assembly and characterization of the complete mitochondrial genome of Ventilago leiocarpa. PLANT CELL REPORTS 2024; 43:77. [PMID: 38386216 DOI: 10.1007/s00299-023-03126-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/04/2023] [Indexed: 02/23/2024]
Abstract
KEY MESSAGE We reported the mitochondrial genome of Ventilago leiocarpa for the first time. Two and one sites lead to the generation of stop and stat codon through editing were verified. Ventilago leiocarpa, a member of the Rhamnaceae family, is frequently utilized in traditional medicine due to the medicinal properties of its roots. In this study, we successfully assembled the mitogenome of V. leiocarpa using both BGI short reads and Nanopore long reads. This mitogenome has a total length of 331,839 bp. The annotated results showed 36 unique protein-coding, 16 tRNA and 3 rRNA genes in this mitogenome. Furthermore, we confirmed the presence of a branched structure through the utilization of long reads mapping, PCR amplification, and Sanger sequencing. Specifically, the ctg1 can form a single circular molecule or combine with ctg4 to form a linear molecule. Likewise, ctg2 can form a single circular molecule or can be connected to ctg4 to form a linear molecule. Subsequently, through a comparative analysis of the mitogenome and cpgenome sequences, we identified ten mitochondrial plastid sequences (MTPTs), including two complete protein-coding genes and five complete tRNA genes. The existence of MTPTs was verified by long reads. Colinear analysis showed that the mitogenomes of Rosales were highly divergent in structure. Finally, we identified 545 RNA editing sites involving 36 protein-coding genes by Deepred-mt. To validate our findings, we conducted PCR amplification and Sanger sequencing, which confirmed the generation of stop codons in atp9-223 and rps10-391, as well as the generation of a start codon in nad4L-2. This project reported the complex structure and RNA editing event of the V. Leiocarpa mitogenome, which will provide valuable information for the study of mitochondrial gene expression.
Collapse
Affiliation(s)
- Song Guo
- College of Food and Biochemical Engineering, Guangxi Science and Technology Normal University, Guangxi Laibin, 546199, People's Republic of China
- Key Laboratory for Zhuang and Yao Pharmaceutical Quality Biology, Guangxi Science and Technology Normal University, Laibin, 546199, People's Republic of China
| | - Zeyang Li
- College of Food and Biochemical Engineering, Guangxi Science and Technology Normal University, Guangxi Laibin, 546199, People's Republic of China
- Key Laboratory for Zhuang and Yao Pharmaceutical Quality Biology, Guangxi Science and Technology Normal University, Laibin, 546199, People's Republic of China
| | - Chunlian Li
- College of Food and Biochemical Engineering, Guangxi Science and Technology Normal University, Guangxi Laibin, 546199, People's Republic of China
- Key Laboratory for Zhuang and Yao Pharmaceutical Quality Biology, Guangxi Science and Technology Normal University, Laibin, 546199, People's Republic of China
| | - Yu Liu
- Guangxi Botanical Garden of Medicinal Plants, Nanning, 530010, People's Republic of China
| | - Xianglan Liang
- College of Food and Biochemical Engineering, Guangxi Science and Technology Normal University, Guangxi Laibin, 546199, People's Republic of China
| | - Yiming Qin
- College of Food and Biochemical Engineering, Guangxi Science and Technology Normal University, Guangxi Laibin, 546199, People's Republic of China.
- Key Laboratory for Zhuang and Yao Pharmaceutical Quality Biology, Guangxi Science and Technology Normal University, Laibin, 546199, People's Republic of China.
| |
Collapse
|
78
|
Liu X, You Q, Liu M, Bo C, Zhu Y, Duan Y, Xue J, Wang D, Xue T. Assembly and comparative analysis of the complete mitochondrial genome of Pinellia ternata. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23256. [PMID: 38316513 DOI: 10.1071/fp23256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/12/2024] [Indexed: 02/07/2024]
Abstract
Pinellia ternata is an important natural medicinal herb in China. However, it is susceptible to withering when exposed to high temperatures during growth, which limits its tuber production. Mitochondria usually function in stress response. The P . ternata mitochondrial (mt) genome has yet to be explored. Therefore, we integrated PacBio and Illumina sequencing reads to assemble and annotate the mt genome of P . ternata . The circular mt genome of P . ternata is 876 608bp in length and contains 38 protein-coding genes (PCGs), 20 tRNA genes and three rRNA genes. Codon usage, sequence repeats, RNA editing and gene migration from chloroplast (cp) to mt were also examined. Phylogenetic analysis based on the mt genomes of P . ternata and 36 other taxa revealed the taxonomic and evolutionary status of P . ternata . Furthermore, we investigated the mt genome size and GC content by comparing P . ternata with the other 35 species. An evaluation of non-synonymous substitutions and synonymous substitutions indicated that most PCGs in the mt genome underwent negative selection. Our results provide comprehensive information on the P . ternata mt genome, which may facilitate future research on the high-temperature response of P . ternata and provide new molecular insights on the Araceae family.
Collapse
Affiliation(s)
- Xiao Liu
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Qian You
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Mengmeng Liu
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Chen Bo
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Yanfang Zhu
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Yongbo Duan
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Jianping Xue
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Dexin Wang
- College of Agriculture and Engineering, Heze University, Heze, Shandong, China
| | - Tao Xue
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
| |
Collapse
|
79
|
Wang L, Liu X, Xu Y, Zhang Z, Wei Y, Hu Y, Zheng C, Qu X. Assembly and comparative analysis of the first complete mitochondrial genome of a traditional Chinese medicine Angelica biserrata (Shan et Yuan) Yuan et Shan. Int J Biol Macromol 2024; 257:128571. [PMID: 38052286 DOI: 10.1016/j.ijbiomac.2023.128571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/07/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023]
Abstract
Duhuo, a member of the Angelica family, is widely used to treat ailments such as rheumatic pain. It possesses a diverse array of bioactivities, including anti-tumor, anti-inflammatory, and analgesic properties, as recent pharmacological research has revealed. Nevertheless, the mtDNA of Angelica species remains relatively unexplored. To address this gap, we sequenced and assembled the mtDNA of A. biserrata to shed light on its genetic mechanisms and evolutionary pathways. Our investigation indicated a distinctive multi-branched conformation in the A. biserrata mtDNA. A comprehensive analysis of protein-coding sequences (PCGs) across six closely related species revealed the presence of 11 shared genes in their mitochondrial genomes. Intriguingly, positive selection emerged as a significant factor in the evolution of the atp4, matR, nad3, and nad7 genes. In addition, our data highlighted a recurring trend of homologous fragment migration between chloroplast and mitochondrial organelles. We identified 13 homologous fragments spanning both chloroplast and mitochondrial genomes. The phylogenetic tree established a close relationship between A. biserrata and Saposhnikovia divaricata. To sum up, our research would contribute to the application of population genetics and evolutionary studies in the genus Acanthopanax and other genera in the Araliaceae family.
Collapse
Affiliation(s)
- Le Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine Resource, Endangered Medicinal Breeding National Engineering Laboratory, Chongqing Academy of Chinese Materia Medica, Chongqing, China; College of Life Science and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Xue Liu
- Chongqing Key Laboratory of Traditional Chinese Medicine Resource, Endangered Medicinal Breeding National Engineering Laboratory, Chongqing Academy of Chinese Materia Medica, Chongqing, China.
| | - Yuanjiang Xu
- Chongqing Key Laboratory of Traditional Chinese Medicine Resource, Endangered Medicinal Breeding National Engineering Laboratory, Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Zhiwei Zhang
- Chongqing Key Laboratory of Traditional Chinese Medicine Resource, Endangered Medicinal Breeding National Engineering Laboratory, Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Yongsheng Wei
- Chongqing Key Laboratory of Traditional Chinese Medicine Resource, Endangered Medicinal Breeding National Engineering Laboratory, Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Ying Hu
- Chongqing Key Laboratory of Traditional Chinese Medicine Resource, Endangered Medicinal Breeding National Engineering Laboratory, Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Changbing Zheng
- Chongqing Yintiaoling National Nature Reserve Management Affairs Center, Chongqing, China
| | - Xianyou Qu
- Chongqing Key Laboratory of Traditional Chinese Medicine Resource, Endangered Medicinal Breeding National Engineering Laboratory, Chongqing Academy of Chinese Materia Medica, Chongqing, China
| |
Collapse
|
80
|
Yang L, Liu J, Guo W, Zheng Z, Xu Y, Xia H, Xiao T. Insights into the multi-chromosomal mitochondrial genome structure of the xero-halophytic plant Haloxylon Ammodendron (C.A.Mey.) Bunge ex Fenzl. BMC Genomics 2024; 25:123. [PMID: 38287293 PMCID: PMC10823707 DOI: 10.1186/s12864-024-10026-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/18/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Haloxylon ammodendron holds significance as an ecological plant, showcasing remarkable adaptability to desert conditions, halophytic environments, and sand fixation. With its potential for carbon sequestration, it emerges as a promising candidate for environmental sustainability. Furthermore, it serves as a valuable C4 plant model, offering insights into the genetic foundations of extreme drought tolerance. Despite the availability of plastid and nuclear genomes, the absence of a mitochondrial genome (mitogenome or mtDNA) hinders a comprehensive understanding of its its mtDNA structure, organization, and phylogenetic implications. RESULTS In the present study, the mitochondrial genome of H. ammodendron was assembled and annotated, resulting in a multi-chromosomal configuration with two circular chromosomes. The mtDNA measured 210,149 bp in length and contained 31 protein-coding genes, 18 tRNA and three rRNA. Our analysis identified a total of 66 simple sequence repeats along with 27 tandem repeats, 312 forward repeats, and 303 palindromic repeats were found. Notably, 17 sequence fragments displayed homology between the mtDNA and chloroplast genome (cpDNA), spanning 5233 bp, accounting for 2.49% of the total mitogenome size. Additionally, we predicted 337 RNA editing sites, all of the C-to-U conversion type. Phylogenetic inference confidently placed H. ammodendron in the Amaranthacea family and its close relative, Suaeda glacum. CONCLUSIONS H. ammodendron mtDNA showed a multi-chromosomal structure with two fully circularized molecules. This newly characterized mtDNA represents a valuable resource for gaining insights into the basis of mtDNA structure variation within Caryophyllales and the evolution of land plants, contributing to their identification, and classification.
Collapse
Affiliation(s)
- Lulu Yang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Jia Liu
- Biomedical Research Center, Tongji University Suzhou Institute, Suzhou, Jiangsu, 215101, China
| | - Wenjun Guo
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China
| | - Zehan Zheng
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Yafei Xu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Houjun Xia
- Center for Cancer Immunology, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Guangdong, 518055, China.
| | - Tian Xiao
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
81
|
Liu D, Zhang Z, Hao Y, Li M, Yu H, Zhang X, Mi H, Cheng L, Zhao Y. Decoding the complete organelle genomic architecture of Stewartia gemmata: an early-diverging species in Theaceae. BMC Genomics 2024; 25:114. [PMID: 38273225 PMCID: PMC10811901 DOI: 10.1186/s12864-024-10016-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Theaceae, comprising 300 + species, holds significance in biodiversity, economics, and culture, notably including the globally consumed tea plant. Stewartia gemmata, a species of the earliest diverging tribe Stewartieae, is critical to offer insights into Theaceae's origin and evolutionary history. RESULT We sequenced the complete organelle genomes of Stewartia gemmata using short/long reads sequencing technologies. The chloroplast genome (158,406 bp) exhibited a quadripartite structure including the large single-copy region (LSC), a small single-copy region (SSC), and a pair of inverted repeat regions (IRs); 114 genes encoded 80 proteins, 30 tRNAs, and four rRNAs. The mitochondrial genome (681,203 bp) exhibited alternative conformations alongside a monocyclic structure: 61 genes encoding 38 proteins, 20 tRNAs, three rRNAs, and RNA editing-impacting genes, including ATP6, RPL16, COX2, NAD4L, NAD5, NAD7, and RPS1. Comparative analyses revealed frequent recombination events and apparent rRNA gene gains and losses in the mitochondrial genome of Theaceae. In organelle genomes, the protein-coding genes exhibited a strong A/U bias at codon endings; ENC-GC3 analysis implies selection-driven codon bias. Transposable elements might facilitate interorganelle sequence transfer. Phylogenetic analysis confirmed Stewartieae's early divergence within Theaceae, shedding light on organelle genome characteristics and evolution in Theaceae. CONCLUSIONS We studied the detailed characterization of organelle genomes, including genome structure, composition, and repeated sequences, along with the identification of lateral gene transfer (LGT) events and complexities. The discovery of a large number of repetitive sequences and simple sequence repeats (SSRs) has led to new insights into molecular phylogenetic markers. Decoding the Stewartia gemmata organellar genome provides valuable genomic resources for further studies in tea plant phylogenomics and evolutionary biology.
Collapse
Affiliation(s)
- Daliang Liu
- Henan International Joint Laboratory of Tea-Oil Tree Biology and High-Value Utilization, College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
- Key Laboratory of Functional Agriculture in Higher Education of Guizhou Province, College of Agriculture, Guizhou University, Guiyang, 550025, China
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, 550025, China
| | - Zhihan Zhang
- Key Laboratory of Functional Agriculture in Higher Education of Guizhou Province, College of Agriculture, Guizhou University, Guiyang, 550025, China
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, 550025, China
- College of Engineering and Technology, Northeast Forestry University, Harbin, 150040, China
| | - Yanlin Hao
- Henan International Joint Laboratory of Tea-Oil Tree Biology and High-Value Utilization, College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Mengge Li
- Henan International Joint Laboratory of Tea-Oil Tree Biology and High-Value Utilization, College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Houlin Yu
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
- Present address: Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Xingruo Zhang
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60637, USA
| | - Haoyang Mi
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Lin Cheng
- Henan International Joint Laboratory of Tea-Oil Tree Biology and High-Value Utilization, College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China.
| | - Yiyong Zhao
- Key Laboratory of Functional Agriculture in Higher Education of Guizhou Province, College of Agriculture, Guizhou University, Guiyang, 550025, China.
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
82
|
Tang J, Luo Z, Zhang J, Chen L, Li L. Multi-Chromosomal mitochondrial genome of medicinal plant Acorus tatarinowii (Acoraceae): Firstly reported from Acorales Order. Gene 2024; 892:147847. [PMID: 37774807 DOI: 10.1016/j.gene.2023.147847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Acorus tatarinowii Schott (A. tatarinowii), a well-known traditional Chinese medicinal plant renowned for its high medicinal value, but its mitochondrial genome (mitogenome) is still unexplored. In this study, we meticulously assembled the complete mitochondrial genome of A. tatarinowii using a combination of Illumina short reads and Oxford Nanopore long reads. Our findings revealed that A. tatarinowii possesses a complex chromosomal structural mitogenome, comprising two linear chromosomes and seven circular chromosomes. This mitogenome spans 1.81 Mb in length with a GC content of 38.29 %. Notably, it contained 24 unique mitochondrial core genes, seven unique variable genes, 17 tRNA genes, and three rRNA genes. Analyses of codon usage, most protein-coding genes (PCGs) exhibited a common codon usage preference, with RSCU values greater than 1, and the codon with the highest RSCU value was UAA(End, 1.90). We conducted a thorough analysis of repeat sequences, the distribution of repetitive sequences in nine mitochondrial chromosomes showed distinct patterns. Moreover, we identified 82 and 12 homologous fragments by comparing the sequences of chloroplast and nuclear genomes to the A. tatarinowii mitogenome, respectively. Lastly, We predicted a total of 234 potential RNA editing sites in 28 unique PCGs and discovered that the nad4 gene has been edited the most often, at 26 times. Our results contribute to the enrichment of mitochondrial genome resources for Acoraceae, and the mitogenome also can be used as a reference for other species.
Collapse
Affiliation(s)
- Jianfeng Tang
- Yangtze River Basin Ecological Environment Monitoring and Scientific Research Center, Yangtze River Basin Ecological Environment Supervision and Administration Bureau, Ministry of Ecological and Environment, Wuhan 430010, Hubei, China
| | - Zongkai Luo
- Eco-Environmental Monitoring Station of Pu'er City, Yunnan Provincial Department of Ecology and Environment, Pu'er 665000, Yunnan, China
| | - Jing Zhang
- Yangtze River Basin Ecological Environment Monitoring and Scientific Research Center, Yangtze River Basin Ecological Environment Supervision and Administration Bureau, Ministry of Ecological and Environment, Wuhan 430010, Hubei, China
| | - Liwen Chen
- Yangtze River Basin Ecological Environment Monitoring and Scientific Research Center, Yangtze River Basin Ecological Environment Supervision and Administration Bureau, Ministry of Ecological and Environment, Wuhan 430010, Hubei, China
| | - Li Li
- Qiandongnan Ecological Environment Monitoring Center, Kaili 557314, Guizhou, China.
| |
Collapse
|
83
|
Liu X, Zhang D, Yu Z, Zeng B. Assembly and analysis of the complete mitochondrial genome of the Chinese wild dwarf almond ( Prunus tenella). Front Genet 2024; 14:1329060. [PMID: 38283144 PMCID: PMC10811783 DOI: 10.3389/fgene.2023.1329060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/18/2023] [Indexed: 01/30/2024] Open
Abstract
Background: The wild dwarf almond (Prunus tenella) is one of the national key grade II-protected wild plants in China. It is a relic deciduous forest species from the middle Eocene of the ancient Mediterranean Sea and is also known as a "living fossil of plants." It is distributed in Southeast Europe, West Asia, Central Asia, Siberia, and Xinjiang (Tacheng) and other areas of China. The plant grows on arid slopes, steppes, depressions, and valleys at an altitude of 1,200 m. The seeds of wild dwarf almonds are frost resistant and contain oil and bitter lentil glycosides, which possess medicinal value. Additionally, the seeds of wild dwarf almonds can be used as the original material for breeding new varieties of almonds and obtain ornamental flowers and trees. Results: The complete mitochondrial genome of P. tenella was sequenced and assembled using two sequencing platforms, namely, Illumina Novaseq6000 and Oxford Nanopore PromethION. The assembled genome was 452,158-bp long with a typical loop structure. The total number of A, T, C, and G bases in the genome was 122,066 (26.99%), 124,114 (27.45%), 103,285 (22.84%), and 102,693 (22.71%), respectively, with a GC content of 45.55%. A total of 63 unique genes, including 36 protein-coding genes, 24 tRNA genes, and 3 rRNA genes, were identified in the genome. Furthermore, codon usage, sequence duplication, RNA editing, and mitochondrial and chloroplast DNA fragment transfer events in the genome were analyzed. A phylogenetic tree was also constructed using 30 protein-coding genes that are common to the mitochondrial genomes of 24 species, which indicated that the genome of wild lentils is highly conserved with those of apples and pears belonging to Rosaceae. Conclusion: Assembly and annotation of the P. tenella mitochondrial genome provided comprehensive information about the mitochondrial genome of wild dwarf almonds, This study provides information on the mitochondrial genome of Prunus species and serves as a reference for further evolutionary studies on wild dwarf almonds.
Collapse
Affiliation(s)
| | | | | | - Bin Zeng
- College of Horticulture, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
84
|
Liu J, Hu JY, Li DZ. Remarkable mitochondrial genome heterogeneity in Meniocus linifolius (Brassicaceae). PLANT CELL REPORTS 2024; 43:36. [PMID: 38200362 DOI: 10.1007/s00299-023-03102-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/06/2023] [Indexed: 01/12/2024]
Abstract
KEY MESSAGE Detailed analyses of 16 genomes identified a remarkable acceleration of mutation rate, hence mitochondrial sequence and structural heterogeneity, in Meniocus linifolius (Brassicaceae). The powerhouse, mitochondria, in plants feature high levels of structural variation, while the encoded genes are normally conserved. However, the substitution rates and spectra of mitochondria DNA within the Brassicaceae, a family with substantial scientific and economic importance, have not been adequately deciphered. Here, by analyzing three newly assembled and 13 known mitochondrial genomes (mitogenomes), we report the highly variable genome structure and mutation rates in Brassicaceae. The genome sizes and GC contents are 196,604 bp and 46.83%, 288,122 bp and 44.79%, and 287,054 bp and 44.93%, for Meniocus linifolius (Mli), Crucihimalaya lasiocarpa (Cla), and Lepidium sativum (Lsa), respectively. In total, 29, 33, and 34 protein-coding genes (PCGs) and 14, 18, and 18 tRNAs are annotated for Mli, Cla, and Lsa, respectively, while all mitogenomes contain one complete circular molecule with three rRNAs and abundant RNA editing sites. The Mli mitogenome features four conformations likely mediated by the two pairs of long repeats, while at the same time seems to have an unusual evolutionary history due to higher GC content, loss of more genes and sequences, but having more repeats and plastid DNA insertions. Corroborating with these, an ambiguous phylogenetic position with long branch length and elevated synonymous substitution rate in nearly all PCGs are observed for Mli. Taken together, our results reveal a high level of mitogenome heterogeneity at the family level and provide valuable resources for further understanding the evolutionary pattern of organelle genomes in Brassicaceae.
Collapse
Affiliation(s)
- Jie Liu
- CAS Key Laboratory for Plant Diversity, Biogeography of East Asia, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jin-Yong Hu
- CAS Key Laboratory for Plant Diversity, Biogeography of East Asia, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| |
Collapse
|
85
|
He X, Zhang X, Deng Y, Yang R, Yu LX, Jia S, Zhang T. Structural Reorganization in Two Alfalfa Mitochondrial Genome Assemblies and Mitochondrial Evolution in Medicago Species. Int J Mol Sci 2023; 24:17334. [PMID: 38139163 PMCID: PMC10743518 DOI: 10.3390/ijms242417334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Plant mitochondria are crucial for species evolution, phylogenetics, classification, and identification as maternal genetic material. However, the presence of numerous repetitive sequences, complex structures, and a low number of genes in the mitochondrial genome has hindered its complete assembly and related research endeavors. In this study, we assembled two mitochondrial genomes of alfalfa varieties of Zhongmu No.1 (299,123 bp) and Zhongmu No.4 (306,983 bp), based on a combination of PacBio, Illumina, and Hi-C sequences. The comparison of genome assemblies revealed that the same number of mitochondrial genes, including thirty-three protein-coding genes, sixteen tRNA genes, and three rRNA genes existed in the two varieties. Additionally, large fragments of repetitive sequences were found underlying frequent mitochondrial recombination events. We observed extensive transfer of mitochondrial fragments into the nuclear genome of Zhongmu No.4. Analysis of the cox1 and rrn18s genes in 35 Medicago accessions revealed the presence of population-level deletions and substitutions in the rrn18s gene. We propose that mitochondrial structural reorganizations may contribute to alfalfa evolution.
Collapse
Affiliation(s)
- Xiaofan He
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China; (X.H.); (X.Z.); (Y.D.); (R.Y.)
| | - Xiaopeng Zhang
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China; (X.H.); (X.Z.); (Y.D.); (R.Y.)
| | - Yantian Deng
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China; (X.H.); (X.Z.); (Y.D.); (R.Y.)
| | - Rui Yang
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China; (X.H.); (X.Z.); (Y.D.); (R.Y.)
| | - Long-Xi Yu
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, Prosser, WA 99350, USA;
| | - Shangang Jia
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Tiejun Zhang
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China; (X.H.); (X.Z.); (Y.D.); (R.Y.)
| |
Collapse
|
86
|
Liu Q, Wu Z, Tian C, Yang Y, Liu L, Feng Y, Li Z. Complete mitochondrial genome of the endangered Prunus pedunculata (Prunoideae, Rosaceae) in China: characterization and phylogenetic analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1266797. [PMID: 38155854 PMCID: PMC10753190 DOI: 10.3389/fpls.2023.1266797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023]
Abstract
Introduction Prunus pedunculata (Prunoideae: Rosaceae), a relic shrub with strong resistance and multiple application values, is endangered in China. Extensive research had been devoted to gene expression, molecular markers, plastid genome analysis, and genetic background investigations of P. pedunculata. However, the mitochondrial genome of this species has not been systematically described, owing to the complexity of the plant mitogenome. Methods In the present research, the complete mitochondrial genome of P. pedunculata was assembled, annotated, and characterized. The genomic features, gene content and repetitive sequences were analyzed. The genomic variation and phylogenetic analysis have been extensively enumerated. Results and discussion The P. pedunculata mitogenome is a circular molecule with a total length of 405,855 bp and a GC content of 45.63%, which are the smallest size and highest GC content among the known Prunus mitochondrial genomes. The mitogenome of P. pedunculata encodes 62 genes, including 34 unique protein-coding genes (PCGs, excluding three possible pseudogenes), three ribosomal RNA genes, and 19 transfer RNA genes. The mitogenome is rich in repetitive sequences, counting 112 simple sequence repeats, 15 tandem repeats, and 50 interspersed repetitive sequences, with a total repeat length of 11,793 bp, accounting for 2.91% of the complete genome. Leucine (Leu) was a predominant amino acid in PCGs, with a frequency of 10.67%, whereas cysteine (Cys) and tryptophan (Trp) were the least adopted. The most frequently used codon was UUU (Phe), with a relative synonymous codon usage (RSCU) value of 1.12. Selective pressure was calculated based on 20 shared PCGs in the mitogenomes of the 32 species, most of which were subjected to purifying selection (Ka/Ks < 1), whereas ccmC and ccmFn underwent positive selection. A total of 262 potential RNA editing sites in 26 PCGs were identified. Furthermore, 56 chloroplast-derived fragments were ascertained in the mitogenome, ranging from 30 to 858 bp, and were mainly located across IGS (intergenic spacer) regions or rRNA genes. These findings verify the occurrence of intracellular gene transfer events from the chloroplast to the mitochondria. Furthermore, the phylogenetic relationship of P. pedunculata was supported by the mitogenome data of 30 other taxa of the Rosaceae family. Understanding the mitochondrial genome characteristics of P. pedunculata is of great importance to promote comprehension of its genetic background and this study provides a basis for the genetic breeding of Prunus.
Collapse
Affiliation(s)
- Qian Liu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Zinian Wu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot, China
| | - Chunyu Tian
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Yanting Yang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Lemeng Liu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Yumei Feng
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Zhiyong Li
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot, China
| |
Collapse
|
87
|
Sanchez-Puerta MV, Ceriotti LF, Gatica-Soria LM, Roulet ME, Garcia LE, Sato HA. Invited Review Beyond parasitic convergence: unravelling the evolution of the organellar genomes in holoparasites. ANNALS OF BOTANY 2023; 132:909-928. [PMID: 37503831 PMCID: PMC10808021 DOI: 10.1093/aob/mcad108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/27/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND The molecular evolution of organellar genomes in angiosperms has been studied extensively, with some lineages, such as parasitic ones, displaying unique characteristics. Parasitism has emerged 12 times independently in angiosperm evolution. Holoparasitism is the most severe form of parasitism, and is found in ~10 % of parasitic angiosperms. Although a few holoparasitic species have been examined at the molecular level, most reports involve plastomes instead of mitogenomes. Parasitic plants establish vascular connections with their hosts through haustoria to obtain water and nutrients, which facilitates the exchange of genetic information, making them more susceptible to horizontal gene transfer (HGT). HGT is more prevalent in the mitochondria than in the chloroplast or nuclear compartments. SCOPE This review summarizes current knowledge on the plastid and mitochondrial genomes of holoparasitic angiosperms, compares the genomic features across the different lineages, and discusses their convergent evolutionary trajectories and distinctive features. We focused on Balanophoraceae (Santalales), which exhibits extraordinary traits in both their organelles. CONCLUSIONS Apart from morphological similarities, plastid genomes of holoparasitic plants also display other convergent features, such as rampant gene loss, biased nucleotide composition and accelerated evolutionary rates. In addition, the plastomes of Balanophoraceae have extremely low GC and gene content, and two unexpected changes in the genetic code. Limited data on the mitochondrial genomes of holoparasitic plants preclude thorough comparisons. Nonetheless, no obvious genomic features distinguish them from the mitochondria of free-living angiosperms, except for a higher incidence of HGT. HGT appears to be predominant in holoparasitic angiosperms with a long-lasting endophytic stage. Among the Balanophoraceae, mitochondrial genomes exhibit disparate evolutionary paths with notable levels of heteroplasmy in Rhopalocnemis and unprecedented levels of HGT in Lophophytum. Despite their differences, these Balanophoraceae share a multichromosomal mitogenome, a feature also found in a few free-living angiosperms.
Collapse
Affiliation(s)
- M Virginia Sanchez-Puerta
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA, Mendoza, Argentina
| | - Luis F Ceriotti
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA, Mendoza, Argentina
| | - Leonardo M Gatica-Soria
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA, Mendoza, Argentina
| | - M Emilia Roulet
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
| | - Laura E Garcia
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA, Mendoza, Argentina
| | - Hector A Sato
- Facultad de Ciencias Agrarias, Cátedra de Botánica General–Herbario JUA, Alberdi 47, Universidad Nacional de Jujuy, 4600 Jujuy, Argentina
| |
Collapse
|
88
|
Wang M, Yu W, Yang J, Hou Z, Li C, Niu Z, Zhang B, Xue Q, Liu W, Ding X. Mitochondrial genome comparison and phylogenetic analysis of Dendrobium (Orchidaceae) based on whole mitogenomes. BMC PLANT BIOLOGY 2023; 23:586. [PMID: 37993773 PMCID: PMC10666434 DOI: 10.1186/s12870-023-04618-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND Mitochondrial genomes are essential for deciphering the unique evolutionary history of seed plants. However, the rules of their extreme variation in genomic size, multi-chromosomal structure, and foreign sequences remain unresolved in most plant lineages, which further hindered the application of mitogenomes in phylogenetic analyses. RESULTS Here, we took Dendrobium (Orchidaceae) which shows the great divergence of morphology and difficulty in species taxonomy as the study focus. We first de novo assembled two complete mitogenomes of Dendrobium wilsonii and Dendrobium henanense that were 763,005 bp and 807,551 bp long with multichromosomal structures. To understand the evolution of Dendrobium mitogenomes, we compared them with those of four other orchid species. The results showed great variations of repetitive and chloroplast-derived sequences in Dendrobium mitogenomes. Moreover, the intergenic content of Dendrobium mitogenomes has undergone expansion during evolution. We also newly sequenced mitogenomes of 26 Dendrobium species and reconstructed phylogenetic relationships of Dendrobium based on genomic mitochondrial and plastid data. The results indicated that the existence of chloroplast-derived sequences made the mitochondrial phylogeny display partial characteristics of the plastid phylogeny. Additionally, the mitochondrial phylogeny provided new insights into the phylogenetic relationships of Dendrobium species. CONCLUSIONS Our study revealed the evolution of Dendrobium mitogenomes and the potential of mitogenomes in deciphering phylogenetic relationships at low taxonomic levels.
Collapse
Grants
- 32070353 National Natural Science Foundation of China
- 32070353 National Natural Science Foundation of China
- 32070353 National Natural Science Foundation of China
- 32070353 National Natural Science Foundation of China
- 32070353 National Natural Science Foundation of China
- 32070353 National Natural Science Foundation of China
- 32070353 National Natural Science Foundation of China
- 32070353 National Natural Science Foundation of China
- 32070353 National Natural Science Foundation of China
- 32070353 National Natural Science Foundation of China
- LYKJ[2021]12 Forestry independent innovation project of Jiangsu Province, China
- LYKJ[2021]12 Forestry independent innovation project of Jiangsu Province, China
- LYKJ[2021]12 Forestry independent innovation project of Jiangsu Province, China
- LYKJ[2021]12 Forestry independent innovation project of Jiangsu Province, China
- LYKJ[2021]12 Forestry independent innovation project of Jiangsu Province, China
- LYKJ[2021]12 Forestry independent innovation project of Jiangsu Province, China
- LYKJ[2021]12 Forestry independent innovation project of Jiangsu Province, China
- LYKJ[2021]12 Forestry independent innovation project of Jiangsu Province, China
- LYKJ[2021]12 Forestry independent innovation project of Jiangsu Province, China
- LYKJ[2021]12 Forestry independent innovation project of Jiangsu Province, China
- CX (22) 3147 Agricultural independent innovation project of Jiangsu Province, China
- CX (22) 3147 Agricultural independent innovation project of Jiangsu Province, China
- CX (22) 3147 Agricultural independent innovation project of Jiangsu Province, China
- CX (22) 3147 Agricultural independent innovation project of Jiangsu Province, China
- CX (22) 3147 Agricultural independent innovation project of Jiangsu Province, China
- CX (22) 3147 Agricultural independent innovation project of Jiangsu Province, China
- CX (22) 3147 Agricultural independent innovation project of Jiangsu Province, China
- CX (22) 3147 Agricultural independent innovation project of Jiangsu Province, China
- CX (22) 3147 Agricultural independent innovation project of Jiangsu Province, China
- CX (22) 3147 Agricultural independent innovation project of Jiangsu Province, China
Collapse
Affiliation(s)
- Mengting Wang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Cixi, China
| | - Wenhui Yu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jiapeng Yang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhenyu Hou
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Chao Li
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhitao Niu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Benhou Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Qingyun Xue
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wei Liu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaoyu Ding
- College of Life Sciences, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
89
|
Jiang M, Ni Y, Zhang J, Li J, Liu C. Complete mitochondrial genome of Mentha spicata L. reveals multiple chromosomal configurations and RNA editing events. Int J Biol Macromol 2023; 251:126257. [PMID: 37573900 DOI: 10.1016/j.ijbiomac.2023.126257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
Mentha spicata L. is a valuable plant that yields spearmint oil, widely utilized in the pharmaceutical, chemical, and cosmetic industries. The mitochondrial genome (mitogenome) is an essential material for molecular breeding and evolution studies. Here, the mitogenome of M. spicata was assembled by combining Nanopore and Illumina reads. It consisted of a linear chromosome (Ch1) and two circular chromosomes (Ch2 and Ch3). Furthermore, we showed two pairs of repeats (R1 and R2) mediated recombinations resulting in multiple chromosomal configurations. The R1-mediated-recombination generated a large molecule formed by joining Ch2 and Ch1. Similarly, the R2-mediated-recombination generated a large molecule formed by joining Ch3 and Ch1. Then, we identified 17 mitochondrial plastid DNAs (MTPTs) by comparing the mitogenome and cpgenome. The MTPT14 was conserved in multiple species, which has undergone the same evolutionary process as the two organellar genomes among M. spicata, Hesperelaea palmeri and Castilleja paramensis. Based on the RNA-seq reads, 246 RNA editing sites were predicted, resulting in the conversion of cytosine to uracil bases. Furthermore, we successfully validated 40 out of 43 predicted sites. This project reported a complex structure of the M. spicata mitogenome resulting from repeat-mediated recombinations, which will provide valuable information for gene function study and the breeding of different varieties.
Collapse
Affiliation(s)
- Mei Jiang
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Yang Ni
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China
| | - Jianjie Zhang
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Jingling Li
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China
| | - Chang Liu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China.
| |
Collapse
|
90
|
Fields PD, Weber MM, Waneka G, Broz AK, Sloan DB. Chromosome-Level Genome Assembly for the Angiosperm Silene conica. Genome Biol Evol 2023; 15:evad192. [PMID: 37862134 PMCID: PMC10630074 DOI: 10.1093/gbe/evad192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/28/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023] Open
Abstract
The angiosperm genus Silene has been the subject of extensive study in the field of ecology and evolution, but the availability of high-quality reference genome sequences has been limited for this group. Here, we report a chromosome-level assembly for the genome of Silene conica based on Pacific Bioscience HiFi, Hi-C, and Bionano technologies. The assembly produced 10 scaffolds (1 per chromosome) with a total length of 862 Mb and only ∼1% gap content. These results confirm previous observations that S. conica and its relatives have a reduced base chromosome number relative to the genus's ancestral state of 12. Silene conica has an exceptionally large mitochondrial genome (>11 Mb), predominantly consisting of sequence of unknown origins. Analysis of shared sequence content suggests that it is unlikely that transfer of nuclear DNA is the primary driver of this mitochondrial genome expansion. More generally, this assembly should provide a valuable resource for future genomic studies in Silene, including comparative analyses with related species that recently evolved sex chromosomes.
Collapse
Affiliation(s)
- Peter D Fields
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
- Mammalian Genetics, The Jackson Laboratory, Bar Harbor, Maine, USA
| | - Melody M Weber
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Gus Waneka
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Amanda K Broz
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
91
|
Guo H, Liu Q, Chen Y, Niu H, Zhao Q, Song H, Pang R, Huang X, Zhang J, Zhao Z, Liu D, Zhu J. Comprehensive assembly and comparative examination of the full mitochondrial genome in Castanea mollissima Blume. Genomics 2023; 115:110740. [PMID: 37923179 DOI: 10.1016/j.ygeno.2023.110740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
The Chinese chestnut, Castanea mollissima Blume, a nut-bearing tree native to China and North Korea, belongs to the Fagaceae family. As an important genetic resource, C. mollissima is vital in enhancing edible chestnut varieties and offers significant insights into the origin and evolution of chestnut species. While the chloroplast genome of C. mollissima has been sequenced, its mitochondrial genome (mitogenome) remains largely uncharted. In this study, we have characterized the C. mollissima mitogenome, assembling it utilizing reads from both BGI and Nanopore sequencing platforms, and conducted a comparative analysis with the mitochondrial genomes of closely related species. The mitogenome of C. mollissima manifests a polycyclic structure consisting of two circular molecules measuring 363,232 bp and 24,806 bp, respectively. This genome encompasses 35 unique protein-coding genes, 19 tRNA genes, and three rRNA genes. A total of 139 SSRs were identified throughout the entire C. mollissima mitogenome. Furthermore, the combined length of homologous fragments between the chloroplast and mitochondrial genomes was 5766 bp, constituting 1.49% of the mitogenome. We also predicted 484 RNA editing sites in C. mollissima, demonstrating C-to-U RNA editing. Phylogenetic analysis of related species' mitogenomes showed that C. mollissima was closely related to Lithocarpus litseifolius (Hance) Chun and Quercus acutissima Carruth. Interestingly, the mitogenome sequences of C. mollissima, L. litseifolius, Q. acutissima, Fagus sylvatica L., and Juglans mandshurica Maxim did not show conservation in their alignments, indicating frequent genome reorganization. This report marks the inaugural study of the C. mollissima mitogenome, serving as a benchmark genome for economically significant plants within the Castanea genus. Moreover, it supplies invaluable information that can guide future molecular breeding efforts and contribute to the broader understanding of chestnut genomics.
Collapse
Affiliation(s)
- Haili Guo
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China
| | - Qiong Liu
- Shandong Refining and Chemical Energy Group Co., Ltd., Jinan 250199, China
| | - Ying Chen
- Shandong Provincial Forestry Protection and Development Service Center, Jinan 250109, China
| | - Hongyun Niu
- Shandong Provincial Center of Aviation Emergency and Rescue, Jinan 250014, China
| | | | - Hui Song
- Shandong Institute of Land Spatial Data and Remote Sensing Technology, Jinan 250002, China
| | - Ruidong Pang
- Shandong Provincial Archives of Natural Resources, Jinan 250013, China
| | - Xiaolu Huang
- Guangxi Forestry Research Institute, Nanning 530002, China
| | - Jingzheng Zhang
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Zhiheng Zhao
- Guangxi Forestry Research Institute, Nanning 530002, China; Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China.
| | - Dan Liu
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China.
| | - Jingle Zhu
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China.
| |
Collapse
|
92
|
Zhu H, Shan Y, Li J, Zhang X, Yu J, Wang H. Assembly and comparative analysis of the complete mitochondrial genome of Viburnum chinshanense. BMC PLANT BIOLOGY 2023; 23:487. [PMID: 37821817 PMCID: PMC10566092 DOI: 10.1186/s12870-023-04493-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Viburnum chinshanense is an endemic species found exclusively in the North-Central and South-Central regions of China. This species is a lush garden ornamental tree and is extensively utilized for vegetation restoration in rocky desertification areas. RESULTS In this study, we obtained 13.96 Gb of Oxford Nanopore data for the whole genome, and subsequently, by combining Illumina short-reads, we successfully assembled the complete mitochondrial genome (mitogenome) of the V. chinshanense using a hybrid assembly strategy. The assembled genome can be described as a circular genome. The total length of the V. chinshanense mitogenome measures 643,971 bp, with a GC content of 46.18%. Our annotation efforts have revealed a total of 39 protein-coding genes (PCGs), 28 tRNA genes, and 3 rRNA genes within the V. chinshanense mitogenome. The analysis of repeated elements has identified 212 SSRs, 19 long tandem repeat elements, and 325 pairs of dispersed repeats in the V. chinshanense mitogenome. Additionally, we have investigated mitochondrial plastid DNAs (MTPTs) and identified 21 MTPTs within the mitogenome and plastidial genome. These MTPTs collectively span a length of 9,902 bp, accounting for 1.54% of the mitogenome. Moreover, employing Deepred-mt, we have confidently predicted 623 C to U RNA editing sites across the 39 protein-coding genes. Furthermore, extensive genomic rearrangements have been observed between V. chinshanense and the mitogenomes of related species. Interestingly, we have also identified a bacterial-derived tRNA gene (trnC-GCA) in the V. chinshanense mitogenome. Lastly, we have inferred the phylogenetic relationships of V. chinshanense with other angiosperms based on mitochondrial PCGs. CONCLUSIONS This study marks the first report of a mitogenome from the Viburnum genus, offering a valuable genomic resource for exploring the evolution of mitogenomes within the Dipsacales order.
Collapse
Affiliation(s)
- Haoxiang Zhu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, 400715, China
| | - Yuanyu Shan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China
| | - Jingling Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China
| | - Xue Zhang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China
| | - Jie Yu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China.
| | - Haiyang Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China.
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, 400715, China.
| |
Collapse
|
93
|
Ni Y, Zhang X, Li J, Lu Q, Chen H, Ma B, Liu C. Genetic diversity of Coffea arabica L. mitochondrial genomes caused by repeat- mediated recombination and RNA editing. FRONTIERS IN PLANT SCIENCE 2023; 14:1261012. [PMID: 37885664 PMCID: PMC10598636 DOI: 10.3389/fpls.2023.1261012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023]
Abstract
Background Coffea arabica L. is one of the most important crops widely cultivated in 70 countries across Asia, Africa, and Latin America. Mitochondria are essential organelles that play critical roles in cellular respiration, metabolism, and differentiation. C. arabica's nuclear and chloroplast genomes have been reported. However, its mitochondrial genome remained unreported. Here, we intended to sequence and characterize its mitochondrial genome to maximize the potential of its genomes for evolutionary studies, molecular breeding, and molecular marker developments. Results We sequenced the total DNA of C. arabica using Illumina and Nanopore platforms. We then assembled the mitochondrial genome with a hybrid strategy using Unicycler software. We found that the mitochondrial genome comprised two circular chromosomes with lengths of 867,678 bp and 153,529 bp, encoding 40 protein-coding genes, 26 tRNA genes, and three rRNA genes. We also detected 270 Simple Sequence Repeats and 34 tandem repeats in the mitochondrial genome. We found 515 high-scoring sequence pairs (HSPs) for a self-to-self similarity comparison using BLASTn. Three HSPs were found to mediate recombination by the mapping of long reads. Furthermore, we predicted 472 using deep-mt with the convolutional neural network model. Then we randomly validated 90 RNA editing events by PCR amplification and Sanger sequencing, with the majority being non-synonymous substitutions and only three being synonymous substitutions. These findings provide valuable insights into the genetic characteristics of the C. arabica mitochondrial genome, which can be helpful for future study on coffee breeding and mitochondrial genome evolution. Conclusion Our study sheds new light on the evolution of C. arabica organelle genomes and their potential use in genetic breeding, providing valuable data for developing molecular markers that can improve crop productivity and quality. Furthermore, the discovery of RNA editing events in the mitochondrial genome of C. arabica offers insights into the regulation of gene expression in this species, contributing to a better understanding of coffee genetics and evolution.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chang Liu
- Center for Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
94
|
Li J, Cullis C. Comparative Analysis of Tylosema esculentum Mitochondrial DNA Revealed Two Distinct Genome Structures. BIOLOGY 2023; 12:1244. [PMID: 37759643 PMCID: PMC10525999 DOI: 10.3390/biology12091244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
Tylosema esculentum, commonly known as the marama bean, is an underutilized legume with nutritious seeds, holding potential to enhance food security in southern Africa due to its resilience to prolonged drought and heat. To promote the selection of this agronomically valuable germplasm, this study assembled and compared the mitogenomes of 84 marama individuals, identifying variations in genome structure, single-nucleotide polymorphisms (SNPs), insertions/deletions (indels), heteroplasmy, and horizontal transfer. Two distinct germplasms were identified, and a novel mitogenome structure consisting of three circular molecules and one long linear chromosome was discovered. The structural variation led to an increased copy number of specific genes, nad5, nad9, rrnS, rrn5, trnC, and trnfM. The two mitogenomes also exhibited differences at 230 loci, with only one notable nonsynonymous substitution in the matR gene. Heteroplasmy was concentrated at certain loci on chromosome LS1 (OK638188). Moreover, the marama mitogenome contained an over 9 kb insertion of cpDNA, originating from chloroplast genomes, but had accumulated mutations and lost gene functionality. The evolutionary and comparative genomics analysis indicated that mitogenome divergence in marama might not be solely constrained by geographical factors. Additionally, marama, as a member from the Cercidoideae subfamily, tends to possess a more complete set of mitochondrial genes than Faboideae legumes.
Collapse
Affiliation(s)
| | - Christopher Cullis
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA;
| |
Collapse
|
95
|
Fields PD, Weber MM, Waneka G, Broz AK, Sloan DB. Chromosome-level genome assembly for the angiosperm Silene conica. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.05.556365. [PMID: 37732249 PMCID: PMC10508779 DOI: 10.1101/2023.09.05.556365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The angiosperm genus Silene has been the subject of extensive study in the field of ecology and evolution, but the availability of high-quality reference genome sequences has been limited for this group. Here, we report a chromosome-level assembly for the genome of Silene conica based on PacBio HiFi, Hi-C and Bionano technologies. The assembly produced 10 scaffolds (one per chromosome) with a total length of 862 Mb and only ~1% gap content. These results confirm previous observations that S. conica and its relatives have a reduced base chromosome number relative to the genus's ancestral state of 12. Silene conica has an exceptionally large mitochondrial genome (>11 Mb), predominantly consisting of sequence of unknown origins. Analysis of shared sequence content suggests that it is unlikely that transfer of nuclear DNA is the primary driver of this mitochondrial genome expansion. More generally, this assembly should provide a valuable resource for future genomic studies in Silene, including comparative analyses with related species that recently evolved sex chromosomes. Significance Whole-genome sequences have been largely lacking for species in the genus Silene even though these flowering plants have been used for studying ecology, evolution, and genetics for over a century. Here, we address this gap by providing a high-quality nuclear genome assembly for S. conica, a species known to have greatly accelerated rates of sequence and structural divergence in its mitochondrial and plastid genomes. This resource will be valuable in understanding the coevolutionary interactions between nuclear and cytoplasmic genomes and in comparative analyses across this highly diverse genus.
Collapse
Affiliation(s)
- Peter D. Fields
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
- Mammalian Genetics, The Jackson Laboratory, Bar Harbor, Maine, USA
| | - Melody M. Weber
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Gus Waneka
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Amanda K. Broz
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Daniel B. Sloan
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
96
|
Zhou S, Wei N, Jost M, Wanke S, Rees M, Liu Y, Zhou R. The Mitochondrial Genome of the Holoparasitic Plant Thonningia sanguinea Provides Insights into the Evolution of the Multichromosomal Structure. Genome Biol Evol 2023; 15:evad155. [PMID: 37603455 PMCID: PMC10476698 DOI: 10.1093/gbe/evad155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023] Open
Abstract
Multichromosomal mitochondrial genome (mitogenome) structures have repeatedly evolved in many lineages of angiosperms. However, the underlying mechanism remains unclear. The mitogenomes of three genera of Balanophoraceae, namely Lophophytum, Ombrophytum, and Rhopalocnemis, have already been sequenced and assembled, all showing a highly multichromosomal structure, albeit with different genome and chromosome sizes. It is expected that characterization of additional lineages of this family may expand the knowledge of mitogenome diversity and provide insights into the evolution of the plant mitogenome structure and size. Here, we assembled and characterized the mitogenome of Thonningia sanguinea, which, together with Balanophora, forms a clade sister to the clade comprising Lophophytum, Ombrophytum, and Rhopalocnemis. The mitogenome of T. sanguinea possesses a multichromosomal structure of 18 circular chromosomes of 8.7-19.2 kb, with a total size of 246,247 bp. There are very limited shared regions and poor chromosomal correspondence between T. sanguinea and other Balanophoraceae species, suggesting frequent rearrangements and rapid sequence turnover. Numerous medium- and small-sized repeats were identified in the T. sanguinea mitogenome; however, no repeat-mediated recombination was detected, which was verified by Illumina reads mapping and PCR experiments. Intraspecific mitogenome variations in T. sanguinea are mostly insertions and deletions, some of which can lead to degradation of perfect repeats in one or two accessions. Based on the mitogenome features of T. sanguinea, we propose a mechanism to explain the evolution of a multichromosomal mitogenome from a master circle, which involves mutation in organellar DNA replication, recombination and repair genes, decrease of recombination, and repeat degradation.
Collapse
Affiliation(s)
- Shuaixi Zhou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Neng Wei
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Matthias Jost
- Institut für Botanik, Technische Universität Dresden, Dresden, Germany
| | - Stefan Wanke
- Institut für Botanik, Technische Universität Dresden, Dresden, Germany
| | - Mathew Rees
- School of GeoSciences, University of Edinburgh, Edinburgh, United Kingdom
- Royal Botanic Garden, Edinburgh, United Kingdom
| | - Ying Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Renchao Zhou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
97
|
Khachaturyan M, Reusch TBH, Dagan T. Worldwide Population Genomics Reveal Long-Term Stability of the Mitochondrial Genome Architecture in a Keystone Marine Plant. Genome Biol Evol 2023; 15:evad167. [PMID: 37708410 PMCID: PMC10538256 DOI: 10.1093/gbe/evad167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/21/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023] Open
Abstract
Mitochondrial genomes (mitogenomes) of flowering plants are composed of multiple chromosomes. Recombination within and between the mitochondrial chromosomes may generate diverse DNA molecules termed isoforms. The isoform copy number and composition can be dynamic within and among individual plants due to uneven replication and homologous recombination. Nonetheless, despite their functional importance, the level of mitogenome conservation within species remains understudied. Whether the ontogenetic variation translates to evolution of mitogenome composition over generations is currently unknown. Here we show that the mitogenome composition of the seagrass Zostera marina is conserved among worldwide populations that diverged ca. 350,000 years ago. Using long-read sequencing, we characterized the Z. marina mitochondrial genome and inferred the repertoire of recombination-induced configurations. To characterize the mitochondrial genome architecture worldwide and study its evolution, we examined the mitogenome in Z. marina meristematic region sampled in 16 populations from the Pacific and Atlantic oceans. Our results reveal a striking similarity in the isoform relative copy number, indicating a high conservation of the mitogenome composition among distantly related populations and within the plant germline, despite a notable variability during individual ontogenesis. Our study supplies a link between observations of dynamic mitogenomes at the level of plant individuals and long-term mitochondrial evolution.
Collapse
Affiliation(s)
- Marina Khachaturyan
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Institute of General Microbiology, University of Kiel, Kiel, Germany
| | - Thorsten B H Reusch
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Tal Dagan
- Institute of General Microbiology, University of Kiel, Kiel, Germany
| |
Collapse
|
98
|
Bai MZ, Guo YY. Bioinformatics Analysis of MSH1 Genes of Green Plants: Multiple Parallel Length Expansions, Intron Gains and Losses, Partial Gene Duplications, and Alternative Splicing. Int J Mol Sci 2023; 24:13620. [PMID: 37686425 PMCID: PMC10487979 DOI: 10.3390/ijms241713620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
MutS homolog 1 (MSH1) is involved in the recombining and repairing of organelle genomes and is essential for maintaining their stability. Previous studies indicated that the length of the gene varied greatly among species and detected species-specific partial gene duplications in Physcomitrella patens. However, there are critical gaps in the understanding of the gene size expansion, and the extent of the partial gene duplication of MSH1 remains unclear. Here, we screened MSH1 genes in 85 selected species with genome sequences representing the main clades of green plants (Viridiplantae). We identified the MSH1 gene in all lineages of green plants, except for nine incomplete species, for bioinformatics analysis. The gene is a singleton gene in most of the selected species with conserved amino acids and protein domains. Gene length varies greatly among the species, ranging from 3234 bp in Ostreococcus tauri to 805,861 bp in Cycas panzhihuaensis. The expansion of MSH1 repeatedly occurred in multiple clades, especially in Gymnosperms, Orchidaceae, and Chloranthus spicatus. MSH1 has exceptionally long introns in certain species due to the gene length expansion, and the longest intron even reaches 101,025 bp. And the gene length is positively correlated with the proportion of the transposable elements (TEs) in the introns. In addition, gene structure analysis indicated that the MSH1 of green plants had undergone parallel intron gains and losses in all major lineages. However, the intron number of seed plants (gymnosperm and angiosperm) is relatively stable. All the selected gymnosperms contain 22 introns except for Gnetum montanum and Welwitschia mirabilis, while all the selected angiosperm species preserve 21 introns except for the ANA grade. Notably, the coding region of MSH1 in algae presents an exceptionally high GC content (47.7% to 75.5%). Moreover, over one-third of the selected species contain species-specific partial gene duplications of MSH1, except for the conserved mosses-specific partial gene duplication. Additionally, we found conserved alternatively spliced MSH1 transcripts in five species. The study of MSH1 sheds light on the evolution of the long genes of green plants.
Collapse
Affiliation(s)
| | - Yan-Yan Guo
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
99
|
Cruz Plancarte D, Solórzano S. Structural and gene composition variation of the complete mitochondrial genome of Mammillaria huitzilopochtli (Cactaceae, Caryophyllales), revealed by de novo assembly. BMC Genomics 2023; 24:509. [PMID: 37653379 PMCID: PMC10468871 DOI: 10.1186/s12864-023-09607-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/20/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Structural descriptions of complete genomes have elucidated evolutionary processes in angiosperms. In Cactaceae (Caryophyllales), a high structural diversity of the chloroplast genome has been identified within and among genera. In this study, we assembled the first mitochondrial genome (mtDNA) for the short-globose cactus Mammillaria huitzilopochtli. For comparative purposes, we used the published genomes of 19 different angiosperms and the gymnosperm Cycas taitungensis as an external group for phylogenetic issues. RESULTS The mtDNA of M. huitzilopochtli was assembled into one linear chromosome of 2,052,004 bp, in which 65 genes were annotated. These genes account for 57,606 bp including 34 protein-coding genes (PCGs), 27 tRNAs, and three rRNAs. In the non-coding sequences, repeats were abundant, with a total of 4,550 (179,215 bp). In addition, five complete genes (psaC and four tRNAs) of chloroplast origin were documented. Negative selection was estimated for most (23) of the PCGs. The phylogenetic tree showed a topology consistent with previous analyses based on the chloroplast genome. CONCLUSIONS The number and type of genes contained in the mtDNA of M. huitzilopochtli were similar to those reported in 19 other angiosperm species, regardless of their phylogenetic relationships. Although other Caryophyllids exhibit strong differences in structural arrangement and total size of mtDNA, these differences do not result in an increase in the typical number and types of genes found in M. huitzilopochtli. We concluded that the total size of mtDNA in angiosperms increases by the lengthening of the non-coding sequences rather than a significant gain of coding genes.
Collapse
Affiliation(s)
- David Cruz Plancarte
- Laboratorio de Ecología Molecular y Evolución, Universidad Nacional Autónoma de México, FES Iztacala, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla de Baz, 54090, Mexico
- Posgrado en Ciencias Biológicas, UNAM, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, Mexico
| | - Sofía Solórzano
- Laboratorio de Ecología Molecular y Evolución, Universidad Nacional Autónoma de México, FES Iztacala, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla de Baz, 54090, Mexico.
| |
Collapse
|
100
|
Li J, Chen Y, Liu Y, Wang C, Li L, Chao Y. Complete mitochondrial genome of Agrostis stolonifera: insights into structure, Codon usage, repeats, and RNA editing. BMC Genomics 2023; 24:466. [PMID: 37596544 PMCID: PMC10439588 DOI: 10.1186/s12864-023-09573-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Plants possess mitochondrial genomes that are large and complex compared to animals. Despite their size, plant mitochondrial genomes do not contain significantly more genes than their animal counterparts. Studies into the sequence and structure of plant mitochondrial genomes heavily imply that the main mechanism driving replication of plant mtDNA, and offer valuable insights into plant evolution, energy production, and environmental adaptation. RESULTS This study presents the first comprehensive analysis of Agrostis stolonifera's mitochondrial genome, characterized by a branched structure comprising three contiguous chromosomes, totaling 560,800 bp with a GC content of 44.07%. Annotations reveal 33 unique protein-coding genes (PCGs), 19 tRNA genes, and 3 rRNA genes. The predominant codons for alanine and glutamine are GCU and CAA, respectively, while cysteine and phenylalanine exhibit weaker codon usage biases. The mitogenome contains 73, 34, and 23 simple sequence repeats (SSRs) on chromosomes 1, 2, and 3, respectively. Chromosome 1 exhibits the most frequent A-repeat monomeric SSR, whereas chromosome 2 displays the most common U-repeat monomeric SSR. DNA transformation analysis identifies 48 homologous fragments between the mitogenome and chloroplast genome, representing 3.41% of the mitogenome's total length. The PREP suite detects 460 C-U RNA editing events across 33 mitochondrial PCGs, with the highest count in the ccmFn gene and the lowest in the rps7 gene. Phylogenetic analysis confirms A. stolonifera's placement within the Pooideae subfamily, showing a close relationship to Lolium perenne, consistent with the APG IV classification system. Numerous homologous co-linear blocks are observed in A. stolonifera's mitogenomes and those of related species, while certain regions lack homology. CONCLUSIONS The unique features and complexities of the A. stolonifera mitochondrial genome, along with its similarities and differences to related species, provide valuable insights into plant evolution, energy production, and environmental adaptation. The findings from this study significantly contribute to the growing body of knowledge on plant mitochondrial genomes and their role in plant biology.
Collapse
Affiliation(s)
- Jiaxing Li
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China
| | - Yinglong Chen
- UWA School of Agriculture and Environment, The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia
| | - Yaling Liu
- Inner Mongolia M-Grass Ecology And Environment (Group) Co., Ltd, Hohhot, 010010, China
| | - Chen Wang
- Mentougou District Bureau of Ecological and Environment of Beijing Municipality, Beijing, 102300, China
| | - Ling Li
- Mentougou District Bureau of Ecological and Environment of Beijing Municipality, Beijing, 102300, China
| | - Yuehui Chao
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|