51
|
Yuan PQ, Bellier JP, Li T, Kwaan MR, Kimura H, Taché Y. Intrinsic cholinergic innervation in the human sigmoid colon revealed using CLARITY, three-dimensional (3D) imaging, and a novel anti-human peripheral choline acetyltransferase (hpChAT) antiserum. Neurogastroenterol Motil 2021; 33:e14030. [PMID: 33174295 PMCID: PMC8126258 DOI: 10.1111/nmo.14030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/28/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND We previously reported the specificity of a novel anti-human peripheral choline acetyltransferase (hpChAT) antiserum for immunostaining of cholinergic neuronal cell bodies and fibers in the human colon. In this study, we investigate 3D architecture of intrinsic cholinergic innervation in the human sigmoid colon and the relationship with nitrergic neurons in the enteric plexus. METHODS We developed a modified CLARITY tissue technique applicable for clearing human sigmoid colon specimens and immunostaining with hpChAT antiserum and co-labeling with neuronal nitric oxide synthase (nNOS) antibody. The Z-stack confocal images were processed for 3D reconstruction/segmentation/digital tracing and computational quantitation by Imaris 9.2 and 9.5. KEY RESULTS In the mucosa, a local micro-neuronal network formed of hpChAT-ir fibers and a few neuronal cell bodies were digitally assembled. Three layers of submucosal plexuses were displayed in 3D structure that were interconnected by hpChAT-ir fiber bundles and hpChAT-ir neurons were rarely co-labeled by nNOS. In the myenteric plexus, 30.1% of hpChAT-ir somas including Dogiel type I and II were co-labeled by nNOS and 3 classes of hpChAT-ir nerve fiber strands were visualized in 3D images and videos. The density and intensity values of hpChAT-ir fibers in 3D structure were significantly higher in the circular than in the longitudinal layer. CONCLUSIONS AND INFERENCES The intrinsic cholinergic innervation in the human sigmoid colon was demonstrated layer by layer for the first time in 3D microstructures. This may open a new venue to assess the structure-function relationships and pathological alterations in colonic diseases.
Collapse
Affiliation(s)
- Pu-Qing Yuan
- CLA/Digestive Diseases Research Core Center, Vatche and Tamar Manoukian Digestive Diseases Division, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA, USA,VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Jean-Pierre Bellier
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Tao Li
- CLA/Digestive Diseases Research Core Center, Vatche and Tamar Manoukian Digestive Diseases Division, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Mary R. Kwaan
- Department of Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Hiroshi Kimura
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Yvette Taché
- CLA/Digestive Diseases Research Core Center, Vatche and Tamar Manoukian Digestive Diseases Division, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA, USA,VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| |
Collapse
|
52
|
Sheh A. The Gastrointestinal Microbiota of the Common Marmoset (Callithrix jacchus). ILAR J 2021; 61:188-198. [PMID: 33620078 DOI: 10.1093/ilar/ilaa025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 10/06/2020] [Accepted: 11/09/2020] [Indexed: 12/21/2022] Open
Abstract
The microbiota is heavily involved in both health and disease pathogenesis, but defining a normal, healthy microbiota in the common marmoset has been challenging. The aim of this review was to systematically review recent literature involving the gastrointestinal microbiome of common marmosets in health and disease. Twelve sources were included in this review. The gut microbiome composition was reviewed across institutions worldwide, and taxonomic shifts between healthy individuals were described. Unlike the human gut microbiome, which is dominated by Firmicutes and Bacteroidetes, the marmoset gut microbiome shows great plasticity across institutions, with 5 different phyla described as dominant in different healthy cohorts. Genera shared across institutions include Anaerobiospirillum, Bacteroides, Bifidobacterium, Collinsella, Fusobacterium, Megamonas, Megasphaera, Phascolarctobacterium, and Prevotella. Shifts in the abundance of Prevotella or Bifidobacterium or invasion by pathogens like Clostridium perfringens may be associated with disease. Changes in microbial composition have been described in healthy and diseased marmosets, but factors influencing the severe changes in microbial composition have not been established. Multi-institutional, prospective, and longitudinal studies that utilize multiple testing methodologies are required to determine sources of variability in the reporting of marmoset microbiomes. Furthermore, methods of microbial manipulation, whether by diet, enrichment, fecal microbiome transplantation, etc, need to be established to modulate and maintain robust and resilient microbiome communities in marmoset colonies and reduce the incidence of idiopathic gastrointestinal disease.
Collapse
Affiliation(s)
- Alexander Sheh
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
53
|
Traulsen J, Zagami C, Daddi AA, Boccellato F. Molecular modelling of the gastric barrier response, from infection to carcinogenesis. Best Pract Res Clin Gastroenterol 2021; 50-51:101737. [PMID: 33975688 DOI: 10.1016/j.bpg.2021.101737] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023]
Abstract
The lining of the stomach is a tight monolayer of epithelial cells performing functions in digestion and a protective barrier against gastric acid, toxic metabolites and infectious agents, including Helicobacter pylori. The response of the epithelial barrier to infections underlies gastric pathologies, including gastric cancer. H. pylori has the unique capacity to colonise the gastric mucosa while evading the immune system. The colonised mucosa initiates an inflammatory response to fight the infection and a strong regenerative program to avoid barrier failure and ulceration. This response changes the morphology and cell composition of the gastric epithelium and in parallel it might contribute to the accumulation of somatic mutations leading to cellular transformation. Genetically modified mice, cell lines and human-derived organoids are the main biological models to study the gastric epithelial barrier. With these models it is possible to dissect the stepwise process of tissue adaptation to infection that places the epithelium at risk of malignant transformation.
Collapse
Affiliation(s)
- Jan Traulsen
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, United Kingdom.
| | - Claudia Zagami
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, United Kingdom.
| | - Alice Anna Daddi
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, United Kingdom.
| | - Francesco Boccellato
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, United Kingdom.
| |
Collapse
|
54
|
Wang W, Zhang N, Du Y, Gao J, Li M, Lin L, Czajkowsky DM, Li X, Yang C, Shao Z. Three‐Dimensional Quantitative Imaging of Native Microbiota Distribution in the Gut. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202010921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Wei Wang
- Institute of Molecular Medicine (IMM) Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Renji Hospital School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| | - Ni Zhang
- State Key Laboratory for Oncogenes & Related Genes and Bio-ID Center School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Yahui Du
- Institute of Molecular Medicine (IMM) Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Renji Hospital School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation Key Laboratory for Chemical Biology of Fujian Province State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemical Biology College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Juan Gao
- Institute of Molecular Medicine (IMM) Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Renji Hospital School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| | - Min Li
- State Key Laboratory for Oncogenes & Related Genes and Bio-ID Center School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Liyuan Lin
- Institute of Molecular Medicine (IMM) Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Renji Hospital School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| | - Daniel M. Czajkowsky
- State Key Laboratory for Oncogenes & Related Genes and Bio-ID Center School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Xiaowei Li
- State Key Laboratory for Oncogenes & Related Genes and Bio-ID Center School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Chaoyong Yang
- Institute of Molecular Medicine (IMM) Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Renji Hospital School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation Key Laboratory for Chemical Biology of Fujian Province State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemical Biology College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Zhifeng Shao
- State Key Laboratory for Oncogenes & Related Genes and Bio-ID Center School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
55
|
Wang W, Zhang N, Du Y, Gao J, Li M, Lin L, Czajkowsky DM, Li X, Yang C, Shao Z. Three‐Dimensional Quantitative Imaging of Native Microbiota Distribution in the Gut. Angew Chem Int Ed Engl 2020; 60:3055-3061. [DOI: 10.1002/anie.202010921] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/13/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Wei Wang
- Institute of Molecular Medicine (IMM) Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Renji Hospital School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| | - Ni Zhang
- State Key Laboratory for Oncogenes & Related Genes and Bio-ID Center School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Yahui Du
- Institute of Molecular Medicine (IMM) Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Renji Hospital School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation Key Laboratory for Chemical Biology of Fujian Province State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemical Biology College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Juan Gao
- Institute of Molecular Medicine (IMM) Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Renji Hospital School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| | - Min Li
- State Key Laboratory for Oncogenes & Related Genes and Bio-ID Center School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Liyuan Lin
- Institute of Molecular Medicine (IMM) Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Renji Hospital School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| | - Daniel M. Czajkowsky
- State Key Laboratory for Oncogenes & Related Genes and Bio-ID Center School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Xiaowei Li
- State Key Laboratory for Oncogenes & Related Genes and Bio-ID Center School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Chaoyong Yang
- Institute of Molecular Medicine (IMM) Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Renji Hospital School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation Key Laboratory for Chemical Biology of Fujian Province State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemical Biology College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Zhifeng Shao
- State Key Laboratory for Oncogenes & Related Genes and Bio-ID Center School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
56
|
Thanaphongdecha P, Karinshak SE, Ittiprasert W, Mann VH, Chamgramol Y, Pairojkul C, Fox JG, Suttiprapa S, Sripa B, Brindley PJ. Infection with Helicobacter pylori Induces Epithelial to Mesenchymal Transition in Human Cholangiocytes. Pathogens 2020; 9:E971. [PMID: 33233485 PMCID: PMC7700263 DOI: 10.3390/pathogens9110971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/14/2020] [Accepted: 11/18/2020] [Indexed: 02/08/2023] Open
Abstract
Recent reports suggest that the East Asian liver fluke infection, caused by Opisthorchis viverrini, which is implicated in opisthorchiasis-associated cholangiocarcinoma, serves as a reservoir of Helicobacter pylori. The opisthorchiasis-affected cholangiocytes that line the intrahepatic biliary tract are considered to be the cell of origin of this malignancy. Here, we investigated interactions in vitro among human cholangiocytes, Helicobacter pylori strain NCTC 11637, and the congeneric bacillus, Helicobacter bilis. Exposure to increasing numbers of H. pylori at 0, 1, 10, 100 bacilli per cholangiocyte of the H69 cell line induced phenotypic changes including the profusion of thread-like filopodia and a loss of cell-cell contact, in a dose-dependent fashion. In parallel, following exposure to H. pylori, changes were evident in levels of mRNA expression of epithelial to mesenchymal transition (EMT)-encoding factors including snail, slug, vimentin, matrix metalloprotease, zinc finger E-box-binding homeobox, and the cancer stem cell marker CD44. Analysis to quantify cellular proliferation, migration, and invasion in real-time by both H69 cholangiocytes and CC-LP-1 line of cholangiocarcinoma cells using the xCELLigence approach and Matrigel matrix revealed that exposure to 10 H. pylori bacilli per cell stimulated migration and invasion by the cholangiocytes. In addition, 10 bacilli of H. pylori stimulated contact-independent colony establishment in soft agar. These findings support the hypothesis that infection by H. pylori contributes to the malignant transformation of the biliary epithelium.
Collapse
Affiliation(s)
- Prissadee Thanaphongdecha
- Research Center for Neglected Tropical Diseases of Poverty, Department of Microbiology, Immunology and Tropical Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC 20037, USA; (P.T.); (S.E.K.); (W.I.); (V.H.M.)
- Tropical Disease Research Laboratory, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Shannon E. Karinshak
- Research Center for Neglected Tropical Diseases of Poverty, Department of Microbiology, Immunology and Tropical Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC 20037, USA; (P.T.); (S.E.K.); (W.I.); (V.H.M.)
| | - Wannaporn Ittiprasert
- Research Center for Neglected Tropical Diseases of Poverty, Department of Microbiology, Immunology and Tropical Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC 20037, USA; (P.T.); (S.E.K.); (W.I.); (V.H.M.)
| | - Victoria H. Mann
- Research Center for Neglected Tropical Diseases of Poverty, Department of Microbiology, Immunology and Tropical Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC 20037, USA; (P.T.); (S.E.K.); (W.I.); (V.H.M.)
| | - Yaovalux Chamgramol
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (Y.C.); (C.P.)
| | - Chawalit Pairojkul
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (Y.C.); (C.P.)
| | - James G. Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | - Sutas Suttiprapa
- Tropical Disease Research Laboratory, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Banchob Sripa
- Tropical Disease Research Laboratory, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (Y.C.); (C.P.)
| | - Paul J. Brindley
- Research Center for Neglected Tropical Diseases of Poverty, Department of Microbiology, Immunology and Tropical Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC 20037, USA; (P.T.); (S.E.K.); (W.I.); (V.H.M.)
| |
Collapse
|
57
|
Abstract
The original strategies developed by Helicobacter pylori to persistently colonise its host and to deregulate its cellular functions make this bacterium an outstanding model to study host-pathogen interaction and the mechanisms responsible for bacterial-induced carcinogenesis. During the last year, significant results were obtained on the role of bacterial factors essential for gastric colonisation such as spiral shape maintenance, orientation through chemotaxis and the formation of bacteria clonal population islands inside the gastric glands. Particularities of the H pylori cell surface, a structure important for immune escape, were demonstrated. New insights in the bacterial stress response revealed the importance of DNA methylation-mediated regulation. Further findings were reported on H pylori components that mediate natural transformation and mechanisms of bacterial DNA horizontal transfer which maintain a high level of H pylori genetic variability. Within-host evolution was found to be niche-specific and probably associated with physiological differences between the antral and oxyntic gastric mucosa. In addition, with the progress of CryoEM, high-resolution structures of the major virulence factors, VacA and CagT4SS, were obtained. The use of gastric organoid models fostered research revealing, preferential accumulation of bacteria at the site of injury during infection. Several studies further characterised the role of CagA in the oncogenic properties of H pylori, identifying the activation of novel CagA-dependent pathways, leading to the promotion of genetic instabilities, epithelial-to-mesenchymal transition and finally carcinogenesis. Recent studies also highlight that microRNA-mediated regulation and epigenetic modifications, through DNA methylation, are key events in the H pylori-induced tumorigenesis process.
Collapse
Affiliation(s)
- Milica Denic
- Département de Microbiologie, Institut Pasteur, UMR CNRS 2001, Unité Pathogenèse de Helicobacter, Paris, France.,Sorbonne Paris Cité, Cellule Pasteur, Université Paris Diderot, Paris, France
| | - Eliette Touati
- Département de Microbiologie, Institut Pasteur, UMR CNRS 2001, Unité Pathogenèse de Helicobacter, Paris, France
| | - Hilde De Reuse
- Département de Microbiologie, Institut Pasteur, UMR CNRS 2001, Unité Pathogenèse de Helicobacter, Paris, France
| |
Collapse
|
58
|
Pichon M, Tran CT, Motillon G, Debiais C, Gautier S, Aballea M, Cremniter J, Vasseur P, Tougeron D, Garcia M, Garnier M, Bodet C, Faure JP, Burucoa C. Where to Biopsy to Detect Helicobacter pylori and How Many Biopsies Are Needed to Detect Antibiotic Resistance in a Human Stomach. J Clin Med 2020; 9:2812. [PMID: 32878081 PMCID: PMC7565078 DOI: 10.3390/jcm9092812] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/18/2020] [Accepted: 08/26/2020] [Indexed: 12/20/2022] Open
Abstract
This study aims to determine the gastric distribution, density, and diversity of Helicobacter pylori infection. Subtotal resection of the stomachs of three H. pylori-infected and asymptomatic obese patients were collected after a sleeve gastrectomy. Distribution and density of H. pylori were determined using culture and RT-PCR on multiple gastric sites (88, 176, and 101 biopsies per patient). Diversity of H. pylori strains was studied using antibiotic susceptibility testing, random amplified polymorphism DNA (RAPD) typing and cagA gene detection on single-colony isolates (44, 96, and 49 isolates per patient). H. pylori was detected in nearly all analyzed sites (354/365 biopsies, 97%). Antral density was higher in one patient only. The three stomachs were almost exclusively infected by an antibiotic-susceptible strain. One clarithromycin-resistant isolate in one biopsy was detected in two stomachs (1/44 and 1/49 isolates), while in the third one, eight (8/96 isolates) metronidazole-resistant isolates were detected. DNA typing showed infection with cagA-negative strains for one patient, cagA-positive strains for a second patient and the third patient was infected with two different strains of distinct cagA genotypes. Infection with H. pylori is shown to spread to the whole surface of the stomach, but a possibility of minor sub-population of antibiotic-resistant clones, undetectable in routine practice.
Collapse
Affiliation(s)
- Maxime Pichon
- CHU de Poitiers, Département des Agents Infectieux, Laboratoire de Bactériologie, 86021 Poitiers, France; (C.T.T.); (G.M.); (C.D.); (S.G.); (M.A.); (J.C.); (M.G.)
- Université de Poitiers, EA4331, LITEC, 86022 Poitiers, France; (P.V.); (D.T.); (M.G.); (C.B.)
- Université de Poitiers, INSERM U1070, 86022 Poitiers, France
| | - Cong Tri Tran
- CHU de Poitiers, Département des Agents Infectieux, Laboratoire de Bactériologie, 86021 Poitiers, France; (C.T.T.); (G.M.); (C.D.); (S.G.); (M.A.); (J.C.); (M.G.)
- Université de Poitiers, EA4331, LITEC, 86022 Poitiers, France; (P.V.); (D.T.); (M.G.); (C.B.)
| | - Gaëtan Motillon
- CHU de Poitiers, Département des Agents Infectieux, Laboratoire de Bactériologie, 86021 Poitiers, France; (C.T.T.); (G.M.); (C.D.); (S.G.); (M.A.); (J.C.); (M.G.)
- Université de Poitiers, EA4331, LITEC, 86022 Poitiers, France; (P.V.); (D.T.); (M.G.); (C.B.)
| | - Charlotte Debiais
- CHU de Poitiers, Département des Agents Infectieux, Laboratoire de Bactériologie, 86021 Poitiers, France; (C.T.T.); (G.M.); (C.D.); (S.G.); (M.A.); (J.C.); (M.G.)
- Université de Poitiers, EA4331, LITEC, 86022 Poitiers, France; (P.V.); (D.T.); (M.G.); (C.B.)
| | - Sylvain Gautier
- CHU de Poitiers, Département des Agents Infectieux, Laboratoire de Bactériologie, 86021 Poitiers, France; (C.T.T.); (G.M.); (C.D.); (S.G.); (M.A.); (J.C.); (M.G.)
- Université de Poitiers, EA4331, LITEC, 86022 Poitiers, France; (P.V.); (D.T.); (M.G.); (C.B.)
| | - Marie Aballea
- CHU de Poitiers, Département des Agents Infectieux, Laboratoire de Bactériologie, 86021 Poitiers, France; (C.T.T.); (G.M.); (C.D.); (S.G.); (M.A.); (J.C.); (M.G.)
- Université de Poitiers, EA4331, LITEC, 86022 Poitiers, France; (P.V.); (D.T.); (M.G.); (C.B.)
| | - Julie Cremniter
- CHU de Poitiers, Département des Agents Infectieux, Laboratoire de Bactériologie, 86021 Poitiers, France; (C.T.T.); (G.M.); (C.D.); (S.G.); (M.A.); (J.C.); (M.G.)
- Université de Poitiers, EA4331, LITEC, 86022 Poitiers, France; (P.V.); (D.T.); (M.G.); (C.B.)
- Université de Poitiers, INSERM U1070, 86022 Poitiers, France
| | - Philippe Vasseur
- Université de Poitiers, EA4331, LITEC, 86022 Poitiers, France; (P.V.); (D.T.); (M.G.); (C.B.)
- CHU de Poitiers, Service d’hépato-gastro-entérologie, 86021 Poitiers, France
| | - David Tougeron
- Université de Poitiers, EA4331, LITEC, 86022 Poitiers, France; (P.V.); (D.T.); (M.G.); (C.B.)
- CHU de Poitiers, Service d’hépato-gastro-entérologie, 86021 Poitiers, France
| | - Magali Garcia
- CHU de Poitiers, Département des Agents Infectieux, Laboratoire de Bactériologie, 86021 Poitiers, France; (C.T.T.); (G.M.); (C.D.); (S.G.); (M.A.); (J.C.); (M.G.)
- Université de Poitiers, EA4331, LITEC, 86022 Poitiers, France; (P.V.); (D.T.); (M.G.); (C.B.)
| | - Martine Garnier
- Université de Poitiers, EA4331, LITEC, 86022 Poitiers, France; (P.V.); (D.T.); (M.G.); (C.B.)
| | - Charles Bodet
- Université de Poitiers, EA4331, LITEC, 86022 Poitiers, France; (P.V.); (D.T.); (M.G.); (C.B.)
| | - Jean Pierre Faure
- CHU de Poitiers, Service de Chirurgie Viscérale Digestive, 86021 Poitiers, France;
| | - Christophe Burucoa
- CHU de Poitiers, Département des Agents Infectieux, Laboratoire de Bactériologie, 86021 Poitiers, France; (C.T.T.); (G.M.); (C.D.); (S.G.); (M.A.); (J.C.); (M.G.)
- Université de Poitiers, EA4331, LITEC, 86022 Poitiers, France; (P.V.); (D.T.); (M.G.); (C.B.)
- Université de Poitiers, INSERM U1070, 86022 Poitiers, France
| |
Collapse
|
59
|
In Vivo Genome and Methylome Adaptation of cag-Negative Helicobacter pylori during Experimental Human Infection. mBio 2020; 11:mBio.01803-20. [PMID: 32843556 PMCID: PMC7448279 DOI: 10.1128/mbio.01803-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Exceptional genetic diversity and variability are hallmarks of Helicobacter pylori, but the biological role of this plasticity remains incompletely understood. Here, we had the rare opportunity to investigate the molecular evolution during the first weeks of H. pylori infection by comparing the genomes and epigenomes of H. pylori strain BCS 100 used to challenge human volunteers in a vaccine trial with those of bacteria reisolated from the volunteers 10 weeks after the challenge. The data provide molecular insights into the process of establishment of this highly versatile pathogen in 10 different human individual hosts, showing, for example, selection for changes in host-interaction molecules as well as changes in epigenetic methylation patterns. The data provide important clues to the early adaptation of H. pylori to new host niches after transmission, which we believe is vital to understand its success as a chronic pathogen and develop more efficient treatments and vaccines. Multiple studies have demonstrated rapid bacterial genome evolution during chronic infection with Helicobacter pylori. In contrast, little was known about genetic changes during the first stages of infection, when selective pressure is likely to be highest. Using single-molecule, real-time (SMRT) and Illumina sequencing technologies, we analyzed genome and methylome evolution during the first 10 weeks of infection by comparing the cag pathogenicity island (cagPAI)-negative H. pylori challenge strain BCS 100 with pairs of H. pylori reisolates from gastric antrum and corpus biopsy specimens of 10 human volunteers who had been infected with this strain as part of a vaccine trial. Most genetic changes detected in the reisolates affected genes with a surface-related role or a predicted function in peptide uptake. Apart from phenotypic changes of the bacterial envelope, a duplication of the catalase gene was observed in one reisolate, which resulted in higher catalase activity and improved survival under oxidative stress conditions. The methylomes also varied in some of the reisolates, mostly by activity switching of phase-variable methyltransferase (MTase) genes. The observed in vivo mutation spectrum was remarkable for a very high proportion of nonsynonymous mutations. Although the data showed substantial within-strain genome diversity in the challenge strain, most antrum and corpus reisolates from the same volunteers were highly similar to each other, indicating that the challenge infection represents a major selective bottleneck shaping the transmitted population. Our findings suggest rapid in vivo selection of H. pylori during early-phase infection providing adaptation to different individuals by common mechanisms of genetic and epigenetic alterations.
Collapse
|
60
|
Zhang X, Ou X, Kuang X, Li Z, Fu N, Zhou J. Diallyl disulfide regulates energy metabolism by targeting AMP-activated protein kinase alpha1 in human gastric cancer cells. MINERVA BIOTECNOL 2020. [DOI: 10.23736/s1120-4826.20.02617-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
61
|
Holland RL, Bosi KD, Harpring GH, Luo J, Wallig M, Phillips H, Blanke SR. Chronic in vivo exposure to Helicobacter pylori VacA: Assessing the efficacy of automated and long-term intragastric toxin infusion. Sci Rep 2020; 10:9307. [PMID: 32518315 PMCID: PMC7283276 DOI: 10.1038/s41598-020-65787-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/04/2020] [Indexed: 12/24/2022] Open
Abstract
Helicobacter pylori (Hp) secrete VacA, a diffusible pore-forming exotoxin that is epidemiologically linked to gastric disease in humans. In vitro studies indicate that VacA modulates gastric epithelial and immune cells, but the in vivo contributions of VacA as an important determinant of Hp colonization and chronic infection remain poorly understood. To identify perturbations in the stomachs of C57BL/6 or BALB/C mice that result specifically from extended VacA exposure, we evaluated the efficacy of administering purified toxin using automated infusion via surgically-implanted, intragastric catheters. At 3 and 30 days of interrupted infusion, VacA was detected in association with gastric glands. In contrast to previously-reported tissue damage resulting from short term exposure to Hp extracts administered by oral gavage, extended infusion of VacA did not damage stomach, esophageal, intestinal, or liver tissue. However, several alterations previously reported during Hp infection were detected in animals infused with VacA, including reduction of the gastric mucus layer, and increased vacuolation of parietal cells. VacA infusion invoked an immune response, as indicated by the detection of circulating VacA antibodies. These foundational studies support the use of VacA infusion for identifying gastric alterations that are unambiguously attributable to long-term exposure to toxin.
Collapse
Affiliation(s)
- Robin L Holland
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Kristopher D Bosi
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Gregory H Harpring
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Jiayi Luo
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Matthew Wallig
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Heidi Phillips
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Steven R Blanke
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA. .,Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA. .,Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA.
| |
Collapse
|
62
|
Gallego-Hernandez AL, DePas WH, Park JH, Teschler JK, Hartmann R, Jeckel H, Drescher K, Beyhan S, Newman DK, Yildiz FH. Upregulation of virulence genes promotes Vibrio cholerae biofilm hyperinfectivity. Proc Natl Acad Sci U S A 2020; 117:11010-11017. [PMID: 32355001 PMCID: PMC7245069 DOI: 10.1073/pnas.1916571117] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Vibrio cholerae remains a major global health threat, disproportionately impacting parts of the world without adequate infrastructure and sanitation resources. In aquatic environments, V. cholerae exists both as planktonic cells and as biofilms, which are held together by an extracellular matrix. V. cholerae biofilms have been shown to be hyperinfective, but the mechanism of hyperinfectivity is unclear. Here we show that biofilm-grown cells, irrespective of the surfaces on which they are formed, are able to markedly outcompete planktonic-grown cells in the infant mouse. Using an imaging technique designed to render intestinal tissue optically transparent and preserve the spatial integrity of infected intestines, we reveal and compare three-dimensional V. cholerae colonization patterns of planktonic-grown and biofilm-grown cells. Quantitative image analyses show that V. cholerae colonizes mainly the medial portion of the small intestine and that both the abundance and localization patterns of biofilm-grown cells differ from that of planktonic-grown cells. In vitro biofilm-grown cells activate expression of the virulence cascade, including the toxin coregulated pilus (TCP), and are able to acquire the cholera toxin-carrying CTXФ phage. Overall, virulence factor gene expression is also higher in vivo when infected with biofilm-grown cells, and modulation of their regulation is sufficient to cause the biofilm hyperinfectivity phenotype. Together, these results indicate that the altered biogeography of biofilm-grown cells and their enhanced production of virulence factors in the intestine underpin the biofilm hyperinfectivity phenotype.
Collapse
Affiliation(s)
- A L Gallego-Hernandez
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA 95064
| | - W H DePas
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - J H Park
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA 95064
| | - J K Teschler
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA 95064
| | - R Hartmann
- Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
- Department of Physics, Philipps University Marburg, D-35032 Marburg, Germany
| | - H Jeckel
- Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
- Department of Physics, Philipps University Marburg, D-35032 Marburg, Germany
| | - K Drescher
- Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
- Department of Physics, Philipps University Marburg, D-35032 Marburg, Germany
| | - S Beyhan
- Department of Infectious Diseases, J. Craig Venter Institute, La Jolla, CA 92037
| | - D K Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125.;
| | - F H Yildiz
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA 95064;
| |
Collapse
|
63
|
Zhong Y, Chen J, Liu Y, Zhang Y, Tang C, Wang X, Wang P, Chen W, Wei B, Liu M. Oral immunization of BALB/c mice with recombinant Helicobacter pylori antigens and double mutant heat-labile toxin (dmLT) induces prophylactic protective immunity against H. pylori infection. Microb Pathog 2020; 145:104229. [PMID: 32353579 DOI: 10.1016/j.micpath.2020.104229] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 01/05/2023]
Abstract
Helicobacter pylori infection and associated diseases remain a major public health problem worldwide. Much effort has been made over the last several decades in vaccine development, but there is no licensed vaccine on the market. We have previously reported that oral immunization with H. pylori lysates and double mutant heat-labile toxin (dmLT) affords prophylactic protection against H. pylori infection in mice. In the present study, we investigated the effects of oral immunization with recombinant H. pylori protein antigens (NAP/UreA/UreB) and dmLT on H. pylori challenge in BALB/c mice. We found that oral immunization with candidate antigens and dmLT significantly reduced the gastric colonization of H. pylori 6 weeks after challenge, as compared to unimmunized mice. Moreover, the subunit vaccine appeared to provide a better protection than the bacterial lysate vaccine. The immunized mice showed enhanced antigen-specific lymphocyte proliferation, and serum IgG and mucosal IgA responses. Furthermore, the immunization increased the proportion of CD4+ IL-17+ lymphocytes in spleen and mesenteric lymph nodes, and enhanced the production of IL-17, IL-16, IL-6 and TNF-α in lymphocyte culture supernatants. Taken together, our results suggest that oral vaccination with recombinant H. pylori antigens (NAP/UreA/UreB) and dmLT confers more effective prophylactic protection against H. pylori infection than whole bacterial lysates in BALB/c mice. The reduction of H. pylori colonization was associated with the induction of antigen-specific Th17 and local mucosal IgA immune responses.
Collapse
Affiliation(s)
- Youxiu Zhong
- National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), 38 Second Jing Hai Road, Beijing, 101111, China
| | - Jing Chen
- National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), 38 Second Jing Hai Road, Beijing, 101111, China
| | - Yu Liu
- National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), 38 Second Jing Hai Road, Beijing, 101111, China
| | - Yanbin Zhang
- National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), 38 Second Jing Hai Road, Beijing, 101111, China
| | - Chongfa Tang
- National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), 38 Second Jing Hai Road, Beijing, 101111, China
| | - Xuewei Wang
- National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), 38 Second Jing Hai Road, Beijing, 101111, China
| | - Ping Wang
- National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), 38 Second Jing Hai Road, Beijing, 101111, China
| | - Wangxue Chen
- Human Health Therapeutics Research Center, National Research Council Canada, Ottawa, Ontario, K1A 0R6, Canada
| | - Bo Wei
- National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), 38 Second Jing Hai Road, Beijing, 101111, China
| | - Meiying Liu
- National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), 38 Second Jing Hai Road, Beijing, 101111, China.
| |
Collapse
|
64
|
Salama NR. Cell morphology as a virulence determinant: lessons from Helicobacter pylori. Curr Opin Microbiol 2020; 54:11-17. [PMID: 32014717 PMCID: PMC7247928 DOI: 10.1016/j.mib.2019.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 12/30/2019] [Indexed: 02/06/2023]
Abstract
A genetic screen for colonization factors of the human stomach pathogen Helicobacter pylori took a surprising turn with the discovery that some colonization mutants had lost helical cell morphology. Further pursuit of direct morphology screens revealed a large H. pylori 'shapesome' complex consisting of peptidoglycan modification and precursor synthesis enzymes, a cytoskeletal element and putative scaffold or regulatory proteins that promote enhanced asymmetric cell wall growth. Functional characterization of H. pylori shape mutants indicates multiple roles for cell shape during colonization of mucosal surfaces. Conservation of both the molecular constituents of the H. pylori cell shape program and a newly appreciated enrichment of this morphotype at mucosal surface suggests that helical organisms may be particularly well poised to exploit host perturbations to become pathogens.
Collapse
Affiliation(s)
- Nina R Salama
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N, Seattle, WA 98109, United States.
| |
Collapse
|
65
|
Wizenty J, Tacke F, Sigal M. Responses of gastric epithelial stem cells and their niche to Helicobacter pylori infection. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:568. [PMID: 32775369 PMCID: PMC7347775 DOI: 10.21037/atm.2020.02.178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Helicobacter pylori (H. pylori) are gram-negative bacteria that are able to colonize and persist in the stomach. Gastric cancer is tightly linked to chronic infection with this bacterium. Research over the last decades has illuminated the molecular interactions between H. pylori and host cells. It is now well established that H. pylori have multiple sophisticated means to adhere to epithelial cells and to manipulate their behavior. This interaction with the epithelium can lead to altered cell signaling, DNA damage and aberrant epithelial immunity. H. pylori are known to colonize the mucus layer of the stomach and surface epithelial cells. In addition, it has recently become clear that they can also penetrate the glands and directly interact with specialized epithelial cells deep in the glands. Understanding the biogeography of infection is important because gastric epithelial glands are composed of various types of short-lived differentiated cells that are constantly regenerated by a limited pool of long-lived stem cells located in base of gastric glands. Recent advances in gastric stem cell research not only led to identification of stem cell populations using specific markers but has also uncovered specific regulatory pathways and principles that govern gastric stem cell behavior and regeneration. Particularly, the stem cell state is largely dependent on signals from the niche cells that surround the stem cell compartment. The subpopulation of H. pylori that colonizes in the stem cell compartment triggers specific inflammatory responses and drives epithelial pathology. Colonization of gastric glands induces responses of the stem cell niche, simultaneously enhancing the cell turnover kinetics and driving the formation of antimicrobial cells in the gland base. These data reveal the high plasticity of the epithelium and its ability to adapt to the environment, which is necessary to regenerate and counterbalance infection, but simultaneously lays the grounds for development of gastric pathology and carcinogenesis.
Collapse
Affiliation(s)
- Jonas Wizenty
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Sigal
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
66
|
Seeger AY, Ringling MD, Zohair H, Blanke SR. Risk factors associated with gastric malignancy during chronic Helicobacter pylori Infection. MEDICAL RESEARCH ARCHIVES 2020; 8:2068. [PMID: 37655156 PMCID: PMC10470974 DOI: 10.18103/mra.v8i3.2068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Chronic Helicobacter pylori (Hp) infection is considered to be the single most important risk factor for the development of gastric adenocarcinoma in humans, which is a leading cause of cancer-related death worldwide. Nonetheless, Hp infection does not always progress to malignancy, and, gastric adenocarcinoma can occur in the absence of detectable Hp carriage, highlighting the complex and multifactorial nature of gastric cancer. Here we review known contributors to gastric malignancy, including Hp virulence factors, host genetic variation, and multiple environmental variables. In addition, we assess emerging evidence that resident gastric microflora in humans might impact disease progression in Hp-infected individuals. Molecular approaches for microbe identification have revealed differences in the gastric microbiota composition between cancer and non-cancerous patients, as well as infected and uninfected individuals. Although the reasons underlying differences in microbial community structures are not entirely understood, gastric atrophy and hypochlorhydria that accompany chronic Hp infection may be a critical driver of gastric dysbiosis that promote colonization of microbes that contribute to increased risk of malignancy. Defining the importance and role of the gastric microbiota as a potential risk factor for Hp-associated gastric cancer is a vital and exciting area of current research.
Collapse
Affiliation(s)
- Ami Y. Seeger
- Department of Microbiology, School of Molecular and Cellular Biology, College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801
| | - Megan D. Ringling
- Department of Microbiology, School of Molecular and Cellular Biology, College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801
| | - Huzaifa Zohair
- Department of Microbiology, School of Molecular and Cellular Biology, College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801
| | - Steven R. Blanke
- Department of Microbiology, School of Molecular and Cellular Biology, College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801
- Biomedical and Translational Sciences Department, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801
| |
Collapse
|
67
|
Abstract
S. enterica is a major foodborne pathogen, which can be transmitted via several distinct routes from animals and environmental sources to human hosts. Multiple subspecies and serotypes of S. enterica exhibit considerable differences in virulence, host specificity, and colonization. This study provides detailed insights into the dynamics of recombination and its contributions to S. enterica subspecies evolution. Widespread recombination within the species means that new adaptations arising in one lineage can be rapidly transferred to another lineage. We therefore predict that recombination has been an important factor in the emergence of several major disease-causing strains from diverse genomic backgrounds and their ability to adapt to disparate environments. Salmonella is responsible for many nontyphoidal foodborne infections and enteric (typhoid) fever in humans. Of the two Salmonella species, Salmonella enterica is highly diverse and includes 10 known subspecies and approximately 2,600 serotypes. Understanding the evolutionary processes that generate the tremendous diversity in Salmonella is important in reducing and controlling the incidence of disease outbreaks and the emergence of virulent strains. In this study, we aim to elucidate the impact of homologous recombination in the diversification of S. enterica subspecies. Using a data set of previously published 926 Salmonella genomes representing the 10 S. enterica subspecies and Salmonella bongori, we calculated a genus-wide pan-genome composed of 84,041 genes and the S. enterica pan-genome of 81,371 genes. The size of the accessory genomes varies between 12,429 genes in S. enterica subsp. arizonae (subsp. IIIa) to 33,257 genes in S. enterica subsp. enterica (subsp. I). A total of 12,136 genes in the Salmonella pan-genome show evidence of recombination, representing 14.44% of the pan-genome. We identified genomic hot spots of recombination that include genes associated with flagellin and the synthesis of methionine and thiamine pyrophosphate, which are known to influence host adaptation and virulence. Last, we uncovered within-species heterogeneity in rates of recombination and preferential genetic exchange between certain donor and recipient strains. Frequent but biased recombination within a bacterial species may suggest that lineages vary in their response to environmental selection pressure. Certain lineages, such as the more uncommon non-enterica subspecies (non-S. enterica subsp. enterica), may also act as a major reservoir of genetic diversity for the wider population. IMPORTANCES. enterica is a major foodborne pathogen, which can be transmitted via several distinct routes from animals and environmental sources to human hosts. Multiple subspecies and serotypes of S. enterica exhibit considerable differences in virulence, host specificity, and colonization. This study provides detailed insights into the dynamics of recombination and its contributions to S. enterica subspecies evolution. Widespread recombination within the species means that new adaptations arising in one lineage can be rapidly transferred to another lineage. We therefore predict that recombination has been an important factor in the emergence of several major disease-causing strains from diverse genomic backgrounds and their ability to adapt to disparate environments.
Collapse
|
68
|
Martinez-Guryn K, Leone V, Chang EB. Regional Diversity of the Gastrointestinal Microbiome. Cell Host Microbe 2020; 26:314-324. [PMID: 31513770 DOI: 10.1016/j.chom.2019.08.011] [Citation(s) in RCA: 251] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The role of gut microbes in health and disease has often been surmised from stool, which is easily sampled and rich in microbial diversity, density, and abundance. Microbial analyses of stool have been accepted as measures to determine the relationship of gut microbiomes with host health and disease, based on the belief that it represents all microbial populations throughout the gut. However, functional heterogeneity of each gastrointestinal tract (GIT) segment gives rise to regional differences in gut microbial populations. Herein, we summarize the literature regarding the microbial landscape along the rostral to caudal, i.e., horizontal mouth to anus, axis of the GIT. We aim to identify gaps in the literature, particularly regarding small intestinal microbiota abundance and diversity, highlight the importance of regional microbiota on host health and disease, as well as discuss opportunities to advance this line of research.
Collapse
Affiliation(s)
- Kristina Martinez-Guryn
- Biomedical Sciences Department, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| | - Vanessa Leone
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Eugene B Chang
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
69
|
Inns PG, Mamou G. The expanding horizons of host-microorganism imaging are clear to see. Nat Rev Microbiol 2019; 17:724. [PMID: 31649353 DOI: 10.1038/s41579-019-0289-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Patrick G Inns
- Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Gideon Mamou
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
70
|
Bumann D, Fanous J, Li J, Goormaghtigh F. Antibiotic chemotherapy against heterogeneous pathogen populations in complex host tissues. F1000Res 2019; 8. [PMID: 31737252 PMCID: PMC6807158 DOI: 10.12688/f1000research.19441.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/15/2019] [Indexed: 12/20/2022] Open
Abstract
Antibiotic chemotherapy effectively cures many infections caused by susceptible bacterial pathogens. However, in some cases, even extended treatment duration does not completely eradicate the pathogenic bacteria from host tissues. A common model for underlying mechanisms assumes the stochastic formation of bacterial persisters similar to observations in laboratory cultures. However, alternative explanations related to the complexity of infected host tissues could also be relevant. We discuss several of these aspects and emphasize the need for integrated analysis as a basis for new control strategies.
Collapse
Affiliation(s)
- Dirk Bumann
- Research Area Infection Biology, Biozentrum, University of Basel, Basel, CH-4056, Switzerland
| | - Joseph Fanous
- Research Area Infection Biology, Biozentrum, University of Basel, Basel, CH-4056, Switzerland
| | - Jiagui Li
- Research Area Infection Biology, Biozentrum, University of Basel, Basel, CH-4056, Switzerland
| | - Frédéric Goormaghtigh
- Research Area Infection Biology, Biozentrum, University of Basel, Basel, CH-4056, Switzerland
| |
Collapse
|
71
|
Wroblewski LE, Choi E, Petersen C, Delgado AG, Piazuelo MB, Romero-Gallo J, Lantz TL, Zavros Y, Coffey RJ, Goldenring JR, Zemper AE, Peek RM. Targeted mobilization of Lrig1 + gastric epithelial stem cell populations by a carcinogenic Helicobacter pylori type IV secretion system. Proc Natl Acad Sci U S A 2019; 116:19652-19658. [PMID: 31488717 PMCID: PMC6765285 DOI: 10.1073/pnas.1903798116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Helicobacter pylori-induced gastritis is the strongest risk factor for gastric adenocarcinoma, a malignancy preceded by a series of well-defined histological stages, including metaplasia. One microbial constituent that augments cancer risk is the cag type 4 secretion system (T4SS), which translocates the oncoprotein CagA into host cells. Aberrant stem cell activation is linked to carcinogenesis, and Lrig1 (leucine-rich repeats and Ig-like domains 1) marks a distinct population of progenitor cells. We investigated whether microbial effectors with carcinogenic potential influence Lrig1 progenitor cells ex vivo and via lineage expansion within H. pylori-infected gastric mucosa. Lineage tracing was induced in Lrig1-CreERT2/+;R26R-YFP/+ (Lrig1/YFP) mice that were uninfected or subsequently infected with cag+H. pylori or an isogenic cagE- mutant (nonfunctional T4SS). In contrast to infection with wild-type (WT) H. pylori for 2 wk, infection for 8 wk resulted in significantly increased inflammation and proliferation in the corpus and antrum compared with uninfected or mice infected with the cagE- mutant. WT H. pylori-infected mice harbored significantly higher numbers of Lrig1/YFP epithelial cells that coexpressed UEA1 (surface cell marker). The number of cells coexpressing intrinsic factor (chief cell marker), YFP (lineage marker), and GSII lectin (spasmolytic polypeptide-expressing metaplasia marker) were increased only by WT H. pylori In human samples, Lrig1 expression was significantly increased in lesions with premalignant potential compared with normal mucosa or nonatrophic gastritis. In conclusion, chronic H. pylori infection stimulates Lrig1-expressing progenitor cells in a cag-dependent manner, and these reprogrammed cells give rise to a full spectrum of differentiated cells.
Collapse
Affiliation(s)
- Lydia E Wroblewski
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232;
| | - Eunyoung Choi
- Nashville VA Medical Center, US Department of Veterans Affairs, Nashville, TN 37212
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, TN 37232
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Christine Petersen
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, TN 37232
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Alberto G Delgado
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - M Blanca Piazuelo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Judith Romero-Gallo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Tyler L Lantz
- Department of Biology, University of Oregon, Eugene, OR 97403
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| | - Yana Zavros
- Department of Pharmacology and System Physiology, University of Cincinnati, Cincinnati, OH 45221
| | - Robert J Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
- Nashville VA Medical Center, US Department of Veterans Affairs, Nashville, TN 37212
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232
| | - James R Goldenring
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
- Nashville VA Medical Center, US Department of Veterans Affairs, Nashville, TN 37212
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, TN 37232
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Anne E Zemper
- Department of Biology, University of Oregon, Eugene, OR 97403
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| | - Richard M Peek
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232;
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
72
|
The Interaction of Helicobacter pylori with TFF1 and Its Role in Mediating the Tropism of the Bacteria Within the Stomach. Int J Mol Sci 2019; 20:ijms20184400. [PMID: 31500233 PMCID: PMC6769565 DOI: 10.3390/ijms20184400] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/27/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori colonises the human stomach and has tropism for the gastric mucin, MUC5AC. The majority of organisms live in the adherent mucus layer within their preferred location, close to the epithelial surface where the pH is near neutral. Trefoil factor 1 (TFF1) is a small trefoil protein co-expressed with the gastric mucin MUC5AC in surface foveolar cells and co-secreted with MUC5AC into gastric mucus. Helicobacter pylori binds with greater avidity to TFF1 dimer, which is present in gastric mucus, than to TFF1 monomer. Binding of H. pylori to TFF1 is mediated by the core oligosaccharide subunit of H. pylori lipopolysaccharide at pH 5.0–6.0. Treatment of H. pylori lipopolysaccharide with mannosidase or glucosidase inhibits its interaction with TFF1. Both TFF1 and H. pylori have a propensity for binding to mucins with terminal non-reducing α- or β-linked N-acetyl-d-glucosamine or α-(2,3) linked sialic acid or Gal-3-SO42−. These findings are strong evidence that TFF1 has carbohydrate-binding properties that may involve a conserved patch of aromatic hydrophobic residues on the surface of its trefoil domain. The pH-dependent lectin properties of TFF1 may serve to locate H. pylori deep in the gastric mucus layer close to the epithelium rather than at the epithelial surface. This restricted localisation could limit the interaction of H. pylori with epithelial cells and the subsequent host signalling events that promote inflammation.
Collapse
|
73
|
Perkins A, Tudorica DA, Amieva MR, Remington SJ, Guillemin K. Helicobacter pylori senses bleach (HOCl) as a chemoattractant using a cytosolic chemoreceptor. PLoS Biol 2019; 17:e3000395. [PMID: 31465435 PMCID: PMC6715182 DOI: 10.1371/journal.pbio.3000395] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 07/24/2019] [Indexed: 12/21/2022] Open
Abstract
The gastric pathogen Helicobacter pylori requires a noncanonical cytosolic chemoreceptor transducer-like protein D (TlpD) for efficient colonization of the mammalian stomach. Here, we reconstituted a complete chemotransduction signaling complex in vitro with TlpD and the chemotaxis (Che) proteins CheW and CheA, enabling quantitative assays for potential chemotaxis ligands. We found that TlpD is selectively sensitive at micromolar concentrations to bleach (hypochlorous acid, HOCl), a potent antimicrobial produced by neutrophil myeloperoxidase during inflammation. HOCl acts as a chemoattractant by reversibly oxidizing a conserved cysteine within a 3His/1Cys Zn-binding motif in TlpD that inactivates the chemotransduction signaling complex. We found that H. pylori is resistant to killing by millimolar concentrations of HOCl and responds to HOCl in the micromolar range by increasing its smooth-swimming behavior, leading to chemoattraction to HOCl sources. We show related protein domains from Salmonella enterica and Escherichia coli possess similar reactivity toward HOCl. We propose that this family of proteins enables host-associated bacteria to sense sites of tissue inflammation, a strategy that H. pylori uses to aid in colonizing and persisting in inflamed gastric tissue.
Collapse
Affiliation(s)
- Arden Perkins
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Dan A. Tudorica
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Manuel R. Amieva
- Departments of Pediatrics and of Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - S. James Remington
- Department of Physics, University of Oregon, Eugene, Oregon, United States of America
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
- Humans and the Microbiome Program, CIFAR, Toronto, Ontario, Canada
| |
Collapse
|
74
|
mSphere of Influence: Clearing a Path for High-Resolution Visualization of Host-Pathogen Interactions In Vivo. mSphere 2019; 4:4/4/e00308-19. [PMID: 31292229 PMCID: PMC6620373 DOI: 10.1128/msphere.00308-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shumin Tan works in the field of Mycobacterium tuberculosis-host interactions. In this mSphere of Influence article, she reflects on how the paper "Single-cell phenotyping within transparent intact tissue through whole-body clearing" by B. Yang et al. (Cell 158:945-958, 2014, https://doi.org/10.1016/j.cell.2014.07.017) impacted her ideas on approaches to visualize and understand heterogeneous host-pathogen interactions in vivo in 3-dimensional space at the single-cell level, through the tractable and broadly compatible tissue optical clearing methods developed.
Collapse
|
75
|
Affiliation(s)
- Katrina Ray
- Nature Reviews Gastroenterology & Hepatology, .
| |
Collapse
|