51
|
Zhang L, Wang L, Dong D, Wang Z, Ji W, Yu M, Zhang F, Niu R, Zhou Y. MiR-34b/c-5p and the neurokinin-1 receptor regulate breast cancer cell proliferation and apoptosis. Cell Prolif 2018; 52:e12527. [PMID: 30334298 PMCID: PMC6430481 DOI: 10.1111/cpr.12527] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/20/2018] [Accepted: 06/22/2018] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES MiR-34 is a tumour suppressor in breast cancer. Neurokinin-1 receptor (NK1R), which is the predicted target of the miR-34 family, is overexpressed in many cancers. This study investigated the correlation and clinical significance of miR-34 and NK1R in breast cancer. MATERIALS AND METHODS Western blotting, quantitative reverse transcription-PCR (qRT-PCR) and luciferase assays were conducted to analyse the regulation of NK1R by miR-34 in MDA-MB-231, MCF-7, T47D, SK-BR-3 and HEK-293 T cells. MiR-34b/c-5p, full-length NK1R (NK1R-FL) and truncated NK1R (NK1R-Tr) expression in fifty patients were quantified by qRT-PCR and correlated with their clinicopathological parameters. CCK-8 assays, colony formation assays and flow cytometry were used to measure cell proliferation and apoptosis in MDA-MB-231 and MCF-7 cells transfected with miR-34b/c-5p or NK1R-siRNA and before treatment with or without Substance P (SP), an endogenous peptide agonists of NK1R. The effect of NK1R antagonist aprepitant was also investigated. In vivo xenograft models were used to further verify the regulation of NK1R by miR-34b/c-5p. RESULTS Expression levels of miR-34b/c-5p and NK1R-Tr, but not NK1R-FL, were associated with enhanced malignant potential, such as tumour stage and Ki67 expression. The overexpression of miR-34b/c-5p or NK1R silencing potently suppressed cell proliferation and induced G2/M phase arrest and the apoptosis of MDA-MB-231 and MCF-7 cells. The NK1R antagonist aprepitant had similar effects. In vivo studies confirmed that miR-34b/c-5p overexpression or NK1R silencing reduced the tumorigenicity of breast cancer. In addition, SP rescued the effects of miR-34b/c-5p overexpression or NK1R silencing on cell proliferation and apoptosis in vitro and in vivo assays. CONCLUSIONS MiR-34b/c-5p and NK1R contribute to breast cancer cell proliferation and apoptosis and are potential targets for breast cancer therapeutics.
Collapse
Affiliation(s)
- Lufang Zhang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy of Educational Ministry, Tianjin Medical University, Tianjin, China.,Department of Clinical Laboratory, Aviation General Hospital, Beijing, China
| | - Lushan Wang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy of Educational Ministry, Tianjin Medical University, Tianjin, China
| | - Dong Dong
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy of Educational Ministry, Tianjin Medical University, Tianjin, China
| | - Zhiyong Wang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy of Educational Ministry, Tianjin Medical University, Tianjin, China
| | - Wei Ji
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy of Educational Ministry, Tianjin Medical University, Tianjin, China
| | - Man Yu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Fei Zhang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy of Educational Ministry, Tianjin Medical University, Tianjin, China
| | - Ruifang Niu
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy of Educational Ministry, Tianjin Medical University, Tianjin, China
| | - Yunli Zhou
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy of Educational Ministry, Tianjin Medical University, Tianjin, China
| |
Collapse
|
52
|
Li QC, Xu H, Wang X, Wang T, Wu J. miR-34a increases cisplatin sensitivity of osteosarcoma cells in vitro through up-regulation of c-Myc and Bim signal. Cancer Biomark 2018; 21:135-144. [PMID: 29060932 DOI: 10.3233/cbm-170452] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND OBJECTIVE Osteosarcoma is the most common primary malignancy in bone. Patients who respond poorly to induction chemotherapy are at higher risk of adverse prognosis. The molecular basis for such poor prognosis remains unclear. Recently, increasing evidence has suggested decreased expression of miR-34a is observed in a number of cancer types, including human osteosarcoma, and decreased miR-34a is involved in drug resistance. However, the underlying molecular mechanisms of decreased miR-34a on cisplatin chemoresistance in osteosarcoma has not been reported. METHODS Osteosarcoma U2OS cells were transfected with miR-34a mimics for 48 h, then the cells were treated with 3.0 μm cisplatin for 24 h. Using siRNA targeting c-Myc and Bim to examine the relation between miR-34a, c-Myc and Bim expression exposure to cisplatin on cisplatin-induced apoptosis. RESULTS Treatment of U2OS cells with cisplatin induced cell apoptosis by upregulation of c-Myc -dependent Bim expression; Osteosarcoma U2OS cells transfected with miR-34a mimics (miR-34a/U2OS) induced cell apoptosis and inhibited cell survival, and increased the sensitivity of U2OS cells to cisplatin. U2OS cells transfected with miR-34a mimics upregulated the protein expression of c-Myc and Bim. Targeting c-Myc downregulated the expression of Bim in the miR-34a/U2OS cells. In addition, Targeting Bim reversed the chemeresistance of miR-34a/U2OS cells to cisplatin. CONCLUSIONS Our data indicated that miR-34a enhanced the sensitivity to cisplatin by upregulation of c-Myc and Bim pathway.
Collapse
Affiliation(s)
- Qi-Cai Li
- Department of Traumatology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.,Department of Traumatology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Haiyan Xu
- Department of Hemopurification Center, Yantaiyuhuangding Hospital, Yantai, Shandong, China.,Department of Traumatology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaohui Wang
- Department of Traumatology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.,Department of Traumatology, The Central Hospital of Linyi, Linyi, Shandong, China
| | - Ting Wang
- Department of Traumatology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jiang Wu
- Department of Hemopurification Center, Yantaiyuhuangding Hospital, Yantai, Shandong, China
| |
Collapse
|
53
|
Dual role for miR-34a in the control of early progenitor proliferation and commitment in the mammary gland and in breast cancer. Oncogene 2018; 38:360-374. [PMID: 30093634 PMCID: PMC6336680 DOI: 10.1038/s41388-018-0445-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 06/06/2018] [Accepted: 06/19/2018] [Indexed: 12/24/2022]
Abstract
The role of the tumour-suppressor miR-34 family in breast physiology and in mammary stem cells (MaSCs) is largely unknown. Here, we revealed that miR-34 family, and miR-34a in particular, is implicated in mammary epithelium homoeostasis. Expression of miR-34a occurs upon luminal commitment and differentiation and serves to inhibit the expansion of the pool of MaSCs and early progenitor cells, likely in a p53-independent fashion. Mutant mice (miR34-KO) and loss-of-function approaches revealed two separate functions of miR-34a, controlling both proliferation and fate commitment in mammary progenitors by modulating several pathways involved in epithelial cell plasticity and luminal-to-basal conversion. In particular, miR-34a acts as endogenous inhibitor of the Wnt/beta-catenin signalling pathway, targeting up to nine upstream regulators at the same time, thus modulating the expansion of the MaSCs/early progenitor pool. These multiple roles of miR-34a are maintained in a model of human breast cancer, in which chronic expression of miR-34a in triple-negative mesenchymal-like cells (enriched in cancer stem cells—CSCs) could promote a luminal-like differentiation programme, restrict the CSC pool, and inhibit tumour propagation. Hence, activation of miR-34a-dependent programmes could provide a therapeutic opportunity for the subset of breast cancers, which are rich in CSCs and respond poorly to conventional therapies.
Collapse
|
54
|
Huang X, Xie X, Liu P, Yang L, Chen B, Song C, Tang H, Xie X. Adam12 and lnc015192 act as ceRNAs in breast cancer by regulating miR-34a. Oncogene 2018; 37:6316-6326. [PMID: 30042416 DOI: 10.1038/s41388-018-0410-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/12/2018] [Accepted: 06/26/2018] [Indexed: 12/13/2022]
Abstract
Long non-coding RNAs (lncRNAs) are reported to play vital roles in the progress of multiple cancers. However, the functions of lncRNAs in breast cancer remain to be discovered. We performed microarrays to identify the differentially expressed mRNAs and lncRNAs in breast tissues with or without miR-34a knockout. To explore the functions of the differentially expressed mRNA and lncRNA in breast cancer, we conducted a series of experiments. We found that Adam12 and lnc015192 were significantly upregulated in miR-34a knockout breast tissues. Knockdown of Adam12 and lnc015192 inhibited breast cancer cell migration, invasion, and epithelial-mesenchymal transition (EMT). Further experiments revealed that lnc015192 regulated Adam12 expression by functioning as a competing endogenous RNA (ceRNA) for miR-34a. In summary, our study demonstrate that Adam12 and lnc015192 promote breast cancer metastasis partly by sponging miR-34a through the ceRNA mechanism.
Collapse
Affiliation(s)
- Xiaojia Huang
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 510060, Guangzhou, China
| | - Xinhua Xie
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 510060, Guangzhou, China
| | - Peng Liu
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 510060, Guangzhou, China
| | - Lu Yang
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 510060, Guangzhou, China
| | - Bo Chen
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 510060, Guangzhou, China
| | - Cailu Song
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 510060, Guangzhou, China
| | - Hailin Tang
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 510060, Guangzhou, China.
| | - Xiaoming Xie
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 510060, Guangzhou, China.
| |
Collapse
|
55
|
Rastogi S, Hwang A, Chan J, Wang JYJ. Extracellular vesicles transfer nuclear Abl-dependent and radiation-induced miR-34c into unirradiated cells to cause bystander effects. Mol Biol Cell 2018; 29:2228-2242. [PMID: 29975106 PMCID: PMC6249796 DOI: 10.1091/mbc.e18-02-0130] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Ionizing radiation (IR) not only activates DNA damage response (DDR) in irradiated cells but also induces bystander effects (BE) in cells not directly targeted by radiation. How DDR pathways activated in irradiated cells stimulate BE is not well understood. We show here that extracellular vesicles secreted by irradiated cells (EV-IR), but not those from unirradiated controls (EV-C), inhibit colony formation in unirradiated cells by inducing reactive oxygen species (ROS). We found that µEV-IR from Abl nuclear localization signal-mutated ( Abl-µNLS) cells could not induce ROS, but expression of wild-type Abl restored that activity. Because nuclear Abl stimulates miR-34c biogenesis, we measured miR-34c in EV and found that its levels correlated with the ROS-inducing activity of EV. We then showed that EV from miR-34c minigene-transfected, but unirradiated cells induced ROS; and transfection with miR-34c-mimic, without radiation or EV addition, also induced ROS. Furthermore, EV-IR from miR34-family triple-knockout cells could not induce ROS, whereas EV-IR from wild-type cells could cause miR-34c increase and ROS induction in the miR-34 triple-knockout cells. These results establish a novel role for extracellular vesicles in transferring nuclear Abl-dependent and radiation-induced miR-34c into unirradiated cells to cause bystander oxidative stress.
Collapse
Affiliation(s)
- Shubhra Rastogi
- Division of Hematology-Oncology, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0644
| | - Amini Hwang
- Division of Hematology-Oncology, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0644
| | - Josolyn Chan
- Division of Hematology-Oncology, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0644
| | - Jean Y J Wang
- Division of Hematology-Oncology, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0644
| |
Collapse
|
56
|
Iwagami Y, Zou J, Zhang H, Cao K, Ji C, Kim M, Huang CK. Alcohol-mediated miR-34a modulates hepatocyte growth and apoptosis. J Cell Mol Med 2018; 22:3987-3995. [PMID: 29873178 PMCID: PMC6050481 DOI: 10.1111/jcmm.13681] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 04/11/2018] [Indexed: 01/02/2023] Open
Abstract
MicroRNAs (miRs) have been recently shown to be heavily involved in the development of alcoholic liver disease (ALD) and suggested as a potential therapeutic target in ALD. The miR‐34a was consistently reported to be significantly elevated in several ALD rodent models, but it remains unclear how miR‐34a modulates the cellular behaviours of hepatocytes in ALD development and progression. This study aims to characterize alcohol‐induced miR‐34a impact on hepatocytes growth and apoptosis. The miRNA array was performed to assess changes in miRNA after chronic alcohol feeding. Liver and blood samples were used to examine ALD progression. The miR‐34a was overexpressed in human hepatocytes to evaluate its impact on cell growth and apoptosis. Real‐time quantitative PCR and Western blot were used to determine the growth and apoptosis molecular signalling pathways associated with miR‐34a. Alcohol feeding significantly promoted fatty liver progression, serum ALT levels, apoptosis and miR‐34a expression in rat liver. Overexpression of miR‐34a in human hepatocytes suppressed cell growth signallings, including c‐Met, cyclin D1 and cyclin‐dependent kinase 6 (CDK6). The miR‐34a might also inhibit the expression of sirtuin 1 (Sirt1) and its target, B‐cell lymphoma 2. Interestingly, the expression of miR‐34a reverses the suppressive effects of ethanol on cell growth. But, miR‐34a promotes hepatocyte senescence and apoptosis. Although the miR‐34a‐mediated down‐regulation of cell growth‐associated genes may contribute to cell growth retardation, other miR‐34a targets, such as Sirt1, may reverse this phenotype. Future studies will be needed to clarify the role of miR‐34a in ALD progression.
Collapse
Affiliation(s)
- Yoshifumi Iwagami
- Department of Medicine, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Jing Zou
- Department of Medicine, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Hongyu Zhang
- Department of Medicine, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Kevin Cao
- Department of Medicine, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Chengcheng Ji
- Department of Medicine, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Miran Kim
- Department of Medicine, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Chiung-Kuei Huang
- Department of Medicine, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| |
Collapse
|
57
|
De Gregorio R, Pulcrano S, De Sanctis C, Volpicelli F, Guatteo E, von Oerthel L, Latagliata EC, Esposito R, Piscitelli RM, Perrone-Capano C, Costa V, Greco D, Puglisi-Allegra S, Smidt MP, di Porzio U, Caiazzo M, Mercuri NB, Li M, Bellenchi GC. miR-34b/c Regulates Wnt1 and Enhances Mesencephalic Dopaminergic Neuron Differentiation. Stem Cell Reports 2018. [PMID: 29526736 PMCID: PMC5998209 DOI: 10.1016/j.stemcr.2018.02.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The differentiation of dopaminergic neurons requires concerted action of morphogens and transcription factors acting in a precise and well-defined time window. Very little is known about the potential role of microRNA in these events. By performing a microRNA-mRNA paired microarray screening, we identified miR-34b/c among the most upregulated microRNAs during dopaminergic differentiation. Interestingly, miR-34b/c modulates Wnt1 expression, promotes cell cycle exit, and induces dopaminergic differentiation. When combined with transcription factors ASCL1 and NURR1, miR-34b/c doubled the yield of transdifferentiated fibroblasts into dopaminergic neurons. Induced dopaminergic (iDA) cells synthesize dopamine and show spontaneous electrical activity, reversibly blocked by tetrodotoxin, consistent with the electrophysiological properties featured by brain dopaminergic neurons. Our findings point to a role for miR-34b/c in neuronal commitment and highlight the potential of exploiting its synergy with key transcription factors in enhancing in vitro generation of dopaminergic neurons. miR-34b/c is enriched in Pitx3-GFP+ mDA neurons miR-34b/c targets Wnt1-3′ UTR miR-34b/c is expressed during dopaminergic differentiation of mESCs miR-34b/c enhances fibroblast transdifferentiation into functional iDA neurons
Collapse
Affiliation(s)
- Roberto De Gregorio
- Institute of Genetics and Biophysics, "Adriano Buzzati Traverso", CNR, 80131 Naples, Italy
| | - Salvatore Pulcrano
- Institute of Genetics and Biophysics, "Adriano Buzzati Traverso", CNR, 80131 Naples, Italy; Deparment of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Claudia De Sanctis
- Institute of Genetics and Biophysics, "Adriano Buzzati Traverso", CNR, 80131 Naples, Italy; Neuromed IRCCS, 86077 Pozzilli (IS), Italy
| | - Floriana Volpicelli
- Institute of Genetics and Biophysics, "Adriano Buzzati Traverso", CNR, 80131 Naples, Italy; Deparment of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Ezia Guatteo
- Fondazione Santa Lucia IRCCS, 00143 Rome, Italy; Parthenope University, Department of Motor Science and Wellness, 80133 Naples, Italy
| | - Lars von Oerthel
- Swammerdam Institute for Life Sciences, University of Amsterdam, 1090 GE Amsterdam, the Netherlands
| | | | - Roberta Esposito
- Institute of Genetics and Biophysics, "Adriano Buzzati Traverso", CNR, 80131 Naples, Italy
| | - Rosa Maria Piscitelli
- Fondazione Santa Lucia IRCCS, 00143 Rome, Italy; Parthenope University, Department of Motor Science and Wellness, 80133 Naples, Italy
| | - Carla Perrone-Capano
- Institute of Genetics and Biophysics, "Adriano Buzzati Traverso", CNR, 80131 Naples, Italy; Deparment of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Valerio Costa
- Institute of Genetics and Biophysics, "Adriano Buzzati Traverso", CNR, 80131 Naples, Italy
| | - Dario Greco
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | | | - Marten P Smidt
- Swammerdam Institute for Life Sciences, University of Amsterdam, 1090 GE Amsterdam, the Netherlands
| | - Umberto di Porzio
- Institute of Genetics and Biophysics, "Adriano Buzzati Traverso", CNR, 80131 Naples, Italy
| | - Massimiliano Caiazzo
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, 3584 CG Utrecht, the Netherlands
| | - Nicola Biagio Mercuri
- Fondazione Santa Lucia IRCCS, 00143 Rome, Italy; University of Tor Vergata, Department of Systems Medicine, 00133 Rome, Italy
| | - Meng Li
- Neuroscience and Mental Health Research Institute, School of Medicine and School of Bioscience, Cardiff University, Cardiff CF24 4HQ, UK
| | - Gian Carlo Bellenchi
- Institute of Genetics and Biophysics, "Adriano Buzzati Traverso", CNR, 80131 Naples, Italy.
| |
Collapse
|
58
|
MicroRNA-34 Contributes to the Stress-related Behavior and Affects 5-HT Prefrontal/GABA Amygdalar System through Regulation of Corticotropin-releasing Factor Receptor 1. Mol Neurobiol 2018; 55:7401-7412. [PMID: 29417477 DOI: 10.1007/s12035-018-0925-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 01/24/2018] [Indexed: 12/31/2022]
Abstract
Recent studies show that microRNA-34 (miR-34) family is critical in the regulation of stress response also suggesting that it may contribute to the individual responsiveness to stress. We have recently demonstrated that mice carrying a genetic deletion of all miR-34 isoforms (triple knockout, TKO) lack the stress-induced serotonin (5-HT) and GABA release in the medial prefrontal cortex (mpFC) and basolateral amygdala (BLA), respectively. Here, we evaluated if the absence of miR-34 was also able to modify the stress-coping strategy in the forced swimming test. We found that the blunted neurochemical response to stress was associated with lower levels of immobility (index of active coping behavior) in TKO compared to WT mice. Interestingly, among the brain regions mostly involved in the stress-related behaviors, the miR-34 displayed the strongest expression in the dorsal raphe nuclei (DRN) of wild-type (WT) mice. In the DRN, the corticotropin-releasing factor receptors (CRFR) 1 and 2, contribute to determine the stress-coping style and the CRFR1 is a target of miR-34. Thus, we hypothesized that the miR-34-dependent modulation of CRFR1 expression may be involved in the DRN regulation of stress-coping strategies. In line with this hypothesis, we found increased CRFR1 levels in the DNR of TKO compared to WT mice. Moreover, infusion of CRFR1 antagonist in the DRN of TKO mice reverted their behavioral and neurochemical phenotype. We propose that miR-34 modulate the mpFC 5-HT/BLA GABA response to stress acting on CRFR1 in the DRN and that this mechanism could contribute to determine individual stress-coping strategy.
Collapse
|
59
|
Piegari E, Russo R, Cappetta D, Esposito G, Urbanek K, Dell'Aversana C, Altucci L, Berrino L, Rossi F, De Angelis A. MicroRNA-34a regulates doxorubicin-induced cardiotoxicity in rat. Oncotarget 2018; 7:62312-62326. [PMID: 27694688 PMCID: PMC5308729 DOI: 10.18632/oncotarget.11468] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 07/26/2016] [Indexed: 12/22/2022] Open
Abstract
New strategies to prevent and early detect the cardiotoxic effects of the anticancer drug doxorubicin (DOXO) are required. MicroRNAs emerged as potential diagnostic, therapeutic and prognostic approaches in cardiovascular diseases. MiR-34a has a role in cardiac dysfunction and ageing and is involved in several cellular processes associated with DOXO cardiotoxicity. Our in vitro and in vivo results indicated that after DOXO exposure the levels of miR-34a are enhanced in cardiac cells, including Cardiac Progenitor Cells (CPCs). Since one of the determining event responsible for the initiation and evolution of the DOXO toxicity arises at the level of the CPC compartment, we evaluated if miR-34a pharmacological inhibition in these cells ameliorates the detrimental aftermath of the drug. AntimiR-34a has beneficial consequences on vitality, proliferation, apoptosis and senescence of DOXO-treated rat CPC. These effects are mediated by an increase of prosurvival miR-34a targets Bcl-2 and SIRT1, accompanied by a decrease of acetylated-p53 and p16INK4a. Importantly, miR-34a silencing also reduces the release of this miRNA from DOXO-exposed rCPCs, decreasing its negative paracrine effects on other rat cardiac cells. In conclusion, the silencing of miR-34a could represent a future therapeutic option for cardioprotection in DOXO toxicity and at the same time, it could be considered as a circulating biomarker for anthracycline-induced cardiac damage.
Collapse
Affiliation(s)
- Elena Piegari
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | - Rosa Russo
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | - Donato Cappetta
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | - Grazia Esposito
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | - Konrad Urbanek
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | | | - Lucia Altucci
- Institute of Genetics and Biophysics, IGB 'Adriano Buzzati-Traverso', Naples, Italy.,Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | - Francesco Rossi
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| |
Collapse
|
60
|
Tiwari D, Peariso K, Gross C. MicroRNA-induced silencing in epilepsy: Opportunities and challenges for clinical application. Dev Dyn 2018; 247:94-110. [PMID: 28850760 PMCID: PMC5740004 DOI: 10.1002/dvdy.24582] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/20/2017] [Accepted: 08/10/2017] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs are master regulators of gene expression. Single microRNAs influence multiple proteins within diverse molecular pathways and networks. Therefore, changes in levels or activity of microRNAs can have profound effects on cellular function. This makes dysregulated microRNA-induced silencing an attractive potential disease mechanism in complex disorders like epilepsy, where numerous cellular pathways and processes are affected simultaneously. Indeed, several years of research in rodent models have provided strong evidence that acute or recurrent seizures change microRNA expression and function. Moreover, altered microRNA expression has been observed in brain and blood from patients with various epilepsy disorders, such as tuberous sclerosis. MicroRNAs can be easily manipulated using sense or antisense oligonucleotides, opening up opportunities for therapeutic intervention. Here, we summarize studies using these techniques to identify microRNAs that modulate seizure susceptibility, describe protein targets mediating some of these effects, and discuss cellular pathways, for example neuroinflammation, that are controlled by epilepsy-associated microRNAs. We critically assess current gaps in knowledge regarding target- and cell-specificity of microRNAs that have to be addressed before clinical application as therapeutic targets or biomarkers. The recent progress in understanding microRNA function in epilepsy has generated strong momentum to encourage in-depth mechanistic studies to develop microRNA-targeted therapies. Developmental Dynamics 247:94-110, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Durgesh Tiwari
- Cincinnati Children’s Hospital Medical Center, Division of Neurology, Cincinnati, Ohio
| | - Katrina Peariso
- Cincinnati Children’s Hospital Medical Center, Division of Neurology, Cincinnati, Ohio
- University of Cincinnati, Department of Pediatrics, Cincinnati, Ohio
| | - Christina Gross
- Cincinnati Children’s Hospital Medical Center, Division of Neurology, Cincinnati, Ohio
- University of Cincinnati, Department of Pediatrics, Cincinnati, Ohio
| |
Collapse
|
61
|
Reynolds RH, Petersen MH, Willert CW, Heinrich M, Nymann N, Dall M, Treebak JT, Björkqvist M, Silahtaroglu A, Hasholt L, Nørremølle A. Perturbations in the p53/miR-34a/SIRT1 pathway in the R6/2 Huntington's disease model. Mol Cell Neurosci 2017; 88:118-129. [PMID: 29289683 DOI: 10.1016/j.mcn.2017.12.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 12/21/2017] [Accepted: 12/27/2017] [Indexed: 12/26/2022] Open
Abstract
The three factors, p53, the microRNA-34 family and Sirtuin 1 (SIRT1), interact in a positive feedback loop involved in cell cycle progression, cellular senescence and apoptosis. Each factor in this triad has roles in metabolic regulation, maintenance of mitochondrial function, and regulation of brain-derived neurotrophic factor (BDNF). Thus, this regulatory network holds potential importance for the pathophysiology of Huntington's disease (HD), an inherited neurodegenerative disorder in which both mitochondrial dysfunction and impaired neurotrophic signalling are observed. We investigated expression of the three members of this regulatory triad in the R6/2 HD mouse model. Compared to wild-type littermates, we found decreased levels of miR-34a-5p, increased SIRT1 mRNA and protein levels, and increased levels of p53 protein in brain tissue from R6/2 mice. The upregulation of SIRT1 did not appear to lead to an increased activity of the enzyme, as based on measures of p53 acetylation. In other words, the observed changes did not reflect the known interactions between these factors, indicating a general perturbation of the p53, miR-34a and SIRT1 pathway in HD. This is the first study investigating the entire triad during disease progression in an HD model. Given the importance of these three factors alone and within the triad, our results indicate that outside factors are regulating - or dysregulating - this pathway in HD.
Collapse
Affiliation(s)
| | - Maria Hvidberg Petersen
- Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Cecilie Wennemoes Willert
- Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Marie Heinrich
- Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Nynne Nymann
- Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Morten Dall
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Maria Björkqvist
- Brain Disease Biomarker Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Centre, Lund University, 221 84 Lund, Sweden
| | - Asli Silahtaroglu
- Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Lis Hasholt
- Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Anne Nørremølle
- Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
62
|
Genetic variant rs3750625 in the 3'UTR of ADRA2A affects stress-dependent acute pain severity after trauma and alters a microRNA-34a regulatory site. Pain 2017; 158:230-239. [PMID: 27805929 DOI: 10.1097/j.pain.0000000000000742] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
α2A adrenergic receptor (α2A-AR) activation has been shown in animal models to play an important role in regulating the balance of acute pain inhibition vs facilitation after both physical and psychological stress. To our knowledge, the influence of genetic variants in the gene encoding α2A-AR, ADRA2A, on acute pain outcomes in humans experiencing traumatic stress has not been assessed. In this study, we tested whether a genetic variant in the 3'UTR of ADRA2A, rs3750625, is associated with acute musculoskeletal pain (MSP) severity following motor vehicle collision (MVC, n = 948) and sexual assault (n = 84), and whether this influence was affected by stress severity. We evaluated rs3750625 because it is located in the seed binding region of miR-34a, a microRNA (miRNA) known to regulate pain and stress responses. In both cohorts, the minor allele at rs3750625 was associated with increased musculoskeletal pain in distressed individuals (stress*rs3750625 P = 0.043 for MVC cohort and P = 0.007 for sexual assault cohort). We further found that (1) miR-34a binds the 3'UTR of ADRA2A, (2) the amount of repression is greater when the minor (risk) allele is present, (3) miR-34a in the IMR-32 adrenergic neuroblastoma cell line affects ADRA2A expression, (4) miR-34a and ADRA2A are expressed in tissues known to play a role in pain and stress, (5) following forced swim stress exposure, rat peripheral nerve tissue expression changes are consistent with miR-34a regulation of ADRA2A. Together, these results suggest that ADRA2A rs3750625 contributes to poststress musculoskeletal pain severity by modulating miR-34a regulation.
Collapse
|
63
|
Hyperoxia causes miR-34a-mediated injury via angiopoietin-1 in neonatal lungs. Nat Commun 2017; 8:1173. [PMID: 29079808 PMCID: PMC5660088 DOI: 10.1038/s41467-017-01349-y] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 09/11/2017] [Indexed: 01/07/2023] Open
Abstract
Hyperoxia-induced acute lung injury (HALI) is a key contributor to the pathogenesis of bronchopulmonary dysplasia (BPD) in neonates, for which no specific preventive or therapeutic agent is available. Here we show that lung micro-RNA (miR)-34a levels are significantly increased in lungs of neonatal mice exposed to hyperoxia. Deletion or inhibition of miR-34a improves the pulmonary phenotype and BPD-associated pulmonary arterial hypertension (PAH) in BPD mouse models, which, conversely, is worsened by miR-34a overexpression. Administration of angiopoietin-1, which is one of the downstream targets of miR34a, is able to ameliorate the BPD pulmonary and PAH phenotypes. Using three independent cohorts of human samples, we show that miR-34a expression is increased in type 2 alveolar epithelial cells in neonates with respiratory distress syndrome and BPD. Our data suggest that pharmacologic miR-34a inhibition may be a therapeutic option to prevent or ameliorate HALI/BPD in neonates.
Collapse
|
64
|
Alternative mechanisms of miR-34a regulation in cancer. Cell Death Dis 2017; 8:e3100. [PMID: 29022903 PMCID: PMC5682661 DOI: 10.1038/cddis.2017.495] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 08/19/2017] [Accepted: 08/22/2017] [Indexed: 12/13/2022]
Abstract
MicroRNA miR-34a is recognized as a master regulator of tumor suppression. The strategy of miR-34a replacement has been investigated in clinical trials as the first attempt of miRNA application in cancer treatment. However, emerging outcomes promote the re-evaluation of existing knowledge and urge the need for better understanding the complex biological role of miR-34a. The targets of miR-34a encompass numerous regulators of cancer cell proliferation, survival and resistance to therapy. MiR-34a expression is transcriptionally controlled by p53, a crucial tumor suppressor pathway, often disrupted in cancer. Moreover, miR-34a abundance is fine-tuned by context-dependent feedback loops. The function and effects of exogenously delivered or re-expressed miR-34a on the background of defective p53 therefore remain prominent issues in miR-34a based therapy. In this work, we review p53-independent mechanisms regulating the expression of miR-34a. Aside from molecules directly interacting with MIR34A promoter, processes affecting epigenetic regulation and miRNA maturation are discussed. Multiple mechanisms operate in the context of cancer-associated phenomena, such as aberrant oncogene signaling, EMT or inflammation. Since p53-dependent tumor-suppressive mechanisms are disturbed in a substantial proportion of malignancies, we summarize the effects of miR-34a modulation in cell and animal models in the clinically relevant context of disrupted or insufficient p53 function.
Collapse
|
65
|
Dai X, Li M, Geng F. Omega-3 Polyunsaturated Fatty Acids Eicosapentaenoic Acid and Docosahexaenoic Acid Enhance Dexamethasone Sensitivity in Multiple Myeloma Cells by the p53/miR-34a/Bcl-2 Axis. BIOCHEMISTRY (MOSCOW) 2017; 82:826-833. [PMID: 28918747 DOI: 10.1134/s0006297917070082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dexamethasone is widely used in multiple myeloma (MM) for its cytotoxic effects on lymphoid cells. However, many MM patients are resistant to dexamethasone, although some can benefit from dexamethasone treatment. In this study, we noted that ω-3 polyunsaturated fatty acids (PUFAs) enhanced the dexamethasone sensitivity of MM cells by inducing cell apoptosis. q-PCR analysis revealed that miR-34a could be significantly induced by PUFAs in U266 and primary MM cells. Transfection with miR-34a antagonist or miR-34a agomir could restore or suppress the dexamethasone sensitivity in U266 cells. Both luciferase reporter assay and Western blot showed that Bcl-2 is the direct target of miR-34a in MM cells. In addition, we observed that PUFAs induced p53 protein expression in MM cells under dexamethasone administration. Furthermore, suppressing p53 by its inhibitor, Pifithrin-α, regulated the miR-34a expression and modulated the sensitivity to dexamethasone in U266 cells. In summary, these results suggest that PUFAs enhance dexamethasone sensitivity to MM cells through the p53/miR-34a axis with a likely contribution of Bcl-2 suppression.
Collapse
Affiliation(s)
- Xianping Dai
- Binzhou Medical University, School of Pharmacy, Yantai, Shandong, 264003, PR China.
| | | | | |
Collapse
|
66
|
Cell cycle-targeting microRNAs promote differentiation by enforcing cell-cycle exit. Proc Natl Acad Sci U S A 2017; 114:10660-10665. [PMID: 28923932 DOI: 10.1073/pnas.1702914114] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs (miRNAs) have been known to affect various biological processes by repressing expression of specific genes. Here we describe an essential function of the miR-34/449 family during differentiation of epithelial cells. We found that miR-34/449 suppresses the cell-cycle machinery in vivo and promotes cell-cycle exit, thereby allowing epithelial cell differentiation. Constitutive ablation of all six members of this miRNA family causes derepression of multiple cell cycle-promoting proteins, thereby preventing epithelial cells from exiting the cell cycle and entering a quiescent state. As a result, formation of motile multicilia is strongly inhibited in several tissues such as the respiratory epithelium and the fallopian tube. Consequently, mice lacking miR-34/449 display infertility as well as severe chronic airway disease leading to postnatal death. These results demonstrate that miRNA-mediated repression of the cell cycle is required to allow epithelial cell differentiation.
Collapse
|
67
|
Hilz S, Modzelewski AJ, Cohen PE, Grimson A. The roles of microRNAs and siRNAs in mammalian spermatogenesis. Development 2017; 143:3061-73. [PMID: 27578177 PMCID: PMC5047671 DOI: 10.1242/dev.136721] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
MicroRNAs and siRNAs, both of which are AGO-bound small RNAs, are essential for mammalian spermatogenesis. Although their precise germline roles remain largely uncharacterized, recent discoveries suggest that they function in mechanisms beyond microRNA-mediated post-transcriptional control, playing roles in DNA repair and transcriptional regulation within the nucleus. Here, we discuss the latest findings regarding roles for AGO proteins and their associated small RNAs in the male germline. We integrate genetic, clinical and genomics data, and draw upon findings from non-mammalian models, to examine potential roles for AGO-bound small RNAs during spermatogenesis. Finally, we evaluate the emerging and differing roles for AGOs and AGO-bound small RNAs in the male and female germlines, suggesting potential reasons for these sexual dimorphisms. Summary: This Review article summarizes the latest findings regarding roles for AGO proteins and their associated small RNAs in the male germline, with a particular focus on spermatogenesis.
Collapse
Affiliation(s)
- Stephanie Hilz
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Andrew J Modzelewski
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Paula E Cohen
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Andrew Grimson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
68
|
Abstract
The discovery of the microRNAs, lin-4 and let-7 as critical mediators of normal development in Caenorhabditis elegans and their conservation throughout evolution has spearheaded research toward identifying novel roles of microRNAs in other cellular processes. To accurately elucidate these fundamental functions, especially in the context of an intact organism, various microRNA transgenic models have been generated and evaluated. Transgenic C. elegans (worms), Drosophila melanogaster (flies), Danio rerio (zebrafish), and Mus musculus (mouse) have contributed immensely toward uncovering the roles of multiple microRNAs in cellular processes such as proliferation, differentiation, and apoptosis, pathways that are severely altered in human diseases such as cancer. The simple model organisms, C. elegans, D. melanogaster, and D. rerio, do not develop cancers but have proved to be convenient systesm in microRNA research, especially in characterizing the microRNA biogenesis machinery which is often dysregulated during human tumorigenesis. The microRNA-dependent events delineated via these simple in vivo systems have been further verified in vitro, and in more complex models of cancers, such as M. musculus. The focus of this review is to provide an overview of the important contributions made in the microRNA field using model organisms. The simple model systems provided the basis for the importance of microRNAs in normal cellular physiology, while the more complex animal systems provided evidence for the role of microRNAs dysregulation in cancers. Highlights include an overview of the various strategies used to generate transgenic organisms and a review of the use of transgenic mice for evaluating preclinical efficacy of microRNA-based cancer therapeutics.
Collapse
Affiliation(s)
- Arpita S Pal
- PULSe Graduate Program, Purdue University, West Lafayette, IN, United States
| | - Andrea L Kasinski
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
69
|
Fischer M. Census and evaluation of p53 target genes. Oncogene 2017; 36:3943-3956. [PMID: 28288132 PMCID: PMC5511239 DOI: 10.1038/onc.2016.502] [Citation(s) in RCA: 668] [Impact Index Per Article: 83.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/23/2016] [Accepted: 11/29/2016] [Indexed: 12/17/2022]
Abstract
The tumor suppressor p53 functions primarily as a transcription factor. Mutation of the TP53 gene alters its response pathway, and is central to the development of many cancers. The discovery of a large number of p53 target genes, which confer p53's tumor suppressor function, has led to increasingly complex models of p53 function. Recent meta-analysis approaches, however, are simplifying our understanding of how p53 functions as a transcription factor. In the survey presented here, a total set of 3661 direct p53 target genes is identified that comprise 3509 potential targets from 13 high-throughput studies, and 346 target genes from individual gene analyses. Comparison of the p53 target genes reported in individual studies with those identified in 13 high-throughput studies reveals limited consistency. Here, p53 target genes have been evaluated based on the meta-analysis data, and the results show that high-confidence p53 target genes are involved in multiple cellular responses, including cell cycle arrest, DNA repair, apoptosis, metabolism, autophagy, mRNA translation and feedback mechanisms. However, many p53 target genes are identified only in a small number of studies and have a higher likelihood of being false positives. While numerous mechanisms have been proposed for mediating gene regulation in response to p53, recent advances in our understanding of p53 function show that p53 itself is solely an activator of transcription, and gene downregulation by p53 is indirect and requires p21. Taking into account the function of p53 as an activator of transcription, recent results point to an unsophisticated means of regulation.
Collapse
Affiliation(s)
- M Fischer
- Molecular Oncology, Medical School, University of Leipzig, Leipzig, Germany
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
70
|
Abstract
microRNAs are currently believed to control a large diversity of physiologic processes, through the collective repression of thousands of target genes. Both experimental and computational analyses indeed suggest that each microRNA regulates tens or hundreds of genes. But some observations suggest that the phenotypic consequences of many published miRNA/mRNA interactions are dubious. For example, the reported amplitude of miRNA-guided repression is very small, while biologic processes tend to be robust to small changes in gene expression. We recently showed, on one particular miRNA, that for most predicted targets, miRNA-guided repression is even smaller than inter-individual variability among wild-type specimens. We also put forward several sources of computational false positives. These issues are generally neglected by the scientific community, probably resulting in the frequent publication of irreproducible or misinterpreted results regarding microRNA function. We propose novel types of analyses, easily accessible to the community, that could help improve microRNA target identification.
Collapse
Affiliation(s)
- Hervé Seitz
- a Institut de Génétique Humaine UMR 9002 CNRS-Université de Montpellier , 141, rue de la Cardonille, 34396 Montpellier CEDEX 5 , France
| |
Collapse
|
71
|
Affiliation(s)
- Chao-Po Lin
- Division of Cellular and Developmental Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94705
| | - Lin He
- Division of Cellular and Developmental Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94705
| |
Collapse
|
72
|
Mercey O, Popa A, Cavard A, Paquet A, Chevalier B, Pons N, Magnone V, Zangari J, Brest P, Zaragosi LE, Ponzio G, Lebrigand K, Barbry P, Marcet B. Characterizing isomiR variants within the microRNA-34/449 family. FEBS Lett 2017; 591:693-705. [PMID: 28192603 PMCID: PMC5363356 DOI: 10.1002/1873-3468.12595] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/26/2017] [Accepted: 02/08/2017] [Indexed: 01/13/2023]
Abstract
miR‐34/449 microRNAs are conserved regulators of multiciliated cell differentiation. Here, we evidence and characterize expression of two isomiR variant sequences from the miR‐34/449 family in human airway epithelial cells. These isomiRs differ from their canonical counterparts miR‐34b and miR‐449c by one supplemental uridine at their 5′‐end, leading to a one‐base shift in their seed region. Overexpression of canonical miR‐34/449 or 5′‐isomiR‐34/449 induces distinct gene expression profiles and biological effects. However, some target transcripts and functional activities are shared by both canonical microRNAs and isomiRs. Indeed, both repress important targets that result in cell cycle blockage and Notch pathway inhibition. Our findings suggest that 5′‐isomiR‐34/449 may represent additional mechanisms by which miR‐34/449 family finely controls several pathways to drive multiciliogenesis.
Collapse
Affiliation(s)
- Olivier Mercey
- CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France
| | - Alexandra Popa
- CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France
| | - Amélie Cavard
- CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France
| | - Agnès Paquet
- CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France
| | - Benoît Chevalier
- CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France
| | - Nicolas Pons
- CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France
| | - Virginie Magnone
- CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France
| | - Joséphine Zangari
- CNRS, INSERM, IRCAN, FHU-OncoAge, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France
| | - Patrick Brest
- CNRS, INSERM, IRCAN, FHU-OncoAge, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France
| | | | - Gilles Ponzio
- CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France
| | - Kevin Lebrigand
- CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France
| | - Pascal Barbry
- CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France
| | - Brice Marcet
- CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France
| |
Collapse
|
73
|
Jin HY, Oda H, Chen P, Yang C, Zhou X, Kang SG, Valentine E, Kefauver JM, Liao L, Zhang Y, Gonzalez-Martin A, Shepherd J, Morgan GJ, Mondala TS, Head SR, Kim PH, Xiao N, Fu G, Liu WH, Han J, Williamson JR, Xiao C. Differential Sensitivity of Target Genes to Translational Repression by miR-17~92. PLoS Genet 2017; 13:e1006623. [PMID: 28241004 PMCID: PMC5348049 DOI: 10.1371/journal.pgen.1006623] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 03/13/2017] [Accepted: 02/08/2017] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are thought to exert their functions by modulating the expression of hundreds of target genes and each to a small degree, but it remains unclear how small changes in hundreds of target genes are translated into the specific function of a miRNA. Here, we conducted an integrated analysis of transcriptome and translatome of primary B cells from mutant mice expressing miR-17~92 at three different levels to address this issue. We found that target genes exhibit differential sensitivity to miRNA suppression and that only a small fraction of target genes are actually suppressed by a given concentration of miRNA under physiological conditions. Transgenic expression and deletion of the same miRNA gene regulate largely distinct sets of target genes. miR-17~92 controls target gene expression mainly through translational repression and 5’UTR plays an important role in regulating target gene sensitivity to miRNA suppression. These findings provide molecular insights into a model in which miRNAs exert their specific functions through a small number of key target genes. MicroRNAs (miRNAs) are small RNAs encoded by our genome. Each miRNA binds hundreds of target mRNAs and performs specific functions. It is thought that miRNAs exert their function by reducing the expression of all these target genes and each to a small degree. However, these target genes often have very diverse functions. It has been unclear how small changes in hundreds of target genes with diverse functions are translated into the specific function of a miRNA. Here we take advantage of recent technical advances to globally examine the mRNA and protein levels of 868 target genes regulated by miR-17~92, the first oncogenic miRNA, in mutant mice with transgenic overexpression or deletion of this miRNA gene. We show that miR-17~92 regulates target gene expression mainly at the protein level, with little effect on mRNA. Surprisingly, only a small fraction of target genes respond to miR-17~92 expression changes. Further studies show that the sensitivity of target genes to miR-17~92 is determined by a non-coding region of target mRNA. Our findings demonstrate that not every target gene is equal, and suggest that the function of a miRNA is mediated by a small number of key target genes.
Collapse
Affiliation(s)
- Hyun Yong Jin
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
- Kellogg School of Science and Technology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Hiroyo Oda
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Pengda Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Chao Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiaojuan Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Seung Goo Kang
- Division of Biomedical Convergence/Institute of Bioscience & Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Elizabeth Valentine
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jennifer M. Kefauver
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
- Kellogg School of Science and Technology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Lujian Liao
- Shanghai Key Laboratory of Regulatory Biology, Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Life Sciences, East China Normal University, Shanghai, China
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Alicia Gonzalez-Martin
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jovan Shepherd
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Gareth J. Morgan
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Tony S. Mondala
- Next Generation Sequencing Core, The Scripps Research Institute, La Jolla, California, United States of America
| | - Steven R. Head
- Next Generation Sequencing Core, The Scripps Research Institute, La Jolla, California, United States of America
| | - Pyeung-Hyeun Kim
- Department of Molecular Bioscience/Institute of Bioscience & Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Nengming Xiao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Guo Fu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Wen-Hsien Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - James R. Williamson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Changchun Xiao
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- * E-mail:
| |
Collapse
|
74
|
Choi YJ, Lin CP, Risso D, Chen S, Kim TA, Tan MH, Li JB, Wu Y, Chen C, Xuan Z, Macfarlan T, Peng W, Lloyd KCK, Kim SY, Speed TP, He L. Deficiency of microRNA miR-34a expands cell fate potential in pluripotent stem cells. Science 2017; 355:science.aag1927. [PMID: 28082412 DOI: 10.1126/science.aag1927] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 12/14/2016] [Indexed: 12/13/2022]
Abstract
Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) efficiently generate all embryonic cell lineages but rarely generate extraembryonic cell types. We found that microRNA miR-34a deficiency expands the developmental potential of mouse pluripotent stem cells, yielding both embryonic and extraembryonic lineages and strongly inducing MuERV-L (MERVL) endogenous retroviruses, similar to what is seen with features of totipotent two-cell blastomeres. miR-34a restricts the acquisition of expanded cell fate potential in pluripotent stem cells, and it represses MERVL expression through transcriptional regulation, at least in part by targeting the transcription factor Gata2. Our studies reveal a complex molecular network that defines and restricts pluripotent developmental potential in cultured ESCs and iPSCs.
Collapse
Affiliation(s)
- Yong Jin Choi
- Division of Cellular and Developmental Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94705, USA
| | - Chao-Po Lin
- Division of Cellular and Developmental Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94705, USA.
| | - Davide Risso
- Division of Biostatistics, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Sean Chen
- Division of Cellular and Developmental Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94705, USA
| | - Thomas Aquinas Kim
- Division of Cellular and Developmental Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94705, USA
| | - Meng How Tan
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Jin Billy Li
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Yalei Wu
- Thermo Fisher Scientific, 180 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - Caifu Chen
- Integrated DNA Technologies, 200 Chesapeake Drive, Redwood City, CA 94063, USA
| | - Zhenyu Xuan
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Todd Macfarlan
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Weiqun Peng
- Department of Physics, George Washington University, Washington, DC 20052, USA
| | - K C Kent Lloyd
- Mouse Biology Program, University of California, Davis, CA 95616, USA
| | - Sang Yong Kim
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Terence P Speed
- Department of Statistics, University of California, Berkeley, CA 94720, USA.,Department of Mathematics and Statistics, University of Melbourne, Parkville, VIC 3010, Australia.,Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Lin He
- Division of Cellular and Developmental Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94705, USA.
| |
Collapse
|
75
|
Neault M, Couteau F, Bonneau É, De Guire V, Mallette FA. Molecular Regulation of Cellular Senescence by MicroRNAs: Implications in Cancer and Age-Related Diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 334:27-98. [DOI: 10.1016/bs.ircmb.2017.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
76
|
Sermersheim MA, Park KH, Gumpper K, Adesanya TMA, Song K, Tan T, Ren X, Yang JM, Zhu H. MicroRNA regulation of autophagy in cardiovascular disease. Front Biosci (Landmark Ed) 2017; 22:48-65. [PMID: 27814601 DOI: 10.2741/4471] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Autophagy, a form of lysosomal degradation capable of eliminating dysfunctional proteins and organelles, is a cellular process associated with homeostasis. Autophagy functions in cell survival by breaking down proteins and organelles and recycling them to meet metabolic demands. However, aberrant up regulation of autophagy can function as an alternative to apoptosis. The duality of autophagy, and its regulation over cell survival/death, intimately links it with human disease. Non-coding RNAs regulate mRNA levels and elicit diverse effects on mammalian protein expression. The most studied non-coding RNAs to-date are microRNAs (miRNA). MicroRNAs function in post-transcriptional regulation, causing profound changes in protein levels, and affect many biological processes and diseases. The role and regulation of autophagy, whether it is beneficial or harmful, is a controversial topic in cardiovascular disease. A number of recent studies have identified miRNAs that target autophagy-related proteins and influence the development, progression, or treatment of cardiovascular disease. Understanding the mechanisms by which these miRNAs work can provide promising insight and potential progress towards the development of therapeutic treatments in cardiovascular disease.
Collapse
Affiliation(s)
- Matthew A Sermersheim
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA
| | - Ki Ho Park
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA
| | - Kristyn Gumpper
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA
| | - T M Ayodele Adesanya
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA
| | - Kuncheng Song
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA
| | - Tao Tan
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA
| | - Xingcong Ren
- Department of Pharmacology, The Penn State Hershey Cancer Institute, The Pennsylvania State University, College of Medicine and Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA
| | - Jin-Ming Yang
- Department of Pharmacology, The Penn State Hershey Cancer Institute, The Pennsylvania State University, College of Medicine and Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA
| | - Hua Zhu
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA,
| |
Collapse
|
77
|
Krause CJ, Popp O, Thirunarayanan N, Dittmar G, Lipp M, Müller G. MicroRNA-34a promotes genomic instability by a broad suppression of genome maintenance mechanisms downstream of the oncogene KSHV-vGPCR. Oncotarget 2016; 7:10414-32. [PMID: 26871287 PMCID: PMC4891129 DOI: 10.18632/oncotarget.7248] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 01/17/2016] [Indexed: 12/18/2022] Open
Abstract
The Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded chemokine receptor vGPCR acts as an oncogene in Kaposi's sarcomagenesis. Until now, the molecular mechanisms by which the vGPCR contributes to tumor development remain incompletely understood. Here, we show that the KSHV-vGPCR contributes to tumor progression through microRNA (miR)-34a-mediated induction of genomic instability. Large-scale analyses on the DNA, gene and protein level of cell lines derived from a mouse model of vGPCR-driven tumorigenesis revealed that a vGPCR–induced upregulation of miR-34a resulted in a broad suppression of genome maintenance genes. A knockdown of either the vGPCR or miR-34a largely restored the expression of these genes and confirmed miR-34a as a downstream effector of the KSHV-vGPCR that compromises genome maintenance mechanisms. This novel, protumorigenic role of miR-34a questions the use of miR-34a mimetics in cancer therapy as they could impair genome stability.
Collapse
Affiliation(s)
- Claudia J Krause
- Molecular Tumor Genetics and Immunogenetics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Oliver Popp
- Mass Spectrometry Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Nanthakumar Thirunarayanan
- Molecular Tumor Genetics and Immunogenetics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Gunnar Dittmar
- Mass Spectrometry Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Martin Lipp
- Molecular Tumor Genetics and Immunogenetics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Gerd Müller
- Molecular Tumor Genetics and Immunogenetics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
78
|
Isik M, Blackwell TK, Berezikov E. MicroRNA mir-34 provides robustness to environmental stress response via the DAF-16 network in C. elegans. Sci Rep 2016; 6:36766. [PMID: 27905558 PMCID: PMC5131338 DOI: 10.1038/srep36766] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/20/2016] [Indexed: 12/16/2022] Open
Abstract
Diverse stresses and aging alter expression levels of microRNAs, suggesting a role for these posttranscriptional regulators of gene expression in stress modulation and longevity. Earlier studies demonstrated a central role for the miR-34 family in promoting cell cycle arrest and cell death following stress in human cells. However, the biological significance of this response was unclear. Here we show that in C. elegans mir-34 upregulation is necessary for developmental arrest, correct morphogenesis, and adaptation to a lower metabolic state to protect animals against stress-related damage. Either deletion or overexpression of mir-34 lead to an impaired stress response, which can largely be explained by perturbations in DAF-16/FOXO target gene expression. We demonstrate that mir-34 expression is regulated by the insulin signaling pathway via a negative feedback loop between miR-34 and DAF-16/FOXO. We propose that mir-34 provides robustness to stress response programs by controlling noise in the DAF-16/FOXO-regulated gene network.
Collapse
Affiliation(s)
- Meltem Isik
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands.,Joslin Diabetes Center, Harvard Stem Cell Institute and Harvard Medical School Department of Genetics, Boston, Massachusetts, United States of America
| | - T Keith Blackwell
- Joslin Diabetes Center, Harvard Stem Cell Institute and Harvard Medical School Department of Genetics, Boston, Massachusetts, United States of America
| | - Eugene Berezikov
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands.,European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
79
|
Bu P, Wang L, Chen KY, Srinivasan T, Murthy PKL, Tung KL, Varanko AK, Chen HJ, Ai Y, King S, Lipkin SM, Shen X. A miR-34a-Numb Feedforward Loop Triggered by Inflammation Regulates Asymmetric Stem Cell Division in Intestine and Colon Cancer. Cell Stem Cell 2016; 18:189-202. [PMID: 26849305 DOI: 10.1016/j.stem.2016.01.006] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 11/24/2015] [Accepted: 01/13/2016] [Indexed: 12/31/2022]
Abstract
Emerging evidence suggests that microRNAs can initiate asymmetric division, but whether microRNA and protein cell fate determinants coordinate with each other remains unclear. Here, we show that miR-34a directly suppresses Numb in early-stage colon cancer stem cells (CCSCs), forming an incoherent feedforward loop (IFFL) targeting Notch to separate stem and non-stem cell fates robustly. Perturbation of the IFFL leads to a new intermediate cell population with plastic and ambiguous identity. Lgr5+ mouse intestinal/colon stem cells (ISCs) predominantly undergo symmetric division but turn on asymmetric division to curb the number of ISCs when proinflammatory response causes excessive proliferation. Deletion of miR-34a inhibits asymmetric division and exacerbates Lgr5+ ISC proliferation under such stress. Collectively, our data indicate that microRNA and protein cell fate determinants coordinate to enhance robustness of cell fate decision, and they provide a safeguard mechanism against stem cell proliferation induced by inflammation or oncogenic mutation.
Collapse
Affiliation(s)
- Pengcheng Bu
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA; Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.
| | - Lihua Wang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Kai-Yuan Chen
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Tara Srinivasan
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | | | - Kuei-Ling Tung
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | | | | | - Yiwei Ai
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Sarah King
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Steven M Lipkin
- Departments of Medicine, Genetic Medicine, and Surgery, Weill Cornell Medical College, New York, NY 10021, USA
| | - Xiling Shen
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA; Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA; Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
80
|
Baker JR, Vuppusetty C, Colley T, Papaioannou AI, Fenwick P, Donnelly L, Ito K, Barnes PJ. Oxidative stress dependent microRNA-34a activation via PI3Kα reduces the expression of sirtuin-1 and sirtuin-6 in epithelial cells. Sci Rep 2016; 6:35871. [PMID: 27767101 PMCID: PMC5073335 DOI: 10.1038/srep35871] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/07/2016] [Indexed: 12/18/2022] Open
Abstract
Sirtuin-1 (SIRT1) and SIRT6, NAD+-dependent Class III protein deacetylases, are putative anti-aging enzymes, down-regulated in patients with chronic obstructive pulmonary disease (COPD), which is characterized by the accelerated ageing of the lung and associated with increased oxidative stress. Here, we show that oxidative stress (hydrogen peroxide) selectively elevates microRNA-34a (miR-34a) but not the related miR-34b/c, with concomitant reduction of SIRT1/-6 in bronchial epithelial cells (BEAS2B), which was also observed in peripheral lung samples from patients with COPD. Over-expression of a miR-34a mimic caused a significant reduction in both mRNA and protein of SIRT1/-6, whereas inhibition of miR-34a (antagomir) increased these sirtuins. Induction of miR-34a expression with H2O2 was phosphoinositide-3-kinase (PI3K) dependent as it was associated with PI3Kα activation as well as phosphatase and tensin homolog (PTEN) reduction. Importantly, miR-34a antagomirs increased SIRT1/-6 mRNA levels, whilst decreasing markers of cellular senescence in airway epithelial cells from COPD patients, suggesting that this process is reversible. Other sirtuin isoforms were not affected by miR-34a. Our data indicate that miR-34a is induced by oxidative stress via PI3K signaling, and orchestrates ageing responses under oxidative stress, therefore highlighting miR-34a as a new therapeutic target and biomarker in COPD and other oxidative stress-driven aging diseases.
Collapse
Affiliation(s)
- J R Baker
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London SW3 6LY, U.K
| | - C Vuppusetty
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London SW3 6LY, U.K
| | - T Colley
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London SW3 6LY, U.K
| | | | - P Fenwick
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London SW3 6LY, U.K
| | - Louise Donnelly
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London SW3 6LY, U.K
| | - K Ito
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London SW3 6LY, U.K
| | - P J Barnes
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London SW3 6LY, U.K
| |
Collapse
|
81
|
Fededa JP, Esk C, Mierzwa B, Stanyte R, Yuan S, Zheng H, Ebnet K, Yan W, Knoblich JA, Gerlich DW. MicroRNA-34/449 controls mitotic spindle orientation during mammalian cortex development. EMBO J 2016; 35:2386-2398. [PMID: 27707753 PMCID: PMC5109238 DOI: 10.15252/embj.201694056] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 08/18/2016] [Accepted: 09/06/2016] [Indexed: 01/07/2023] Open
Abstract
Correct orientation of the mitotic spindle determines the plane of cellular cleavage and is crucial for organ development. In the developing cerebral cortex, spindle orientation defects result in severe neurodevelopmental disorders, but the precise mechanisms that control this important event are not fully understood. Here, we use a combination of high-content screening and mouse genetics to identify the miR-34/449 family as key regulators of mitotic spindle orientation in the developing cerebral cortex. By screening through all cortically expressed miRNAs in HeLa cells, we show that several members of the miR-34/449 family control mitotic duration and spindle rotation. Analysis of miR-34/449 knockout (KO) mouse embryos demonstrates significant spindle misorientation phenotypes in cortical progenitors, resulting in an excess of radial glia cells at the expense of intermediate progenitors and a significant delay in neurogenesis. We identify the junction adhesion molecule-A (JAM-A) as a key target for miR-34/449 in the developing cortex that might be responsible for those defects. Our data indicate that miRNA-dependent regulation of mitotic spindle orientation is crucial for cell fate specification during mammalian neurogenesis.
Collapse
Affiliation(s)
- Juan Pablo Fededa
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) Vienna Biocenter (VBC), Vienna, Austria
| | - Christopher Esk
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) Vienna Biocenter (VBC), Vienna, Austria
| | - Beata Mierzwa
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) Vienna Biocenter (VBC), Vienna, Austria
| | - Rugile Stanyte
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) Vienna Biocenter (VBC), Vienna, Austria
| | - Shuiqiao Yuan
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Huili Zheng
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Klaus Ebnet
- Institute-associated Research Group "Cell Adhesion and Cell Polarity", Institute of Medical Biochemistry, ZMBE, Münster, Germany
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Juergen A Knoblich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) Vienna Biocenter (VBC), Vienna, Austria
| | - Daniel W Gerlich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) Vienna Biocenter (VBC), Vienna, Austria
| |
Collapse
|
82
|
Abstract
BACKGROUND The spectrum of nonalcoholic fatty liver disease (NAFLD) describes disease conditions deteriorating from nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH) to cirrhosis (CIR) to hepatocellular carcinoma (HCC). From a molecular and biochemical perspective, our understanding of the etiology of this disease is limited by the broad spectrum of disease presentations, the lack of a thorough understanding of the factors contributing to disease susceptibility, and ethical concerns related to repeat sampling of the liver. To better understand the factors associated with disease progression, we investigated by next-generation RNA sequencing the altered expression of microRNAs (miRNAs) in liver biopsies of class III obese subjects (body mass index ≥40 kg/m(2)) biopsied at the time of elective bariatric surgery. METHODS Clinical characteristics and unbiased RNA expression profiles for 233 miRs, 313 transfer RNAs (tRNAs), and 392 miscellaneous small RNAs (snoRNAs, snRNAs, rRNAs) were compared among 36 liver biopsy specimens stratified by disease severity. RESULTS The abundances of 3 miRNAs that were found to be differentially regulated (miR-301a-3p and miR-34a-5p increased and miR-375 decreased) with disease progression were validated by RT-PCR. No tRNAs or miscellaneous RNAs were found to be associated with disease severity. Similar patterns of increased miR-301a and decreased miR-375 expression were observed in 134 hepatocellular carcinoma (HCC) samples deposited in The Cancer Genome Atlas (TCGA). CONCLUSIONS Our analytical results suggest that NAFLD severity is associated with a specific pattern of altered hepatic microRNA expression that may drive the hallmark of this disorder: altered lipid and carbohydrate metabolism. The three identified miRNAs can potentially be used as biomarkers to access the severity of NAFLD. The persistence of this miRNA expression pattern in an external validation cohort of HCC samples suggests that specific microRNA expression patterns may permit and/or sustain NAFLD development to HCC.
Collapse
|
83
|
Jiao C, Zhu A, Jiao X, Ge J, Xu X. Combined low miR-34s are associated with unfavorable prognosis in children with hepatoblastoma: A Chinese population-based study. J Pediatr Surg 2016; 51:1355-61. [PMID: 27046304 DOI: 10.1016/j.jpedsurg.2016.02.091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/21/2015] [Accepted: 02/25/2016] [Indexed: 12/19/2022]
Abstract
PURPOSE The aim of this study is to identify the association between miR-34's family and the prognosis of HB in a large Asian cohort and to explore the interaction of miR-34 with other independent risk factors in the process of affecting prognosis of HB. METHODS We retrospectively reviewed 78 children with HB (36 female, 42 male) managed in our institutions between 2007 and 2014. The expression of miR-34 was detected by real-time PCR. Prognostic factors were evaluated using Kaplan-Meier curves and Cox proportional hazards models. RESULTS For the entire cohort of 76 patients, The normalized real-time PCR results showed that all three miRNAs were deregulated in tumor tissues as compared with corresponding noncancerous tissue samples. Descriptive survival statistics and Kaplan-Meier curves suggested that AFP levels, metastases, vascular invasion, PRETEXT stage and miR-34 had prognostic significance in this relatively selected cohort. After that we made miR-34 into different combinations. The results demonstrated that combined low miR-34a and miR-34b (HR:2.212, P=0.016), combined low miR-34a and miR-34c (HR:1.984, P=0.025) and combined low miR-34a, miR-34b and miR-34c (HR:3.569, P=0.001) were independent prognostic factors of HB. We further conduct stratified analysis of the impact of other identified risk factors on the combined low of three miR-34. CONCLUSIONS In this study, we found that miR-34s were deregulated in tumor tissues compared with corresponding noncancerous tissue samples. We also confirmed that combined low miR-34 is an independent prognostic factor related with HB.
Collapse
Affiliation(s)
- Chenwei Jiao
- Department of Pediatric Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Anzhi Zhu
- Department of Pediatric Surgery, The Second People's Hospital of Liaocheng city, Linqing, China
| | - Xiaohu Jiao
- Department of Surgery, Baoji Hospital affiliated to Xi'an Medical University, Baoji, China
| | - Juntao Ge
- Department of Pediatric Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Xiaoqing Xu
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
84
|
Noncoding RNAs Regulating p53 and c-Myc Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 927:337-65. [DOI: 10.1007/978-981-10-1498-7_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
85
|
Abstract
It is now clear that functional p53 is critical to protect the genome from alterations that lead to tumorigenesis. However, with the myriad of cellular stresses and pathways linked to p53 activation, much remains unknown about how p53 maintains genome stability and the proteins involved. The current understanding of the multiple ways p53 contributes to genome stability and how two of its negative regulators, Mdm2 and Mdmx, induce genome instability will be described.
Collapse
Affiliation(s)
- Christine M Eischen
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37212
| |
Collapse
|
86
|
Schober A, Weber C. Mechanisms of MicroRNAs in Atherosclerosis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 11:583-616. [DOI: 10.1146/annurev-pathol-012615-044135] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Andreas Schober
- Institute for Cardiovascular Prevention, Ludwig Maximilians University Munich, Munich 80336, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich 80336, Germany;
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig Maximilians University Munich, Munich 80336, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich 80336, Germany;
| |
Collapse
|
87
|
Wang J, Wang H, Liu A, Fang C, Hao J, Wang Z. Lactate dehydrogenase A negatively regulated by miRNAs promotes aerobic glycolysis and is increased in colorectal cancer. Oncotarget 2016; 6:19456-68. [PMID: 26062441 PMCID: PMC4637298 DOI: 10.18632/oncotarget.3318] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 02/08/2015] [Indexed: 12/16/2022] Open
Abstract
Reprogramming metabolism of tumor cells is a hallmark of cancer. Lactate dehydrogenase A (LDHA) is frequently overexpressed in tumor cells. Previous studies has shown higher levels of LDHA is related with colorectal cancer (CRC), but its role in tumor maintenance and underlying molecular mechanisms has not been established. Here, we investigated miRNAs-induced changes in LDHA expression. We reported that colorectal cancer express higher levels of LDHA compared with adjacent normal tissue. Knockdown of LDHA resulted in decreased lactate and ATP production, and glucose uptake. Colorectal cancer cells with knockdown of LDHA had much slower growth rate than control cells. Furthermore, we found that miR-34a, miR-34c, miR-369-3p, miR-374a, and miR-4524a/b target LDHA and regulate glycolysis in cancer cells. There is a negative correlation between these miRNAs and LDHA expression in colorectal cancer tissues. More importantly, we identified a genetic loci newly associated with increased colorectal cancer progression, rs18407893 at 11p15.4 (in 3′-UTR of LDHA), which maps to the seed sequence recognized by miR-374a. Cancer cells overexpressed miR-374a has decreased levels of LDHA compared with miR-374a-MUT (rs18407893 at 11p15.4). Taken together, these novel findings provide more therapeutic approaches to the Warburg effect and therapeutic targets of cancer energy metabolism.
Collapse
Affiliation(s)
- Jian Wang
- Intensive Care Unit, Tianjin Hospital, Tianjin, China
| | - Hui Wang
- Department of General Surgery, Tianjin Public Security Hospital, Tianjin, China
| | - Aifen Liu
- Department of Anesthesiology, The Second Hospital Affiliated to Tianjin Medical University, Tianjin, China
| | - Changge Fang
- Advanced Personalized Diagnostics LLC, Alexandria, VA, USA
| | - Jianguo Hao
- Department of General Surgery, Taiyuan Central Hospital, Shanxi, China
| | - Zhenghui Wang
- Department of Anatomy, Histology and Embryology, Logistics University of CAPF, Tianjin, China
| |
Collapse
|
88
|
Abstract
The fundamental biological importance of the Tp53 gene family is highlighted by its evolutionary conservation for more than one billion years dating back to the earliest multicellular organisms. The TP53 protein provides essential functions in the cellular response to diverse stresses and safeguards maintenance of genomic integrity, and this is manifest in its critical role in tumor suppression. The importance of Tp53 in tumor prevention is exemplified in human cancer where it is the most frequently detected genetic alteration. This is confirmed in animal models, in which a defective Tp53 gene leads inexorably to cancer development, whereas reinstatement of TP53 function results in regression of established tumors that had been initiated by loss of TP53. Remarkably, despite extensive investigation, the specific mechanisms by which TP53 acts as a tumor suppressor are yet to be fully defined. We review the history and current standing of efforts to understand these mechanisms and how they complement each other in tumor suppression.
Collapse
Affiliation(s)
- Brandon J Aubrey
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia Department of Clinical Haematology and Bone Marrow Transplant Service, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| |
Collapse
|
89
|
The orphan nuclear receptor NR4A2 is part of a p53-microRNA-34 network. Sci Rep 2016; 6:25108. [PMID: 27121375 PMCID: PMC4848494 DOI: 10.1038/srep25108] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/11/2016] [Indexed: 12/13/2022] Open
Abstract
Nuclear receptor subfamily 4 group A member 2 (NR4A2) is an orphan nuclear receptor that is over-expressed in cancer and promotes cell proliferation, migration, transformation, and chemoresistance. Increased expression and function of NR4A2 have been attributed to various signaling pathways, but little is known about microRNA (miRNA) regulation of NR4A2 in cancer. To investigate the posttranscriptional regulation of NR4A2, we used a 3′ untranslated region (UTR) reporter screen and identified miR-34 as a putative regulator of NR4A2. By using computer predictions, we identified and confirmed an miRNA recognition element in the 3′ UTR of NR4A2 that was responsible for miR-34–mediated suppression. We next demonstrated that overexpression of exogenous miR-34 or activation of the p53 pathway, which regulates endogenous miR-34 expression, decreased NR4A2 expression. Consistent with previous reports, overexpression of NR4A2 blocked the induction of p53 target genes, including mir-34a. This was a phenotypic effect, as NR4A2 overexpression could rescue cells from p53-induced inhibition of proliferation. In summary, our results are the first characterization of a cancer-related miRNA capable of regulating NR4A2 and suggest a network and possible feedback mechanism involving p53, miR-34, and NR4A2.
Collapse
|
90
|
Effects of lack of microRNA-34 on the neural circuitry underlying the stress response and anxiety. Neuropharmacology 2016; 107:305-316. [PMID: 27026110 PMCID: PMC5573597 DOI: 10.1016/j.neuropharm.2016.03.044] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 03/11/2016] [Accepted: 03/25/2016] [Indexed: 01/03/2023]
Abstract
Stress-related psychiatric disorders, including anxiety, are complex diseases that have genetic, and environmental causes. Stressful experiences increase the release of prefrontal amygdala neurotransmitters, a response that is relevant to cognitive, emotional, and behavioral coping. Moreover, exposure to stress elicits anxiety-like behavior and dendritic remodeling in the amygdala. Members of the miR-34 family have been suggested to regulate synaptic plasticity and neurotransmission processes, which mediate stress-related disorders. Using mice that harbored targeted deletions of all 3 members of the miR-34-family (miR-34-TKO), we evaluated acute stress-induced basolateral amygdala (BLA)-GABAergic and medial prefrontal cortex (mpFC) aminergic outflow by intracerebral in vivo microdialysis. Moreover, we also examined fear conditioning/extinction, stress-induced anxiety, and dendritic remodeling in the BLA of stress-exposed TKO mice. We found that TKO mice showed resilience to stress-induced anxiety and facilitation in fear extinction. Accordingly, no significant increase was evident in aminergic prefrontal or amygdala GABA release, and no significant acute stress-induced amygdalar dendritic remodeling was observed in TKO mice. Differential GRM7, 5-HT2C, and CRFR1 mRNA expression was noted in the mpFC and BLA between TKO and WT mice. Our data demonstrate that the miR-34 has a critical function in regulating the behavioral and neurochemical response to acute stress and in inducing stress-related amygdala neuroplasticity.
Collapse
|
91
|
Cushing L, Jiang Z, Kuang P, Lü J. The roles of microRNAs and protein components of the microRNA pathway in lung development and diseases. Am J Respir Cell Mol Biol 2016; 52:397-408. [PMID: 25211015 DOI: 10.1165/rcmb.2014-0232rt] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Decades of studies have shown evolutionarily conserved molecular networks consisting of transcriptional factors, diffusing growth factors, and signaling pathways that regulate proper lung development. Recently, microRNAs (miRNAs), small, noncoding regulatory RNAs, have been integrated into these networks. Significant advances have been made in characterizing the developmental stage- or cell type-specific miRNAs during lung development by using approaches such as genome-wide profiling and in situ hybridization. Results from gain- or loss-of-function studies revealed pivotal roles of protein components of the miRNA pathway and individual miRNAs in regulating proliferation, apoptosis, differentiation, and morphogenesis during lung development. Aberrant expression or functions of these components have been associated with pulmonary disorders, suggesting their involvement in pathogenesis of these diseases. Moreover, genetically modified mice generated in these studies have become useful models of human lung diseases. Challenges in this field include characterization of collective function and responsible targets of miRNAs specifically expressed during lung development, and translation of these basic findings into clinically relevant information for better understanding of human diseases. The goal of this review is to discuss the recent progress on the understanding of how the miRNA pathway regulates lung development, how dysregulation of miRNA activities contributes to pathogenesis of related pulmonary diseases, and to identify relevant questions and future directions.
Collapse
Affiliation(s)
- Leah Cushing
- Columbia Center for Human Development, Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Columbia University, College of Physicians & Surgeons, New York, New York
| | | | | | | |
Collapse
|
92
|
Chen J. The Cell-Cycle Arrest and Apoptotic Functions of p53 in Tumor Initiation and Progression. Cold Spring Harb Perspect Med 2016; 6:a026104. [PMID: 26931810 DOI: 10.1101/cshperspect.a026104] [Citation(s) in RCA: 791] [Impact Index Per Article: 87.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
P53 is a transcription factor highly inducible by many stress signals such as DNA damage, oncogene activation, and nutrient deprivation. Cell-cycle arrest and apoptosis are the most prominent outcomes of p53 activation. Many studies showed that p53 cell-cycle and apoptosis functions are important for preventing tumor development. p53 also regulates many cellular processes including metabolism, antioxidant response, and DNA repair. Emerging evidence suggests that these noncanonical p53 activities may also have potent antitumor effects within certain context. This review focuses on the cell-cycle arrest and apoptosis functions of p53, their roles in tumor suppression, and the regulation of cell fate decision after p53 activation.
Collapse
Affiliation(s)
- Jiandong Chen
- Molecular Oncology Department, Moffitt Cancer Center, Tampa, Florida 33612
| |
Collapse
|
93
|
Yu J, Lou Y, He K, Yang S, Yu W, Han L, Zhao A. Goose broodiness is involved in granulosa cell autophagy and homeostatic imbalance of follicular hormones. Poult Sci 2016; 95:1156-64. [PMID: 26908882 DOI: 10.3382/ps/pew006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/23/2015] [Indexed: 12/21/2022] Open
Abstract
Broodiness is observed in most domestic fowls and influences egg production. The goose is one of the most important waterfowls, having strong broody behavior. However, whether autophagy and follicular internal environment play a role in the broodiness behavior of goose is unknown. In this report, we analyzed the follicular internal environment and granulosa cell autophagy of goose follicles. The results show that the contents of hormones, including prolactin (PRL), progesterone (P4), and estradiol (E2), increased in broody goose follicles. Most importantly, the level of granulosa cell autophagy in broody goose follicles was elevated, detected by electron microscopy and western blotting. Also, the expressions of positive regulators of autophagy, including miR-7, miR-29, miR-100, miR-181, PRLR, LC3, p53,Beclin1, Atg9, and Atg12, were up-regulated and the expressions of negative regulators of autophagy, including miR-34b and miR-34c, were down-regulated in broody goose follicles. Our results suggest that goose broodiness is involved in increased granulosa cell autophagy and homeostasis imbalance of internal environment in the follicles. This work contributes to our knowledge of goose broodiness and may influence egg production.
Collapse
Affiliation(s)
- Jing Yu
- College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, 88 Huanbei Road, Lin'an 311300, China
| | - Yaping Lou
- College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, 88 Huanbei Road, Lin'an 311300, China
| | - Ke He
- College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, 88 Huanbei Road, Lin'an 311300, China
| | - Songbai Yang
- College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, 88 Huanbei Road, Lin'an 311300, China
| | - Wensai Yu
- College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, 88 Huanbei Road, Lin'an 311300, China
| | - Lu Han
- College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, 88 Huanbei Road, Lin'an 311300, China
| | - Ayong Zhao
- College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, 88 Huanbei Road, Lin'an 311300, China
| |
Collapse
|
94
|
Cabrita MA, Vanzyl EJ, Hamill JD, Pan E, Marcellus KA, Tolls VJ, Alonzi RC, Pastic A, Rambo TME, Sayed H, McKay BC. A Temperature Sensitive Variant of p53 Drives p53-Dependent MicroRNA Expression without Evidence of Widespread Post-Transcriptional Gene Silencing. PLoS One 2016; 11:e0148529. [PMID: 26840126 PMCID: PMC4739602 DOI: 10.1371/journal.pone.0148529] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 01/19/2016] [Indexed: 01/07/2023] Open
Abstract
The p53 tumour suppressor is a transcription factor that can regulate the expression of numerous genes including many encoding proteins and microRNAs (miRNAs). The predominant outcomes of a typical p53 response are the initiation of apoptotic cascades and the activation of cell cycle checkpoints. HT29-tsp53 cells express a temperature sensitive variant of p53 and in the absence of exogenous DNA damage, these cells preferentially undergo G1 phase cell cycle arrest at the permissive temperature that correlates with increased expression of the cyclin-dependent kinase inhibitor p21WAF1. Recent evidence also suggests that a variety of miRNAs can induce G1 arrest by inhibiting the expression of proteins like CDK4 and CDK6. Here we used oligonucleotide microarrays to identify p53-regulated miRNAs that are induced in these cells undergoing G1 arrest. At the permissive temperature, the expression of several miRNAs was increased through a combination of either transcriptional or post-transcriptional regulation. In particular, miR-34a-5p, miR-143-3p and miR-145-5p were strongly induced and they reached levels comparable to that of reference miRNAs (miR-191 and miR-103). Importantly, miR-34a-5p and miR-145-5p are known to silence the Cdk4 and/or Cdk6 G1 cyclin-dependent kinases (cdks). Surprisingly, there was no p53-dependent decrease in the expression of either of these G1 cdks. To search for other potential targets of p53-regulated miRNAs, p53-downregulated mRNAs were identified through parallel microarray analysis of mRNA expression. Once again, there was no clear effect of p53 on the repression of mRNAs under these conditions despite a remarkable increase in p53-induced mRNA expression. Therefore, despite a strong p53 transcriptional response, there was no clear evidence that p53-responsive miRNA contributed to gene silencing. Taken together, the changes in cell cycle distribution in this cell line at the permissive temperature is likely attributable to transcriptional upregulation of the CDKN1A mRNA and p21WAF1 protein and not to the down regulation of CDK4 or CDK6 by p53-regulated miRNAs.
Collapse
Affiliation(s)
- Miguel A. Cabrita
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa ON
| | | | - Jeff D. Hamill
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa ON
| | - Elysia Pan
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa ON
| | | | | | - Rhea C. Alonzi
- Institute for Biochemistry, Carleton University, Ottawa, ON
| | - Alyssa Pastic
- Department of Biology, Carleton University, Ottawa, ON
| | | | - Hadil Sayed
- Department of Biology, Carleton University, Ottawa, ON
| | - Bruce C. McKay
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa ON
- Department of Biology, Carleton University, Ottawa, ON
- Institute for Biochemistry, Carleton University, Ottawa, ON
- * E-mail:
| |
Collapse
|
95
|
Bai G, Smolka MB, Schimenti JC. Chronic DNA Replication Stress Reduces Replicative Lifespan of Cells by TRP53-Dependent, microRNA-Assisted MCM2-7 Downregulation. PLoS Genet 2016; 12:e1005787. [PMID: 26765334 PMCID: PMC4713100 DOI: 10.1371/journal.pgen.1005787] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 12/15/2015] [Indexed: 11/18/2022] Open
Abstract
Circumstances that compromise efficient DNA replication, such as disruptions to replication fork progression, cause a state known as DNA replication stress (RS). Whereas normally proliferating cells experience low levels of RS, excessive RS from intrinsic or extrinsic sources can trigger cell cycle arrest and senescence. Here, we report that a key driver of RS-induced senescence is active downregulation of the Minichromosome Maintenance 2–7 (MCM2-7) factors that are essential for replication origin licensing and which constitute the replicative helicase core. Proliferating cells produce high levels of MCM2-7 that enable formation of dormant origins that can be activated in response to acute, experimentally-induced RS. However, little is known about how physiological RS levels impact MCM2-7 regulation. We found that chronic exposure of primary mouse embryonic fibroblasts (MEFs) to either genetically-encoded or environmentally-induced RS triggered gradual MCM2-7 repression, followed by inhibition of replication and senescence that could be accelerated by MCM hemizygosity. The MCM2-7 reduction in response to RS is TRP53-dependent, and involves a group of Trp53-dependent miRNAs, including the miR-34 family, that repress MCM expression in replication-stressed cells before they undergo terminal cell cycle arrest. miR-34 ablation partially rescued MCM2-7 downregulation and genomic instability in mice with endogenous RS. Together, these data demonstrate that active MCM2-7 repression is a physiologically important mechanism for RS-induced cell cycle arrest and genome maintenance on an organismal level. Duplication of the genome by DNA replication is essential for cell proliferation. DNA replication is initiated from many sites (“origins”) along chromosomes that are bound by replication licensing proteins, including MCM2-7. They are also core components of the replication helicase complex that unwinds double stranded DNA to expose single stranded DNA that is the template for DNA polymerase. Eukaryotic DNA replication machinery faces many challenges to duplicate the complex and massive genome. Circumstances that inhibit progression of the replication machinery cause “replication stress” (RS). Cells can counteract RS by utilizing “dormant” or “backup” origins. Abundant MCM2-7 expression sufficiently licenses dormant origins, but reducing MCMs compromises cellular responses to RS. We show that MCM2-7 expression is downregulated in cells experiencing chronic RS, and this depends on the TRP53 tumor suppressor and microRNAs it regulates. Extended RS eventually reduces MCMs to a point that terminal cell cycle arrest occurs. We propose that this mechanism is a crucial protection against neoplasia.
Collapse
Affiliation(s)
- Gongshi Bai
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Marcus B. Smolka
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- Weill Institute for Cellular and Molecular Biology, Cornell University, Ithaca, New York, United States of America
- Center for Vertebrate Genomics, Cornell University, Ithaca, New York, United States of America
| | - John C. Schimenti
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- Center for Vertebrate Genomics, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
96
|
Daughtry BL, Chavez SL. Chromosomal instability in mammalian pre-implantation embryos: potential causes, detection methods, and clinical consequences. Cell Tissue Res 2016; 363:201-225. [PMID: 26590822 PMCID: PMC5621482 DOI: 10.1007/s00441-015-2305-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 09/24/2015] [Indexed: 01/08/2023]
Abstract
Formation of a totipotent blastocyst capable of implantation is one of the first major milestones in early mammalian embryogenesis, but less than half of in vitro fertilized embryos from most mammals will progress to this stage of development. Whole chromosomal abnormalities, or aneuploidy, are key determinants of whether human embryos will arrest or reach the blastocyst stage. Depending on the type of chromosomal abnormality, however, certain embryos still form blastocysts and may be morphologically indistinguishable from chromosomally normal embryos. Despite the implementation of pre-implantation genetic screening and other advanced in vitro fertilization (IVF) techniques, the identification of aneuploid embryos remains complicated by high rates of mosaicism, atypical cell division, cellular fragmentation, sub-chromosomal instability, and micro-/multi-nucleation. Moreover, several of these processes occur in vivo following natural human conception, suggesting that they are not simply a consequence of culture conditions. Recent technological achievements in genetic, epigenetic, chromosomal, and non-invasive imaging have provided additional embryo assessment approaches, particularly at the single-cell level, and clinical trials investigating their efficacy are continuing to emerge. In this review, we summarize the potential mechanisms by which aneuploidy may arise, the various detection methods, and the technical advances (such as time-lapse imaging, "-omic" profiling, and next-generation sequencing) that have assisted in obtaining this data. We also discuss the possibility of aneuploidy resolution in embryos via various corrective mechanisms, including multi-polar divisions, fragment resorption, endoreduplication, and blastomere exclusion, and conclude by examining the potential implications of these findings for IVF success and human fecundity.
Collapse
Affiliation(s)
- Brittany L Daughtry
- Department of Cell, Developmental & Cancer Biology, Graduate Program in Molecular & Cellular Biosciences, Oregon Health & Science University School of Medicine, Portland, Ore., USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | - Shawn L Chavez
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA.
- Physiology & Pharmacology, Oregon Health & Science University School of Medicine, Portland, Ore., USA.
- Department of Obstetrics & Gynecology, Oregon Health & Science University School of Medicine, Portland, Ore., USA.
| |
Collapse
|
97
|
Ceder Y. Non-coding RNAs in Prostate Cancer: From Discovery to Clinical Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 886:155-170. [PMID: 26659491 DOI: 10.1007/978-94-017-7417-8_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Prostate cancer is a heterogeneous disease for which the molecular mechanisms are still not fully elucidated. Prostate cancer research has traditionally focused on genomic and epigenetic alterations affecting the proteome, but over the last decade non-coding RNAs, especially microRNAs, have been recognized to play a key role in prostate cancer progression. A considerable number of individual microRNAs have been found to be deregulated in prostate cancer and their biological significance elucidated in functional studies. This review will delineate the current advances regarding the involvement of microRNAs and their targets in prostate cancer biology as well as their potential usage in the clinical management of the disease. The main focus will be on microRNAs contributing to initiation and progression of prostate cancer, including androgen signalling, cellular plasticity, stem cells biology and metastatic processes. To conclude, implications on potential future microRNA-based therapeutics based on the recent advances regarding the interplay between microRNAs and their targets are discussed.
Collapse
Affiliation(s)
- Yvonne Ceder
- Translational Cancer Research, Lund University, Medicon Village, Building 404:A3, 223 81, Lund, Sweden.
| |
Collapse
|
98
|
McCubbrey AL, Nelson JD, Stolberg VR, Blakely PK, McCloskey L, Janssen WJ, Freeman CM, Curtis JL. MicroRNA-34a Negatively Regulates Efferocytosis by Tissue Macrophages in Part via SIRT1. THE JOURNAL OF IMMUNOLOGY 2015; 196:1366-75. [PMID: 26718338 DOI: 10.4049/jimmunol.1401838] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 11/19/2015] [Indexed: 01/22/2023]
Abstract
Apoptotic cell (AC) clearance (efferocytosis) is an evolutionarily conserved process essential for immune health, particularly to maintain self-tolerance. Despite identification of many recognition receptors and intracellular signaling components of efferocytosis, its negative regulation remains incompletely understood and has not previously been known to involve microRNAs (miRs). In this article, we show that miR-34a (gene ID 407040), well recognized as a p53-dependent tumor suppressor, mediates coordinated negative regulation of efferocytosis by resident murine and human tissue macrophages (Mø). The miR-34a expression varied greatly between Mø from different tissues, correlating inversely with their capacity for AC uptake. Transient or genetic knockdown of miR-34a increased efferocytosis, whereas miR-34a overexpression decreased efferocytosis, without altering recognition of live, necrotic, or Ig-opsonized cells. The inhibitory effect of miR-34a was mediated both by reduced expression of Axl, a receptor tyrosine kinase known to recognize AC, and of the deacetylase silent information regulator T1, which had not previously been linked to efferocytosis by tissue Mø. Exposure to AC downregulated Mø miR-34a expression, resulting in a positive feedback loop that increased subsequent capacity to engulf AC. These findings demonstrate that miR-34a both specifically regulates and is regulated by efferocytosis. Given the ability of efferocytosis to polarize ingesting Mø uniquely and to reduce their host-defense functions, dynamic negative regulation by miR-34a provides one means of fine-tuning Mø behavior toward AC in specific tissue environments with differing potentials for microbial exposure.
Collapse
Affiliation(s)
- Alexandra L McCubbrey
- Graduate Program in Immunology, University of Michigan Health System, Ann Arbor, MI 48109
| | - Joshua D Nelson
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109
| | | | - Pennelope K Blakely
- Department of Neurology, University of Michigan Health System, Ann Arbor, MI 48109
| | - Lisa McCloskey
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109
| | - William J Janssen
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; Department of Medicine, National Jewish Health, Denver, CO 80262; and
| | - Christine M Freeman
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109; Research Service, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105
| | - Jeffrey L Curtis
- Graduate Program in Immunology, University of Michigan Health System, Ann Arbor, MI 48109; Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109; Pulmonary and Critical Care Medicine Section, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105
| |
Collapse
|
99
|
Adams BD, Parsons C, Slack FJ. The tumor-suppressive and potential therapeutic functions of miR-34a in epithelial carcinomas. Expert Opin Ther Targets 2015; 20:737-53. [PMID: 26652031 DOI: 10.1517/14728222.2016.1114102] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Many RNA species have been identified as important players in the development of chronic diseases including cancer. Certain classes of regulatory RNAs such as microRNAs (miRNAs) have been investigated in such detail that bona fide tumor suppressive and oncogenic miRNAs have been identified. Because of this, there has been a major effort to therapeutically target these small RNAs. One in particular, a liposomal formulation of miR-34a (MRX34), has entered Phase I trials. AREAS COVERED This review aims to summarize miRNA biology, its regulation within normal versus disease states and how it can be targeted therapeutically, with a particular emphasis on miR-34a. Understanding the complexity of a single miRNA will aid in the development of future RNA-based therapeutics for a broader range of chronic diseases. EXPERT OPINION The potential of miRNAs to be developed into anti-cancer therapeutics has become an increasingly important area of research. miR-34a is a tumor suppressive miRNA across many tumor types through its ability to inhibit cellular proliferation, invasion and tumor sphere formation. miR-34a also shows promise within certain in vivo solid tumor models. Finally, as miR-34a moves into clinical trials it will be important to determine if it can further sensitize tumors to certain chemotherapeutic agents.
Collapse
Affiliation(s)
- Brian D Adams
- a Department of Molecular, Cellular and Developmental Biology , Yale University , New Haven , CT , USA.,b Department of Pathology , BIDMC Cancer Center/Harvard Medical School , Boston , MA , USA
| | - Christine Parsons
- a Department of Molecular, Cellular and Developmental Biology , Yale University , New Haven , CT , USA
| | - Frank J Slack
- b Department of Pathology , BIDMC Cancer Center/Harvard Medical School , Boston , MA , USA
| |
Collapse
|
100
|
Ragusa M, Barbagallo C, Statello L, Condorelli AG, Battaglia R, Tamburello L, Barbagallo D, Di Pietro C, Purrello M. Non-coding landscapes of colorectal cancer. World J Gastroenterol 2015; 21:11709-11739. [PMID: 26556998 PMCID: PMC4631972 DOI: 10.3748/wjg.v21.i41.11709] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/28/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
For two decades Vogelstein’s model has been the paradigm for describing the sequence of molecular changes within protein-coding genes that would lead to overt colorectal cancer (CRC). This model is now too simplistic in the light of recent studies, which have shown that our genome is pervasively transcribed in RNAs other than mRNAs, denominated non-coding RNAs (ncRNAs). The discovery that mutations in genes encoding these RNAs [i.e., microRNAs (miRNAs), long non-coding RNAs, and circular RNAs] are causally involved in cancer phenotypes has profoundly modified our vision of tumour molecular genetics and pathobiology. By exploiting a wide range of different mechanisms, ncRNAs control fundamental cellular processes, such as proliferation, differentiation, migration, angiogenesis and apoptosis: these data have also confirmed their role as oncogenes or tumor suppressors in cancer development and progression. The existence of a sophisticated RNA-based regulatory system, which dictates the correct functioning of protein-coding networks, has relevant biological and biomedical consequences. Different miRNAs involved in neoplastic and degenerative diseases exhibit potential predictive and prognostic properties. Furthermore, the key roles of ncRNAs make them very attractive targets for innovative therapeutic approaches. Several recent reports have shown that ncRNAs can be secreted by cells into the extracellular environment (i.e., blood and other body fluids): this suggests the existence of extracellular signalling mechanisms, which may be exploited by cells in physiology and pathology. In this review, we will summarize the most relevant issues on the involvement of cellular and extracellular ncRNAs in disease. We will then specifically describe their involvement in CRC pathobiology and their translational applications to CRC diagnosis, prognosis and therapy.
Collapse
|