51
|
Cervoni MS, Cardoso-Júnior CAM, Craveiro G, Souza ADO, Alberici LC, Hartfelder K. Mitochondrial capacity, oxidative damage and hypoxia gene expression are associated with age-related division of labor in honey bee ( Apis mellifera L.) workers. ACTA ACUST UNITED AC 2017; 220:4035-4046. [PMID: 28912256 DOI: 10.1242/jeb.161844] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/07/2017] [Indexed: 12/30/2022]
Abstract
During adult life, honey bee workers undergo a succession of behavioral states. Nurse bees perform tasks inside the nest, and when they are about 2-3 weeks old they initiate foraging. This switch is associated with alterations in diet, and with the levels of juvenile hormone and vitellogenin circulating in hemolymph. It is not clear whether this behavioral maturation involves major changes at the cellular level, such as mitochondrial activity and the redox environment in the head, thorax and abdomen. Using high-resolution respirometry, biochemical assays and RT-qPCR, we evaluated the association of these parameters with this behavioral change. We found that tissues from the head and abdomen of nurses have a higher oxidative phosphorylation capacity than those of foragers, while for the thorax we found the opposite situation. As higher mitochondrial activity tends to generate more H2O2, and H2O2 is known to stabilize HIF-1α, this would be expected to stimulate hypoxia signaling. The positive correlation that we observed between mitochondrial activity and hif-1α gene expression in abdomen and head tissue of nurses would be in line with this hypothesis. Higher expression of antioxidant enzyme genes was observed in foragers, which could explain their low levels of protein carbonylation. No alterations were seen in nitric oxide (NO) levels, suggesting that NO signaling is unlikely to be involved in behavioral maturation. We conclude that the behavioral change seen in honey bee workers is reflected in differential mitochondrial activities and redox parameters, and we consider that this can provide insights into the underlying aging process.
Collapse
Affiliation(s)
- Mário S Cervoni
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Carlos A M Cardoso-Júnior
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Giovana Craveiro
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Anderson de O Souza
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Luciane C Alberici
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Klaus Hartfelder
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
52
|
Kim KS, Chou H, Funk DH, Jackson JK, Sweeney BW, Buchwalter DB. Physiological responses to short-term thermal stress in mayfly (Neocloeon triangulifer) larvae in relation to upper thermal limits. J Exp Biol 2017; 220:2598-2605. [DOI: 10.1242/jeb.156919] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 05/04/2017] [Indexed: 01/09/2023]
Abstract
ABSTRACT
Understanding species' thermal limits and their physiological determinants is critical in light of climate change and other human activities that warm freshwater ecosystems. Here, we ask whether oxygen limitation determines the chronic upper thermal limits in larvae of the mayfly Neocloeon triangulifer, an emerging model for ecological and physiological studies. Our experiments are based on a robust understanding of the upper acute (∼40°C) and chronic thermal limits of this species (>28°C, ≤30°C) derived from full life cycle rearing experiments across temperatures. We tested two related predictions derived from the hypothesis that oxygen limitation sets the chronic upper thermal limits: (1) aerobic scope declines in mayfly larvae as they approach and exceed temperatures that are chronically lethal to larvae; and (2) genes indicative of hypoxia challenge are also responsive in larvae exposed to ecologically relevant thermal limits. Neither prediction held true. We estimated aerobic scope by subtracting measurements of standard oxygen consumption rates from measurements of maximum oxygen consumption rates, the latter of which was obtained by treating with the metabolic uncoupling agent carbonyl cyanide-4-(trifluoromethoxy) pheylhydrazone (FCCP). Aerobic scope was similar in larvae held below and above chronic thermal limits. Genes indicative of oxygen limitation (LDH, EGL-9) were only upregulated under hypoxia or during exposure to temperatures beyond the chronic (and more ecologically relevant) thermal limits of this species (LDH). Our results suggest that the chronic thermal limits of this species are likely not driven by oxygen limitation, but rather are determined by other factors, e.g. bioenergetics costs. We caution against the use of short-term thermal ramping approaches to estimate critical thermal limits (CTmax) in aquatic insects because those temperatures are typically higher than those that occur in nature.
Collapse
Affiliation(s)
- Kyoung Sun Kim
- Graduate Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Hsuan Chou
- Graduate Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - David H. Funk
- Stroud Water Research Center, Avondale, PA 19311, USA
| | | | | | - David B. Buchwalter
- Graduate Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
53
|
Mossman JA, Tross JG, Jourjine NA, Li N, Wu Z, Rand DM. Mitonuclear Interactions Mediate Transcriptional Responses to Hypoxia in Drosophila. Mol Biol Evol 2017; 34:447-466. [PMID: 28110272 PMCID: PMC6095086 DOI: 10.1093/molbev/msw246] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Among the major challenges in quantitative genetics and personalized medicine is to understand how gene × gene interactions (G × G: epistasis) and gene × environment interactions (G × E) underlie phenotypic variation. Here, we use the intimate relationship between mitochondria and oxygen availability to dissect the roles of nuclear DNA (nDNA) variation, mitochondrial DNA (mtDNA) variation, hypoxia, and their interactions on gene expression in Drosophila melanogaster. Mitochondria provide an important evolutionary and medical context for understanding G × G and G × E given their central role in integrating cellular signals. We hypothesized that hypoxia would alter mitonuclear communication and gene expression patterns. We show that first order nDNA, mtDNA, and hypoxia effects vary between the sexes, along with mitonuclear epistasis and G × G × E effects. Females were generally more sensitive to genetic and environmental perturbation. While dozens to hundreds of genes are altered by hypoxia in individual genotypes, we found very little overlap among mitonuclear genotypes for genes that were significantly differentially expressed as a consequence of hypoxia; excluding the gene hairy. Oxidative phosphorylation genes were among the most influenced by hypoxia and mtDNA, and exposure to hypoxia increased the signature of mtDNA effects, suggesting retrograde signaling between mtDNA and nDNA. We identified nDNA-encoded genes in the electron transport chain (succinate dehydrogenase) that exhibit female-specific mtDNA effects. Our findings have important implications for personalized medicine, the sex-specific nature of mitonuclear communication, and gene × gene coevolution under variable or changing environments.
Collapse
Affiliation(s)
- Jim A Mossman
- Department of Ecology and Evolutionary Biology, Box G, Brown University, Providence, RI
| | - Jennifer G Tross
- Department of Ecology and Evolutionary Biology, Box G, Brown University, Providence, RI.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA.,Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA.,Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA
| | - Nick A Jourjine
- Department of Ecology and Evolutionary Biology, Box G, Brown University, Providence, RI.,Department of Molecular and Cell Biology, University of California, Berkeley, CA
| | - Nan Li
- Department of Biostatistics, Brown University, Providence, RI
| | - Zhijin Wu
- Department of Biostatistics, Brown University, Providence, RI
| | - David M Rand
- Department of Ecology and Evolutionary Biology, Box G, Brown University, Providence, RI
| |
Collapse
|
54
|
Strassburger K, Lorbeer FK, Lutz M, Graf F, Boutros M, Teleman AA. Oxygenation and adenosine deaminase support growth and proliferation of ex vivo cultured Drosophila wing imaginal discs. Development 2017; 144:2529-2538. [PMID: 28526754 DOI: 10.1242/dev.147538] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 05/11/2017] [Indexed: 01/22/2023]
Abstract
The Drosophila wing imaginal disc has been an important model system over past decades for discovering novel biology related to development, signaling and epithelial morphogenesis. Novel experimental approaches have been enabled using a culture setup that allows ex vivo cultures of wing discs. Current setups, however, are not able to sustain both growth and cell-cycle progression of wing discs ex vivo We discover here a setup that requires both oxygenation of the tissue and adenosine deaminase activity in the medium, and supports both growth and proliferation of wing discs for 9 h. Nonetheless, further work will be required to extend the duration of the culturing and to enable live imaging of the cultured discs in the future.
Collapse
Affiliation(s)
| | | | - Marilena Lutz
- German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Fabian Graf
- German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | | |
Collapse
|
55
|
Liu Y, Murray-Stewart T, Casero RA, Kagiampakis I, Jin L, Zhang J, Wang H, Che Q, Tong H, Ke J, Jiang F, Wang F, Wan X. Targeting hexokinase 2 inhibition promotes radiosensitization in HPV16 E7-induced cervical cancer and suppresses tumor growth. Int J Oncol 2017; 50:2011-2023. [PMID: 28498475 PMCID: PMC5435328 DOI: 10.3892/ijo.2017.3979] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/13/2017] [Indexed: 12/21/2022] Open
Abstract
In order to improve the sensitivity of cervical cancer cells to irradiation therapy, we targeted hexokinase 2 (HK2), the first rate-limiting enzyme of glycolysis, and explore its role in cervical cancer cells. We suppressed HK2 expression and/or function by shRNA and/or metformin and found HK2 inhibition enhanced cells apoptosis with accelerating expression of cleaved PARP and caspase-3. HK2 inhibition also induced much inferior proliferation of cervical cancer cells both in vitro and in vivo with diminishing expression of mTOR, MIB and MGMT. Moreover, HK2 inhibition altered the metabolic profile of cervical cancer cells to one less dependent on glycolysis with a reinforcement of mitochondrial function and an ablation of lactification ability. Importantly, cervical cancer cells contained HK2 inhibition displayed more sensitivity to irradiation. Further results indicated that HPV16 E7 oncoprotein altered the glucose homeostasis of cervical cancer cells into glycolysis by coordinately promoting HK2 expression and its downregulation of glycolysis. Taken together, our findings supported a mechanism whereby targeting HK2 inhibition contributed to suppress HPV16 E7-induced tumor glycolysis metabolism phenotype, inhibiting tumor growth, and induced apoptosis, blocking the cancer cell energy sources and ultimately enhanced the sensitivity of HPV(+) cervical cancer cells to irradiation therapy.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Tracy Murray-Stewart
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert A Casero
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ioannis Kagiampakis
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lihua Jin
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jiawen Zhang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Shanghai Tongji University, Shanghai, P.R. China
| | - Huihui Wang
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital Affiliated with Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Qi Che
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Huan Tong
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Jieqi Ke
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Feizhou Jiang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Fangyuan Wang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Xiaoping Wan
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
56
|
Induction of dormancy in hypoxic human papillomavirus-positive cancer cells. Proc Natl Acad Sci U S A 2017; 114:E990-E998. [PMID: 28115701 DOI: 10.1073/pnas.1615758114] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Oncogenic human papillomaviruses (HPVs) are closely linked to major human malignancies, including cervical and head and neck cancers. It is widely assumed that HPV-positive cancer cells are under selection pressure to continuously express the viral E6/E7 oncogenes, that their intracellular p53 levels are reconstituted on E6/E7 repression, and that E6/E7 inhibition phenotypically results in cellular senescence. Here we show that hypoxic conditions, as are often found in subregions of cervical and head and neck cancers, enable HPV-positive cancer cells to escape from these regulatory principles: E6/E7 is efficiently repressed, yet, p53 levels do not increase. Moreover, E6/E7 repression under hypoxia does not result in cellular senescence, owing to hypoxia-associated impaired mechanistic target of rapamycin (mTOR) signaling via the inhibitory REDD1/TSC2 axis. Instead, a reversible growth arrest is induced that can be overcome by reoxygenation. Impairment of mTOR signaling also interfered with the senescence response of hypoxic HPV-positive cancer cells toward prosenescent chemotherapy in vitro. Collectively, these findings indicate that hypoxic HPV-positive cancer cells can induce a reversible state of dormancy, with decreased viral antigen synthesis and increased therapeutic resistance, and may serve as reservoirs for tumor recurrence on reoxygenation.
Collapse
|
57
|
Drosophila larvae synthesize the putative oncometabolite L-2-hydroxyglutarate during normal developmental growth. Proc Natl Acad Sci U S A 2017; 114:1353-1358. [PMID: 28115720 DOI: 10.1073/pnas.1614102114] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
L-2-hydroxyglutarate (L-2HG) has emerged as a putative oncometabolite that is capable of inhibiting enzymes involved in metabolism, chromatin modification, and cell differentiation. However, despite the ability of L-2HG to interfere with a broad range of cellular processes, this molecule is often characterized as a metabolic waste product. Here, we demonstrate that Drosophila larvae use the metabolic conditions established by aerobic glycolysis to both synthesize and accumulate high concentrations of L-2HG during normal developmental growth. A majority of the larval L-2HG pool is derived from glucose and dependent on the Drosophila estrogen-related receptor (dERR), which promotes L-2HG synthesis by up-regulating expression of the Drosophila homolog of lactate dehydrogenase (dLdh). We also show that dLDH is both necessary and sufficient for directly synthesizing L-2HG and the Drosophila homolog of L-2-hydroxyglutarate dehydrogenase (dL2HGDH), which encodes the enzyme that breaks down L-2HG, is required for stage-specific degradation of the L-2HG pool. In addition, dLDH also indirectly promotes L-2HG accumulation via synthesis of lactate, which activates a metabolic feed-forward mechanism that inhibits dL2HGDH activity and stabilizes L-2HG levels. Finally, we use a genetic approach to demonstrate that dLDH and L-2HG influence position effect variegation and DNA methylation, suggesting that this compound serves to coordinate glycolytic flux with epigenetic modifications. Overall, our studies demonstrate that growing animal tissues synthesize L-2HG in a controlled manner, reveal a mechanism that coordinates glucose catabolism with L-2HG synthesis, and establish the fly as a unique model system for studying the endogenous functions of L-2HG during cell growth and proliferation.
Collapse
|
58
|
Multiple across-strain and within-strain QTLs suggest highly complex genetic architecture for hypoxia tolerance in channel catfish. Mol Genet Genomics 2016; 292:63-76. [PMID: 27734158 DOI: 10.1007/s00438-016-1256-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 10/03/2016] [Indexed: 10/20/2022]
Abstract
The ability to survive hypoxic conditions is important for various organisms, especially for aquatic animals. Teleost fish, representing more than 50 % of vertebrate species, are extremely efficient in utilizing low levels of dissolved oxygen in water. However, huge variations exist among various taxa of fish in their ability to tolerate hypoxia. In aquaculture, hypoxia tolerance is among the most important traits because hypoxia can cause major economic losses. Genetic enhancement for hypoxia tolerance in catfish is of great interest, but little was done with analysis of the genetic architecture of hypoxia tolerance. The objective of this study was to conduct a genome-wide association study to identify QTLs for hypoxia tolerance using the catfish 250K SNP array with channel catfish families from six strains. Multiple significant and suggestive QTLs were identified across and within strains. One significant QTL and four suggestive QTLs were identified across strains. Six significant QTLs and many suggestive QTLs were identified within strains. There were rare overlaps among the QTLs identified within the six strains, suggesting a complex genetic architecture of hypoxia tolerance. Overall, within-strain QTLs explained larger proportion of phenotypic variation than across-strain QTLs. Many of genes within these identified QTLs have known functions for regulation of oxygen metabolism and involvement in hypoxia responses. Pathway analysis indicated that most of these genes were involved in MAPK or PI3K/AKT/mTOR signaling pathways that were known to be important for hypoxia-mediated angiogenesis, cell proliferation, apoptosis and survival.
Collapse
|
59
|
Griveau A, Devailly G, Eberst L, Navaratnam N, Le Calvé B, Ferrand M, Faull P, Augert A, Dante R, Vanacker JM, Vindrieux D, Bernard D. The PLA2R1-JAK2 pathway upregulates ERRα and its mitochondrial program to exert tumor-suppressive action. Oncogene 2016; 35:5033-42. [PMID: 27041564 DOI: 10.1038/onc.2016.43] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 01/06/2016] [Accepted: 02/08/2016] [Indexed: 12/20/2022]
Abstract
Little is known about the biological role of the phospholipase A2 receptor (PLA2R1) transmembrane protein. In recent years, PLA2R1 has been shown to have an important role in regulating tumor-suppressive responses via JAK2 activation, but the underlying mechanisms are largely undeciphered. In this study, we observed that PLA2R1 increases the mitochondrial content, judged by increased levels of numerous mitochondrial proteins, of the mitochondrial structural component cardiolipin, of the mitochondrial DNA content, and of the mitochondrial DNA replication and transcription factor TFAM. This effect of PLA2R1 relies on a transcriptional program controlled by the estrogen-related receptor alpha1 (ERRα) mitochondrial master regulator. Expression of ERRα and of its nucleus-encoded mitochondrial targets is upregulated upon PLA2R1 ectopic expression, and this effect is mediated by JAK2. Conversely, downregulation of PLA2R1 decreases the level of ERRα and of its nucleus-encoded mitochondrial targets. Finally, blocking the ERRα-controlled mitochondrial program largely inhibits the PLA2R1-induced tumor-suppressive response. Together, our data document ERRα and its mitochondrial program as downstream effectors of the PLA2R1-JAK2 pathway leading to oncosuppression.
Collapse
Affiliation(s)
- A Griveau
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- CNRS UMR 5286, Lyon, France
- Centre Léon Bérard, Lyon, France
- Université de Lyon, Lyon, France
| | - G Devailly
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- CNRS UMR 5286, Lyon, France
- Centre Léon Bérard, Lyon, France
- Université de Lyon, Lyon, France
| | - L Eberst
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- CNRS UMR 5286, Lyon, France
- Centre Léon Bérard, Lyon, France
- Université de Lyon, Lyon, France
| | - N Navaratnam
- Cellular Stress Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College, Hammersmith Campus, London, UK
| | - B Le Calvé
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- CNRS UMR 5286, Lyon, France
- Centre Léon Bérard, Lyon, France
- Université de Lyon, Lyon, France
| | - M Ferrand
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- CNRS UMR 5286, Lyon, France
- Centre Léon Bérard, Lyon, France
- Université de Lyon, Lyon, France
| | - P Faull
- Biological Mass Spectrometry and Proteomics Laboratory, MRC Clinical Sciences Centre, Imperial College London, London, UK
| | - A Augert
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- CNRS UMR 5286, Lyon, France
- Centre Léon Bérard, Lyon, France
- Université de Lyon, Lyon, France
| | - R Dante
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- CNRS UMR 5286, Lyon, France
- Centre Léon Bérard, Lyon, France
- Université de Lyon, Lyon, France
| | - J M Vanacker
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon I, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - D Vindrieux
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- CNRS UMR 5286, Lyon, France
- Centre Léon Bérard, Lyon, France
- Université de Lyon, Lyon, France
| | - D Bernard
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- CNRS UMR 5286, Lyon, France
- Centre Léon Bérard, Lyon, France
- Université de Lyon, Lyon, France
| |
Collapse
|
60
|
Zhou F, Qiang KM, Beckingham KM. Failure to Burrow and Tunnel Reveals Roles for jim lovell in the Growth and Endoreplication of the Drosophila Larval Tracheae. PLoS One 2016; 11:e0160233. [PMID: 27494251 PMCID: PMC4975476 DOI: 10.1371/journal.pone.0160233] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/15/2016] [Indexed: 12/21/2022] Open
Abstract
The Drosophila protein Jim Lovell (Lov) is a putative transcription factor of the BTB/POZ (Bric- a-Brac/Tramtrack/Broad/ Pox virus and Zinc finger) domain class that is expressed in many elements of the developing larval nervous system. It has roles in innate behaviors such as larval locomotion and adult courtship. In performing tissue-specific knockdown with the Gal4-UAS system we identified a new behavioral phenotype for lov: larvae failed to burrow into their food during their growth phase and then failed to tunnel into an agarose substratum during their wandering phase. We determined that these phenotypes originate in a previously unrecognized role for lov in the tracheae. By using tracheal-specific Gal4 lines, Lov immunolocalization and a lov enhancer trap line, we established that lov is normally expressed in the tracheae from late in embryogenesis through larval life. Using an assay that monitors food burrowing, substrate tunneling and death we showed that lov tracheal knockdown results in tracheal fluid-filling, producing hypoxia that activates the aberrant behaviors and inhibits development. We investigated the role of lov in the tracheae that initiates this sequence of events. We discovered that when lov levels are reduced, the tracheal cells are smaller, more numerous and show lower levels of endopolyploidization. Together our findings indicate that Lov is necessary for tracheal endoreplicative growth and that its loss in this tissue causes loss of tracheal integrity resulting in chronic hypoxia and abnormal burrowing and tunneling behavior.
Collapse
Affiliation(s)
- Fanli Zhou
- Department of Biosciences, Rice University, Houston, Texas, 77005, United States of America
| | - Karen M. Qiang
- Department of Biosciences, Rice University, Houston, Texas, 77005, United States of America
| | - Kathleen M. Beckingham
- Department of Biosciences, Rice University, Houston, Texas, 77005, United States of America
- * E-mail:
| |
Collapse
|
61
|
Santos DE, Alberici LC, Hartfelder K. Mitochondrial structure and dynamics as critical factors in honey bee (Apis mellifera L.) caste development. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 73:1-11. [PMID: 27058771 DOI: 10.1016/j.ibmb.2016.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/30/2016] [Accepted: 04/01/2016] [Indexed: 06/05/2023]
Abstract
The relationship between nutrition and phenotype is an especially challenging question in cases of facultative polyphenism, like the castes of social insects. In the honey bee, Apis mellifera, unexpected modifications in conserved signaling pathways revealed the hypoxia response as a possible mechanism underlying the regulation of body size and organ growth. Hence, the current study was designed to investigate possible causes of why the three hypoxia core genes are overexpressed in worker larvae. Parting from the hypothesis that this has an endogenous cause and is not due to differences in external oxygen levels we investigated mitochondrial numbers and distribution, as well as mitochondrial oxygen consumption rates in fat body cells of queen and worker larvae during the caste fate-critical larval stages. By immunofluorescence and electron microscopy we found higher densities of mitochondria in queen larval fat body, a finding further confirmed by a citrate synthase assay quantifying mitochondrial functional units. Oxygen consumption measurements by high-resolution respirometry revealed that queen larvae have higher maximum capacities of ATP production at lower physiological demand. Finally, the expression analysis of mitogenesis-related factors showed that the honey bee TFB1 and TFB2 homologs, and a nutritional regulator, ERR, are overexpressed in queen larvae. These results are strong evidence that the differential nutrition of queen and worker larvae by nurse bees affects mitochondrial dynamics and functionality in the fat body of these larvae, hence explaining their differential hypoxia response.
Collapse
Affiliation(s)
- Douglas Elias Santos
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, São Paulo, Brazil.
| | - Luciane Carla Alberici
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, São Paulo, Brazil.
| | - Klaus Hartfelder
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
62
|
Tam IS, Giguère V. There and back again: The journey of the estrogen-related receptors in the cancer realm. J Steroid Biochem Mol Biol 2016; 157:13-9. [PMID: 26151739 DOI: 10.1016/j.jsbmb.2015.06.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 06/09/2015] [Accepted: 06/16/2015] [Indexed: 12/21/2022]
Abstract
The identification of two genes encoding polypeptides with structural features common with the estrogen receptor more than a quarter century ago, referred to as the estrogen-related receptors (ERRs), subsequently led to the discovery of several previously unrecognized hormone responsive systems through the application of reverse endocrinology. Paradoxically, the natural ligand(s) associated with members of the ERR subfamily remains to be identified. While initial studies on the mode of action and physiological functions of the ERRs focused on interaction with estrogen signalling in breast cancer, subsequent work showed that the ERRs are ubiquitous master regulators of cellular energy metabolism. This review aims to demonstrate that the ERRs occupy a central node at the interface of cancer and metabolism, and that modulation of their activity may represent a worthwhile strategy to induce metabolic vulnerability in tumors of various origins and thus achieve a more comprehensive response to current therapies.
Collapse
Affiliation(s)
- Ingrid S Tam
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montréal, QC H3A 1A3, Canada
| | - Vincent Giguère
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montréal, QC H3A 1A3, Canada; Departments of Biochemistry, Medicine and Oncology, McGill University, Montréal, PQ H3G 1Y6, Canada.
| |
Collapse
|
63
|
Kamps-Hughes N, Preston JL, Randel MA, Johnson EA. Genome-wide identification of hypoxia-induced enhancer regions. PeerJ 2015; 3:e1527. [PMID: 26713262 PMCID: PMC4690393 DOI: 10.7717/peerj.1527] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/01/2015] [Indexed: 12/12/2022] Open
Abstract
Here we present a genome-wide method for de novo identification of enhancer regions. This approach enables massively parallel empirical investigation of DNA sequences that mediate transcriptional activation and provides a platform for discovery of regulatory modules capable of driving context-specific gene expression. The method links fragmented genomic DNA to the transcription of randomer molecule identifiers and measures the functional enhancer activity of the library by massively parallel sequencing. We transfected a Drosophila melanogaster library into S2 cells in normoxia and hypoxia, and assayed 4,599,881 genomic DNA fragments in parallel. The locations of the enhancer regions strongly correlate with genes up-regulated after hypoxia and previously described enhancers. Novel enhancer regions were identified and integrated with RNAseq data and transcription factor motifs to describe the hypoxic response on a genome-wide basis as a complex regulatory network involving multiple stress-response pathways. This work provides a novel method for high-throughput assay of enhancer activity and the genome-scale identification of 31 hypoxia-activated enhancers in Drosophila.
Collapse
Affiliation(s)
- Nick Kamps-Hughes
- Institute of Molecular Biology, University of Oregon , Eugene OR , United States
| | - Jessica L Preston
- Institute of Molecular Biology, University of Oregon , Eugene OR , United States
| | - Melissa A Randel
- Institute of Molecular Biology, University of Oregon , Eugene OR , United States
| | - Eric A Johnson
- Institute of Molecular Biology, University of Oregon , Eugene OR , United States
| |
Collapse
|
64
|
Jha AR, Zhou D, Brown CD, Kreitman M, Haddad GG, White KP. Shared Genetic Signals of Hypoxia Adaptation in Drosophila and in High-Altitude Human Populations. Mol Biol Evol 2015; 33:501-17. [PMID: 26576852 PMCID: PMC4866538 DOI: 10.1093/molbev/msv248] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The ability to withstand low oxygen (hypoxia tolerance) is a polygenic and mechanistically conserved trait that has important implications for both human health and evolution. However, little is known about the diversity of genetic mechanisms involved in hypoxia adaptation in evolving populations. We used experimental evolution and whole-genome sequencing in Drosophila melanogaster to investigate the role of natural variation in adaptation to hypoxia. Using a generalized linear mixed model we identified significant allele frequency differences between three independently evolved hypoxia-tolerant populations and normoxic control populations for approximately 3,800 single nucleotide polymorphisms. Around 50% of these variants are clustered in 66 distinct genomic regions. These regions contain genes that are differentially expressed between hypoxia-tolerant and normoxic populations and several of the differentially expressed genes are associated with metabolic processes. Additional genes associated with respiratory and open tracheal system development also show evidence of directional selection. RNAi-mediated knockdown of several candidate genes’ expression significantly enhanced survival in severe hypoxia. Using genomewide single nucleotide polymorphism data from four high-altitude human populations—Sherpas, Tibetans, Ethiopians, and Andeans, we found that several human orthologs of the genes under selection in flies are also likely under positive selection in all four high-altitude human populations. Thus, our results indicate that selection for hypoxia tolerance can act on standing genetic variation in similar genes and pathways present in organisms diverged by hundreds of millions of years.
Collapse
Affiliation(s)
- Aashish R Jha
- Institute for Genomics and Systems Biology, The University of Chicago Department of Human Genetics, The University of Chicago Department of Ecology and Evolution, The University of Chicago
| | - Dan Zhou
- Division of Respiratory Medicine, Department of Pediatrics, University of California at San Diego
| | - Christopher D Brown
- Institute for Genomics and Systems Biology, The University of Chicago Department of Human Genetics, The University of Chicago
| | - Martin Kreitman
- Institute for Genomics and Systems Biology, The University of Chicago Department of Ecology and Evolution, The University of Chicago Committee on Genetics, Genomics and Systems Biology, The University of Chicago
| | - Gabriel G Haddad
- Division of Respiratory Medicine, Department of Pediatrics, University of California at San Diego Department of Neurosciences, University of California at San Diego Rady Children's Hospital, San Diego, CA
| | - Kevin P White
- Institute for Genomics and Systems Biology, The University of Chicago Department of Human Genetics, The University of Chicago Department of Ecology and Evolution, The University of Chicago Committee on Genetics, Genomics and Systems Biology, The University of Chicago
| |
Collapse
|
65
|
Abstract
Mitochondria are key regulators of cellular homeostasis, and mitochondrial dysfunction is strongly linked to neurodegenerative diseases, including Alzheimer's and Parkinson's. Mitochondria communicate their bioenergetic status to the cell via mitochondrial retrograde signaling. To investigate the role of mitochondrial retrograde signaling in neurons, we induced mitochondrial dysfunction in the Drosophila nervous system. Neuronal mitochondrial dysfunction causes reduced viability, defects in neuronal function, decreased redox potential, and reduced numbers of presynaptic mitochondria and active zones. We find that neuronal mitochondrial dysfunction stimulates a retrograde signaling response that controls the expression of several hundred nuclear genes. We show that the Drosophila hypoxia inducible factor alpha (HIFα) ortholog Similar (Sima) regulates the expression of several of these retrograde genes, suggesting that Sima mediates mitochondrial retrograde signaling. Remarkably, knockdown of Sima restores neuronal function without affecting the primary mitochondrial defect, demonstrating that mitochondrial retrograde signaling is partly responsible for neuronal dysfunction. Sima knockdown also restores function in a Drosophila model of the mitochondrial disease Leigh syndrome and in a Drosophila model of familial Parkinson's disease. Thus, mitochondrial retrograde signaling regulates neuronal activity and can be manipulated to enhance neuronal function, despite mitochondrial impairment.
Collapse
|
66
|
Expression of hypoxia inducible factor-1α and vascular endothelial growth factor-C in human chronic periodontitis. J Dent Sci 2015. [DOI: 10.1016/j.jds.2014.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
67
|
|
68
|
Hwang HJ, Lynn SG, Vengellur A, Saini Y, Grier EA, Ferguson-Miller SM, LaPres JJ. Hypoxia Inducible Factors Modulate Mitochondrial Oxygen Consumption and Transcriptional Regulation of Nuclear-Encoded Electron Transport Chain Genes. Biochemistry 2015; 54:3739-48. [PMID: 26030260 PMCID: PMC5957085 DOI: 10.1021/bi5012892] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hypoxia inducible factor-1 (HIF1) is a stress-responsive nuclear transcription factor that is activated with a decrease in oxygen availability. HIF1 regulates the expression of genes involved in a cell's adaptation to hypoxic stress, including those with mitochondrial specific function. To gain a more comprehensive understanding of the role of HIF1 in mitochondrial homeostasis, we studied the link between hypoxia, HIF1 transactivation, and electron transport chain (ETC) function. We established immortalized mouse embryonic fibroblasts (MEFs) for HIF1α wild-type (WT) and null cells and tested whether HIF1α regulates mitochondrial respiration by modulating gene expressions of nuclear-encoded ETC components. High-throughput quantitative real-time polymerase chain reaction was performed to screen nuclear-encoded mitochondrial genes related to the ETC to identify those whose regulation was HIF1α-dependent. Our data suggest that HIF1α regulates transcription of cytochrome c oxidase (CcO) heart/muscle isoform 7a1 (Cox7a1) under hypoxia, where it is induced 1.5-2.5-fold, whereas Cox4i2 hypoxic induction was HIF1α-independent. We propose that adaptation to hypoxic stress of CcO as the main cellular oxygen consumer is mediated by induction of hypoxia-sensitive tissue-specific isoforms. We suggest that HIF1 plays a central role in maintaining homeostasis in cellular respiration during hypoxic stress via regulation of CcO activity.
Collapse
Affiliation(s)
- Hye Jin Hwang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, United States
- Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, Michigan 48824-1319, United States
| | - Scott G. Lynn
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, United States
- Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824-1319, United States
| | - Ajith Vengellur
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, United States
| | - Yogesh Saini
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, United States
- Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824-1319, United States
| | - Elizabeth A. Grier
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, United States
| | - Shelagh M. Ferguson-Miller
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, United States
- Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, Michigan 48824-1319, United States
| | - John J. LaPres
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, United States
- Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824-1319, United States
- Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, Michigan 48824-1319, United States
| |
Collapse
|
69
|
Wang Y, Zuber R, Oehl K, Norum M, Moussian B. Report on D
rosophila melanogaster
larvae without functional tracheae. J Zool (1987) 2015. [DOI: 10.1111/jzo.12226] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Y. Wang
- Animal Genetics; Interfaculty Institute for Cell Biology; University of Tübingen; Tübingen Germany
| | - R. Zuber
- Animal Genetics; Interfaculty Institute for Cell Biology; University of Tübingen; Tübingen Germany
| | - K. Oehl
- Animal Genetics; Interfaculty Institute for Cell Biology; University of Tübingen; Tübingen Germany
| | - M. Norum
- Institute of Biomedicine; University of Göteborg; Göteborg Sweden
| | - B. Moussian
- Animal Genetics; Interfaculty Institute for Cell Biology; University of Tübingen; Tübingen Germany
| |
Collapse
|
70
|
Sun W, Valero MC, Seong KM, Steele LD, Huang IT, Lee CH, Clark JM, Qiu X, Pittendrigh BR. A glycine insertion in the estrogen-related receptor (ERR) is associated with enhanced expression of three cytochrome P450 genes in transgenic Drosophila melanogaster. PLoS One 2015; 10:e0118779. [PMID: 25761142 PMCID: PMC4356566 DOI: 10.1371/journal.pone.0118779] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/16/2015] [Indexed: 01/09/2023] Open
Abstract
Insecticide-resistant Drosophila melanogaster strains represent a resource for the discovery of the underlying molecular mechanisms of cytochrome P450 constitutive over-expression, even if some of these P450s are not directly involved in the resistance phenotype. For example, in select 4,4'-dichlorodiphenyltrichloroethane (DDT) resistant strains the glucocorticoid receptor-like (GR-like) potential transcription factor binding motifs (TFBMs) have previously been shown to be associated with constitutively differentially-expressed cytochrome P450s, Cyp12d1, Cyp6g2 and Cyp9c1. However, insects are not known to have glucocorticoids. The only ortholog to the mammalian glucocorticoid receptor (GR) in D. melanogaster is an estrogen-related receptor (ERR) gene, which has two predicted alternative splice isoforms (ERRa and ERRb). Sequencing of ERRa and ERRb in select DDT susceptible and resistant D. melanogaster strains has revealed a glycine (G) codon insertion which was only observed in the ligand binding domain of ERR from the resistant strains tested (ERR-G). Transgenic flies, expressing the ERRa-G allele, constitutively over-expressed Cyp12d1, Cyp6g2 and Cyp9c1. Only Cyp12d1 and Cyp6g2 were over-expressed in the ERRb-G transgenic flies. Phylogenetic studies show that the G-insertion appeared to be located in a less conserved domain in ERR and this insertion is found in multiple species across the Sophophora subgenera.
Collapse
Affiliation(s)
- Weilin Sun
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illionois, 61801, United States of America
| | - M. Carmen Valero
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illionois, 61801, United States of America
| | - Keon Mook Seong
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illionois, 61801, United States of America
| | - Laura D. Steele
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illionois, 61801, United States of America
| | - I-Ting Huang
- Chung Hwa University of Medical Technology, Tainan, Taiwan, R. O. C.
| | - Chien-Hui Lee
- Chung Hwa University of Medical Technology, Tainan, Taiwan, R. O. C.
| | - John M. Clark
- Department of Veterinary & Animal Science, University of Massachusetts, Amherst, Massachusetts, 01003, United States of America
| | - Xinghui Qiu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Barry R. Pittendrigh
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illionois, 61801, United States of America
| |
Collapse
|
71
|
Drosophila melanogaster activating transcription factor 4 regulates glycolysis during endoplasmic reticulum stress. G3-GENES GENOMES GENETICS 2015; 5:667-75. [PMID: 25681259 PMCID: PMC4390581 DOI: 10.1534/g3.115.017269] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Endoplasmic reticulum (ER) stress results from an imbalance between the load of proteins entering the secretory pathway and the ability of the ER to fold and process them. The response to ER stress is mediated by a collection of signaling pathways termed the unfolded protein response, which plays important roles in development and disease. Here we show that in Drosophila melanogaster S2 cells, ER stress induces a coordinated change in the expression of genes involved in carbon metabolism. Genes encoding enzymes that carry out glycolysis were up-regulated, whereas genes encoding proteins in the tricarboxylic acid cycle and respiratory chain complexes were down-regulated. The unfolded protein response transcription factor Atf4 was necessary for the up-regulation of glycolytic enzymes and Lactate dehydrogenase (Ldh). Furthermore, Atf4 binding motifs in promoters for these genes could partially account for their regulation during ER stress. Finally, flies up-regulated Ldh and produced more lactate when subjected to ER stress. Together, these results suggest that Atf4 mediates a shift from a metabolism based on oxidative phosphorylation to one more heavily reliant on glycolysis, reminiscent of aerobic glycolysis or the Warburg effect observed in cancer and other proliferative cells.
Collapse
|
72
|
MNRR1 (formerly CHCHD2) is a bi-organellar regulator of mitochondrial metabolism. Mitochondrion 2015; 20:43-51. [DOI: 10.1016/j.mito.2014.10.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/12/2014] [Accepted: 10/08/2014] [Indexed: 12/20/2022]
|
73
|
A HIF-independent mediator of transcriptional responses to oxygen deprivation in Caenorhabditis elegans. Genetics 2014; 199:739-48. [PMID: 25552276 DOI: 10.1534/genetics.114.173989] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The adaptive response to hypoxia is accompanied by widespread transcriptional changes that allow for prolonged survival in low oxygen. Many of these changes are directly regulated by the conserved hypoxia-inducible factor-1 (HIF-1) complex; however, even in its absence, many oxygen-sensitive transcripts in Caenorhabditis elegans are appropriately regulated in hypoxia. To identify mediators of these non-HIF-dependent responses, we established a hif-1 mutant reporter line that expresses GFP in hypoxia or when worms are treated with the hypoxia mimetic cobalt chloride (CoCl2). The reporter is selective and HIF independent, in that it remains insensitive to a number of cellular stresses, but is unaffected by mutation of the prolyl hydroxylase egl-9, suggesting that the regulators of this response pathway are different from those controlling the HIF pathway. We used the HIF-independent reporter to screen a transcription factor RNA interference (RNAi) library and identified genes that are required for hypoxia-sensitive and CoCl2-induced GFP expression. We identified the zinc finger protein BLMP-1 as a mediator of the HIF-independent response. We show that mutation of blmp-1 renders animals sensitive to hypoxic exposure and that blmp-1 is required for appropriate hypoxic-induced expression of HIF-independent transcripts. Further, we demonstrate that BLMP-1 is necessary for an increase of hypoxia-dependent histone acetylation within the promoter of a non-HIF-dependent hypoxia response gene.
Collapse
|
74
|
Insulin- and warts-dependent regulation of tracheal plasticity modulates systemic larval growth during hypoxia in Drosophila melanogaster. PLoS One 2014; 9:e115297. [PMID: 25541690 PMCID: PMC4277339 DOI: 10.1371/journal.pone.0115297] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 11/22/2014] [Indexed: 01/07/2023] Open
Abstract
Adaptation to dynamic environmental cues during organismal development requires coordination of tissue growth with available resources. More specifically, the effects of oxygen availability on body size have been well-documented, but the mechanisms through which hypoxia restricts systemic growth have not been fully elucidated. Here, we characterize the larval growth and metabolic defects in Drosophila that result from hypoxia. Hypoxic conditions reduced fat body opacity and increased lipid droplet accumulation in this tissue, without eliciting lipid aggregation in hepatocyte-like cells called oenocytes. Additionally, hypoxia increased the retention of Dilp2 in the insulin-producing cells of the larval brain, associated with a reduction of insulin signaling in peripheral tissues. Overexpression of the wildtype form of the insulin receptor ubiquitously and in the larval trachea rendered larvae resistant to hypoxia-induced growth restriction. Furthermore, Warts downregulation in the trachea was similar to increased insulin receptor signaling during oxygen deprivation, which both rescued hypoxia-induced growth restriction, inhibition of tracheal molting, and developmental delay. Insulin signaling and loss of Warts function increased tracheal growth and augmented tracheal plasticity under hypoxic conditions, enhancing oxygen delivery during periods of oxygen deprivation. Our findings demonstrate a mechanism that coordinates oxygen availability with systemic growth in which hypoxia-induced reduction of insulin receptor signaling decreases plasticity of the larval trachea that is required for the maintenance of systemic growth during times of limiting oxygen availability.
Collapse
|
75
|
Sailland J, Tribollet V, Forcet C, Billon C, Barenton B, Carnesecchi J, Bachmann A, Gauthier KC, Yu S, Giguère V, Chan FL, Vanacker JM. Estrogen-related receptor α decreases RHOA stability to induce orientated cell migration. Proc Natl Acad Sci U S A 2014; 111:15108-13. [PMID: 25288732 PMCID: PMC4210291 DOI: 10.1073/pnas.1402094111] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Several physiopathological processes require orientated cellular migration. This phenomenon highly depends on members of the RHO family of GTPases. Both excessive and deficient RHO activity impair directional migration. A tight control is thus exerted on these proteins through the regulation of their activation and of their stability. Here we show that the estrogen-related receptor α (ERRα) directly activates the expression of TNFAIP1, the product of which [BTB/POZ domain-containing adapter for Cullin3-mediated RhoA degradation 2 (BACURD2)] regulates RHOA protein turnover. Inactivation of the receptor leads to enhanced RHOA stability and activation. This results in cell disorientation, increased actin network, and inability to form a lamellipodium at the migration edge. As a consequence, directional migration, but not cell motility per se, is impaired in the absence of the receptor, under pathological as well as physiological conditions. Altogether, our results show that the control exerted by ERRα on RHOA stability is required for directional migration.
Collapse
Affiliation(s)
- Juliette Sailland
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Violaine Tribollet
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Christelle Forcet
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Cyrielle Billon
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Bruno Barenton
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Julie Carnesecchi
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Alice Bachmann
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Karine Cécile Gauthier
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Shan Yu
- Cancer and Inflammation Program, School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; and
| | - Vincent Giguère
- Rosalind and Morris Goodman Cancer Centre, McGill University, Montréal, QC, Canada H3A 1A3
| | - Franky L Chan
- Cancer and Inflammation Program, School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; and
| | - Jean-Marc Vanacker
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, 69007 Lyon, France;
| |
Collapse
|
76
|
Padmanabha D, Baker KD. Drosophila gains traction as a repurposed tool to investigate metabolism. Trends Endocrinol Metab 2014; 25:518-27. [PMID: 24768030 DOI: 10.1016/j.tem.2014.03.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/20/2014] [Accepted: 03/25/2014] [Indexed: 10/25/2022]
Abstract
The use of fruit flies has recently emerged as a powerful experimental paradigm to study the core aspects of energy metabolism. The fundamental need for lipid and carbohydrate processing and storage across species dictates that the central regulators that control metabolism are highly conserved through evolution. Accordingly, the Drosophila system is being used to identify human disease genes and has the potential to model successfully human disorders that center on excessive caloric intake and metabolic dysfunction, including diet-induced lipotoxicity and type 2 diabetes. We review here recent progress on this front and contend that increasing such efforts will yield unexpectedly high rates of experimental return, thereby leading to novel approaches in the treatment of obesity and its comorbidities.
Collapse
Affiliation(s)
- Divya Padmanabha
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, 1220 East Broad Street Room 2052, Richmond, VA 23298, USA
| | - Keith D Baker
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, 1220 East Broad Street Room 2052, Richmond, VA 23298, USA.
| |
Collapse
|
77
|
Callier V, Nijhout HF. Plasticity of insect body size in response to oxygen: integrating molecular and physiological mechanisms. CURRENT OPINION IN INSECT SCIENCE 2014; 1:59-65. [PMID: 32846731 DOI: 10.1016/j.cois.2014.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 05/06/2014] [Accepted: 05/09/2014] [Indexed: 06/11/2023]
Abstract
The hypoxia-induced reduction of body size in Drosophila and Manduca is ideal for understanding the mechanisms of body size plasticity. The mechanisms of size regulation are well-studied in these species, and the molecular mechanisms of oxygen sensing are also well-characterized. What is missing is the connection between oxygen sensing and the mechanisms that regulate body size in standard conditions. Oxygen functions both as a substrate for metabolism to produce energy and as a signaling molecule that activates specific cellular signaling networks. Hypoxia affects metabolism in a passive, generalized manner. Hypoxia also induces the activation of targeted signaling pathways, which may mediate the reduction in body size, or alternatively, compensate for the metabolic perturbations and attenuate the reduction in size. These alternative hypotheses await testing. Both perspectives-metabolism and information-are necessary to understand how oxygen affects body size.
Collapse
|
78
|
Tennessen JM, Barry WE, Cox J, Thummel CS. Methods for studying metabolism in Drosophila. Methods 2014; 68:105-15. [PMID: 24631891 PMCID: PMC4048761 DOI: 10.1016/j.ymeth.2014.02.034] [Citation(s) in RCA: 306] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 02/21/2014] [Accepted: 02/25/2014] [Indexed: 01/17/2023] Open
Abstract
Recent research using Drosophila melanogaster has seen a resurgence in studies of metabolism and physiology. This review focuses on major methods used to conduct this work. These include protocols for dietary interventions, measurements of triglycerides, cholesterol, glucose, trehalose, and glycogen, stains for lipid detection, and the use of gas chromatography-mass spectrometry (GC-MS) to detect major polar metabolites. It is our hope that this will provide a useful framework for both new and current researchers in the field.
Collapse
Affiliation(s)
- Jason M Tennessen
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112-5330, USA
| | - William E Barry
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112-5330, USA
| | - James Cox
- Department of Biochemistry and the Metabolomics Core Research Facility, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Carl S Thummel
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112-5330, USA.
| |
Collapse
|
79
|
Greenlee KJ, Montooth KL, Helm BR. Predicting performance and plasticity in the development of respiratory structures and metabolic systems. Integr Comp Biol 2014; 54:307-22. [PMID: 24812329 PMCID: PMC4097113 DOI: 10.1093/icb/icu018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The scaling laws governing metabolism suggest that we can predict metabolic rates across taxonomic scales that span large differences in mass. Yet, scaling relationships can vary with development, body region, and environment. Within species, there is variation in metabolic rate that is independent of mass and which may be explained by genetic variation, the environment or their interaction (i.e., metabolic plasticity). Additionally, some structures, such as the insect tracheal respiratory system, change throughout development and in response to the environment to match the changing functional requirements of the organism. We discuss how study of the development of respiratory function meets multiple challenges set forth by the NSF Grand Challenges Workshop. Development of the structure and function of respiratory and metabolic systems (1) is inherently stable and yet can respond dynamically to change, (2) is plastic and exhibits sensitivity to environments, and (3) can be examined across multiple scales in time and space. Predicting respiratory performance and plasticity requires quantitative models that integrate information across scales of function from the expression of metabolic genes and mitochondrial biogenesis to the building of respiratory structures. We present insect models where data are available on the development of the tracheal respiratory system and of metabolic physiology and suggest what is needed to develop predictive models. Incorporating quantitative genetic data will enable mapping of genetic and genetic-by-environment variation onto phenotypes, which is necessary to understand the evolution of respiratory and metabolic systems and their ability to enable respiratory homeostasis as organisms walk the tightrope between stability and change.
Collapse
Affiliation(s)
- Kendra J Greenlee
- *Department of Biological Sciences, North Dakota State University, Fargo, ND 58102, USA; Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Kristi L Montooth
- *Department of Biological Sciences, North Dakota State University, Fargo, ND 58102, USA; Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Bryan R Helm
- *Department of Biological Sciences, North Dakota State University, Fargo, ND 58102, USA; Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
80
|
Zou C, Yu S, Xu Z, Wu D, Ng CF, Yao X, Yew DT, Vanacker JM, Chan FL. ERRα augments HIF-1 signalling by directly interacting with HIF-1α in normoxic and hypoxic prostate cancer cells. J Pathol 2014; 233:61-73. [PMID: 24425001 DOI: 10.1002/path.4329] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 12/09/2013] [Accepted: 01/08/2014] [Indexed: 12/12/2022]
Abstract
Adaptation of cancer cells to a hypoxic microenvironment is important for their facilitated malignant growth and advanced development. One major mechanism mediating the hypoxic response involves up-regulation of hypoxia-inducible factor 1 (HIF-1) expression, which controls reprogramming of energy metabolism and angiogenesis. Oestrogen-related receptor-α (ERRα) is a pivotal regulator of cellular energy metabolism and many biosynthetic pathways, and has also been proposed to be an important factor promoting the Warburg effect in advanced cancer. We and others have previously shown that ERRα expression is increased in prostate cancer and is also a prognostic marker. Here we show that ERRα is oncogenic in prostate cancer and also a key hypoxic growth regulator. ERRα-over-expressing prostate cancer cells were more resistant to hypoxia and showed enhanced HIF-1α protein expression and HIF-1 signalling. These effects could also be observed in ERRα-over-expressing cells grown under normoxia, suggesting that ERRα could function to pre-adapt cancer cells to meet hypoxia stress. Immunoprecipitation and FRET assays indicated that ERRα could physically interact with HIF-1α via its AF-2 domain. A ubiquitination assay showed that this ERRα-HIF-1α interaction could inhibit ubiquitination of HIF-1α and thus reduce its degradation. Such ERRα-HIF-1α interaction could be attenuated by XCT790, an ERRα-specific inverse agonist, resulting in reduced HIF-1α levels. In summary, we show that ERRα can promote the hypoxic growth adaptation of prostate cancer cells via a protective interaction with HIF-1α, suggesting ERRα as a potential therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Chang Zou
- School of Biomedical Sciences, Chinese University of Hong Kong, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Mandilaras K, Pathmanathan T, Missirlis F. Iron absorption in Drosophila melanogaster. Nutrients 2013; 5:1622-47. [PMID: 23686013 PMCID: PMC3708341 DOI: 10.3390/nu5051622] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/03/2013] [Accepted: 05/07/2013] [Indexed: 12/20/2022] Open
Abstract
The way in which Drosophila melanogaster acquires iron from the diet remains poorly understood despite iron absorption being of vital significance for larval growth. To describe the process of organismal iron absorption, consideration needs to be given to cellular iron import, storage, export and how intestinal epithelial cells sense and respond to iron availability. Here we review studies on the Divalent Metal Transporter-1 homolog Malvolio (iron import), the recent discovery that Multicopper Oxidase-1 has ferroxidase activity (iron export) and the role of ferritin in the process of iron acquisition (iron storage). We also describe what is known about iron regulation in insect cells. We then draw upon knowledge from mammalian iron homeostasis to identify candidate genes in flies. Questions arise from the lack of conservation in Drosophila for key mammalian players, such as ferroportin, hepcidin and all the components of the hemochromatosis-related pathway. Drosophila and other insects also lack erythropoiesis. Thus, systemic iron regulation is likely to be conveyed by different signaling pathways and tissue requirements. The significance of regulating intestinal iron uptake is inferred from reports linking Drosophila developmental, immune, heat-shock and behavioral responses to iron sequestration.
Collapse
Affiliation(s)
- Konstantinos Mandilaras
- School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK; E-Mail:
| | - Tharse Pathmanathan
- Department of Physiology, Biophysics and Neuroscience, CINVESTAV-IPN, IPN Avenue 2508, Zacatenco, 07360, Mexico City, Mexico; E-Mail:
| | - Fanis Missirlis
- Department of Physiology, Biophysics and Neuroscience, CINVESTAV-IPN, IPN Avenue 2508, Zacatenco, 07360, Mexico City, Mexico; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +52-55-5747-3963; Fax: +52-55-5747-5713
| |
Collapse
|