51
|
Seifert M, Baden T, Osorio D. The retinal basis of vision in chicken. Semin Cell Dev Biol 2020; 106:106-115. [PMID: 32295724 DOI: 10.1016/j.semcdb.2020.03.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 12/20/2022]
Abstract
The Avian retina is far less known than that of mammals such as mouse and macaque, and detailed study is overdue. The chicken (Gallus gallus) has potential as a model, in part because research can build on developmental studies of the eye and nervous system. One can expect differences between bird and mammal retinas simply because whereas most mammals have three types of visual photoreceptor birds normally have six. Spectral pathways and colour vision are of particular interest, because filtering by oil droplets narrows cone spectral sensitivities and birds are probably tetrachromatic. The number of receptor inputs is reflected in the retinal circuitry. The chicken probably has four types of horizontal cell, there are at least 11 types of bipolar cell, often with bi- or tri-stratified axon terminals, and there is a high density of ganglion cells, which make complex connections in the inner plexiform layer. In addition, there is likely to be retinal specialisation, for example chicken photoreceptors and ganglion cells have separate peaks of cell density in the central and dorsal retina, which probably serve different types of behaviour.
Collapse
Affiliation(s)
- M Seifert
- Sussex Neuroscience, School of Life Sciences, University of Sussex, UK.
| | - T Baden
- Sussex Neuroscience, School of Life Sciences, University of Sussex, UK; Institute for Ophthalmic Research, University of Tuebingen, Germany
| | - D Osorio
- Sussex Neuroscience, School of Life Sciences, University of Sussex, UK
| |
Collapse
|
52
|
Ma N, Yu L, Gong D, Hua Z, Zeng H, Chen L, Mao A, Chen Z, Cai R, Ma Y, Zhang Z, Li D, Luo J, Zhang S. Detritus decorations as the extended phenotype deflect avian predator attack in an orb‐web spider. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13636] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Nina Ma
- Centre for Behavioral Ecology and Evolution State Key Laboratory of Biocatalysis and Enzyme Engineering School of Life Sciences Hubei University Wuhan China
| | - Long Yu
- Centre for Behavioral Ecology and Evolution State Key Laboratory of Biocatalysis and Enzyme Engineering School of Life Sciences Hubei University Wuhan China
| | - Deyong Gong
- Centre for Behavioral Ecology and Evolution State Key Laboratory of Biocatalysis and Enzyme Engineering School of Life Sciences Hubei University Wuhan China
| | - Zeyuan Hua
- Centre for Behavioral Ecology and Evolution State Key Laboratory of Biocatalysis and Enzyme Engineering School of Life Sciences Hubei University Wuhan China
| | - Hua Zeng
- State Key Laboratory of Protein and Plant Gene Research Peking‐Tsinghua Center for Life Sciences Academy for Advanced Interdisciplinary Studies Peking University Beijing China
| | - Luyao Chen
- Centre for Behavioral Ecology and Evolution State Key Laboratory of Biocatalysis and Enzyme Engineering School of Life Sciences Hubei University Wuhan China
| | - Aijia Mao
- Centre for Behavioral Ecology and Evolution State Key Laboratory of Biocatalysis and Enzyme Engineering School of Life Sciences Hubei University Wuhan China
| | - Zhizhao Chen
- Centre for Behavioral Ecology and Evolution State Key Laboratory of Biocatalysis and Enzyme Engineering School of Life Sciences Hubei University Wuhan China
| | - Ruxing Cai
- Centre for Behavioral Ecology and Evolution State Key Laboratory of Biocatalysis and Enzyme Engineering School of Life Sciences Hubei University Wuhan China
| | - Yubing Ma
- Centre for Behavioral Ecology and Evolution State Key Laboratory of Biocatalysis and Enzyme Engineering School of Life Sciences Hubei University Wuhan China
| | - Zengtao Zhang
- Centre for Behavioral Ecology and Evolution State Key Laboratory of Biocatalysis and Enzyme Engineering School of Life Sciences Hubei University Wuhan China
| | - Daiqin Li
- Department of Biological Sciences National University of Singapore Singapore Singapore
| | - Jing Luo
- Centre for Behavioral Ecology and Evolution State Key Laboratory of Biocatalysis and Enzyme Engineering School of Life Sciences Hubei University Wuhan China
| | - Shichang Zhang
- Centre for Behavioral Ecology and Evolution State Key Laboratory of Biocatalysis and Enzyme Engineering School of Life Sciences Hubei University Wuhan China
| |
Collapse
|
53
|
Bueno JM, Cruz-Castillo R, Avilés-Trigueros M, Bautista-Elivar N. Arrangement of the photoreceptor mosaic in a diabetic rat model imaged with multiphoton microscopy. BIOMEDICAL OPTICS EXPRESS 2020; 11:4901-4914. [PMID: 33014589 PMCID: PMC7510868 DOI: 10.1364/boe.399835] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Diabetic retinopathy (DR) is defined as a microvascular pathology. However, some data have suggested that the retinal photoreceptors (PRs) might be important in the pathogenesis of this ocular disease. In this study the organization of the PRs in control and diabetic-induced rats was compared using multiphoton microscopy. The PR mosaic was imaged at different locations in non-stained retinas. The density of PRs was directly quantified from cell counting. The spatially resolved density presents a double-slope pattern (from the central retina towards the periphery) in both healthy and pathological samples, although the values for the latter were significantly lower all across the retina. Moreover, Voronoi analysis was performed to explore changes in PR topography. In control specimens a hexagonally packed structure was dominant. However, despite the non-controlled effects of the disease in retinal structures, this PR regularity was fairly maintained in diabetic retinas.
Collapse
Affiliation(s)
- Juan M. Bueno
- Laboratorio de Óptica, Instituto Universitario de Investigación en Óptica y Nanofísica, Universidad de Murcia, Murcia, Spain
| | - Ricardo Cruz-Castillo
- Área Académica de Matemáticas y Física, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Hidalgo, Mexico
| | - Marcelino Avilés-Trigueros
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca, “Campus Mare Nostrum” de Excelencia International, Murcia, Spain
| | - Nazario Bautista-Elivar
- Departamento de Ingeniería Eléctrica, Tecnológico Nacional de México, Instituto Tecnológico de Pachuca, Hidalgo, Mexico
| |
Collapse
|
54
|
Lomba E, Weis JJ, Guisández L, Torquato S. Minimal statistical-mechanical model for multihyperuniform patterns in avian retina. Phys Rev E 2020; 102:012134. [PMID: 32794939 DOI: 10.1103/physreve.102.012134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/22/2020] [Indexed: 11/07/2022]
Abstract
Birds are known for their extremely acute sense of vision. The very peculiar structural distribution of five different types of cones in the retina underlies this exquisite ability to sample light. It was recently found that each cone population as well as their total population display a disordered pattern in which long-wavelength density fluctuations vanish [Jiao et al., Phys. Rev. E 89, 022721 (2014)PLEEE81539-375510.1103/PhysRevE.89.022721]. This property, known as hyperuniformity, is also present in perfect crystals. In situations like the avian retina in which both the global structure and that of each component display hyperuniformity, the system is said to be multihyperuniform. In this work, we aim at devising a minimal statistical-mechanical model that can reproduce the main features of the spatial distribution of photoreceptors in avian retina, namely the presence of disorder, multihyperuniformity, and local heterocoordination. This last feature is key to avoiding local clustering of the same type of photoreceptors, an undesirable feature for the efficient sampling of light. For this purpose, we formulate a minimal statistical-mechanical model that definitively exhibits the required structural properties: an equimolar three-component mixture (one component to sample each primary color: red, green, and blue) of nonadditive hard disks to which a long-range logarithmic repulsion is added between like particles. Interestingly, a Voronoi analysis of our idealized system of photoreceptors shows that the space-filling Voronoi polygons display a rather uniform area distribution, symmetrically centered around that of a regular lattice, a structural property also found in human retina. Disordered multihyperuniformity offers an alternative to generate photoreceptor patterns with minimal long-range concentration and density fluctuations. This is the key to overcoming the difficulties in devising an efficient visual system in which crystal-like order is absent.
Collapse
Affiliation(s)
- Enrique Lomba
- Instituto de Química Física Rocasolano, CSIC, Calle Serrano 119, E-28006 Madrid, Spain
| | - Jean-Jacques Weis
- Université de Paris-Saclay, Laboratoire de Physique Théorique, Bâtiment 210, 91405 Orsay Cedex, France
| | - Leandro Guisández
- Instituto de Química Física Rocasolano, CSIC, Calle Serrano 119, E-28006 Madrid, Spain.,IFLYSIB (UNLP, CONICET), 59 No. 789, B1900BTE La Plata, Argentina
| | - Salvatore Torquato
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA.,Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
55
|
Soliman FN, El-Sabrout K. Light wavelengths/colors: Future prospects for broiler behavior and production. J Vet Behav 2020. [DOI: 10.1016/j.jveb.2019.10.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
56
|
Shao Y, Tian HY, Zhang JJ, Kharrati-Koopaee H, Guo X, Zhuang XL, Li ML, Nanaie HA, Dehghani Tafti E, Shojaei B, Reza Namavar M, Sotoudeh N, Oluwakemi Ayoola A, Li JL, Liang B, Esmailizadeh A, Wang S, Wu DD. Genomic and Phenotypic Analyses Reveal Mechanisms Underlying Homing Ability in Pigeon. Mol Biol Evol 2020; 37:134-148. [PMID: 31501895 DOI: 10.1093/molbev/msz208] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The homing pigeon was selectively bred from the domestic pigeon for a homing ability over long distances, a very fascinating but complex behavioral trait. Here, we generate a total of 95 whole genomes from diverse pigeon breeds. Comparing the genomes from the homing pigeon population with those from other breeds identifies candidate positively selected genes, including many genes involved in the central nervous system, particularly spatial learning and memory such as LRP8. Expression profiling reveals many neuronal genes displaying differential expression in the hippocampus, which is the key organ for memory and navigation and exhibits significantly larger size in the homing pigeon. In addition, we uncover a candidate gene GSR (encoding glutathione-disulfide reductase) experiencing positive selection in the homing pigeon. Expression profiling finds that GSR is highly expressed in the wattle and visual pigment cell layer, and displays increased expression levels in the homing pigeon. In vitro, a magnetic field stimulates increases in calcium ion concentration in cells expressing pigeon GSR. These findings support the importance of the hippocampus (functioning in spatial memory and navigation) for homing ability, and the potential involvement of GSR in pigeon magnetoreception.
Collapse
Affiliation(s)
- Yong Shao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Hang-Yu Tian
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, China
| | - Jing-Jing Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hamed Kharrati-Koopaee
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran.,Institute of Biotechnology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Xing Guo
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xiao-Lin Zhuang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, China
| | - Ming-Li Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, China
| | | | - Elahe Dehghani Tafti
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Bahador Shojaei
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mohammad Reza Namavar
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Histomorphometry and Stereology Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Narges Sotoudeh
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Adeola Oluwakemi Ayoola
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, China
| | - Jia-Li Li
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Bin Liang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Ali Esmailizadeh
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Shu Wang
- School of Basic Medical Sciences, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
57
|
Abstract
Disordered hyperuniform structures are locally random while uniform like crystals at large length scales. Recently, an exotic hyperuniform fluid state was found in several nonequilibrium systems, while the underlying physics remains unknown. In this work, we propose a nonequilibrium (driven-dissipative) hard-sphere model and formulate a hydrodynamic theory based on Navier-Stokes equations to uncover the general mechanism of the fluidic hyperuniformity (HU). At a fixed density, this model system undergoes a smooth transition from an absorbing state to an active hyperuniform fluid and then, to the equilibrium fluid by changing the dissipation strength. We study the criticality of the absorbing-phase transition. We find that the origin of fluidic HU can be understood as the damping of a stochastic harmonic oscillator in q space, which indicates that the suppressed long-wavelength density fluctuation in the hyperuniform fluid can exhibit as either acoustic (resonance) mode or diffusive (overdamped) mode. Importantly, our theory reveals that the damping dissipation and active reciprocal interaction (driving) are the two ingredients for fluidic HU. Based on this principle, we further demonstrate how to realize the fluidic HU in an experimentally accessible active spinner system and discuss the possible realization in other systems.
Collapse
|
58
|
Navigating at night: fundamental limits on the sensitivity of radical pair magnetoreception under dim light. Q Rev Biophys 2019; 52:e9. [DOI: 10.1017/s0033583519000076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Abstract
Night-migratory songbirds appear to sense the direction of the Earth's magnetic field via radical pair intermediates formed photochemically in cryptochrome flavoproteins contained in photoreceptor cells in their retinas. It is an open question whether this light-dependent mechanism could be sufficiently sensitive given the low-light levels experienced by nocturnal migrants. The scarcity of available photons results in significant uncertainty in the signal generated by the magnetoreceptors distributed around the retina. Here we use results from Information Theory to obtain a lower bound estimate of the precision with which a bird could orient itself using only geomagnetic cues. Our approach bypasses the current lack of knowledge about magnetic signal transduction and processing in vivo by computing the best-case compass precision under conditions where photons are in short supply. We use this method to assess the performance of three plausible cryptochrome-derived flavin-containing radical pairs as potential magnetoreceptors.
Collapse
|
59
|
|
60
|
|
61
|
Abstract
The jawless fish that were ancestral to all living vertebrates had four spectral cone types that were probably served by chromatic-opponent retinal circuits. Subsequent evolution of photoreceptor spectral sensitivities is documented for many vertebrate lineages, giving insight into the ecological adaptation of color vision. Beyond the photoreceptors, retinal color processing is best understood in mammals, especially the blueON system, which opposes short- against long-wavelength receptor responses. For other vertebrates that often have three or four types of cone pigment, new findings from zebrafish are extending older work on teleost fish and reptiles to reveal rich color circuitry. Here, horizontal cells establish diverse and complex spectral responses even in photoreceptor outputs. Cone-selective connections to bipolar cells then set up color-opponent synaptic layers in the inner retina, which lead to a large variety of color-opponent channels for transmission to the brain via retinal ganglion cells.
Collapse
Affiliation(s)
- T Baden
- School of Life Sciences, University of Sussex, BN1 9QG Brighton, United Kingdom; ,
- Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany
| | - D Osorio
- School of Life Sciences, University of Sussex, BN1 9QG Brighton, United Kingdom; ,
| |
Collapse
|
62
|
Effect of the melatonin nuclear receptor RORα on monochromatic light-induced T-lymphocyte proliferation in chicken thymus. Immunol Lett 2019; 213:21-29. [DOI: 10.1016/j.imlet.2019.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/09/2019] [Accepted: 07/17/2019] [Indexed: 12/13/2022]
|
63
|
Su J, Jiang H, Hou Z. Disordered hyperuniform obstacles enhance sorting of dynamically chiral microswimmers. SOFT MATTER 2019; 15:6830-6835. [PMID: 31397470 DOI: 10.1039/c9sm01090d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Disordered hyperuniformity, a brand new type of arrangement with novel physical properties, provides various practical applications in extensive fields. To highlight the great potential of applying disordered hyperuniformity to active systems, a practical example is reported here by an optimal sorting of dynamically chiral microswimmers in disordered hyperuniform obstacle environments in comparison with regular or disordered ones. This optimal chirality sorting stems from a competition between advantageous microswimmer-obstacle collisions and disadvantageous trapping of microswimmers by obstacles. Based on this mechanism, optimal chirality sorting is also realized by tuning other parameters including the number density of obstacles, the strength of driven force and the noise intensity. Our findings may open a new perspective on both theoretical and experimental investigations for further applications of disordered hyperuniformity in active systems.
Collapse
Affiliation(s)
- Jie Su
- Department of Chemical Physics & Hefei National Laboratory for Physical Sciences at Microscales, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | | | | |
Collapse
|
64
|
Cyriac VP, Kodandaramaiah U. Conspicuous colours reduce predation rates in fossorial uropeltid snakes. PeerJ 2019; 7:e7508. [PMID: 31428543 PMCID: PMC6698130 DOI: 10.7717/peerj.7508] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/17/2019] [Indexed: 01/04/2023] Open
Abstract
Uropeltid snakes (Family Uropeltidae) are non-venomous, fossorial snakes that are found above ground occasionally, during which time they are exposed to predation. Many species are brightly coloured, mostly on the ventral surface, but these colours are expected to have no function below the ground. Observations have shown that the cephalic resemblance (resemblance to heads) of uropeltid tails may direct attacks of predators towards the hardened tails, thereby potentially increasing handling times for predators. Experiments have also shown that predators learn to avoid prey that are non-toxic and palatable but are difficult to capture, hard to process or require long handling time when such prey advertise their unprofitability through conspicuous colours. We here postulate that uropeltid snakes use their bright colours to signal long handling times associated with attack deflection to the tails, thereby securing reduced predation from predators that can learn to associate colour with handling time. Captive chicken experiments with dough models mimicking uropeltids indicate that attacks were more common on the tail than on the head. Field experiments with uropeltid clay models show that the conspicuous colours of these snakes decrease predation rates compared to cryptic models, but a novel conspicuous colour did not confer such a benefit. Overall, our experiments provide support for our hypothesis that the conspicuous colours of these snakes reduce predation, possibly because these colours advertise unprofitability due to long handling times.
Collapse
Affiliation(s)
- Vivek Philip Cyriac
- IISER-TVM Centre for Research and Education in Ecology and Evolution and School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, India
| | - Ullasa Kodandaramaiah
- IISER-TVM Centre for Research and Education in Ecology and Evolution and School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, India
| |
Collapse
|
65
|
Mitochondrial absorption of short wavelength light drives primate blue retinal cones into glycolysis which may increase their pace of aging. Vis Neurosci 2019; 36:E007. [PMID: 31199213 DOI: 10.1017/s0952523819000063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Photoreceptors have high energy demands and densely packed mitochondria through which light passes before phototransduction. Old world primates including humans have three cone photoreceptor types mediating color vision with short (S blue), medium (M green), and long (L red) wavelength sensitivities. However, S-cones are enigmatic. They comprise <10% of the total cone population, their responses saturate early, and they are susceptible in aging and disease. Here, we show that primate S-cones actually have few mitochondria and are fueled by glycolysis, not by mitochondrial respiration. Glycolysis has a limited ability to sustain activity, potentially explaining early S-cone saturation. Mitochondria act as optical filters showing reduced light transmission at 400-450 nm where S-cones are most sensitive (420 nm). This absorbance is likely to arise in a mitochondrial porphyrin that absorbs strongly in the Soret band. Hence, reducing mitochondria will improve S-cone sensitivity but result in increased glycolysis as an alternative energy source, potentially increasing diabetic vulnerability due to restricted glucose access. Further, glycolysis carries a price resulting in premature functional decline as seen in aged S-cones. Soret band absorption may also impact on mitochondrial rich M and L cones by reducing sensitivity at the lower end of their spectral sensitivity range resulting in increased differentiation from S-cone responses. These data add to the list of unique characteristic of S-cones and may also explain aspects of their vulnerability.
Collapse
|
66
|
Owls lack UV-sensitive cone opsin and red oil droplets, but see UV light at night: Retinal transcriptomes and ocular media transmittance. Vision Res 2019; 158:109-119. [PMID: 30825468 DOI: 10.1016/j.visres.2019.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 02/04/2019] [Accepted: 02/24/2019] [Indexed: 12/19/2022]
Abstract
Most diurnal birds have cone-dominated retinae and tetrachromatic colour vision based on ultra-violet/violet-sensitive UV/V cones expressing short wavelength-sensitive opsin 1 (SWS1), S cones expressing short wavelength-sensitive opsin 2 (SWS2), M cones expressing medium wavelength-sensitive opsin (RH2) and L cones expressing long wavelength-sensitive opsin (LWS). Double cones (D) express LWS but do not contribute to colour vision. Each cone is equipped with an oil droplet, transparent in UV/V cones, but pigmented by carotenoids: galloxanthin in S, zeaxanthin in M, astaxanthin in L and a mixture in D cones. Owls (Strigiformes) are crepuscular or nocturnal birds with rod-dominated retinae and optical adaptations for high sensitivity. For eight species, the absence of functional SWS1 opsin has recently been documented, functional RH2 opsin was absent in three of these. Here we confirm the absence of SWS1 transcripts for the Long-eared owl (Asio otus) and demonstrate its absence for the Short-eared owl (Asio flammeus), Tawny owl (Strix aluco) and Boreal owl (Aegolius funereus). All four species had transcripts of RH2, albeit with low expression. All four species express all enzymes needed to produce galloxanthin, but lack CYP2J19 expression required to produce astaxanthin from dietary precursors. We also present ocular media transmittance of the Eurasian eagle owl (Bubo bubo) and Short-eared owl and predict spectral sensitivities of all photoreceptors of the Tawny owl. We conclude that owls, despite lacking UV/V cones, can detect UV light. This increases the sensitivity of their rod vision allowing them, for instance, to see UV-reflecting feathers as brighter signals at night.
Collapse
|
67
|
Troilo D, Smith EL, Nickla DL, Ashby R, Tkatchenko AV, Ostrin LA, Gawne TJ, Pardue MT, Summers JA, Kee CS, Schroedl F, Wahl S, Jones L. IMI - Report on Experimental Models of Emmetropization and Myopia. Invest Ophthalmol Vis Sci 2019; 60:M31-M88. [PMID: 30817827 PMCID: PMC6738517 DOI: 10.1167/iovs.18-25967] [Citation(s) in RCA: 269] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 10/20/2018] [Indexed: 11/24/2022] Open
Abstract
The results of many studies in a variety of species have significantly advanced our understanding of the role of visual experience and the mechanisms of postnatal eye growth, and the development of myopia. This paper surveys and reviews the major contributions that experimental studies using animal models have made to our thinking about emmetropization and development of myopia. These studies established important concepts informing our knowledge of the visual regulation of eye growth and refractive development and have transformed treatment strategies for myopia. Several major findings have come from studies of experimental animal models. These include the eye's ability to detect the sign of retinal defocus and undergo compensatory growth, the local retinal control of eye growth, regulatory changes in choroidal thickness, and the identification of components in the biochemistry of eye growth leading to the characterization of signal cascades regulating eye growth and refractive state. Several of these findings provided the proofs of concepts that form the scientific basis of new and effective clinical treatments for controlling myopia progression in humans. Experimental animal models continue to provide new insights into the cellular and molecular mechanisms of eye growth control, including the identification of potential new targets for drug development and future treatments needed to stem the increasing prevalence of myopia and the vision-threatening conditions associated with this disease.
Collapse
Affiliation(s)
- David Troilo
- SUNY College of Optometry, State University of New York, New York, New York, United States
| | - Earl L. Smith
- College of Optometry, University of Houston, Houston, Texas, United States
| | - Debora L. Nickla
- Biomedical Sciences and Disease, New England College of Optometry, Boston, Massachusetts, United States
| | - Regan Ashby
- Health Research Institute, University of Canberra, Canberra, Australia
| | - Andrei V. Tkatchenko
- Department of Ophthalmology, Department of Pathology and Cell Biology, Columbia University, New York, New York, United States
| | - Lisa A. Ostrin
- College of Optometry, University of Houston, Houston, Texas, United States
| | - Timothy J. Gawne
- School of Optometry, University of Alabama Birmingham, Birmingham, Alabama, United States
| | - Machelle T. Pardue
- Biomedical Engineering, Georgia Tech College of Engineering, Atlanta, Georgia, United States31
| | - Jody A. Summers
- College of Medicine, University of Oklahoma, Oklahoma City, Oklahoma, United States
| | - Chea-su Kee
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Falk Schroedl
- Departments of Ophthalmology and Anatomy, Paracelsus Medical University, Salzburg, Austria
| | - Siegfried Wahl
- Institute for Ophthalmic Research, University of Tuebingen, Zeiss Vision Science Laboratory, Tuebingen, Germany
| | - Lyndon Jones
- CORE, School of Optometry and Vision Science, University of Waterloo, Ontario, Canada
| |
Collapse
|
68
|
Tedore C, Nilsson DE. Avian UV vision enhances leaf surface contrasts in forest environments. Nat Commun 2019; 10:238. [PMID: 30670700 PMCID: PMC6342963 DOI: 10.1038/s41467-018-08142-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 12/17/2018] [Indexed: 11/30/2022] Open
Abstract
UV vision is prevalent, but we know little about its utility in common general tasks, as in resolving habitat structure. Here we visualize vegetated habitats using a multispectral camera with channels mimicking bird photoreceptor sensitivities across the UV-visible spectrum. We find that the contrast between upper and lower leaf surfaces is higher in a UV channel than in any visible channel, and that this makes leaf position and orientation stand out clearly. This was unexpected since both leaf surfaces reflect similarly small proportions (1–2%) of incident UV light. The strong UV-contrast can be explained by downwelling light being brighter than upwelling, and leaves transmitting < 0.06% of incident UV light. We also find that mirror-like specular reflections of the sky and overlying canopy, from the waxy leaf cuticle, often dwarf diffuse reflections. Specular reflections shift leaf color, such that maximum leaf-contrast is seen at short UV wavelengths under open canopies, and at long UV wavelengths under closed canopies. The utility of UV vision for visualizing habitat structure is poorly known. Here, the authors use optical models and multispectral imaging to show that UV vision reveals sharp visual contrasts between leaf surfaces, potentially an advantage in navigating forest environments.
Collapse
Affiliation(s)
- Cynthia Tedore
- Lund Vision Group, Lund University, Sölvegatan 35, Lund, 223 62, Sweden. .,Zoological Institute, University of Hamburg, Martin-Luther-King Platz 3, Hamburg, 20146, Germany.
| | - Dan-Eric Nilsson
- Lund Vision Group, Lund University, Sölvegatan 35, Lund, 223 62, Sweden
| |
Collapse
|
69
|
Vancamp P, Bourgeois NMA, Houbrechts AM, Darras VM. Knockdown of the thyroid hormone transporter MCT8 in chicken retinal precursor cells hampers early retinal development and results in a shift towards more UV/blue cones at the expense of green/red cones. Exp Eye Res 2018; 178:135-147. [PMID: 30273578 DOI: 10.1016/j.exer.2018.09.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 09/21/2018] [Accepted: 09/27/2018] [Indexed: 12/19/2022]
Abstract
Thyroid hormones (THs) play a crucial role in coordinating brain development in vertebrates. They fine-tune processes like cell proliferation, migration, and differentiation mainly by regulating the transcriptional activity of many essential genes. Regulators of TH availability thereby define the cellular concentration of the bioactive 3,5,3'-triiodothyronine, which binds to nuclear TH receptors. One important regulator, the monocarboxylate transporter 8 (MCT8), facilitates cellular TH uptake and is known to be necessary for correct brain development, but data on its potential role during retinal development is lacking. The retinal cyto-architecture has been conserved throughout vertebrate evolution, and we used the chicken embryo to study the need for MCT8 during retinal development. Its external development allows easy manipulation, and MCT8 is abundantly expressed in the retina from early stages onwards. We induced MCT8 knockdown by electroporating a pRFP-MCT8-RNAi vector into the retinal precursor cells (RPCs) at embryonic day 4 (E4), and studied the consequences for early (E6) and late (E18) retinal development. The empty pRFP-RNAi vector was used as a control. RPC proliferation was reduced at E6. This resulted in cellular hypoplasia and a thinner retina at E18 where mainly photoreceptors and horizontal cells were lost, the two predominant cell types that are born around the stage of electroporation. At E6, differentiation into retinal ganglion cells and amacrine cells was delayed. However, since the proportion of a given cell type within the transfected cell population at E18 was similar in knockdown and controls, the partial loss of some cell types was most-likely due to reduced RPC proliferation and not impaired cell differentiation. Photoreceptors displayed delayed migration at first, but had successfully reached the outer nuclear layer at E18. However, they increasingly differentiated into short wavelength-sensitive cones at the expense of medium/long wavelength-sensitive cones, while the proportion of rods was unaltered. Improperly formed sublaminae in the inner plexiform layer additionally suggested defects in synaptogenesis. Altogether, our data echoes effects of hypothyroidism and the loss of some other regulators of TH availability in the developing zebrafish and rodent retina. Therefore, the expression of MCT8 in RPCs is crucial for adequate TH uptake during cell type-specific events in retinal development.
Collapse
Affiliation(s)
- Pieter Vancamp
- KU Leuven, Laboratory of Comparative Endocrinology, Department of Biology, B-3000, Leuven, Belgium
| | - Nele M A Bourgeois
- KU Leuven, Laboratory of Comparative Endocrinology, Department of Biology, B-3000, Leuven, Belgium
| | - Anne M Houbrechts
- KU Leuven, Laboratory of Comparative Endocrinology, Department of Biology, B-3000, Leuven, Belgium
| | - Veerle M Darras
- KU Leuven, Laboratory of Comparative Endocrinology, Department of Biology, B-3000, Leuven, Belgium.
| |
Collapse
|
70
|
Yang Y, Pan C, Zhong R, Pan J. The quantitative models for broiler chicken response to monochromatic, combined, and mixed light-emitting diode light: A meta-analysis. Poult Sci 2018; 97:1980-1989. [PMID: 29596628 DOI: 10.3382/ps/pey065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 02/06/2018] [Indexed: 01/13/2023] Open
Abstract
Although many experiments have been conducted to clarify the response of broiler chickens to light-emitting diode (LED) light, those published results do not provide a solid scientific basis for quantifying the response of broiler chickens. This study used a meta-analysis to establish light spectral models of broiler chickens. The results indicated that 455 to 495 nm blue LED light produced the greatest positive response in body weight by 10.66% (BW; P < 0.001) and 515 to 560 nm green LED light increased BW by 6.27% (P < 0.001) when compared with white light. Regression showed that the wavelength (455 to 660 nm) was negatively related to BW change of birds, with a decrease of about 4.9% BW for each 100 nm increase in wavelength (P = 0.002). Further analysis suggested that a combination of the two beneficial light sources caused a synergistic effect. BW was further increased in birds transferred either from green LED light to blue LED light (17.23%; P < 0.001) or from blue LED light to green LED light (17.52%; P < 0.001). Moreover, birds raised with a mixture of green and blue LED light showed a greater BW promotion (10.66%; P < 0.001) than those raised with green LED light (6.27%). A subgroup analysis indicated that BW response to monochromatic LED light was significant regardless of the genetic strain, sex, control light sources, light intensity and regime of LED light, environmental temperature, and dietary ME and CP (P > 0.05). However, there was an interaction between the FCR response to monochromatic LED light with those covariant factors (P < 0.05). Additionally, green and yellow LED light played a role in affecting the meat color, quality, and nutrition of broiler chickens. The results indicate that the optimal ratio of green × blue of mixed LED light or shift to green-blue of combined LED light may produce the optimized production performance, whereas the optimal ratio of green/yellow of mixed or combined LED light may result in the optimized meat quality.
Collapse
Affiliation(s)
| | - Chenhao Pan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Renhai Zhong
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Jinming Pan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
71
|
Worster S, Mouritsen H, Hore PJ. A light-dependent magnetoreception mechanism insensitive to light intensity and polarization. J R Soc Interface 2018; 14:rsif.2017.0405. [PMID: 28878033 DOI: 10.1098/rsif.2017.0405] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/11/2017] [Indexed: 11/12/2022] Open
Abstract
Billions of migratory birds navigate thousands of kilometres every year aided by a magnetic compass sense, the biophysical mechanism of which is unclear. One leading hypothesis is that absorption of light by specialized photoreceptors in the retina produces short-lived chemical intermediates known as radical pairs whose chemistry is sensitive to tiny magnetic interactions. A potentially serious but largely ignored obstacle to this theory is how directional information derived from the Earth's magnetic field can be separated from the much stronger variations in the intensity and polarization of the incident light. Here we propose a simple solution in which these extraneous effects are cancelled by taking the ratio of the signals from two neighbouring populations of magnetoreceptors. Geometric and biological arguments are used to derive a set of conditions that make this possible. We argue that one likely location of the magnetoreceptor molecules would be in association with ordered opsin dimers in the membrane discs of the outer segments of double-cone photoreceptor cells.
Collapse
Affiliation(s)
- Susannah Worster
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Henrik Mouritsen
- Institut für Biologie und Umweltwissenschaften, Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany.,Research Centre for Neurosensory Sciences, University of Oldenburg, 26111 Oldenburg, Germany
| | - P J Hore
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| |
Collapse
|
72
|
Gisbert S, Schaeffel F. M to L cone ratios determine eye sizes and baseline refractions in chickens. Exp Eye Res 2018; 172:104-111. [PMID: 29608907 PMCID: PMC6013296 DOI: 10.1016/j.exer.2018.03.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/26/2018] [Accepted: 03/29/2018] [Indexed: 10/27/2022]
Abstract
Following a hypothesis raised by M. and J. Neitz, Seattle, we have tested whether the abundance and the ratio of Long wavelength-sensitive (L) to Middle wavelength-sensitive (M) cones may affect eye size and development of myopia in the chicken. Fourteen chickens were treated with frosted plastic diffusers in front of one eye on day 10 post-hatching for a period of 7 days to induce deprivation myopia. Ocular dimensions were measured by A-scan ultrasonography at the beginning and at the end of the treatment and development of refractive state was tracked using infrared photorefraction. At the end of the treatment period, L and M cone densities and ratios were analyzed in retinal flat mounts of both myopic and control eyes, using the red and yellow oil droplets as markers. Because large numbers of cones were counted (>10000), software was written in Visual C++ for automated cone detection and density analysis. (1) On average, 9.7 ± 1.7D of deprivation myopia was induced in 7 days (range from 6.8D to 13.7D) with an average increase in axial length by 0.65 ± 0.20 mm (range 0.42 mm-1.00 mm), (2) the increase in vitreous chamber depth was correlated with the increase in myopic refractive error, (3) average central M cone densities were 10,498 cells/mm2, and L cone densities 9574 cells/mm2. In the periphery, M cone densities were 6343 cells/mm2 and L cones 5735 cells/mm2 (4) M to L cone ratios were highly correlated in both eyes of each animal (p < 0.01 in all cases), (5) the most striking finding was that ratios of M to L cones were significantly correlated with vitreous chamber depths and refractive states in the control eyes with normal vision, both in the central and peripheral retinas (p < 0.05 to p < 0.01), (6) M to L cone ratios did however not predict the amount of deprivation myopia that could be induced. M and L cone ratios are most likely genetically determined in each animal. The more L cones, the deeper the vitreous chambers and the more myopic were the refractions in eyes. M to L cone ratios may determine the set point of emmetropization and thereby ultimately the probability of becoming myopic. Deprivation myopia was not determined by M to L cone ratios.
Collapse
Affiliation(s)
- Sandra Gisbert
- Section of Neurobiology of the Eye, Ophthalmic Research Institute, University of Tuebingen, Elfriede Aulhorn Strasse 7, 72076, Tuebingen, Germany
| | - Frank Schaeffel
- Section of Neurobiology of the Eye, Ophthalmic Research Institute, University of Tuebingen, Elfriede Aulhorn Strasse 7, 72076, Tuebingen, Germany.
| |
Collapse
|
73
|
Stoddard MC, Hauber ME. Colour, vision and coevolution in avian brood parasitism. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0339. [PMID: 28533456 DOI: 10.1098/rstb.2016.0339] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2017] [Indexed: 01/03/2023] Open
Abstract
The coevolutionary interactions between avian brood parasites and their hosts provide a powerful system for investigating the diversity of animal coloration. Specifically, reciprocal selection pressure applied by hosts and brood parasites can give rise to novel forms and functions of animal coloration, which largely differ from those that arise when selection is imposed by predators or mates. In the study of animal colours, avian brood parasite-host dynamics therefore invite special consideration. Rapid advances across disciplines have paved the way for an integrative study of colour and vision in brood parasite-host systems. We now know that visually driven host defences and host life history have selected for a suite of phenotypic adaptations in parasites, including mimicry, crypsis and supernormal stimuli. This sometimes leads to vision-based host counter-adaptations and increased parasite trickery. Here, we review vision-based adaptations that arise in parasite-host interactions, emphasizing that these adaptations can be visual/sensory, cognitive or phenotypic in nature. We highlight recent breakthroughs in chemistry, genomics, neuroscience and computer vision, and we conclude by identifying important future directions. Moving forward, it will be essential to identify the genetic and neural bases of adaptation and to compare vision-based adaptations to those arising in other sensory modalities.This article is part of the themed issue 'Animal coloration: production, perception, function and application'.
Collapse
Affiliation(s)
- Mary Caswell Stoddard
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Mark E Hauber
- Department of Psychology, Hunter College and Graduate Center of the City University of New York, NY, USA.,Department of Animal Biology, School of Integrative Biology, University of Illinois at Urbana-Champaign, IL, USA
| |
Collapse
|
74
|
Yang Y, Pan C, Zhong R, Pan J. Artificial light and biological responses of broiler chickens: dose-response. J Anim Sci 2018; 96:98-107. [PMID: 29432604 DOI: 10.1093/jas/skx044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 02/02/2018] [Indexed: 12/20/2022] Open
Abstract
Light intensity is an important aspect for broiler production. However, previous results do not provide a solid scientific basis for quantifying the response of broilers to light intensity. This study performed a meta-analysis to model the response of broilers to 0.1-200 lux of light intensity. Meta-analysis was used to integrate smaller studies and increase the statistical power over that of any single study and explore new hypotheses. The results indicated that light intensity <5 lux caused welfare concern (P < 0.05) and light intensity <1 lux induced productivity loss of broiler (P < 0.05), whereas greater level of light intensity >10 lux led to increased mortality (P < 0.01) and decreased uniformity (P < 0.05). Meta-regression showed that 30-200 lux light intensity was negatively related to BW (P = 0.047) and feed intake change (P = 0.054), whereas a quadratic relationship was observed between feed conversion ratio change and 50-180 lux light intensity (R2 = 0.95). In addition, the majority of carcass characteristics (abdominal fat weight and wing weight) and metabolic indicators (K+, Ca2+, and T3) were affected by light intensity >5 lux. To conclude, this meta-analysis based on published data quantitatively identified that 5 lux of light intensity during grow-out period should be the minimum level to maintain a well productivity and welfare of broiler chickens.
Collapse
Affiliation(s)
- Yefeng Yang
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, China
| | - Chenghao Pan
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, China
| | - Renhai Zhong
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, China
| | - Jinming Pan
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
75
|
Günther A, Einwich A, Sjulstok E, Feederle R, Bolte P, Koch KW, Solov’yov IA, Mouritsen H. Double-Cone Localization and Seasonal Expression Pattern Suggest a Role in Magnetoreception for European Robin Cryptochrome 4. Curr Biol 2018; 28:211-223.e4. [DOI: 10.1016/j.cub.2017.12.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/24/2017] [Accepted: 12/02/2017] [Indexed: 01/07/2023]
|
76
|
Ronald KL, Ensminger AL, Shawkey MD, Lucas JR, Fernández-Juricic E. Testing a key assumption in animal communication: between-individual variation in female visual systems alters perception of male signals. Biol Open 2017; 6:1771-1783. [PMID: 29247048 PMCID: PMC5769651 DOI: 10.1242/bio.028282] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Variation in male signal production has been extensively studied because of its relevance to animal communication and sexual selection. Although we now know much about the mechanisms that can lead to variation between males in the properties of their signals, there is still a general assumption that there is little variation in terms of how females process these male signals. Variation between females in signal processing may lead to variation between females in how they rank individual males, meaning that one single signal may not be universally attractive to all females. We tested this assumption in a group of female wild-caught brown-headed cowbirds (Molothrus ater), a species that uses a male visual signal (e.g. a wingspread display) to make its mate-choice decisions. We found that females varied in two key parameters of their visual sensory systems related to chromatic and achromatic vision: cone densities (both total and proportions) and cone oil droplet absorbance. Using visual chromatic and achromatic contrast modeling, we then found that this between-individual variation in visual physiology leads to significant between-individual differences in how females perceive chromatic and achromatic male signals. These differences may lead to variation in female preferences for male visual signals, which would provide a potential mechanism for explaining individual differences in mate-choice behavior. Summary: Animal communication studies often assume receiver perception is equal across individuals; we found females vary in their visual physiology and perception of male signals which could influence their mating decisions.
Collapse
Affiliation(s)
- Kelly L Ronald
- Indiana University, Department of Biology, Jordan Hall, 1001 E 3rd Street, Bloomington, IN 47405, USA .,Purdue University, Department of Biological Sciences, Lilly Hall, 915 West State Street, West Lafayette, IN 47907, USA
| | - Amanda L Ensminger
- Morningside College, Biology Department, 1501 Morningside Avenue, Sioux City, IA 51106, USA
| | - Matthew D Shawkey
- Evolution and Optics of Nanostructure Group, Department of Biology, University of Ghent, Ledeganckstraat 35, Ghent 9000, Belgium
| | - Jeffrey R Lucas
- Purdue University, Department of Biological Sciences, Lilly Hall, 915 West State Street, West Lafayette, IN 47907, USA
| | - Esteban Fernández-Juricic
- Purdue University, Department of Biological Sciences, Lilly Hall, 915 West State Street, West Lafayette, IN 47907, USA
| |
Collapse
|
77
|
Toomey MB, Corbo JC. Evolution, Development and Function of Vertebrate Cone Oil Droplets. Front Neural Circuits 2017; 11:97. [PMID: 29276475 PMCID: PMC5727011 DOI: 10.3389/fncir.2017.00097] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/20/2017] [Indexed: 11/24/2022] Open
Abstract
To distinguish colors, the nervous system must compare the activity of distinct subtypes of photoreceptors that are maximally sensitive to different portions of the light spectrum. In vertebrates, a variety of adaptations have arisen to refine the spectral sensitivity of cone photoreceptors and improve color vision. In this review article, we focus on one such adaptation, the oil droplet, a unique optical organelle found within the inner segment of cone photoreceptors of a diverse array of vertebrate species, from fish to mammals. These droplets, which consist of neutral lipids and carotenoid pigments, are interposed in the path of light through the photoreceptor and modify the intensity and spectrum of light reaching the photosensitive outer segment. In the course of evolution, the optical function of oil droplets has been fine-tuned through changes in carotenoid content. Species active in dim light reduce or eliminate carotenoids to enhance sensitivity, whereas species active in bright light precisely modulate carotenoid double bond conjugation and concentration among cone subtypes to optimize color discrimination and color constancy. Cone oil droplets have sparked the curiosity of vision scientists for more than a century. Accordingly, we begin by briefly reviewing the history of research on oil droplets. We then discuss what is known about the developmental origins of oil droplets. Next, we describe recent advances in understanding the function of oil droplets based on biochemical and optical analyses. Finally, we survey the occurrence and properties of oil droplets across the diversity of vertebrate species and discuss what these patterns indicate about the evolutionary history and function of this intriguing organelle.
Collapse
Affiliation(s)
- Matthew B Toomey
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Joseph C Corbo
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
78
|
Tanaka G, Zhou B, Zhang Y, Siveter DJ, Parker AR. Rods and cones in an enantiornithine bird eye from the Early Cretaceous Jehol Biota. Heliyon 2017; 3:e00479. [PMID: 29387816 PMCID: PMC5772835 DOI: 10.1016/j.heliyon.2017.e00479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/22/2017] [Accepted: 11/29/2017] [Indexed: 12/02/2022] Open
Abstract
Extant birds have an extensive spectral range of colour vision among vertebrates, but evidence of colour vision among extinct birds has hitherto been lacking. An exceptionally well-preserved extinct enantiornithine fossil bird from the Early Cretaceous Jiufotang Formation (120 Ma) of Liaoning, China, provides the first report of mineralised soft tissue of a bird eye. Cone cells are identified, which have preserved oil droplets falling between wide ranges of size that can be compared with an extant house sparrow. The size distribution of oil droplets of extant birds demonstrates good correlation between size and the detectable wavelength range of the cone cells: UV-sensitive cones contain the smallest oil droplets, while red-sensitive cones possess the largest. The data suggests that this Early Cretaceous bird could have possessed colour vision.
Collapse
Affiliation(s)
- Gengo Tanaka
- Institute of Liberal Arts and Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Baochun Zhou
- Shanghai Natural History Museum, 510 West Beijing Road, Shanghai 200041, China
| | - Yunfei Zhang
- Shanghai Natural History Museum, 510 West Beijing Road, Shanghai 200041, China
| | - David J. Siveter
- School of Geography, Geology and the Environment, University of Leicester, Leicester LE1 7RH, UK
| | - Andrew R. Parker
- Green Templeton College, University of Oxford, 43 Woodstock Road, Oxford OX2 6HG, UK
| |
Collapse
|
79
|
Mechanisms of Photoreceptor Patterning in Vertebrates and Invertebrates. Trends Genet 2017; 32:638-659. [PMID: 27615122 DOI: 10.1016/j.tig.2016.07.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/25/2016] [Accepted: 07/28/2016] [Indexed: 11/22/2022]
Abstract
Across the animal kingdom, visual systems have evolved to be uniquely suited to the environments and behavioral patterns of different species. Visual acuity and color perception depend on the distribution of photoreceptor (PR) subtypes within the retina. Retinal mosaics can be organized into three broad categories: stochastic/regionalized, regionalized, and ordered. We describe here the retinal mosaics of flies, zebrafish, chickens, mice, and humans, and the gene regulatory networks controlling proper PR specification in each. By drawing parallels in eye development between these divergent species, we identify a set of conserved organizing principles and transcriptional networks that govern PR subtype differentiation.
Collapse
|
80
|
Nagashima M, Hadidjojo J, Barthel LK, Lubensky DK, Raymond PA. Anisotropic Müller glial scaffolding supports a multiplex lattice mosaic of photoreceptors in zebrafish retina. Neural Dev 2017; 12:20. [PMID: 29141686 PMCID: PMC5688757 DOI: 10.1186/s13064-017-0096-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/19/2017] [Indexed: 11/21/2022] Open
Abstract
Background The multiplex, lattice mosaic of cone photoreceptors in the adult fish retina is a compelling example of a highly ordered epithelial cell pattern, with single cell width rows and columns of cones and precisely defined neighbor relationships among different cone types. Cellular mechanisms patterning this multiplex mosaic are not understood. Physical models can provide new insights into fundamental mechanisms of biological patterning. In earlier work, we developed a mathematical model of photoreceptor cell packing in the zebrafish retina, which predicted that anisotropic mechanical tension in the retinal epithelium orients planar polarized adhesive interfaces to align the columns as cone photoreceptors are generated at the retinal margin during post-embryonic growth. Methods With cell-specific fluorescent reporters and in vivo imaging of the growing retinal margin in transparent juvenile zebrafish we provide the first view of how cell packing, spatial arrangement, and cell identity are coordinated to build the lattice mosaic. With targeted laser ablation we probed the tissue mechanics of the retinal epithelium. Results Within the lattice mosaic, planar polarized Crumbs adhesion proteins pack cones into a single cell width column; between columns, N-cadherin-mediated adherens junctions stabilize Müller glial apical processes. The concentration of activated pMyosin II at these punctate adherens junctions suggests that these glial bands are under tension, forming a physical barrier between cone columns and contributing to mechanical stress anisotropies in the epithelial sheet. Unexpectedly, we discovered that the appearance of such parallel bands of Müller glial apical processes precedes the packing of cones into single cell width columns, hinting at a possible role for glia in the initial organization of the lattice mosaic. Targeted laser ablation of Müller glia directly demonstrates that these glial processes support anisotropic mechanical tension in the planar dimension of the retinal epithelium. Conclusions These findings uncovered a novel structural feature of Müller glia associated with alignment of photoreceptors into a lattice mosaic in the zebrafish retina. This is the first demonstration, to our knowledge, of planar, anisotropic mechanical forces mediated by glial cells. Electronic supplementary material The online version of this article (10.1186/s13064-017-0096-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mikiko Nagashima
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI, 48109-1048, USA
| | - Jeremy Hadidjojo
- Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, MI, 48109-1040, USA
| | - Linda K Barthel
- Microscopy and Image Analysis Laboratory, University of Michigan, Ann Arbor, MI, USA
| | - David K Lubensky
- Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, MI, 48109-1040, USA.
| | - Pamela A Raymond
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI, 48109-1048, USA.
| |
Collapse
|
81
|
Wisely CE, Sayed JA, Tamez H, Zelinka C, Abdel-Rahman MH, Fischer AJ, Cebulla CM. The chick eye in vision research: An excellent model for the study of ocular disease. Prog Retin Eye Res 2017; 61:72-97. [PMID: 28668352 PMCID: PMC5653414 DOI: 10.1016/j.preteyeres.2017.06.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/24/2017] [Accepted: 06/27/2017] [Indexed: 02/06/2023]
Abstract
The domestic chicken, Gallus gallus, serves as an excellent model for the study of a wide range of ocular diseases and conditions. The purpose of this manuscript is to outline some anatomic, physiologic, and genetic features of this organism as a robust animal model for vision research, particularly for modeling human retinal disease. Advantages include a sequenced genome, a large eye, relative ease of handling and maintenance, and ready availability. Relevant similarities and differences to humans are highlighted for ocular structures as well as for general physiologic processes. Current research applications for various ocular diseases and conditions, including ocular imaging with spectral domain optical coherence tomography, are discussed. Several genetic and non-genetic ocular disease models are outlined, including for pathologic myopia, keratoconus, glaucoma, retinal detachment, retinal degeneration, ocular albinism, and ocular tumors. Finally, the use of stem cell technology to study the repair of damaged tissues in the chick eye is discussed. Overall, the chick model provides opportunities for high-throughput translational studies to more effectively prevent or treat blinding ocular diseases.
Collapse
Affiliation(s)
- C Ellis Wisely
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, 915 Olentangy River Rd, Columbus, OH 43212, USA
| | - Javed A Sayed
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, 915 Olentangy River Rd, Columbus, OH 43212, USA
| | - Heather Tamez
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, 915 Olentangy River Rd, Columbus, OH 43212, USA
| | - Chris Zelinka
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 333 West 10th Avenue, Columbus, OH 43210, USA
| | - Mohamed H Abdel-Rahman
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, 915 Olentangy River Rd, Columbus, OH 43212, USA
| | - Andy J Fischer
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 333 West 10th Avenue, Columbus, OH 43210, USA.
| | - Colleen M Cebulla
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, 915 Olentangy River Rd, Columbus, OH 43212, USA.
| |
Collapse
|
82
|
English LT. Variation in crocodilian dorsal scute organization and geometry with a discussion of possible functional implications. J Morphol 2017; 279:154-162. [DOI: 10.1002/jmor.20760] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/22/2017] [Accepted: 09/26/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Lauren T. English
- Department of Geology, Jackson School of Geosciences; The University of Texas at Austin; Austin Texas U.S.A
| |
Collapse
|
83
|
Chen D, Aw WY, Devenport D, Torquato S. Structural Characterization and Statistical-Mechanical Model of Epidermal Patterns. Biophys J 2017; 111:2534-2545. [PMID: 27926854 DOI: 10.1016/j.bpj.2016.10.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/21/2016] [Accepted: 10/27/2016] [Indexed: 01/08/2023] Open
Abstract
In proliferating epithelia of mammalian skin, cells of irregular polygon-like shapes pack into complex, nearly flat two-dimensional structures that are pliable to deformations. In this work, we employ various sensitive correlation functions to quantitatively characterize structural features of evolving packings of epithelial cells across length scales in mouse skin. We find that the pair statistics in direct space (correlation function) and Fourier space (structure factor) of the cell centroids in the early stages of embryonic development show structural directional dependence (statistical anisotropy), which is a reflection of the fact that cells are stretched, which promotes uniaxial growth along the epithelial plane. In the late stages, the patterns tend toward statistically isotropic states, as cells attain global polarization and epidermal growth shifts to produce the skin's outer stratified layers. We construct a minimalist four-component statistical-mechanical model involving effective isotropic pair interactions consisting of hard-core repulsion and extra short-range soft-core repulsion beyond the hard core, whose length scale is roughly the same as the hard core. The model parameters are optimized to match the sample pair statistics in both direct and Fourier spaces. By doing this, the parameters are biologically constrained. In contrast with many vertex-based models, our statistical-mechanical model does not explicitly incorporate information about the cell shapes and interfacial energy between cells; nonetheless, our model predicts essentially the same polygonal shape distribution and size disparity of cells found in experiments, as measured by Voronoi statistics. Moreover, our simulated equilibrium liquid-like configurations are able to match other nontrivial unconstrained statistics, which is a testament to the power and novelty of the model. The array of structural descriptors that we deploy enable us to distinguish between normal, mechanically deformed, and pathological skin tissues. Our statistical-mechanical model enables one to generate tissue microstructure at will for further analysis. We also discuss ways in which our model might be extended to better understand morphogenesis (in particular the emergence of planar cell polarity), wound healing, and disease-progression processes in skin, and how it could be applied to the design of synthetic tissues.
Collapse
Affiliation(s)
- Duyu Chen
- Department of Chemistry, Princeton University, Princeton, New Jersey
| | - Wen Yih Aw
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| | - Salvatore Torquato
- Department of Chemistry, Princeton University, Princeton, New Jersey; Department of Physics, Princeton University, Princeton, New Jersey; Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey; Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey.
| |
Collapse
|
84
|
Mitkus M, Olsson P, Toomey MB, Corbo JC, Kelber A. Specialized photoreceptor composition in the raptor fovea. J Comp Neurol 2017; 525:2152-2163. [PMID: 28199005 PMCID: PMC6235456 DOI: 10.1002/cne.24190] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/13/2017] [Accepted: 02/07/2017] [Indexed: 11/08/2022]
Abstract
The retinae of many bird species contain a depression with high photoreceptor density known as the fovea. Many species of raptors have two foveae, a deep central fovea and a shallower temporal fovea. Birds have six types of photoreceptors: rods, active in dim light, double cones that are thought to mediate achromatic discrimination, and four types of single cones mediating color vision. To maximize visual acuity, the fovea should only contain photoreceptors contributing to high-resolution vision. Interestingly, it has been suggested that raptors might lack double cones in the fovea. We used transmission electron microscopy and immunohistochemistry to evaluate this claim in five raptor species: the common buzzard (Buteo buteo), the honey buzzard (Pernis apivorus), the Eurasian sparrowhawk (Accipiter nisus), the red kite (Milvus milvus), and the peregrine falcon (Falco peregrinus). We found that all species, except the Eurasian sparrowhawk, lack double cones in the center of the central fovea. The size of the double cone-free zone differed between species. Only the common buzzard had a double cone-free zone in the temporal fovea. In three species, we examined opsin expression in the central fovea and found evidence that rod opsin positive cells were absent and violet-sensitive cone and green-sensitive cone opsin positive cells were present. We conclude that not only double cones, but also single cones may contribute to high-resolution vision in birds, and that raptors may in fact possess high-resolution tetrachromatic vision in the central fovea.
Collapse
Affiliation(s)
- Mindaugas Mitkus
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 22364, Lund, Sweden
| | - Peter Olsson
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 22364, Lund, Sweden
| | - Matthew B. Toomey
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Joseph C. Corbo
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Almut Kelber
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 22364, Lund, Sweden
| |
Collapse
|
85
|
Toms M, Tracey-White D, Muhundhakumar D, Sprogyte L, Dubis AM, Moosajee M. Spectral Domain Optical Coherence Tomography: An In Vivo Imaging Protocol for Assessing Retinal Morphology in Adult Zebrafish. Zebrafish 2017; 14:118-125. [PMID: 28051361 DOI: 10.1089/zeb.2016.1376] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The present study outlines a protocol for examining retinal structure in zebrafish, a popular model organism for ocular studies, using spectral domain optical coherence tomography (SD-OCT). We demonstrate how this live imaging modality can be used to obtain high quality images of several retinal features, including the optic nerve, retinal vasculature, and the cone photoreceptor mosaic. Retinal histology sections were obtained from imaged fish for comparison with SD-OCT cross-sectional B-scans. Voronoi domain analysis was used to assess cone photoreceptor packing regularity at 3, 6, and 12 months. SD-OCT is an effective in vivo technique for studying the adult zebrafish retina and can be applied to disease models for longitudinal serial monitoring.
Collapse
Affiliation(s)
- Maria Toms
- 1 Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology , London, United Kingdom
| | - Dhani Tracey-White
- 1 Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology , London, United Kingdom
| | - Dhakshi Muhundhakumar
- 1 Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology , London, United Kingdom
| | - Lina Sprogyte
- 1 Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology , London, United Kingdom
| | - Adam M Dubis
- 1 Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology , London, United Kingdom .,2 Moorfields Eye Hospital NHS Foundation Trust , London, United Kingdom
| | - Mariya Moosajee
- 1 Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology , London, United Kingdom .,2 Moorfields Eye Hospital NHS Foundation Trust , London, United Kingdom
| |
Collapse
|
86
|
Olsson P, Wilby D, Kelber A. Spatial summation improves bird color vision in low light intensities. Vision Res 2017; 130:1-8. [DOI: 10.1016/j.visres.2016.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/20/2016] [Accepted: 10/30/2016] [Indexed: 11/29/2022]
|
87
|
Rodríguez-Gironés MA, Ruiz A. toBeeView: a program for simulating the retinal image of visual scenes on nonhuman eyes. Ecol Evol 2016; 6:7892-7900. [PMID: 30128137 PMCID: PMC6093169 DOI: 10.1002/ece3.2442] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 07/25/2016] [Accepted: 08/12/2016] [Indexed: 11/06/2022] Open
Abstract
We present toBeeView, a program that produces from a digital photograph, or a set of photographs, an approximation of the image formed at the sampling station stage in the eye of an animal. toBeeView is freely available from https://github.com/EEZA-CSIC/compound-eye-simulator. toBeeView assumes that sampling stations in the retina are distributed on a hexagonal grid. Each sampling station computes the weighted average of the color of the part of the visual scene projecting on its photoreceptors, and the hexagon of the output image associated with the sampling station is filled in this average color. Users can specify the visual angle subtended by the scene and the basic parameters determining the spatial resolution of the eye: photoreceptor spatial distribution and optic quality of the eye. The photoreceptor distribution is characterized by the vertical and horizontal interommatidial angles-which can vary along the retina. The optic quality depends on the section of the visual scene projecting onto each sampling station, determined by the acceptance angle. The output of toBeeView provides a first approximation to the amount of visual information available at the retina for subsequent processing, summarizing in an intuitive way the interaction between eye optics and receptor density. This tool can be used whenever it is important to determine the visual acuity of a species and will be particularly useful to study processes where object detection and identification is important, such as visual displays, camouflage, and mimicry.
Collapse
Affiliation(s)
| | - Alberto Ruiz
- Estación Experimental de Zonas Áridas CSIC Almería Spain
| |
Collapse
|
88
|
Abstract
Butterfly eyes are random mosaics built of three ommatidia types, each with a different set of photoreceptors and pigments. What defines the combined features in each ommatidium? A new study has solved the puzzle.
Collapse
|
89
|
Type-specific photoreceptor loss in pigeons after disruption of parasympathetic control of choroidal blood flow by the medial subdivision of the nucleus of Edinger-Westphal. Vis Neurosci 2016; 33:E008. [PMID: 27485271 PMCID: PMC5678271 DOI: 10.1017/s0952523816000043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The medial part of the nucleus of Edinger–Westphal (EWM) in birds mediates light-regulated adaptive increases in choroidal blood flow (ChBF). We sought to characterize the effect of loss of EWM-mediated ChBF regulation on photoreceptor health in pigeons housed in either moderate intensity diurnal or constant light (CL). Photoreceptor abundance following complete EWM destruction was compared to that following a lesion in the pupil control circuit (as a control for spread of EWM lesions to the nearby pupil-controlling lateral EW) or following no EW damage. Birds were housed post-lesion in a 12 h 400 lux light/12 h dark light cycle for up to 16.5 months, or in constant 400 lux light for up to 3 weeks. Paraformaldehyde–glutaraldehyde fixed eyes were embedded in plastic, sectioned, slide-mounted, and stained with toluidine blue/azure II. Blinded analysis of photoreceptor outer segment abundance was performed, with outer segment types distinguished by oil droplet tint and laminar position. Brains were examined histologically to assess lesion accuracy. Disruption of pupil control had no adverse effect on photoreceptor outer segment abundance in either diurnal light or CL, but EWM destruction led to 50–60% loss of blue/violet cone outer segments in both light conditions, and a 42% loss of principal cone outer segments in CL. The findings indicate that adaptive regulation of ChBF by the EWM circuit plays a role in maintaining photoreceptor health and mitigates the harmful effect of light on photoreceptors, especially short wavelength-sensitive cone photoreceptors.
Collapse
|
90
|
Wilby D, Toomey MB, Olsson P, Frederiksen R, Cornwall MC, Oulton R, Kelber A, Corbo JC, Roberts NW. Optics of cone photoreceptors in the chicken (Gallus gallus domesticus). J R Soc Interface 2016; 12:20150591. [PMID: 26423439 PMCID: PMC4614498 DOI: 10.1098/rsif.2015.0591] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vision is the primary sensory modality of birds, and its importance is evident in the sophistication of their visual systems. Coloured oil droplets in the cone photoreceptors represent an adaptation in the avian retina, acting as long-pass colour filters. However, we currently lack understanding of how the optical properties and morphology of component structures (e.g. oil droplet, mitochondrial ellipsoid and outer segment) of the cone photoreceptor influence the transmission of light into the outer segment and the ultimate effect they have on receptor sensitivity. In this study, we use data from microspectrophotometry, digital holographic microscopy and electron microscopy to inform electromagnetic models of avian cone photoreceptors to quantitatively investigate the integrated optical function of the cell. We find that pigmented oil droplets primarily function as spectral filters, not light collection devices, although the mitochondrial ellipsoid improves optical coupling between the inner segment and oil droplet. In contrast, unpigmented droplets found in violet-sensitive cones double sensitivity at its peak relative to other cone types. Oil droplets and ellipsoids both narrow the angular sensitivity of single cone photoreceptors, but not as strongly as those in human cones.
Collapse
Affiliation(s)
- David Wilby
- School of Biological Sciences, University of Bristol, Bristol Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK Bristol Centre for Functional Nanomaterials, Centre for Nanoscience and Quantum Information, University of Bristol, Tyndall Avenue, Bristol BS8 1FD, UK
| | - Matthew B Toomey
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Peter Olsson
- Vision Group, Department of Biology, Lund University, Sölvegatan 35, Lund, Sweden
| | - Rikard Frederiksen
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA, USA
| | - M Carter Cornwall
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA, USA
| | - Ruth Oulton
- H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK
| | - Almut Kelber
- Vision Group, Department of Biology, Lund University, Sölvegatan 35, Lund, Sweden
| | - Joseph C Corbo
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Nicholas W Roberts
- School of Biological Sciences, University of Bristol, Bristol Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK Bristol Centre for Functional Nanomaterials, Centre for Nanoscience and Quantum Information, University of Bristol, Tyndall Avenue, Bristol BS8 1FD, UK
| |
Collapse
|
91
|
Toomey MB, Collins AM, Frederiksen R, Cornwall MC, Timlin JA, Corbo JC. A complex carotenoid palette tunes avian colour vision. J R Soc Interface 2016; 12:20150563. [PMID: 26446559 DOI: 10.1098/rsif.2015.0563] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The brilliantly coloured cone oil droplets of the avian retina function as long-pass cut-off filters that tune the spectral sensitivity of the photoreceptors and are hypothesized to enhance colour discrimination and improve colour constancy. Although it has long been known that these droplets are pigmented with carotenoids, their precise composition has remained uncertain owing to the technical challenges of measuring these very small, dense and highly refractile optical organelles. In this study, we integrated results from high-performance liquid chromatography, hyperspectral microscopy and microspectrophotometry to obtain a comprehensive understanding of oil droplet carotenoid pigmentation in the chicken (Gallus gallus). We find that each of the four carotenoid-containing droplet types consists of a complex mixture of carotenoids, with a single predominant carotenoid determining the wavelength of the spectral filtering cut-off. Consistent with previous reports, we find that the predominant carotenoid type in the oil droplets of long-wavelength-sensitive, medium-wavelength-sensitive and short-wavelength-sensitive type 2 cones are astaxanthin, zeaxanthin and galloxanthin, respectively. In addition, the oil droplet of the principal member of the double cone contains a mixture of galloxanthin and two hydroxycarotenoids (lutein and zeaxanthin). Short-wavelength-absorbing apocarotenoids are present in all of the droplet types, providing filtering of light in a region of the spectrum where filtering by hydroxy- and ketocarotenoids may be incomplete. Thus, birds rely on a complex palette of carotenoid pigments within their cone oil droplets to achieve finely tuned spectral filtering.
Collapse
Affiliation(s)
- Matthew B Toomey
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Aaron M Collins
- Bioenergy and Defense Technologies, Sandia National Laboratories, Albuquerque, NM 87123, USA
| | - Rikard Frederiksen
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118-2526, USA
| | - M Carter Cornwall
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118-2526, USA
| | - Jerilyn A Timlin
- Bioenergy and Defense Technologies, Sandia National Laboratories, Albuquerque, NM 87123, USA
| | - Joseph C Corbo
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
92
|
Chang SC, Lin MJ, Zhuang ZX, Huang SY, Lin TY, Jea YS, Fan YK, Lee TT. Effect of Monochromic Light-emitting Diode Light with Different Color on the Growth and Reproductive Performances of Breeder Geese. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 29:830-7. [PMID: 26954165 PMCID: PMC4852250 DOI: 10.5713/ajas.15.0613] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/09/2015] [Accepted: 09/27/2015] [Indexed: 11/27/2022]
Abstract
The purpose of this study was to investigate the effect of monochromic light-emitting diode (LED) light with different color on the growth and reproductive performances of white Roman breeder geese. A randomized complete batch design was utilized for the trial, and the replicate was regarded as one batch. Twenty ganders and fifty-five dames were used in batch 1 (started on 2011/6/17 and ended on 2012/1/31), thirty ganders and eighty-four dames were used in batch 2 (started on 2012/3/23 and ended on 2012/10/26), and thirty ganders and seventy-two dames were used in batch 3 (started on 2013/3/12 and ended on 2013/12/20). Two hundred and ninety-one geese were randomly assigned to 6 rooms in an environmentally controlled house. They were randomly allotted into one of three monochromatic light treatments: Blue, red, or white. The results showed that there was no significant difference in body weight among the three lighting groups at any point throughout the experimental period. However, compared to the blue light group, significantly more eggs were produced by the red and white light groups (p<0.05). Furthermore, the laying period of the red light group was significantly longer than that of other two groups (p<0.05). In conclusion, our results suggested that red LED-light has the best effect on reproductive performance (i.e. longer laying period and higher total eggs number) at 30 lux light intensity, and is therefore a better choice for the management of breeding geese than blue or white LED-light.
Collapse
Affiliation(s)
- S. C. Chang
- Department of Animal Science, National Chung Hsing University, Taichung 402,
Taiwan
- Changhua Animal Propagation Station, Livestock Research Institute, Council of Agriculture, Changhua 512,
Taiwan
| | - M. J. Lin
- Department of Animal Science, National Chung Hsing University, Taichung 402,
Taiwan
- Changhua Animal Propagation Station, Livestock Research Institute, Council of Agriculture, Changhua 512,
Taiwan
| | - Z. X. Zhuang
- Department of Animal Science, National Chung Hsing University, Taichung 402,
Taiwan
| | - S. Y. Huang
- Department of Animal Science, National Chung Hsing University, Taichung 402,
Taiwan
| | - T. Y. Lin
- Changhua Animal Propagation Station, Livestock Research Institute, Council of Agriculture, Changhua 512,
Taiwan
| | - Y. S. Jea
- Changhua Animal Propagation Station, Livestock Research Institute, Council of Agriculture, Changhua 512,
Taiwan
| | - Y. K. Fan
- Department of Animal Science, National Chung Hsing University, Taichung 402,
Taiwan
| | - T. T. Lee
- Department of Animal Science, National Chung Hsing University, Taichung 402,
Taiwan
| |
Collapse
|
93
|
A new method to manipulate broiler chicken growth and metabolism: Response to mixed LED light system. Sci Rep 2016; 6:25972. [PMID: 27170597 PMCID: PMC4864324 DOI: 10.1038/srep25972] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 04/26/2016] [Indexed: 11/25/2022] Open
Abstract
Present study introduced a new method to manipulate broiler chicken growth and metabolism by mixing the growth-advantage LED. We found that the green/blue LED mixed light system (G-B and G × B) have the similar stimulatory effect on chick body weight with single green light and single blue light (G and B), compared with normal artificial light (P = 0.028). Moreover, the percentage of carcass was significantly greater in the mixed light (G × B) when compared with the single light (P = 0.003). Synchronized with body weight, the mixed light (G-B and G × B) had a significant improved influence on the feed conversion of birds compared with normal light (P = 0.002). A significant improvement in feed conversion were found in mixed light (G × B) compared with single LED light (P = 0.037). G group resulted in a greater high-density lipoprotein cholesterol level than B group (P = 0.002), whereas B group resulted in a greater low-density lipoprotein cholesterol level than G group (P = 0.017). The mixed light significantly increased the birds’ glucose level in comparison with the single light (P = 0.003). This study might establish an effective strategy for maximizing growth of chickens by mixed LED technology.
Collapse
|
94
|
Yang Y, Yu Y, Yang B, Zhou H, Pan J. Physiological responses to daily light exposure. Sci Rep 2016; 6:24808. [PMID: 27098210 PMCID: PMC4838836 DOI: 10.1038/srep24808] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 04/05/2016] [Indexed: 11/21/2022] Open
Abstract
Long daylength artificial light exposure associates with disorders, and a potential physiological mechanism has been proposed. However, previous studies have examined no more than three artificial light treatments and limited metabolic parameters, which have been insufficient to demonstrate mechanical responses. Here, comprehensive physiological response curves were established and the physiological mechanism was strengthened. Chicks were illuminated for 12, 14, 16, 18, 20, or 22 h periods each day. A quadratic relationship between abdominal adipose weight (AAW) and light period suggested that long-term or short-term light exposure could decrease the amount of AAW. Quantitative relationships between physiological parameters and daily light period were also established in this study. The relationships between triglycerides (TG), cholesterol (TC), glucose (GLU), phosphorus (P) levels and daily light period could be described by quadratic regression models. TG levels, AAW, and BW positively correlated with each other, suggesting long-term light exposure significantly increased AAW by increasing TG thus resulting in greater BW. A positive correlation between blood triiodothyronine (T3) levels and BW suggested that daily long-term light exposure increased BW by thyroid hormone secretion. Though the molecular pathway remains unknown, these results suggest a comprehensive physiological mechanism through which light exposure affects growth.
Collapse
Affiliation(s)
- Yefeng Yang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yonghua Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Hong Zhou
- Department of Instrument Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jinming Pan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
95
|
The relationship of spectral sensitivity with growth and reproductive response in avian breeders (Gallus gallus). Sci Rep 2016; 6:19291. [PMID: 26765747 PMCID: PMC4725905 DOI: 10.1038/srep19291] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 12/07/2015] [Indexed: 11/16/2022] Open
Abstract
A previous study demonstrated that birds that are exposed to light at night develop advanced reproductive systems. However, spectrum might also affect the photoperiodic response of birds. The present study was aimed to investigate the effects of spectral composition on the growth and reproductive physiology of female breeders, using pure light-emitting diode spectra. A total of 1,000 newly hatched female avian breeders (Gallus gallus) were equally allocated to white-, red-, yellow-, green- and blue-light treated groups. We found that blue-light treated birds had a greater and faster weight gain than did red- and yellow-light treated birds (P = 0.02 and 0.05). The red light expedited the sexual maturation of the chicks, whose age at sexual maturity was 7 and 14 days earlier than that of the green- and blue-light treated birds, respectively. The accumulative egg production of the red-light treated birds was 9 and 8 eggs more than that of the blue- and green-light treated birds. The peak lay rate of the red-light treated groups was significantly greater than the blue-light treated birds (P = 0.028). In conclusion, exposure to short-wavelength light appears to promote growth of female breeder birds, whereas exposure to long-wavelength light appears to accelerate reproductive performance.
Collapse
|
96
|
Mitkus M, Nevitt GA, Danielsen J, Kelber A. Vision on the high seas: spatial resolution and optical sensitivity in two procellariiform seabirds with different foraging strategies. J Exp Biol 2016; 219:3329-3338. [DOI: 10.1242/jeb.140905] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/15/2016] [Indexed: 11/20/2022]
Abstract
Procellariiform or ‘tubenosed’ seabirds are challenged to find prey and orient over the seemingly featureless oceans. Previous studies have found that life history strategy (burrow vs. surface nesting) was correlated to foraging strategy. Burrow nesters tended to track prey using dimethyl sulphide (DMS), a compound associated with phytoplankton, whereas surface-nesting species did not. Burrow nesters also tended to be smaller and more cryptic, whereas surface nesters were larger with contrasting plumage coloration. Together these results suggested that differences in life history strategy might also be linked to differences in visual adaptations. Here, we used Leach's storm-petrel, a DMS-responder, and Northern fulmar, a non-responder, as model species to test this hypothesis on their sensory ecology. From the retinal ganglion cell density and photoreceptor dimensions, we determined that Leach's storm-petrels have six times lower spatial resolution than the Northern fulmars. However, the optical sensitivity of rod photoreceptors is similar between species. These results suggest that under similar atmospheric conditions Northern fulmars have six times the detection range for similarly sized objects. Both species have extended visual streaks with a central area of highest spatial resolution, but only the Northern fulmar has a central fovea. The prediction that burrow-nesting DMS responding procellariiforms should differ from non-responding species nesting in the open holds true for spatial resolution, but not for optical sensitivity. This result may reflect the fact that both species rely on olfaction for their nocturnal foraging activity, but that Northern fulmars might use vision more during daytime.
Collapse
Affiliation(s)
- Mindaugas Mitkus
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 22364, Lund, Sweden
| | - Gabrielle A. Nevitt
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Johannis Danielsen
- Department of Natural Sciences, University of the Faroe Islands, J. C. Svabos gøta 14, 100 Tórshavn, Faroe Islands
| | - Almut Kelber
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 22364, Lund, Sweden
| |
Collapse
|
97
|
Evolutionary transformation of rod photoreceptors in the all-cone retina of a diurnal garter snake. Proc Natl Acad Sci U S A 2015; 113:356-61. [PMID: 26715746 DOI: 10.1073/pnas.1513284113] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vertebrate retinas are generally composed of rod (dim-light) and cone (bright-light) photoreceptors with distinct morphologies that evolved as adaptations to nocturnal/crepuscular and diurnal light environments. Over 70 years ago, the "transmutation" theory was proposed to explain some of the rare exceptions in which a photoreceptor type is missing, suggesting that photoreceptors could evolutionarily transition between cell types. Although studies have shown support for this theory in nocturnal geckos, the origins of all-cone retinas, such as those found in diurnal colubrid snakes, remain a mystery. Here we investigate the evolutionary fate of the rods in a diurnal garter snake and test two competing hypotheses: (i) that the rods, and their corresponding molecular machinery, were lost or (ii) that the rods were evolutionarily modified to resemble, and function, as cones. Using multiple approaches, we find evidence for a functional and unusually blue-shifted rhodopsin that is expressed in small single "cones." Moreover, these cones express rod transducin and have rod ultrastructural features, providing strong support for the hypothesis that they are not true cones, as previously thought, but rather are modified rods. Several intriguing features of garter snake rhodopsin are suggestive of a more cone-like function. We propose that these cone-like rods may have evolved to regain spectral sensitivity and chromatic discrimination as a result of ancestral losses of middle-wavelength cone opsins in early snake evolution. This study illustrates how sensory evolution can be shaped not only by environmental constraints but also by historical contingency in forming new cell types with convergent functionality.
Collapse
|
98
|
Kostic C, Arsenijevic Y. Animal modelling for inherited central vision loss. J Pathol 2015; 238:300-10. [PMID: 26387748 PMCID: PMC5063185 DOI: 10.1002/path.4641] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/02/2015] [Accepted: 09/16/2015] [Indexed: 01/01/2023]
Abstract
Disease-causing variants of a large number of genes trigger inherited retinal degeneration leading to photoreceptor loss. Because cones are essential for daylight and central vision such as reading, mobility, and face recognition, this review focuses on a variety of animal models for cone diseases. The pertinence of using these models to reveal genotype/phenotype correlations and to evaluate new therapeutic strategies is discussed. Interestingly, several large animal models recapitulate human diseases and can serve as a strong base from which to study the biology of disease and to assess the scale-up of new therapies. Examples of innovative approaches will be presented such as lentiviral-based transgenesis in pigs and adeno-associated virus (AAV)-gene transfer into the monkey eye to investigate the neural circuitry plasticity of the visual system. The models reported herein permit the exploration of common mechanisms that exist between different species and the identification and highlighting of pathways that may be specific to primates, including humans.
Collapse
Affiliation(s)
- Corinne Kostic
- Unit of Gene Therapy and Stem Cell Biology, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, Switzerland
| | - Yvan Arsenijevic
- Unit of Gene Therapy and Stem Cell Biology, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, Switzerland
| |
Collapse
|
99
|
Abstract
Vision is limited by the measurements taken by the cone photoreceptors. To provide useful perceptual representations, the brain must go beyond the measurements and make inferences about the scene being viewed. This article considers the first stages of spatiochromatic vision. We show how spatial and chromatic information become intertwined by the optics of the eye and because of the structure of the retinal cone mosaic, and we consider the consequent implications for perception. Because there is at most one cone at each retinal location, the standard treatment of human trichromacy does not apply at fine spatial scales. Rather, trichromacy results from a perceptual inference based on measurements from cones of different classes at different locations. Our treatment emphasizes linking physics, biology, and computation with the goal of providing a framework for a larger understanding of how the brain interprets photoreceptor excitations to see objects and their properties.
Collapse
Affiliation(s)
- David H Brainard
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| |
Collapse
|
100
|
The pros and cons of vertebrate animal models for functional and therapeutic research on inherited retinal dystrophies. Prog Retin Eye Res 2015; 48:137-59. [DOI: 10.1016/j.preteyeres.2015.04.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/12/2015] [Accepted: 04/16/2015] [Indexed: 01/19/2023]
|