51
|
Rajeswaran W, Ashkar SR, Lee PH, Yeomans L, Shin Y, Franzblau SG, Murakami KS, Showalter HD, Garcia GA. Optimization of Benzoxazinorifamycins to Improve Mycobacterium tuberculosis RNA Polymerase Inhibition and Treatment of Tuberculosis. ACS Infect Dis 2022; 8:1422-1438. [PMID: 35772744 DOI: 10.1021/acsinfecdis.1c00636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rifampin (RMP), a very potent inhibitor of the Mycobacterium tuberculosis (MTB) RNA polymerase (RNAP), remains a keystone in the treatment of tuberculosis since its introduction in 1965. However, rifamycins suffer from serious drawbacks, including 3- to 9-month treatment times, Cyp450 induction (particularly problematic for HIV-MTB coinfection), and resistant mutations within RNAP that yield RIF-resistant (RIFR) MTB strains. There is a clear and pressing need for improved TB therapies. We have utilized a structure-based drug design approach to synthesize and test novel benzoxazinorifamycins (bxRIF), congeners of the clinical candidate rifalazil. Our goal is to gain binding interactions that will compensate for the loss of RIF-binding affinity to the (RIFR) MTB RNAP and couple those with substitutions that we have previously found that essentially eliminate Cyp450 induction. Herein, we report a systematic exploration of 42 substituted bxRIFs that have yielded an analogue (27a) that has an excellent in vitro activity (MTB RNAP inhibition, MIC, MBC), enhanced (∼30-fold > RMP) activity against RIFR MTB RNAP, negligible hPXR activation, good mouse pharmacokinetics, and excellent activity with no observable adverse effects in an acute mouse TB model. In a time-kill study, 27a has a 7 day MBC that is ∼10-fold more potent than RMP. These results suggest that 27a may exhibit a faster kill rate than RMP, which could possibly reduce the clinical treatment time. Our synthetic protocol enabled the synthesis of ∼2 g of 27a at >95% purity in 3 months, demonstrating the feasibility of scale-up synthesis of bxRIFs for preclinical and clinical studies.
Collapse
Affiliation(s)
- Walajapet Rajeswaran
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1065, United States.,Vahlteich Medicinal Chemistry Core, University of Michigan, Ann Arbor, Michigan 48109-1065, United States
| | - Shireen R Ashkar
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1065, United States
| | - Pil H Lee
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1065, United States.,Vahlteich Medicinal Chemistry Core, University of Michigan, Ann Arbor, Michigan 48109-1065, United States
| | - Larisa Yeomans
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1065, United States
| | - Yeonoh Shin
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, Pennsylvania 16801, United States
| | - Scott G Franzblau
- Institute for Tuberculosis Research, University of Illinois, Chicago, Illinois 60612-7231, United States
| | - Katsuhiko S Murakami
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, Pennsylvania 16801, United States
| | - Hollis D Showalter
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1065, United States
| | - George A Garcia
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1065, United States
| |
Collapse
|
52
|
Ashkar SR, Rajeswaran W, Lee PH, Yeomans L, Thrasher CM, Franzblau SG, Murakami KS, Showalter HD, Garcia GA. Optimization of Benzoxazinorifamycins to Minimize hPXR Activation for the Treatment of Tuberculosis and HIV Coinfection. ACS Infect Dis 2022; 8:1408-1421. [PMID: 35772743 DOI: 10.1021/acsinfecdis.1c00635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tuberculosis (TB) is one of the most significant world health problems, responsible for 1.5 M deaths in 2020, and yet, current treatments rely largely on 40 year old paradigms. Although the rifamycins (RIFs), best exemplified by the drug rifampin (RMP), represent a well-studied and therapeutically effective chemotype that targets the bacterial RNA polymerase (RNAP), these agents still suffer from serious drawbacks including the following: 3-9 month treatment times; cytochrome P450 (Cyp450) induction [particularly problematic for human immunodeficiency virus-Mycobacterium tuberculosis (MTB) co-infection]; and the existence of RIF-resistant (RIFR) MTB strains. We have utilized a structure-based drug design approach to synthesize and test 15 benzoxazinorifamycins (bxRIFs), congeners of the clinical candidate rifalazil, to minimize human pregnane X receptor (hPXR) activation while improving potency against MTB. We have determined the compounds' activation of the hPXR [responsible for inducing Cyp450 3A4 (CYP3A4)]. Compound IC50s have been determined against the wild-type and the most prevalent RIFR (β-S450L) mutant MTB RNAPs. We have also determined their bactericidal activity against "normal" replicating MTB and a model for non-replicating, persister MTB. We have identified a minimal substitution and have probed larger substitutions that exhibit negligible hPXR activation (1.2-fold over the dimethyl sulfoxide control), many of which are 5- to 10-fold more potent against RNAPs and MTB than RMP. Importantly, we have analogues that are essentially equipotent against replicating MTB and non-replicating persister MTB, a property that is correlated with faster kill rates and may lead to shorter treatment durations. This work provides a proof of principle that the ansamycin core remains an attractive and effective scaffold for novel and dramatically improved RIFs.
Collapse
Affiliation(s)
- Shireen R Ashkar
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1065, United States
| | - Walajapet Rajeswaran
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1065, United States.,Vahlteich Medicinal Chemistry Core, University of Michigan, Ann Arbor, Michigan 48109-1065, United States
| | - Pil H Lee
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1065, United States.,Vahlteich Medicinal Chemistry Core, University of Michigan, Ann Arbor, Michigan 48109-1065, United States
| | - Larisa Yeomans
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1065, United States
| | - Claire M Thrasher
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1065, United States
| | - Scott G Franzblau
- Institute for Tuberculosis Research, University of Illinois, Chicago, Illinois 60612-7231, United States
| | - Katsuhiko S Murakami
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, University Park, Pennsylvania 16801, United States
| | - Hollis D Showalter
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1065, United States
| | - George A Garcia
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1065, United States
| |
Collapse
|
53
|
Abstract
Macrophage surface receptors are critical for pathogen defense, as they are the gatekeepers for pathogen entry and sensing, which trigger robust immune responses. TREM2 (triggering receptor expressed on myeloid cells 2) is a transmembrane surface receptor that mediates anti-inflammatory immune signaling. A recent study showed that TREM2 is a receptor for mycolic acids in the mycobacterial cell wall and inhibits macrophage activation. However, the underlying functional mechanism of how TREM2 regulates the macrophage antimycobacterial response remains unclear. Here, we show that Mycobacterium tuberculosis, the causative agent for tuberculosis, specifically binds to human TREM2 to disable the macrophage antibacterial response. Live but not killed mycobacteria specifically trigger the upregulation of TREM2 during macrophage infection through a mechanism dependent on STING (the stimulator of interferon genes). TREM2 facilitated uptake of M. tuberculosis into macrophages and is responsible for blocking the production of tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and reactive oxygen species (ROS), while enhancing the production of interferon-β (IFN-β) and IL-10. TREM2-mediated blockade of ROS production promoted the survival of M. tuberculosis within infected macrophages. Consistent with this, genetic deletion or antibody-mediated neutralization of TREM2 reduced the intracellular survival of M. tuberculosis through enhanced production of ROS. Importantly, inhibition of type I IFN signaling in TREM2-overexpressing macrophages restored the ability of these cells to produce inflammatory cytokines and ROS, resulting in normal levels of intracellular bacteria killing. Collectively, our study identifies TREM2 as an attractive host receptor for host-directed antimycobacterial therapeutics. IMPORTANCE Mycobacterium tuberculosis is one of the most ancient bacterial pathogens and remains the leading cause of death from a single bacterial agent. The success of M. tuberculosis relies greatly on its ability to parasitize and disable its host macrophages. Previous studies have found that M. tuberculosis uses its unique cell wall lipids to manipulate the immune response by binding to specific surface receptors on macrophages. Our study reveals that M. tuberculosis binds to TREM2, an immunomodulatory receptor expressed on macrophages, to facilitate a "silent" mode of entry. Increased levels of TREM2 triggered by intracellular sensing of M. tuberculosis promoted the intracellular survival of M. tuberculosis through type I IFN-driven inhibition of reactive oxygen species (ROS) and proinflammatory cytokine production. Importantly, deletion of TREM2 reversed the effects of "silent" entry and resulted in increased production of inflammatory cytokines, generation of ROS, and cell death. As such, antibody-mediated or pharmacological targeting of TREM2 could be a promising strategy for novel treatments against M. tuberculosis infection.
Collapse
|
54
|
Fanti RC, Vasconcelos SNS, Catta-Preta CMC, Sullivan JR, Riboldi GP, Dos Reis CV, Ramos PZ, Edwards AM, Behr MA, Couñago RM. A Target Engagement Assay to Assess Uptake, Potency, and Retention of Antibiotics in Living Bacteria. ACS Infect Dis 2022; 8:1449-1467. [PMID: 35815896 DOI: 10.1021/acsinfecdis.2c00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
New antibiotics are urgently needed to counter the emergence of antimicrobial-resistant pathogenic bacteria. A major challenge in antibiotic drug discovery is to turn potent biochemical inhibitors of essential bacterial components into effective antimicrobials. This difficulty is underpinned by a lack of methods to investigate the physicochemical properties needed for candidate antibiotics to permeate the bacterial cell envelope and avoid clearance by the action of bacterial efflux pumps. To address these issues, here we used a target engagement assay to measure the equilibrium and kinetic binding parameters of antibiotics targeting dihydrofolate reductase (DHFR) in live bacteria. We also used this assay to identify novel DHFR ligands having antimicrobial activity. We validated this approach using the Gram-negative bacteria Escherichia coli and the emerging human pathogen Mycobacterium abscessus. We expect the use of target engagement assays in bacteria to expedite the discovery and progression of novel, cell-permeable antibiotics with on-target activity.
Collapse
Affiliation(s)
- Rebeka C Fanti
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas 13083-886, Brazil.,Post-Graduate Program in Genetics and Molecular Biology (PGBM), UNICAMP, Campinas 13083-970, Brazil
| | - Stanley N S Vasconcelos
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas 13083-886, Brazil
| | - Carolina M C Catta-Preta
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas 13083-886, Brazil
| | - Jaryd R Sullivan
- Department of Microbiology & Immunology, McGill University, Montréal H3A 2B4, Canada.,Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal H4A 3J1, Canada.,McGill International TB Centre, Montréal H4A 3S5, Canada
| | - Gustavo P Riboldi
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas 13083-886, Brazil
| | - Caio V Dos Reis
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas 13083-886, Brazil
| | - Priscila Z Ramos
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas 13083-886, Brazil
| | - Aled M Edwards
- Structural Genomics Consortium, 101 College Street, Toronto M5G 1L7, Canada
| | - Marcel A Behr
- Department of Microbiology & Immunology, McGill University, Montréal H3A 2B4, Canada.,Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal H4A 3J1, Canada.,McGill International TB Centre, Montréal H4A 3S5, Canada.,Department of Medicine, McGill University Health Centre, Montréal H4A 3J1, Canada
| | - Rafael M Couñago
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas 13083-886, Brazil.,Post-Graduate Program in Genetics and Molecular Biology (PGBM), UNICAMP, Campinas 13083-970, Brazil
| |
Collapse
|
55
|
An Autobioluminescent Method for Evaluating In Vitro and In Vivo Growth of Rhodococcus equi. Microbiol Spectr 2022; 10:e0075822. [PMID: 35638814 PMCID: PMC9241598 DOI: 10.1128/spectrum.00758-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A previously reported method for evaluating the intracellular growth of Rhodococcus equi using enhanced green fluorescent protein is unsuitable for the quantitative evaluation of the entire sample because the signal can be detected only in the excitation region. Therefore, we created an autobioluminescent R. equi using luciferase (luxABCDE). First, we connected luxABCDE to the functional promoter PaphII and introduced it into the chromosomes of ATCC33701 and ATCC33701_P-. Luminescence was detected in both transformants, and a correlation between the bacterial number and luminescence intensity in the logarithmic phase was observed, indicating that luxABCDE is functionally and quantitatively expressed in R. equi. The luminescence of ATCC33701 was significantly higher than that of ATCC33701_P- at 24 h after infection with J774A.1. Next, RNA-Seq analysis of ATCC33701 to search for endogenous high-expression promoters resulted in the upstream sequences of RS29370, RS41760, and vapA being selected as candidates. Luminescence was detected in each transformant expressing the luxABCDE using these upstream sequences. We examined the luminescence intensity by coexpressing the frp gene, an enhancer of the luciferase reaction, with luxABCDE. The luminescence intensity of the coexpressing transformant was significantly enhanced in J774A.1 compared with the non-coexpressing transformant. Finally, we examined the luminescence in vivo. The luminescence signals in the organs peaked on the third day following the administration of ATCC33701 derivatives in mice, but no luminescence signal was detected when the ATCC33701_P- derivative was administered. The autologous bioluminescent method described herein will enhance the in vitro and in vivo quantitative analysis of R. equi proliferation. IMPORTANCE We established an autologous bioluminescent strain of R. equi and a method to evaluate its proliferation in vitro and in vivo quantitatively. This method overcomes the weakness of the fluorescence detection system that only measures the site of excitation light irradiation. It is expected to be used as an in vitro and in vivo growth evaluation method with excellent quantitative properties. In addition, it was suggested that the selection of a promoter that expresses luxABCDE could produce a luminescence with high intensity. Although this method needs further improvement, such as creating transformants that can maintain high luminescence intensity regardless of environmental changes such as temperature fluctuations, it is possible to observe bacterial growth over time in mice without killing them. Therefore, this method can be used to not only evaluate the pathogenicity of various wild and gene-deficient strains but also to screen preventive and therapeutic methods such as vaccines.
Collapse
|
56
|
Marcelo GA, Galhano J, Duarte MP, Capelo-Martínez JL, Lodeiro C, Oliveira E. Validation of a Standard Luminescence Method for the Fast Determination of the Antimicrobial Activity of Nanoparticles in Escherichia coli. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2164. [PMID: 35807997 PMCID: PMC9268724 DOI: 10.3390/nano12132164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 01/25/2023]
Abstract
The use of nanoparticles in multiple industries has raised concerned voices about the assessment of their toxicity/antimicrobial activity and the development of standardized handling protocols. Issues emerge during the antimicrobial assaying of multiple cargo, colorimetric, colloidal nanoformulations, as standard protocols often rely on visual evaluations, or optical density (OD) measurements, leading to high variance inhibitory concentrations (MIC). Thus, a fast, luminescence-based assay for the effective assessment of the antimicrobial activity of nanoparticles is herein reported, using the bioluminescence of an in-house E. coli ATCC® 8739TM construct with the pMV306G13 + Lux plasmid (E. coli Lux). The new strain's sensitivity to ofloxacin as a standard antibiotic was confirmed, and the methodology robustness verified against multiple nanoparticles and colorimetric drugs. The reduction of incubation from 24 to only 8 h, and the sole use of luminescence (LUX490) to accurately determine and distinguish MIC50 and MIC90, are two main advantages of the method. By discarding OD measurements, one can avoid turbidity and color interferences when calculating bacterial growth. This approach is an important tool that contributes to the standardization of methods, reducing samples' background interference and focusing on luminescence as a direct probe for bacterial metabolic activity, growth and, most importantly, the correct assessment of nanomaterials' antimicrobial activity.
Collapse
Affiliation(s)
- Gonçalo A. Marcelo
- BIOSCOPE Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, FCT NOVA, NOVA University Lisbon, 2829-516 Caparica, Portugal; (G.A.M.); (J.G.); (J.L.C.-M.); (C.L.)
| | - Joana Galhano
- BIOSCOPE Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, FCT NOVA, NOVA University Lisbon, 2829-516 Caparica, Portugal; (G.A.M.); (J.G.); (J.L.C.-M.); (C.L.)
| | - Maria Paula Duarte
- MEtRICs, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - José Luis Capelo-Martínez
- BIOSCOPE Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, FCT NOVA, NOVA University Lisbon, 2829-516 Caparica, Portugal; (G.A.M.); (J.G.); (J.L.C.-M.); (C.L.)
- PROTEOMASS Scientific Society, Rua dos Inventores, Madam Parque, Caparica Campus, 2825-182 Caparica, Portugal
| | - Carlos Lodeiro
- BIOSCOPE Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, FCT NOVA, NOVA University Lisbon, 2829-516 Caparica, Portugal; (G.A.M.); (J.G.); (J.L.C.-M.); (C.L.)
- PROTEOMASS Scientific Society, Rua dos Inventores, Madam Parque, Caparica Campus, 2825-182 Caparica, Portugal
| | - Elisabete Oliveira
- BIOSCOPE Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, FCT NOVA, NOVA University Lisbon, 2829-516 Caparica, Portugal; (G.A.M.); (J.G.); (J.L.C.-M.); (C.L.)
- PROTEOMASS Scientific Society, Rua dos Inventores, Madam Parque, Caparica Campus, 2825-182 Caparica, Portugal
| |
Collapse
|
57
|
Liu K, Lin GH, Liu K, Liu YJ, Tao XY, Gao B, Zhao M, Wei DZ, Wang FQ. Multiplexed site-specific genome engineering in Mycolicibacterium neoaurum by Att/Int system. Synth Syst Biotechnol 2022; 7:1002-1011. [PMID: 35782483 PMCID: PMC9213222 DOI: 10.1016/j.synbio.2022.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/04/2022] [Accepted: 05/25/2022] [Indexed: 11/10/2022] Open
Abstract
Genomic integration of genes and pathway-sized DNA cassettes is often an indispensable way to construct robust and productive microbial cell factories. For some uncommon microbial hosts, such as Mycolicibacterium and Mycobacterium species, however, it is a challenge. Here, we present a multiplexed integrase-assisted site-specific recombination (miSSR) method to precisely and iteratively integrate genes/pathways with controllable copies in the chromosomes of Mycolicibacteria for the purpose of developing cell factories. First, a single-step multi-copy integration method was established in M. neoaurum by a combination application of mycobacteriophage L5 integrase and two-step allelic exchange strategy, the efficiencies of which were ∼100% for no more than three-copy integration events and decreased sharply to ∼20% for five-copy integration events. Second, the R4, Bxb1 and ΦC31 bacteriophage Att/Int systems were selected to extend the available integration toolbox for multiplexed gene integration events. Third, a reconstructed mycolicibacterial Xer recombinases (Xer-cise) system was employed to recycle the selection marker of gene recombination to facilitate the iterative gene manipulation. As a proof of concept, the biosynthetic pathway of ergothioneine (EGT) in Mycolicibacterium neoaurum ATCC 25795 was achieved by remodeling its metabolic pathway with a miSSR system. With six copies of the biosynthetic gene clusters (BGCs) of EGT and pentose phosphate isomerase (PRT), the titer of EGT in the resulting strain in a 30 mL shake flask within 5 days was enhanced to 66 mg/L, which was 3.77 times of that in the wild strain. The improvements indicated that the miSSR system was an effective, flexible, and convenient tool to engineer the genomes of Mycolicibacteria as well as other strains in the Mycobacteriaceae due to their proximate evolutionary relationships.
Collapse
|
58
|
Hason M, Jovicic J, Vonkova I, Bojic M, Simon-Vermot T, White RM, Bartunek P. Bioluminescent Zebrafish Transplantation Model for Drug Discovery. Front Pharmacol 2022; 13:893655. [PMID: 35559262 PMCID: PMC9086674 DOI: 10.3389/fphar.2022.893655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
In the last decade, zebrafish have accompanied the mouse as a robust animal model for cancer research. The possibility of screening small-molecule inhibitors in a large number of zebrafish embryos makes this model particularly valuable. However, the dynamic visualization of fluorescently labeled tumor cells needs to be complemented by a more sensitive, easy, and rapid mode for evaluating tumor growth in vivo to enable high-throughput screening of clinically relevant drugs. In this study we proposed and validated a pre-clinical screening model for drug discovery by utilizing bioluminescence as our readout for the determination of transplanted cancer cell growth and inhibition in zebrafish embryos. For this purpose, we used NanoLuc luciferase, which ensured rapid cancer cell growth quantification in vivo with high sensitivity and low background when compared to conventional fluorescence measurements. This allowed us large-scale evaluation of in vivo drug responses of 180 kinase inhibitors in zebrafish. Our bioluminescent screening platform could facilitate identification of new small-molecules for targeted cancer therapy as well as for drug repurposing.
Collapse
Affiliation(s)
- Martina Hason
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Jovana Jovicic
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Ivana Vonkova
- CZ-OPENSCREEN, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Milan Bojic
- CZ-OPENSCREEN, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Theresa Simon-Vermot
- Department of Cancer Biology & Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Richard M. White
- Department of Cancer Biology & Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Petr Bartunek
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
- CZ-OPENSCREEN, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
59
|
Bioluminescence imaging in Paracoccidioides spp.: A tool to monitor the infectious processes. Microbes Infect 2022; 24:104975. [DOI: 10.1016/j.micinf.2022.104975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 12/22/2022]
|
60
|
A selective PPM1A inhibitor activates autophagy to restrict the survival of Mycobacterium tuberculosis. Cell Chem Biol 2022; 29:1126-1139.e12. [PMID: 35320734 DOI: 10.1016/j.chembiol.2022.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/01/2022] [Accepted: 03/03/2022] [Indexed: 12/19/2022]
Abstract
Metal-dependent protein phosphatases (PPMs) have essential roles in a variety of cellular processes, including inflammation, proliferation, differentiation, and stress responses, which are intensively investigated in cancer and metabolic diseases. Targeting PPMs to modulate host immunity in response to pathogens is an ambitious proposition. The feasibility of such a strategy is unproven because development of inhibitors against PPMs is challenging and suffers from poor selectivity. Combining a biomimetic modularization strategy with function-oriented synthesis, we design, synthesize and screen more than 500 pseudo-natural products, resulting in the discovery of a potent, selective, and non-cytotoxic small molecule inhibitor for PPM1A, SMIP-30. Inhibition of PPM1A with SMIP-30 or its genetic ablation (ΔPPM1A) activated autophagy through a mechanism dependent on phosphorylation of p62-SQSTM1, which restricted the intracellular survival of Mycobacterium tuberculosis in macrophages and in the lungs of infected mice. SMIP-30 provides proof of concept that PPMs are druggable and promising targets for the development of host-directed therapies against tuberculosis.
Collapse
|
61
|
Suzuki Y, Takai S, Kubota H, Hasegawa N, Ito S, Yabuuchi Y, Sasaki Y, van Duijkeren E, Kakuda T. Rhodococcus equi U19 strain harbors a nonmobilizable virulence plasmid. Microbiol Immunol 2022; 66:307-316. [PMID: 35274358 DOI: 10.1111/1348-0421.12975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 11/26/2022]
Abstract
Rhodococcus equi is the causative agent of pyogenic pneumonia in foals, and a virulence-associated protein A (VapA) encoded on the pVAPA virulence plasmid is important for its pathogenicity. In this study, we analyzed the virulence of R. equi strain U19, originally isolated in the Netherlands in 1997 and the genetic characteristics of the pVAPA_U19 plasmid. U19 expressed VapA that was regulated by temperature and pH and underwent significant intracellular proliferation in macrophages. The restriction fragment length polymorphism of pVAPA_U19 digested with EcoRI was similar to that of pREAT701 (85-kb type I) harbored by R. equi ATCC33701, although the band pattern at 10-20 kb differed. Whole-genome sequencing showed that pVAPA_U19 was 51,684 bp in length and that the vapA pathogenicity island region and the replication/participation were almost identical to those in pREAT701. In contrast, the ORF26 to ORF45 genes of pREAT701 (approximately 29,000 bp) were absent from pVAPA_U19. In this lacking region, mobility (MOB) genes, such as relaxase, which allows conjugative DNA processing, and the mating pair formation (MPF) genes, which are a form of the type IV secretion system and provides the mating channel, were present. Co-culture between U19 and five different recipient strains (two plasmid-cured strains and three cryptic plasmid-harboring strains) demonstrated that pVAPA_U19 could not support conjugation. Therefore, pVAPA_U19 does not differ significantly from the previously reported pVAPA in terms of virulence and plasmid replication and maintenance but is a nonmobilizable plasmid unable to cause conjugation because of the absence of genes related to MOB and MPF. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yasunori Suzuki
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Aomori, Japan
| | - Shinji Takai
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Aomori, Japan
| | - Hiroaki Kubota
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Noeru Hasegawa
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Shino Ito
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Aomori, Japan
| | - Yoshino Yabuuchi
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Aomori, Japan
| | - Yukako Sasaki
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Aomori, Japan
| | - Engeline van Duijkeren
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Tsutomu Kakuda
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Aomori, Japan
| |
Collapse
|
62
|
Abstract
We previously identified a series of triazolopyrimidines with antitubercular activity. We determined that Mycobacterium tuberculosis strains with mutations in QcrB, a subunit of the cytochrome bcc-aa3 supercomplex, were resistant. A cytochrome bd oxidase deletion strain was more sensitive to this series. We isolated resistant mutants with mutations in Rv1339. Compounds led to the depletion of intracellular ATP levels and were active against intracellular bacteria, but they did not inhibit human mitochondrial respiration. These data are consistent with triazolopyrimidines acting via inhibition of QcrB.
Collapse
|
63
|
Screening Repurposed Antiviral Small Molecules as Antimycobacterial Compounds by a Lux-Based phoP Promoter-Reporter Platform. Antibiotics (Basel) 2022; 11:antibiotics11030369. [PMID: 35326832 PMCID: PMC8944841 DOI: 10.3390/antibiotics11030369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/28/2022] [Accepted: 03/06/2022] [Indexed: 02/04/2023] Open
Abstract
The emergence of multidrug-resistant strains and hyper-virulent strains of Mycobacterium tuberculosis are big therapeutic challenges for tuberculosis (TB) control. Repurposing bioactive small-molecule compounds has recently become a new therapeutic approach against TB. This study aimed to identify novel anti-TB agents from a library of small-molecule compounds via a rapid screening system. A total of 320 small-molecule compounds were used to screen for their ability to suppress the expression of a key virulence gene, phop, of the M. tuberculosis complex using luminescence (lux)-based promoter-reporter platforms. The minimum inhibitory and bactericidal concentrations on drug-resistant M. tuberculosis and cytotoxicity to human macrophages were determined. RNA sequencing (RNA-seq) was conducted to determine the drug mechanisms of the selected compounds as novel antibiotics or anti-virulent agents against the M. tuberculosis complex. The results showed that six compounds displayed bactericidal activity against M. bovis BCG, of which Ebselen demonstrated the lowest cytotoxicity to macrophages and was considered as a potential antibiotic for TB. Another ten compounds did not inhibit the in vitro growth of the M. tuberculosis complex and six of them downregulated the expression of phoP/R significantly. Of these, ST-193 and ST-193 (hydrochloride) showed low cytotoxicity and were suggested to be potential anti-virulence agents for M. tuberculosis.
Collapse
|
64
|
Resendiz-Sharpe A, da Silva RP, Geib E, Vanderbeke L, Seldeslachts L, Hupko C, Brock M, Lagrou K, Vande Velde G. Longitudinal multimodal imaging-compatible mouse model of triazole-sensitive and -resistant invasive pulmonary aspergillosis. Dis Model Mech 2022; 15:274857. [PMID: 35352801 PMCID: PMC8990085 DOI: 10.1242/dmm.049165] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 01/09/2022] [Indexed: 12/18/2022] Open
Abstract
Invasive pulmonary aspergillosis (IPA) caused by the mold Aspergillus fumigatus is one of the most important life-threatening infections in immunocompromised patients. The alarming increase of isolates resistant to the first-line recommended antifungal therapy urges more insights into triazole-resistant A. fumigatus infections. In this study, we systematically optimized a longitudinal multimodal imaging-compatible neutropenic mouse model of IPA. Reproducible rates of pulmonary infection were achieved through immunosuppression (sustained neutropenia) with 150 mg/kg cyclophosphamide at day −4, −1 and 2, and an orotracheal inoculation route in both sexes. Furthermore, increased sensitivity of in vivo bioluminescence imaging for fungal burden detection, as early as the day after infection, was achieved by optimizing luciferin dosing and through engineering isogenic red-shifted bioluminescent A. fumigatus strains, one wild type and two triazole-resistant mutants. We successfully tested appropriate and inappropriate antifungal treatment scenarios in vivo with our optimized multimodal imaging strategy, according to the in vitro susceptibility of our luminescent fungal strains. Therefore, we provide novel essential mouse models with sensitive imaging tools for investigating IPA development and therapy in triazole-susceptible and triazole-resistant scenarios. Summary: A novel reproducible longitudinal multimodal imaging-compatible neutropenic mouse model of invasive pulmonary aspergillosis provides increased early fungal detection through novel red-shifted luciferase-expressing triazole-susceptible and -resistant Aspergillus fumigatus strains, and boosted bioluminescence.
Collapse
Affiliation(s)
- Agustin Resendiz-Sharpe
- Laboratory of Clinical Microbiology, Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium
| | - Roberta Peres da Silva
- Fungal Biology Group, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Elena Geib
- Fungal Biology Group, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Lore Vanderbeke
- Laboratory of Clinical Microbiology, Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium
| | - Laura Seldeslachts
- Department of Imaging and Pathology, Biomedical MRI unit/MoSAIC, KU Leuven, 3000 Leuven, Belgium
| | - Charlien Hupko
- Laboratory of Clinical Microbiology, Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium
| | - Matthias Brock
- Fungal Biology Group, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Katrien Lagrou
- Laboratory of Clinical Microbiology, Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium.,Department of Laboratory Medicine and National Reference Centre for Mycosis, Excellence Centre for Medical Mycology (ECMM), University Hospitals Leuven, 3000 Leuven, Belgium
| | - Greetje Vande Velde
- Department of Imaging and Pathology, Biomedical MRI unit/MoSAIC, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
65
|
CRISPR Interference Reveals That All- Trans-Retinoic Acid Promotes Macrophage Control of Mycobacterium tuberculosis by Limiting Bacterial Access to Cholesterol and Propionyl Coenzyme A. mBio 2022; 13:e0368321. [PMID: 35038923 PMCID: PMC8764544 DOI: 10.1128/mbio.03683-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Macrophages are a protective replicative niche for Mycobacterium tuberculosis (Mtb) but can kill the infecting bacterium when appropriately activated. To identify mechanisms of clearance, we compared levels of bacterial restriction by human macrophages after treatment with 26 compounds, including some currently in clinical trials for tuberculosis. All-trans-retinoic acid (ATRA), an active metabolite of vitamin A, drove the greatest increase in Mtb control. Bacterial clearance was transcriptionally and functionally associated with changes in macrophage cholesterol trafficking and lipid metabolism. To determine how these macrophage changes affected bacterial control, we performed the first Mtb CRISPR interference screen in an infection model, identifying Mtb genes specifically required to survive in ATRA-activated macrophages. These data showed that ATRA treatment starves Mtb of cholesterol and the downstream metabolite propionyl coenzyme A (propionyl-CoA). Supplementation with sources of propionyl-CoA, including cholesterol, abrogated the restrictive effect of ATRA. This work demonstrates that targeting the coupled metabolism of Mtb and the macrophage improves control of infection and that it is possible to genetically map the mode of bacterial death using CRISPR interference. IMPORTANCE Tuberculosis, caused by the bacterium Mycobacterium tuberculosis, is a leading cause of death due to infectious disease. Improving the immune response to tuberculosis holds promise for fighting the disease but is limited by our lack of knowledge as to how the immune system kills M. tuberculosis. Our research identifies a potent way to make relevant immune cells more effective at fighting M. tuberculosis and then uses paired human and bacterial genomic methods to determine the mechanism of that improved bacterial clearance.
Collapse
|
66
|
D'Souza S, Du Plessis SM, Egieyeh S, Bekale RB, Maphasa RE, Irabin AF, Sampson SL, Dube A. Physicochemical and Biological Evaluation of Curdlan-Poly(Lactic-Co-Glycolic Acid) Nanoparticles as a Host-Directed Therapy Against Mycobacterium Tuberculosis. J Pharm Sci 2022; 111:469-478. [PMID: 34534573 PMCID: PMC8792347 DOI: 10.1016/j.xphs.2021.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 12/29/2022]
Abstract
Nanoparticles (NPs) that can activate macrophages infected with the tuberculosis causative pathogen Mycobacterium tuberculosis, could be an effective host directed therapy for the disease. In this study, curdlan was conjugated to poly(lactic-co-glycolic acid) (PLGA) to produce immunotherapeutic NPs. Various physicochemical characterizations were used to evaluate the curdlan-PLGA copolymer and the NPs. Molecular dynamics and simulation studies were used to characterize the interaction between curdlan, on the polymer and on NPs, with the Dectin-1 macrophage receptor. NPs with varying curdlan densities were evaluated for their effects on the production of pro- and anti-inflammatory cytokines in M. tuberculosis infected RAW264.7 macrophages. The killing efficacy of the NPs against intracellular M. tuberculosis was assessed. Physicochemical characterization of the curdlan-PLGA copolymer and NPs indicated successful formation of curdlan-PLGA copolymer and NPs of varying curdlan density (0-8% w/w) had sizes between 330 and 453 nm. Modelling studies showed curdlan to have a strong affinity for Dectin-1. Cytotoxicity assays showed the NPs to be non-toxic over 72 h. The proinflammatory cytokine TNF-α was found to be significantly upregulated by the NPs. The NPs reduced intracellular M. tuberculosis burden over 72 h. These NPs are a promising host directed therapy for intracellular eradication of M. tuberculosis.
Collapse
Affiliation(s)
- S D'Souza
- School of Pharmacy, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| | - S M Du Plessis
- NRF-DST Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - S Egieyeh
- School of Pharmacy, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| | - R B Bekale
- School of Pharmacy, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| | - R E Maphasa
- School of Pharmacy, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| | - A F Irabin
- School of Pharmacy, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| | - S L Sampson
- NRF-DST Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - A Dube
- School of Pharmacy, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa.
| |
Collapse
|
67
|
Cadelis MM, Nipper NSL, Grey A, Geese S, van de Pas SJ, Weir BS, Copp BR, Wiles S. Antimicrobial Polyketide Metabolites from Penicillium bissettii and P. glabrum. Molecules 2021; 27:240. [PMID: 35011473 PMCID: PMC8746583 DOI: 10.3390/molecules27010240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022] Open
Abstract
Screening of several fungi from the New Zealand International Collection of Microorganisms from Plants identified two strains of Penicillium, P. bissettii and P. glabrum, which exhibited antimicrobial activity against Escherichia coli,Klebsiella pneumoniae, and Staphylococcus aureus. Further investigation into the natural products of the fungi, through extraction and fractionation, led to the isolation of five known polyketide metabolites, penicillic acid (1), citromycetin (2), penialdin A (3), penialdin F (4), and myxotrichin B (5). Semi-synthetic derivatization of 1 led to the discovery of a novel dihydro (1a) derivative that provided evidence for the existence of the much-speculated open-chained form of 1. Upon investigation of the antimicrobial activities of the natural products and derivatives, both penicillic acid (1) and penialdin F (4) were found to inhibit the growth of Methicillin-resistant S. aureus. Penialdin F (4) was also found to have some inhibitory activity against Mycobacterium abscessus and M. marinum along with citromycetin (2).
Collapse
Affiliation(s)
- Melissa M. Cadelis
- School of Chemical Sciences, University of Auckland, Waipapa Taumata Rau, Private Bag 92019, Auckland 1142, New Zealand; (N.S.L.N.); (B.R.C.)
- Bioluminescent Superbugs Lab, School of Medical Sciences, University of Auckland, Waipapa Taumata Rau, Private Bag 92019, Auckland 1142, New Zealand; (A.G.); (S.G.); (S.J.v.d.P.)
| | - Natasha S. L. Nipper
- School of Chemical Sciences, University of Auckland, Waipapa Taumata Rau, Private Bag 92019, Auckland 1142, New Zealand; (N.S.L.N.); (B.R.C.)
| | - Alex Grey
- Bioluminescent Superbugs Lab, School of Medical Sciences, University of Auckland, Waipapa Taumata Rau, Private Bag 92019, Auckland 1142, New Zealand; (A.G.); (S.G.); (S.J.v.d.P.)
| | - Soeren Geese
- Bioluminescent Superbugs Lab, School of Medical Sciences, University of Auckland, Waipapa Taumata Rau, Private Bag 92019, Auckland 1142, New Zealand; (A.G.); (S.G.); (S.J.v.d.P.)
| | - Shara J. van de Pas
- Bioluminescent Superbugs Lab, School of Medical Sciences, University of Auckland, Waipapa Taumata Rau, Private Bag 92019, Auckland 1142, New Zealand; (A.G.); (S.G.); (S.J.v.d.P.)
| | - Bevan S. Weir
- Manaaki Whenua, Landcare Research, Private Bag 92170, Auckland 1142, New Zealand;
| | - Brent R. Copp
- School of Chemical Sciences, University of Auckland, Waipapa Taumata Rau, Private Bag 92019, Auckland 1142, New Zealand; (N.S.L.N.); (B.R.C.)
| | - Siouxsie Wiles
- Bioluminescent Superbugs Lab, School of Medical Sciences, University of Auckland, Waipapa Taumata Rau, Private Bag 92019, Auckland 1142, New Zealand; (A.G.); (S.G.); (S.J.v.d.P.)
| |
Collapse
|
68
|
Irvine EB, O'Neil A, Darrah PA, Shin S, Choudhary A, Li W, Honnen W, Mehra S, Kaushal D, Gideon HP, Flynn JL, Roederer M, Seder RA, Pinter A, Fortune S, Alter G. Robust IgM responses following intravenous vaccination with Bacille Calmette-Guérin associate with prevention of Mycobacterium tuberculosis infection in macaques. Nat Immunol 2021; 22:1515-1523. [PMID: 34811542 PMCID: PMC8642241 DOI: 10.1038/s41590-021-01066-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 10/04/2021] [Indexed: 01/31/2023]
Abstract
Development of an effective tuberculosis (TB) vaccine has suffered from an incomplete understanding of the correlates of protection against Mycobacterium tuberculosis (Mtb). Intravenous (i.v.) vaccination with Bacille Calmette-Guérin (BCG) provides nearly complete protection against TB in rhesus macaques, but the antibody response it elicits remains incompletely defined. Here we show that i.v. BCG drives superior antibody responses in the plasma and the lungs of rhesus macaques compared to traditional intradermal BCG administration. While i.v. BCG broadly expands antibody titers and functions, IgM titers in the plasma and lungs of immunized macaques are among the strongest markers of reduced bacterial burden. IgM was also enriched in macaques that received protective vaccination with an attenuated strain of Mtb. Finally, an Mtb-specific IgM monoclonal antibody reduced Mtb survival in vitro. Collectively, these data highlight the potential importance of IgM responses as a marker and mediator of protection against TB.
Collapse
Affiliation(s)
- Edward B Irvine
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Anthony O'Neil
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Patricia A Darrah
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
| | - Sally Shin
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Alok Choudhary
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Wenjun Li
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - William Honnen
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Smriti Mehra
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, USA
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Hannah Priyadarshini Gideon
- Department of Microbiology and Molecular Genetics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - JoAnne L Flynn
- Department of Microbiology and Molecular Genetics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
| | - Abraham Pinter
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Sarah Fortune
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
69
|
Larkins-Ford J, Greenstein T, Van N, Degefu YN, Olson MC, Sokolov A, Aldridge BB. Systematic measurement of combination-drug landscapes to predict in vivo treatment outcomes for tuberculosis. Cell Syst 2021; 12:1046-1063.e7. [PMID: 34469743 PMCID: PMC8617591 DOI: 10.1016/j.cels.2021.08.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/16/2021] [Accepted: 08/04/2021] [Indexed: 12/30/2022]
Abstract
Lengthy multidrug chemotherapy is required to achieve a durable cure in tuberculosis. However, we lack well-validated, high-throughput in vitro models that predict animal outcomes. Here, we provide an extensible approach to rationally prioritize combination therapies for testing in in vivo mouse models of tuberculosis. We systematically measured Mycobacterium tuberculosis response to all two- and three-drug combinations among ten antibiotics in eight conditions that reproduce lesion microenvironments, resulting in >500,000 measurements. Using these in vitro data, we developed classifiers predictive of multidrug treatment outcome in a mouse model of disease relapse and identified ensembles of in vitro models that best describe in vivo treatment outcomes. We identified signatures of potencies and drug interactions in specific in vitro models that distinguish whether drug combinations are better than the standard of care in two important preclinical mouse models. Our framework is generalizable to other difficult-to-treat diseases requiring combination therapies. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Jonah Larkins-Ford
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA; Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, MA 02111, USA; Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA; Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA 02115, USA
| | - Talia Greenstein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA; Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, MA 02111, USA; Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Nhi Van
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Yonatan N Degefu
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA; Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA 02115, USA
| | - Michaela C Olson
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Artem Sokolov
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA 02115, USA
| | - Bree B Aldridge
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA; Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, MA 02111, USA; Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA; Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA 02115, USA; Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA 02155, USA.
| |
Collapse
|
70
|
The QcrB Inhibitors TB47 and Telacebec Do Not Potentiate the Activity of Clofazimine in Mycobacterium abscessus. Antimicrob Agents Chemother 2021; 65:e0096421. [PMID: 34543090 DOI: 10.1128/aac.00964-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The antituberculosis drug telacebec is ineffective against Mycobacterium abscessus. A recent study suggested that TB47, a telacebec analogue, potentiated the efficacy of clofazimine against M. abscessus. Here, we report that TB47 not only is ineffective against M. abscessus in vitro but also does not potentiate the activity of clofazimine.
Collapse
|
71
|
Consequential drug combinations for tuberculosis treatments. Cell Syst 2021; 12:1021-1022. [PMID: 34793699 DOI: 10.1016/j.cels.2021.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Improved therapies for tuberculosis will require the careful revision of complex, multi-drug regimens. In this issue of Cell Systems, Larkins-Ford et al. integrate extensive dose-response measurements of drug combinations, in vivo animal data, and computational analysis to provide a new predictive framework for the prioritization of specific antitubercular drug regimens.
Collapse
|
72
|
Grey ABJ, Cadelis MM, Diao Y, Park D, Lumley T, Weir BS, Copp BR, Wiles S. Screening of Fungi for Antimycobacterial Activity Using a Medium-Throughput Bioluminescence-Based Assay. Front Microbiol 2021; 12:739995. [PMID: 34552577 PMCID: PMC8450596 DOI: 10.3389/fmicb.2021.739995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/10/2021] [Indexed: 11/16/2022] Open
Abstract
There is a real and urgent need for new antibiotics able to kill Mycobacteria, acid-fast bacilli capable of causing multiple deadly diseases. These include members of the Mycobacterium tuberculosis complex, which causes the lung disease tuberculosis (TB) as well as non-tuberculous Mycobacteria (NTM) a growing cause of lung, skin, soft tissue, and other infections. Here we describe a medium-throughput bioluminescence-based pipeline to screen fungi for activity against Mycobacteria using the NTM species Mycobacterium abscessus and Mycobacterium marinum. We used this pipeline to screen 36 diverse fungal isolates from the International Collection of Microorganisms from Plants (ICMP) grown on a wide variety of nutrient-rich and nutrient-poor media and discovered that almost all the tested isolates produced considerable anti-mycobacterial activity. Our data also provides strong statistical evidence for the impact of growth media on antibacterial activity. Chemical extraction and fractionation of a subset of the ICMP isolates revealed that much of the activity we observed may be due to the production of the known anti-mycobacterial compound linoleic acid. However, we have identified several ICMP isolates that retained their anti-mycobacterial activity in non-linoleic acid containing fractions. These include isolates of Lophodermium culmigenum, Pseudaegerita viridis, and Trametes coccinea, as well as an unknown species of Boeremia and an isolate of an unknown genus and species in the family Phanerochaetaceae. Investigations are ongoing to identify the sources of their anti-mycobacterial activity and to determine whether any may be due to the production of novel bioactive compounds.
Collapse
Affiliation(s)
- Alexander B J Grey
- Bioluminescent Superbugs Lab, Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland - Waipapa Taumata Rau, Auckland, New Zealand
| | - Melissa M Cadelis
- Bioluminescent Superbugs Lab, Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland - Waipapa Taumata Rau, Auckland, New Zealand.,School of Chemical Sciences, The University of Auckland - Waipapa Taumata Rau, Auckland, New Zealand
| | - Yiwei Diao
- Bioluminescent Superbugs Lab, Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland - Waipapa Taumata Rau, Auckland, New Zealand
| | - Duckchul Park
- Manaaki Whenua - Landcare Research, Auckland, New Zealand
| | - Thomas Lumley
- Department of Statistics, The University of Auckland - Waipapa Taumata Rau, Auckland, New Zealand
| | - Bevan S Weir
- Manaaki Whenua - Landcare Research, Auckland, New Zealand
| | - Brent R Copp
- School of Chemical Sciences, The University of Auckland - Waipapa Taumata Rau, Auckland, New Zealand
| | - Siouxsie Wiles
- Bioluminescent Superbugs Lab, Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland - Waipapa Taumata Rau, Auckland, New Zealand
| |
Collapse
|
73
|
Grabowska AD, Andreu N, Cortes T. Translation of a Leaderless Reporter Is Robust During Exponential Growth and Well Sustained During Stress Conditions in Mycobacterium tuberculosis. Front Microbiol 2021; 12:746320. [PMID: 34603273 PMCID: PMC8485053 DOI: 10.3389/fmicb.2021.746320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/26/2021] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium tuberculosis expresses a large number of leaderless mRNA transcripts; these lack the 5' leader region, which usually contains the Shine-Dalgarno sequence required for translation initiation in bacteria. In M. tuberculosis, transcripts encoding proteins like toxin-antitoxin systems are predominantly leaderless and the overall ratio of leaderless to Shine-Dalgarno transcripts significantly increases during growth arrest, suggesting that leaderless translation might be important during persistence in the host. However, whether these two types of transcripts are translated with differing efficiencies during optimal growth conditions and during stress conditions that induce growth arrest, is unclear. Here, we have used the desA1 (Rv0824c) and desA2 (Rv1094) gene pair as representative for Shine-Dalgarno and leaderless transcripts in M. tuberculosis respectively; and used them to construct bioluminescent reporter strains. We detect robust leaderless translation during exponential in vitro growth, and we show that leaderless translation is more stable than Shine-Dalgarno translation during adaptation to stress conditions. These changes are independent from transcription, as transcription levels did not significantly change following quantitative real-time PCR analysis. Upon entrance into nutrient starvation and after nitric oxide exposure, leaderless translation is significantly less affected by the stress than Shine-Dalgarno translation. Similarly, during the early stages of infection of macrophages, the levels of leaderless translation are transiently more stable than those of Shine-Dalgarno translation. These results suggest that leaderless translation may offer an advantage in the physiology of M. tuberculosis. Identification of the molecular mechanisms underlying this translational regulation may provide insights into persistent infection.
Collapse
Affiliation(s)
| | | | - Teresa Cortes
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
74
|
Blocking Bacterial Naphthohydroquinone Oxidation and ADP-Ribosylation Improves Activity of Rifamycins against Mycobacterium abscessus. Antimicrob Agents Chemother 2021; 65:e0097821. [PMID: 34228543 PMCID: PMC8370238 DOI: 10.1128/aac.00978-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rifampicin is an effective drug for treating tuberculosis (TB) but is not used to treat Mycobacterium abscessus infections due to poor in vitro activity. While rifabutin, another rifamycin, has better anti-M. abscessus activity, its activity is far from the nanomolar potencies of rifamycins against Mycobacterium tuberculosis. Here, we asked (i) why is rifabutin more active against M. abscessus than rifampicin, and (ii) why is rifabutin's anti-M. abscessus activity poorer than its anti-TB activity? Comparative analysis of naphthoquinone- versus naphthohydroquinone-containing rifamycins suggested that the improved activity of rifabutin over rifampicin is linked to its less readily oxidizable naphthoquinone core. Although rifabutin is resistant to bacterial oxidation, metabolite and genetic analyses showed that this rifamycin is metabolized by the ADP-ribosyltransferase ArrMab like rifampicin, preventing it from achieving the nanomolar activity that it displays against M. tuberculosis. Based on the identified dual mechanism of intrinsic rifamycin resistance, we hypothesized that rifamycins more potent than rifabutin should contain the molecule's naphthoquinone core plus a modification that blocks ADP-ribosylation at its C-23. To test these predictions, we performed a blinded screen of a diverse collection of 189 rifamycins and identified two molecules more potent than rifabutin. As predicted, these compounds contained both a more oxidatively resistant naphthoquinone core and C-25 modifications that blocked ADP-ribosylation. Together, this work revealed dual bacterial metabolism as the mechanism of intrinsic resistance of M. abscessus to rifamycins and provides proof of concept for the repositioning of rifamycins for M. abscessus disease by developing derivatives that resist both bacterial oxidation and ADP-ribosylation.
Collapse
|
75
|
Reichmann MT, Tezera LB, Vallejo AF, Vukmirovic M, Xiao R, Reynolds J, Jogai S, Wilson S, Marshall B, Jones MG, Leslie A, D’Armiento JM, Kaminski N, Polak ME, Elkington P. Integrated transcriptomic analysis of human tuberculosis granulomas and a biomimetic model identifies therapeutic targets. J Clin Invest 2021; 131:148136. [PMID: 34128839 PMCID: PMC8321576 DOI: 10.1172/jci148136] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023] Open
Abstract
Tuberculosis (TB) is a persistent global pandemic, and standard treatment for it has not changed for 30 years. Mycobacterium tuberculosis (Mtb) has undergone prolonged coevolution with humans, and patients can control Mtb even after extensive infection, demonstrating the fine balance between protective and pathological host responses within infected granulomas. We hypothesized that whole transcriptome analysis of human TB granulomas isolated by laser capture microdissection could identify therapeutic targets, and that comparison with a noninfectious granulomatous disease, sarcoidosis, would identify disease-specific pathological mechanisms. Bioinformatic analysis of RNAseq data identified numerous shared pathways between TB and sarcoidosis lymph nodes, and also specific clusters demonstrating TB results from a dysregulated inflammatory immune response. To translate these insights, we compared 3 primary human cell culture models at the whole transcriptome level and demonstrated that the 3D collagen granuloma model most closely reflected human TB disease. We investigated shared signaling pathways with human disease and identified 12 intracellular enzymes as potential therapeutic targets. Sphingosine kinase 1 inhibition controlled Mtb growth, concurrently reducing intracellular pH in infected monocytes and suppressing inflammatory mediator secretion. Immunohistochemical staining confirmed that sphingosine kinase 1 is expressed in human lung TB granulomas, and therefore represents a host therapeutic target to improve TB outcomes.
Collapse
Affiliation(s)
- Michaela T. Reichmann
- NIHR Biomedical Research Center, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Liku B. Tezera
- NIHR Biomedical Research Center, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Department of Infection and Immunity, University College London, London, United Kingdom
| | - Andres F. Vallejo
- NIHR Biomedical Research Center, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Milica Vukmirovic
- Firestone Institute for Respiratory Health-Division of Respirology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Rui Xiao
- Columbia University Medical Center, New York, New York, USA
| | | | - Sanjay Jogai
- NIHR Biomedical Research Center, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Susan Wilson
- NIHR Biomedical Research Center, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ben Marshall
- NIHR Biomedical Research Center, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Mark G. Jones
- NIHR Biomedical Research Center, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Alasdair Leslie
- Department of Infection and Immunity, University College London, London, United Kingdom
- Africa Health Research Institute, KwaZulu Natal, South Africa
| | | | - Naftali Kaminski
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Marta E. Polak
- NIHR Biomedical Research Center, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Paul Elkington
- NIHR Biomedical Research Center, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
76
|
Fleck N, Grundner C. A Cas12a-based CRISPR interference system for multigene regulation in mycobacteria. J Biol Chem 2021; 297:100990. [PMID: 34298016 PMCID: PMC8363830 DOI: 10.1016/j.jbc.2021.100990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 12/26/2022] Open
Abstract
Mycobacteria are responsible for a heavy global disease burden, but their relative genetic intractability has long frustrated research efforts. The introduction of clustered regularly interspaced short palindromic repeats (CRISPR) interference (CRISPRi) has made gene repression in mycobacteria much more efficient, but limitations of the prototypical Cas9-based platform, for example, in multigene regulation, remain. Here, we introduce an alternative CRISPRi platform for mycobacteria that is based on the minimal type V Cas12a enzyme in combination with synthetic CRISPR arrays. This system is simple, tunable, reversible, can efficiently regulate essential genes and multiple genes simultaneously, and works as efficiently in infected macrophages as it does in vitro. Together, Cas12a-based CRISPRi provides a facile tool to probe higher-order genetic interactions in mycobacteria including Mycobacterium tuberculosis (Mtb), which will enable the development of synthetically lethal drug targets and the study of genes conditionally essential during infection.
Collapse
Affiliation(s)
- Neil Fleck
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Christoph Grundner
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA; Department of Pediatrics, University of Washington, Seattle, Washington, USA; Department of Global Health, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
77
|
Exploration of synergistic action of cell wall-degrading enzymes against Mycobacterium tuberculosis. Antimicrob Agents Chemother 2021; 65:e0065921. [PMID: 34280017 DOI: 10.1128/aac.00659-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background The major global health threat tuberculosis is caused by Mycobacterium tuberculosis (Mtb). Mtb has a complex cell envelope - a partially covalently linked composite of polysaccharides, peptidoglycan and lipids, including a mycolic acid layer - which conveys pathogenicity but also protects against antibiotics. Given previous successes in treating gram-positive and -negative infections with cell wall degrading enzymes, we investigated such approach for Mtb. Objectives (i) Development of an Mtb microtiter growth inhibition assay that allows undisturbed cell envelope formation, to overcome the invalidation of results by typical clumped Mtb-growth in surfactant-free assays. (ii) Exploring anti-Mtb potency of cell wall layer-degrading enzymes. (iii) Investigation of the concerted action of several such enzymes. Methods We inserted a bacterial luciferase-operon in an auxotrophic Mtb strain to develop a microtiter assay that allows proper evaluation of cell wall degrading anti-Mtb enzymes. We assessed growth-inhibition by enzymes (recombinant mycobacteriophage mycolic acid esterase (LysB), fungal α-amylase and human and chicken egg white lysozymes) and combinations thereof, in presence or absence of biopharmaceutically acceptable surfactant. Results Our biosafety level-2 assay identified both LysB and lysozymes as potent Mtb-inhibitors, but only in presence of surfactant. Moreover, most potent disruption of the mycolic acid hydrophobic barrier was obtained by the highly synergistic combination of LysB, α-amylase and polysorbate 80. Conclusions Synergistically acting cell wall degrading enzymes are potently inhibiting Mtb - which sets the scene for the design of specifically tailored antimycobacterial (fusion) enzymes. Airway delivery of protein therapeutics has already been established and should be studied in animal models for active TB.
Collapse
|
78
|
In Vitro Profiling of Antitubercular Compounds by Rapid, Efficient, and Nondestructive Assays Using Autoluminescent Mycobacterium tuberculosis. Antimicrob Agents Chemother 2021; 65:e0028221. [PMID: 34097493 PMCID: PMC8284454 DOI: 10.1128/aac.00282-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anti-infective drug discovery is greatly facilitated by the availability of in vitro assays that are more proficient at predicting the preclinical success of screening hits. Tuberculosis (TB) drug discovery is hindered by the relatively slow growth rate of Mycobacterium tuberculosis and the use of whole-cell-based in vitro assays that are inherently time-consuming, and for these reasons, rapid, noninvasive bioluminescence-based assays have been widely used in anti-TB drug discovery and development. In this study, in vitro assays that employ autoluminescent M. tuberculosis were optimized to determine MIC, minimum bactericidal concentration (MBC), time-kill curves, activity against macrophage internalized M. tuberculosis (90% effective concentration [EC90]), and postantibiotic effect (PAE) to provide rapid and dynamic biological information. Standardization of the luminescence-based MIC, MBC, time-kill, EC90, and PAE assays was accomplished by comparing results of established TB drugs and two ClpC1-targeting TB leads, ecumicin and rufomycin, to those obtained from conventional assays and/or to previous studies. Cumulatively, the use of the various streamlined luminescence-based in vitro assays has reduced the time for comprehensive in vitro profiling (MIC, MBC, time-kill, EC90, and PAE) by 2 months. The luminescence-based in vitro MBC and EC90 assays yield time and concentration-dependent kill information that can be used for pharmacokinetic-pharmacodynamic (PK-PD) modeling. The MBC and EC90 time-kill graphs revealed a significantly more rapid bactericidal activity for ecumicin than rufomycin. The PAEs of both ecumicin and rufomycin were comparable to that of the first-line TB drug rifampin. The optimization of several nondestructive, luminescence-based TB assays facilitates the in vitro profiling of TB drug leads in an efficient manner.
Collapse
|
79
|
Abstract
New, more-effective drugs for the treatment of lung disease caused by nontuberculous mycobacteria (NTM) are needed. Among NTM opportunistic pathogens, Mycobacterium abscessus is the most difficult to cure and intrinsically multidrug resistant. In a whole-cell screen of a compound collection active against Mycobacterium tuberculosis, we previously identified the piperidine-4-carboxamide (P4C) MMV688844 (844) as a hit against M. abscessus. Here, we identified a more potent analog of 844 and showed that both the parent and improved analog retain activity against strains representing all three subspecies of the M. abscessus complex. Furthermore, P4Cs showed bactericidal and antibiofilm activity. Spontaneous resistance against the P4Cs emerged at a frequency of 10−8/CFU and mapped to gyrA and gyrB encoding the subunits of DNA gyrase. Biochemical studies with recombinant M. abscessus DNA gyrase showed that P4Cs inhibit the wild-type enzyme but not the P4C-resistant mutant. P4C-resistant strains showed limited cross-resistance to the fluoroquinolone moxifloxacin, which is in clinical use for the treatment of macrolide-resistant M. abscessus disease, and no cross-resistance to the benzimidazole SPR719, a novel DNA gyrase inhibitor in clinical development for the treatment of mycobacterial diseases. Analyses of P4Cs in recA promoter-based DNA damage reporter strains showed induction of recA promoter activity in the wild type but not in the P4C-resistant mutant background. This indicates that P4Cs, similar to fluoroquinolones, cause DNA gyrase-mediated DNA damage. Together, our results show that P4Cs present a novel class of mycobacterial DNA gyrase inhibitors with attractive antimicrobial activities against the M. abscessus complex.
Collapse
|
80
|
Karunanidhi S, Chandrasekaran B, Karpoormath R, Patel HM, Kayamba F, Merugu SR, Kumar V, Dhawan S, Kushwaha B, Mahlalela MC. Novel thiomorpholine tethered isatin hydrazones as potential inhibitors of resistant Mycobacterium tuberculosis. Bioorg Chem 2021; 115:105133. [PMID: 34329993 DOI: 10.1016/j.bioorg.2021.105133] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/22/2021] [Accepted: 06/26/2021] [Indexed: 12/30/2022]
Abstract
Novel chemotherapeutic agents against multidrug resistant-tuberculosis (MDR-TB) are urgently needed at this juncture to save the life of TB-infected patients. In this work, we have synthesized and characterized novel isatin hydrazones 4(a-o) and their thiomorpholine tethered analogues 5(a-o). All the synthesized compounds were initially screened for their anti-mycobacterial activity against the H37Rv strain of Mycobacterium tuberculosis (MTB) under level-I testing. Remarkably, five compounds 4f, 4h, 4n, 5f and 5m (IC50 = 1.9 µM to 9.8 µM) were found to be most active, with 4f (IC50 = 1.9 µM) indicating highest inhibition of H37Rv. These compounds were further evaluated at level-II testing against the five drug-resistant strains such as isoniazid-resistant strains (INH-R1 and INH-R2), rifampicin-resistant strains (RIF-R1 and RIF-R2) and fluoroquinolone-resistant strain (FQ-R1) of MTB. Interestingly, 4f and 5f emerged as the most potent compounds with IC50 of 3.6 µM and 1.9 µM against RIF-R1 MTB strain, followed by INH-R1 MTB strain with IC50 of 3.5 µM and 3.4 µM, respectively. Against FQ-R1 MTB strain, the lead compounds 4f and 5f displayed excellent inhibition at IC50 5.9 µM and 4.9 µM, respectively indicating broad-spectrum of activity. Further, molecular docking, ADME pharmacokinetic and molecular dynamics simulations of the compounds were performed against the DNA gyrase B and obtained encouraging results.
Collapse
Affiliation(s)
- Sivanandhan Karunanidhi
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban 4000, South Africa
| | - Balakumar Chandrasekaran
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban 4000, South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban 4000, South Africa.
| | - Harun M Patel
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban 4000, South Africa; R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur (Dhule) 425405, Maharashtra, India
| | - Francis Kayamba
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban 4000, South Africa
| | - Srinivas Reddy Merugu
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban 4000, South Africa
| | - Vishal Kumar
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban 4000, South Africa
| | - Sanjeev Dhawan
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban 4000, South Africa
| | - Babita Kushwaha
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban 4000, South Africa
| | - Mavela Cleopus Mahlalela
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban 4000, South Africa
| |
Collapse
|
81
|
Looney M, Lorenc R, Halushka MK, Karakousis PC. Key Macrophage Responses to Infection With Mycobacterium tuberculosis Are Co-Regulated by microRNAs and DNA Methylation. Front Immunol 2021; 12:685237. [PMID: 34140955 PMCID: PMC8204050 DOI: 10.3389/fimmu.2021.685237] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/13/2021] [Indexed: 02/03/2023] Open
Abstract
Tuberculosis (TB) is the leading cause of death from infection with a single bacterial pathogen. Host macrophages are the primary cell type infected with Mycobacterium tuberculosis (Mtb), the organism that causes TB. Macrophage response pathways are regulated by various factors, including microRNAs (miRNAs) and epigenetic changes that can shape the outcome of infection. Although dysregulation of both miRNAs and DNA methylation have been studied in the context of Mtb infection, studies have not yet investigated how these two processes may jointly co-regulate critical anti-TB pathways in primary human macrophages. In the current study, we integrated genome-wide analyses of miRNA abundance and DNA methylation status with mRNA transcriptomics in Mtb-infected primary human macrophages to decipher which macrophage functions may be subject to control by these two types of regulation. Using in vitro macrophage infection models and next generation sequencing, we found that miRNAs and methylation changes co-regulate important macrophage response processes, including immune cell activation, macrophage metabolism, and AMPK pathway signaling.
Collapse
Affiliation(s)
- Monika Looney
- Department of Medicine, Division of Infectious Disease, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Rachel Lorenc
- Department of Medicine, Division of Infectious Disease, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Marc K Halushka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Petros C Karakousis
- Department of Medicine, Division of Infectious Disease, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
82
|
Cadelis MM, Gordon H, Grey A, Geese S, Mulholland DR, Weir BS, Copp BR, Wiles S. Isolation of a Novel Polyketide from Neodidymelliopsis sp. Molecules 2021; 26:molecules26113235. [PMID: 34072211 PMCID: PMC8199022 DOI: 10.3390/molecules26113235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 02/02/2023] Open
Abstract
Fungi have become an invaluable source of bioactive natural products, with more than 5 million species of fungi spanning the globe. Fractionation of crude extract of Neodidymelliopsis sp., led to the isolation of a novel polyketide, (2Z)-cillifuranone (1) and five previously reported natural products, (2E)-cillifuranone (2), taiwapyrone (3), xylariolide D (4), pachybasin (5), and N-(5-hydroxypentyl)acetamide (6). It was discovered that (2Z)-cillifuranone (1) was particularly sensitive to ambient temperature and light resulting in isomerisation to (2E)-cillifuranone (2). Structure elucidation of all the natural products were conducted by NMR spectroscopic techniques. The antimicrobial activity of 2, 3, and 5 were evaluated against a variety of bacterial and fungal pathogens. A sodium [1-13C] acetate labelling study was conducted on Neodidymelliopsis sp. and confirmed that pachybasin is biosynthesised through the acetate polyketide pathway.
Collapse
Affiliation(s)
- Melissa M. Cadelis
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (H.G.); (B.R.C.)
- Bioluminescent Superbugs Lab, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (A.G.); (S.G.); (D.R.M.)
- Correspondence: (M.M.C.); (S.W.)
| | - Hugo Gordon
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (H.G.); (B.R.C.)
| | - Alex Grey
- Bioluminescent Superbugs Lab, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (A.G.); (S.G.); (D.R.M.)
| | - Soeren Geese
- Bioluminescent Superbugs Lab, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (A.G.); (S.G.); (D.R.M.)
| | - Daniel R. Mulholland
- Bioluminescent Superbugs Lab, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (A.G.); (S.G.); (D.R.M.)
| | - Bevan S. Weir
- Manaaki Whenua – Landcare Research, Private Bag 92170, Auckland 1142, New Zealand;
| | - Brent R. Copp
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (H.G.); (B.R.C.)
| | - Siouxsie Wiles
- Bioluminescent Superbugs Lab, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (A.G.); (S.G.); (D.R.M.)
- Correspondence: (M.M.C.); (S.W.)
| |
Collapse
|
83
|
Asai M, Li Y, Spiropoulos J, Cooley W, Everest D, Robertson BD, Langford PR, Newton SM. A novel biosafety level 2 compliant tuberculosis infection model using a Δ leuDΔ panCD double auxotroph of Mycobacterium tuberculosis H37Rv and Galleria mellonella. Virulence 2021; 11:811-824. [PMID: 32530737 PMCID: PMC7550006 DOI: 10.1080/21505594.2020.1781486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mammalian infection models have contributed significantly to our understanding of the host-mycobacterial interaction, revealing potential mechanisms and targets for novel antimycobacterial therapeutics. However, the use of conventional mammalian models such as mice, are typically expensive, high maintenance, require specialized animal housing, and are ethically regulated. Furthermore, research using Mycobacterium tuberculosis (MTB), is inherently difficult as work needs to be carried out at biosafety level 3 (BSL3). The insect larvae of Galleria mellonella (greater wax moth), have become increasingly popular as an infection model, and we previously demonstrated its potential as a mycobacterial infection model using Mycobacterium bovis BCG. Here we present a novel BSL2 complaint MTB infection model using G. mellonella in combination with a bioluminescent ΔleuDΔpanCD double auxotrophic mutant of MTB H37Rv (SAMTB lux) which offers safety and practical advantages over working with wild type MTB. Our results show a SAMTB lux dose dependent survival of G. mellonella larvae and demonstrate proliferation and persistence of SAMTB lux bioluminescence over a 1 week infection time course. Histopathological analysis of G. mellonella, highlight the formation of early granuloma-like structures which matured over time. We additionally demonstrate the drug efficacy of first (isoniazid, rifampicin, and ethambutol) and second line (moxifloxacin) antimycobacterial drugs. Our findings demonstrate the broad potential of this insect model to study MTB infection under BSL2 conditions. We anticipate that the successful adaptation and implementation of this model will remove the inherent limitations of MTB research at BSL3 and increase tuberculosis research output.
Collapse
Affiliation(s)
- Masanori Asai
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London , London, UK
| | - Yanwen Li
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London , London, UK
| | - John Spiropoulos
- Department of Pathology, Animal and Plant Health Agency , Addlestone, UK
| | - William Cooley
- Department of Pathology, Animal and Plant Health Agency , Addlestone, UK
| | - David Everest
- Department of Pathology, Animal and Plant Health Agency , Addlestone, UK
| | - Brian D Robertson
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London , London, UK
| | - Paul R Langford
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London , London, UK
| | - Sandra M Newton
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London , London, UK
| |
Collapse
|
84
|
Berglund K, Stern MA, Gross RE. Bioluminescence-Optogenetics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:281-293. [PMID: 33398820 DOI: 10.1007/978-981-15-8763-4_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
In this chapter, we introduce a relatively new, emerging method for molecular neuromodulation-bioluminescence-optogenetics. Bioluminescence-optogenetics is mediated by luminopsin fusion proteins-light-sensing opsins fused to light-emitting luciferases. We describe their structures and working mechanisms and discuss their unique benefits over conventional optogenetics and chemogenetics. We also summarize applications of bioluminescence-optogenetics in various neurological disease models in rodents.
Collapse
Affiliation(s)
- Ken Berglund
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA.
| | - Matthew A Stern
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Robert E Gross
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
85
|
Smyth R, Berton S, Rajabalee N, Chan T, Sun J. Protein Kinase R Restricts the Intracellular Survival of Mycobacterium tuberculosis by Promoting Selective Autophagy. Front Microbiol 2021; 11:613963. [PMID: 33552025 PMCID: PMC7862720 DOI: 10.3389/fmicb.2020.613963] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/30/2020] [Indexed: 12/18/2022] Open
Abstract
Tuberculosis (TB) is a deadly infectious lung disease caused by the pathogenic bacterium Mycobacterium tuberculosis (Mtb). The identification of macrophage signaling proteins exploited by Mtb during infection will enable the development of alternative host-directed therapies (HDT) for TB. HDT strategies will boost host immunity to restrict the intracellular replication of Mtb and therefore hold promise to overcome antimicrobial resistance, a growing crisis in TB therapy. Protein Kinase R (PKR) is a key host sensor that functions in the cellular antiviral response. However, its role in defense against intracellular bacterial pathogens is not clearly defined. Herein, we demonstrate that expression and activation of PKR is upregulated in macrophages infected with Mtb. Immunological profiling of human THP-1 macrophages that overexpress PKR (THP-PKR) showed increased production of IP-10 and reduced production of IL-6, two cytokines that are reported to activate and inhibit IFNγ-dependent autophagy, respectively. Indeed, sustained expression and activation of PKR reduced the intracellular survival of Mtb, an effect that could be enhanced by IFNγ treatment. We further demonstrate that the enhanced anti-mycobacterial activity of THP-PKR macrophages is mediated by a mechanism dependent on selective autophagy, as indicated by increased levels of LC3B-II that colocalize with intracellular Mtb. Consistent with this mechanism, inhibition of autophagolysosome maturation with bafilomycin A1 abrogated the ability of THP-PKR macrophages to limit replication of Mtb, whereas pharmacological activation of autophagy enhanced the anti-mycobacterial effect of PKR overexpression. As such, PKR represents a novel and attractive host target for development of HDT for TB, and our data suggest value in the design of more specific and potent activators of PKR.
Collapse
Affiliation(s)
- Robin Smyth
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Stefania Berton
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Nusrah Rajabalee
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Therese Chan
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Jim Sun
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
86
|
Alsawaftah N, Farooq A, Dhou S, Majdalawieh AF. Bioluminescence Imaging Applications in Cancer: A Comprehensive Review. IEEE Rev Biomed Eng 2021; 14:307-326. [PMID: 32746363 DOI: 10.1109/rbme.2020.2995124] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Bioluminescence imaging (BLI), an optical preclinical imaging modality, is an invaluable imaging modality due to its low-cost, high throughput, fast acquisition times, and functional imaging capabilities. BLI is being extensively used in the field of cancer imaging, especially with the recent developments in genetic-engineering, stem cell, and gene therapy treatments. The purpose of this paper is to provide a comprehensive review of the principles, developments, and current status of BLI in cancer research. This paper covers the fundamental BLI concepts including BLI reporters and enzyme-substrate systems, data acquisition, and image characteristics. It reviews the studies discussing the use of BLI in cancer research such as imaging tumor-characteristic phenomena including tumorigenesis, metastasis, cancer metabolism, apoptosis, hypoxia, and angiogenesis, and response to cancer therapy treatments including chemotherapy, radiotherapy, immunotherapy, gene therapy, and stem cell therapy. The key advantages and disadvantages of BLI compared to other common imaging modalities are also discussed.
Collapse
|
87
|
Colucci-Guyon E, Rifflet A, Saint-Auret S, da Costa A, Boucontet L, Laval T, Prehaud C, Blanchard N, Levraud JP, Boneca IG, Demangel C, Guenin-Macé L. Spatiotemporal analysis of mycolactone distribution in vivo reveals partial diffusion in the central nervous system. PLoS Negl Trop Dis 2020; 14:e0008878. [PMID: 33264290 PMCID: PMC7710047 DOI: 10.1371/journal.pntd.0008878] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/13/2020] [Indexed: 01/26/2023] Open
Abstract
Mycobacterium ulcerans, the causative agent of Buruli ulcer (BU) disease, is unique amongst human pathogens in its capacity to produce a lipid toxin called mycolactone. While previous studies have demonstrated that bacterially-released mycolactone diffuses beyond infection foci, the spatiotemporal distribution of mycolactone remained largely unknown. Here, we used the zebrafish model to provide the first global kinetic analysis of mycolactone's diffusion in vivo, and multicellular co-culture systems to address the critical question of the toxin's access to the brain. Zebrafish larvae were injected with a fluorescent-derivative of mycolactone to visualize the in vivo diffusion of the toxin from the peripheral circulation. A rapid, body-wide distribution of mycolactone was observed, with selective accumulation in tissues near the injection site and brain, together with an important excretion through the gastro-intestinal tract. Our conclusion that mycolactone reached the central nervous system was reinforced by an in cellulo model of human blood brain barrier and a mouse model of M. ulcerans-infection. Here we show that mycolactone has a broad but heterogenous profile of distribution in vivo. Our investigations in vitro and in vivo support the view that a fraction of bacterially-produced mycolactone gains access to the central nervous system. The relative persistence of mycolactone in the bloodstream suggests that assays of circulating mycolactone are relevant for BU disease monitoring and treatment optimization.
Collapse
Affiliation(s)
- Emma Colucci-Guyon
- Macrophages and Development of Immunity, Institut Pasteur, CNRS UMR 3738, Paris, France
| | - Aline Rifflet
- Institut Pasteur, Unité Biologie et génétique de la paroi bactérienne, Paris 75724, France; CNRS, UMR 2001 “Microbiologie intégrative et moléculaire”, Paris 75015, France; INSERM, groupe Avenir, Paris, France
| | - Sarah Saint-Auret
- Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA, UMR 7042, Mulhouse, France
| | | | - Laurent Boucontet
- Macrophages and Development of Immunity, Institut Pasteur, CNRS UMR 3738, Paris, France
| | - Thomas Laval
- Immunobiology of Infection Unit, Institut Pasteur, INSERM U1221, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | | | - Nicolas Blanchard
- Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA, UMR 7042, Mulhouse, France
| | - Jean-Pierre Levraud
- Macrophages and Development of Immunity, Institut Pasteur, CNRS UMR 3738, Paris, France
| | - Ivo G. Boneca
- Institut Pasteur, Unité Biologie et génétique de la paroi bactérienne, Paris 75724, France; CNRS, UMR 2001 “Microbiologie intégrative et moléculaire”, Paris 75015, France; INSERM, groupe Avenir, Paris, France
| | - Caroline Demangel
- Immunobiology of Infection Unit, Institut Pasteur, INSERM U1221, Paris, France
| | - Laure Guenin-Macé
- Immunobiology of Infection Unit, Institut Pasteur, INSERM U1221, Paris, France
- * E-mail:
| |
Collapse
|
88
|
Brzostek J, Fatin A, Chua WH, Tan HY, Dick T, Gascoigne NRJ. Single Cell Analysis of Drug Susceptibility of Mycobacterium Abscessus During Macrophage Infection. Antibiotics (Basel) 2020; 9:antibiotics9100711. [PMID: 33080864 PMCID: PMC7650608 DOI: 10.3390/antibiotics9100711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 11/16/2022] Open
Abstract
Mycobacterium abscessus is an emerging health risk to immunocompromised individuals and to people with pre-existing pulmonary conditions. As M. abscessus possesses multiple mechanisms of drug resistance, treatments of M. abscessus are of poor efficacy. Therefore, there is an urgent need for new therapeutic strategies targeting M. abscessus. We describe an experimental system for screening of compounds for their antimicrobial activity against intracellular M. abscessus using flow cytometry and imaging flow cytometry. The assay allows simultaneous analysis of multiple parameters, such as proportion of infected host cells, bacterial load per host cell from the infected population, and host cell viability. We verified the suitability of this method using two antibiotics with known activity against M. abscessus: clarithromycin and amikacin. Our analysis revealed a high degree of infection heterogeneity, which correlated with host cell size. A higher proportion of the larger host cells is infected with M. abscessus as compared to smaller host cells, and infected larger cells have higher intracellular bacterial burden than infected smaller cells. Clarithromycin treatment has a more pronounced effect on smaller host cells than on bigger host cells, suggesting that heterogeneity within the host cell population has an effect on antibiotic susceptibility of intracellular bacteria.
Collapse
Affiliation(s)
- Joanna Brzostek
- Department of Microbiology and Immunology, Yong Loo Lin School of Medcine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore; (A.F.); (W.H.C.); (H.Y.T.); (T.D.)
- Correspondence: (J.B.); (N.R.J.G.)
| | - Amierah Fatin
- Department of Microbiology and Immunology, Yong Loo Lin School of Medcine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore; (A.F.); (W.H.C.); (H.Y.T.); (T.D.)
| | - Wen Hui Chua
- Department of Microbiology and Immunology, Yong Loo Lin School of Medcine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore; (A.F.); (W.H.C.); (H.Y.T.); (T.D.)
| | - Hui Yi Tan
- Department of Microbiology and Immunology, Yong Loo Lin School of Medcine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore; (A.F.); (W.H.C.); (H.Y.T.); (T.D.)
| | - Thomas Dick
- Department of Microbiology and Immunology, Yong Loo Lin School of Medcine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore; (A.F.); (W.H.C.); (H.Y.T.); (T.D.)
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine at Seton Hall University, Nutley, NJ 07110, USA
| | - Nicholas R. J. Gascoigne
- Department of Microbiology and Immunology, Yong Loo Lin School of Medcine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore; (A.F.); (W.H.C.); (H.Y.T.); (T.D.)
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117545, Singapore
- Correspondence: (J.B.); (N.R.J.G.)
| |
Collapse
|
89
|
Hie B, Bryson BD, Berger B. Leveraging Uncertainty in Machine Learning Accelerates Biological Discovery and Design. Cell Syst 2020; 11:461-477.e9. [PMID: 33065027 DOI: 10.1016/j.cels.2020.09.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/01/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022]
Abstract
Machine learning that generates biological hypotheses has transformative potential, but most learning algorithms are susceptible to pathological failure when exploring regimes beyond the training data distribution. A solution to address this issue is to quantify prediction uncertainty so that algorithms can gracefully handle novel phenomena that confound standard methods. Here, we demonstrate the broad utility of robust uncertainty prediction in biological discovery. By leveraging Gaussian process-based uncertainty prediction on modern pre-trained features, we train a model on just 72 compounds to make predictions over a 10,833-compound library, identifying and experimentally validating compounds with nanomolar affinity for diverse kinases and whole-cell growth inhibition of Mycobacterium tuberculosis. Uncertainty facilitates a tight iterative loop between computation and experimentation and generalizes across biological domains as diverse as protein engineering and single-cell transcriptomics. More broadly, our work demonstrates that uncertainty should play a key role in the increasing adoption of machine learning algorithms into the experimental lifecycle.
Collapse
Affiliation(s)
- Brian Hie
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bryan D Bryson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA 02139, USA.
| | - Bonnie Berger
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
90
|
Beckham KSH, Staack S, Wilmanns M, Parret AHA. The pMy vector series: A versatile cloning platform for the recombinant production of mycobacterial proteins in Mycobacterium smegmatis. Protein Sci 2020; 29:2528-2537. [PMID: 33006405 PMCID: PMC7679961 DOI: 10.1002/pro.3962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 12/16/2022]
Abstract
Structural and biophysical characterization of molecular mechanisms of disease‐causing pathogens, such as Mycobacterium tuberculosis, often requires recombinant expression of large amounts highly pure protein. For the production of mycobacterial proteins, overexpression in the fast‐growing and non‐pathogenic species Mycobacterium smegmatis has several benefits over the standard Escherichia coli expression strains. However, unlike for E. coli, the range of expression vectors currently available is limited. Here we describe the development of the pMy vector series, a set of expression plasmids for recombinant production of single proteins and protein complexes in M. smegmatis. By incorporating an alternative selection marker, we show that these plasmids can also be used for co‐expression studies. All vectors in the pMy vector series are available in the Addgene repository (www.addgene.com).
Collapse
Affiliation(s)
| | - Sonja Staack
- Hamburg Unit, European Molecular Biology Laboratory, Hamburg, Germany
| | - Matthias Wilmanns
- Hamburg Unit, European Molecular Biology Laboratory, Hamburg, Germany.,University Hamburg Clinical Centre Hamburg-Eppendorf, Hamburg, Germany
| | | |
Collapse
|
91
|
Looney MM, Lu Y, Karakousis PC, Halushka MK. Mycobacterium tuberculosis Infection Drives Mitochondria-Biased Dysregulation of Host Transfer RNA-Derived Fragments. J Infect Dis 2020; 223:1796-1805. [PMID: 32959876 DOI: 10.1093/infdis/jiaa596] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/17/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Mycobacterium tuberculosis (Mtb), the bacterium that causes tuberculosis, causes 10 million infections and 1.5 million deaths per year worldwide. The success of Mtb as a human pathogen is directly related to its ability to suppress host responses, which are critical for clearing intracellular pathogens. Emerging evidence suggests that key response pathways may be regulated by a novel class of small noncoding RNA, called transfer RNA (tRNA)-derived fragments (tRFs). tRFs can complex with Argonaute proteins to target and degrade messenger RNA targets, similarly to micro RNAs, but have thus far been overlooked in the context of bacterial infections. METHODS We generated a novel miRge2.0-based tRF-analysis tool, tRFcluster, and used it to analyze independently generated and publicly available RNA-sequencing datasets to assess tRF dysregulation in host cells following infection with Mtb and other intracellular bacterial pathogens. RESULTS We found that Mtb and Listeria monocytogenes drive dramatic tRF dysregulation, whereas other bacterial pathogens do not. Interestingly, Mtb infection uniquely increased the expression of mitochondria-derived tRFs rather than genomic-derived tRFs, suggesting an association with mitochondrial damage in Mtb infection. CONCLUSIONS tRFs are dysregulated in some, but not all, bacterial infections. Biased dysregulation of mitochondria-derived tRFs in Mtb infection suggests a link between mitochondrial distress and tRF production.
Collapse
Affiliation(s)
- Monika M Looney
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yin Lu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Petros C Karakousis
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Marc K Halushka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
92
|
Lai Y, Babunovic GH, Cui L, Dedon PC, Doench JG, Fortune SM, Lu TK. Illuminating Host-Mycobacterial Interactions with Genome-wide CRISPR Knockout and CRISPRi Screens. Cell Syst 2020; 11:239-251.e7. [PMID: 32970993 DOI: 10.1016/j.cels.2020.08.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/15/2020] [Accepted: 08/12/2020] [Indexed: 12/26/2022]
Abstract
Existing antibiotics are inadequate to defeat tuberculosis (TB), a leading cause of death worldwide. We sought potential targets for host-directed therapies (HDTs) by investigating the host immune response to mycobacterial infection. We used high-throughput CRISPR knockout and CRISPR interference (CRISPRi) screens to identify perturbations that improve the survival of human phagocytic cells infected with Mycobacterium bovis BCG (Bacillus Calmette-Guérin), as a proxy for Mycobacterium tuberculosis (Mtb). Many of these perturbations constrained the growth of intracellular mycobacteria. We identified over 100 genes associated with diverse biological pathways as potential HDT targets. We validated key components of the type I interferon and aryl hydrocarbon receptor signaling pathways that respond to the small-molecule inhibitors cerdulatinib and CH223191, respectively; these inhibitors enhanced human macrophage survival and limited the intracellular growth of Mtb. Thus, high-throughput functional genomic screens, by elucidating highly complex host-pathogen interactions, can serve to identify HDTs to potentially improve TB treatment.
Collapse
Affiliation(s)
- Yong Lai
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore; Synthetic Biology Group, MIT Synthetic Biology Center, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Research Laboratory of Electronics, MIT, Cambridge, MA 02139, USA
| | - Gregory H Babunovic
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Liang Cui
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Peter C Dedon
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore; Department of Biological Engineering, MIT, Cambridge, MA 02139, USA
| | | | - Sarah M Fortune
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Timothy K Lu
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore; Synthetic Biology Group, MIT Synthetic Biology Center, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Research Laboratory of Electronics, MIT, Cambridge, MA 02139, USA; Broad Institute, Cambridge, MA 02139, USA; Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, MIT, Cambridge, MA 02139, USA.
| |
Collapse
|
93
|
Abstract
Bacterial luciferase is a flavin-dependent monooxygenase which is remarkable for its distinctive feature in transforming chemical energy to photons of visible light. The bacterial luciferase catalyzes bioluminescent reaction using reduced flavin mononucleotide, long-chain aldehyde and oxygen to yield oxidized flavin, corresponding acid, water and light at λmax around 490nm. The enzyme comprises of two non-identical α and β subunits, where α subunit is a catalytic center and β subunit is crucially required for maintaining catalytic function of the α subunit. The crystal structure with FMN bound and mutagenesis studies have assigned a number of amino acid residues that are important in coordinating critical reactions and stabilizing intermediates to attain optimum reaction efficiency. The enzyme achieves monooxygenation by generating C4a-hydroperoxyflavin intermediate that later changes its protonation status to become C4a-peroxyflavin, which is necessary for the nucleophilic attacking with aldehyde substrate. The decomposing of C4a-peroxyhemiacetal produces excited C4a-hydroxyflavin and acid product. The chemical basis regrading bioluminophore generation in Lux reaction remains an inconclusive issue. However, current data can, at least, demonstrate the involvement of electron transfer to create radical molecules which is the key step in this mechanism. Lux is a self-sufficient bioluminescent system in which all substrates can be recycled and produced by a group of enzymes from the lux operon. This makes Lux distinctively advantageous over other luciferases for reporter enzyme application. The progression of understanding of Lux catalysis is beneficial to improve light emitting efficiency in order to expand the robustness of Lux application.
Collapse
|
94
|
Love AC, Prescher JA. Seeing (and Using) the Light: Recent Developments in Bioluminescence Technology. Cell Chem Biol 2020; 27:904-920. [PMID: 32795417 PMCID: PMC7472846 DOI: 10.1016/j.chembiol.2020.07.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/10/2020] [Accepted: 07/24/2020] [Indexed: 02/08/2023]
Abstract
Bioluminescence has long been used to image biological processes in vivo. This technology features luciferase enzymes and luciferin small molecules that produce visible light. Bioluminescent photons can be detected in tissues and live organisms, enabling sensitive and noninvasive readouts on physiological function. Traditional applications have focused on tracking cells and gene expression patterns, but new probes are pushing the frontiers of what can be visualized. The past few years have also seen the merger of bioluminescence with optogenetic platforms. Luciferase-luciferin reactions can drive light-activatable proteins, ultimately triggering signal transduction and other downstream events. This review highlights these and other recent advances in bioluminescence technology, with an emphasis on tool development. We showcase how new luciferins and engineered luciferases are expanding the scope of optical imaging. We also highlight how bioluminescent systems are being leveraged not just for sensing-but also controlling-biological processes.
Collapse
Affiliation(s)
- Anna C Love
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Jennifer A Prescher
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA; Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
95
|
Thomas SE, Whitehouse AJ, Brown K, Burbaud S, Belardinelli J, Sangen J, Lahiri R, Libardo M, Gupta P, Malhotra S, Boshoff HIM, Jackson M, Abell C, Coyne A, Blundell TL, Floto RA, Mendes V. Fragment-based discovery of a new class of inhibitors targeting mycobacterial tRNA modification. Nucleic Acids Res 2020; 48:8099-8112. [PMID: 32602532 PMCID: PMC7641325 DOI: 10.1093/nar/gkaa539] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
Translational frameshift errors are often deleterious to the synthesis of functional proteins and could therefore be promoted therapeutically to kill bacteria. TrmD (tRNA-(N(1)G37) methyltransferase) is an essential tRNA modification enzyme in bacteria that prevents +1 errors in the reading frame during protein translation and represents an attractive potential target for the development of new antibiotics. Here, we describe the application of a structure-guided fragment-based drug discovery approach to the design of a new class of inhibitors against TrmD in Mycobacterium abscessus. Fragment library screening, followed by structure-guided chemical elaboration of hits, led to the rapid development of drug-like molecules with potent in vitro TrmD inhibitory activity. Several of these compounds exhibit activity against planktonic M. abscessus and M. tuberculosis as well as against intracellular M. abscessus and M. leprae, indicating their potential as the basis for a novel class of broad-spectrum mycobacterial drugs.
Collapse
Affiliation(s)
- Sherine E Thomas
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Andrew J Whitehouse
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Karen Brown
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
- Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge CB2 0AY, UK
| | - Sophie Burbaud
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Juan M Belardinelli
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Jasper Sangen
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Ramanuj Lahiri
- National Hansen's Disease Program, Healthcare Systems Bureau, Health Resources and Services Administration, Department of Health and Human Services, Baton Rouge, LA, USA
| | - Mark Daben J Libardo
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Pooja Gupta
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Sony Malhotra
- Birkbeck College, University of London, Malet Street WC1E7HX, UK
| | - Helena I M Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Chris Abell
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Anthony G Coyne
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Rodrigo Andres Floto
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
- Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge CB2 0AY, UK
| | - Vítor Mendes
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
96
|
Yang Z, Cui Q, Zhang M, Li Z, Wang M, Xu H. A lux-based Staphylococcus aureus bioluminescence screening assay for the detection/identification of antibiotics and prediction of antibiotic mechanisms. J Antibiot (Tokyo) 2020; 73:828-836. [PMID: 32678336 DOI: 10.1038/s41429-020-0349-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 06/09/2020] [Accepted: 06/30/2020] [Indexed: 11/09/2022]
Abstract
The need for the discovery of new antibiotics and solving the antibiotic resistance problem requires rapid detection of antibiotics, identification of known antibiotics, and prediction of antibiotic mechanisms. The bacterial lux genes encode proteins that convert chemical energy into photonic energy and lead to bioluminescence. Exploiting this phenomenon, we constructed a lux-based bioluminescence system in Staphylococcus aureus by expressing lux genes under the control of stress-inducible chaperon promoters. When experiencing antibiotic stress, these constructed reporter strains showed clear bioluminescence response. Therefore, this bioluminescence screening system can be used for the detection of antibiotics in unknown chemical mixtures. Further analysis of bioluminescence response patterns showed that: (1) these bioluminescence response patterns are highly antibiotic specific and therefore can be used for rapid and cheap identification of antibiotics; and that (2) antibiotics having the same mechanism of action have similar bioluminescence patterns and therefore these patterns can be used for the prediction of mechanism for an unknown antibiotic with good sensitivity and specificity. With this bioluminescence screening assay, the discovery and analysis of new antibiotics can be promoted, which benefits in solving the antibiotic resistance problem.
Collapse
Affiliation(s)
- Zhongjun Yang
- State Key Laboratory of Microbial Technology, Qilu Hospital, Shandong University, Qingdao, 266237, Shandong, China
| | - Qingyu Cui
- State Key Laboratory of Microbial Technology, Qilu Hospital, Shandong University, Qingdao, 266237, Shandong, China
| | - Mengge Zhang
- State Key Laboratory of Microbial Technology, Qilu Hospital, Shandong University, Qingdao, 266237, Shandong, China
| | - Zhiqiang Li
- Center for Optics Research and Engineering, Shandong University, Qingdao, 266237, Shandong, China
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, Qilu Hospital, Shandong University, Qingdao, 266237, Shandong, China.
| | - Hai Xu
- State Key Laboratory of Microbial Technology, Qilu Hospital, Shandong University, Qingdao, 266237, Shandong, China.
| |
Collapse
|
97
|
Synthesis and in vitro antitubercular activity of pyridine analouges against the resistant Mycobacterium tuberculosis. Bioorg Chem 2020; 102:104099. [PMID: 32711084 DOI: 10.1016/j.bioorg.2020.104099] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/11/2020] [Indexed: 01/19/2023]
Abstract
Mycobacterium tuberculosis (MTB) infection has become a growing health risk as multi-drug resistant strain (MDR-MTB) has emerged worldwide. The development of isoniazid (INH)-resistant M. tuberculosis strains dictate the need to re-design this old drug to create effective analogs against the resistant INH strains. Synthesis and the biological activity of isoniazid and pyridine derivatives were successfully carried out with elaborated characterization by spectral data. Amongst the synthesized compounds; 1 and 2 displayed encouraging antimycobacterial activity with IC50 of 3.2 µM and 1.5 µM against the H37Rv strain. The MIC of test compounds 1 and 2 were also assessed against the 5 drug resistant isolates (FQ-R1, INH-R1, INH-R2, RIF-R1 and RIF-R2) of MTB strains under aerobic conditions and compound 1 [MIC = 3.2 µM for FQ-R1; MIC = 140 µM for INH-R1; MIC = 160 µM for INH-R2; MIC = 2.4 µM towards RIF-R1; MIC = 4.2 µM for RIF-R2] and 2 [MIC = 3.3 µM for FQ-R1; MIC = 170 µM for INH-R1; MIC = 190 µM for INH-R2; MIC = 1.8 µM for RIF-R1; MIC = 8.4 µM for RIF-R2] have shown significant activity at non-cytotoxic concentration in comparison to the standard drug.
Collapse
|
98
|
Wu Q, Hossfeld A, Gerberick A, Saljoughian N, Tiwari C, Mehra S, Ganesan LP, Wozniak DJ, Rajaram MVS. Effect of Mycobacterium tuberculosis Enhancement of Macrophage P-Glycoprotein Expression and Activity on Intracellular Survival During Antituberculosis Drug Treatment. J Infect Dis 2020; 220:1989-1998. [PMID: 31412123 DOI: 10.1093/infdis/jiz405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Tuberculosis is caused by Mycobacterium tuberculosis. Recent emergence of multidrug-resistant (MDR) tuberculosis strains seriously threatens tuberculosis control and prevention. However, the role of macrophage multidrug resistance gene MDR1 on intracellular M. tuberculosis survival during antituberculosis drug treatment is not known. METHODS We used the human monocyte-derived macrophages to study the role of M. tuberculosis in regulation of MDR1 and drug resistance. RESULTS We discovered that M. tuberculosis infection increases the expression of macrophage MDR1 to extrude various chemical substances, including tuberculosis drugs, resulting in enhanced survival of intracellular M. tuberculosis. The pathway of regulation involves M. tuberculosis infection of macrophages and suppression of heat shock factor 1, a transcriptional regulator of MDR1 through the up-regulation of miR-431. Notably, nonpathogenic Mycobacterium smegmatis did not increase MDR1 expression, indicating active secretion of virulence factors in pathogenic M. tuberculosis contributing to this phenotype. Finally, inhibition of MDR1 improves antibiotic-mediated killing of M. tuberculosis. CONCLUSION We report a novel finding that M. tuberculosis up-regulates MDR1 during infection, which limits the exposure of M. tuberculosis to sublethal concentrations of antimicrobials. This condition promotes M. tuberculosis survival and potentially enhances the emergence of resistant variants.
Collapse
Affiliation(s)
- Qian Wu
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University and Wexner Medical Center, Columbus
| | - Austin Hossfeld
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University and Wexner Medical Center, Columbus
| | - Abigail Gerberick
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University and Wexner Medical Center, Columbus
| | - Noushin Saljoughian
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University and Wexner Medical Center, Columbus
| | - Charu Tiwari
- Department of Internal Medicine, College of Medicine, The Ohio State University and Wexner Medical Center, Columbus
| | - Smriti Mehra
- Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana
| | - Latha Prabha Ganesan
- Department of Internal Medicine, College of Medicine, The Ohio State University and Wexner Medical Center, Columbus
| | - Daniel J Wozniak
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University and Wexner Medical Center, Columbus.,Department of Microbiology, College of Medicine, The Ohio State University and Wexner Medical Center, Columbus
| | - Murugesan V S Rajaram
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University and Wexner Medical Center, Columbus
| |
Collapse
|
99
|
Estevez H, Palacios A, Gil D, Anguita J, Vallet-Regi M, González B, Prados-Rosales R, Luque-Garcia JL. Antimycobacterial Effect of Selenium Nanoparticles on Mycobacterium tuberculosis. Front Microbiol 2020; 11:800. [PMID: 32425916 PMCID: PMC7212347 DOI: 10.3389/fmicb.2020.00800] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/03/2020] [Indexed: 12/21/2022] Open
Abstract
Tuberculosis (TB) remains the leading cause of death from a single infection agent worldwide. In recent years, the occurrence of TB cases caused by drug-resistant strains has spread, and is expected to continue to grow. Therefore, the development of new alternative treatments to the use of antibiotics is highly important. In that sense, nanotechnology can play a very relevant role, due to the unique characteristics of nanoparticles. In fact, different types of nanoparticles have already been evaluated both as potential bactericides and as efficient drug delivery vehicles. In this work, the use of selenium nanoparticles (SeNPs) has been evaluated to inhibit the growth of two types of mycobacteria: Mycobacterium smegmatis (Msm) and Mycobacterium tuberculosis (Mtb). The results showed that SeNPs are able to inhibit the growth of both types of mycobacteria by damaging their cell envelope integrity. These results open a new opportunity for the use of this type of nanoparticles as antimycobacterial agents by themselves, or for the development of novel nanosystems that combine the action of these nanoparticles with other drugs.
Collapse
Affiliation(s)
- Hector Estevez
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Ainhoa Palacios
- Inflammation and Macrophage Plasticity Lab, CIC bioGUNE, Derio, Spain
| | - David Gil
- Electron Microscopy Platform, CIC bioGUNE, Derio, Spain
| | - Juan Anguita
- Inflammation and Macrophage Plasticity Lab, CIC bioGUNE, Derio, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Maria Vallet-Regi
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Complutense University of Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Blanca González
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Complutense University of Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Rafael Prados-Rosales
- Department of Preventive Medicine and Public Health and Microbiology, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Jose L Luque-Garcia
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
100
|
Zhou B, Shetye G, Yu Y, Santarsiero BD, Klein LL, Abad-Zapatero C, Wolf NM, Cheng J, Jin Y, Lee H, Suh JW, Lee H, Bisson J, McAlpine JB, Chen SN, Cho SH, Franzblau SG, Pauli GF. Antimycobacterial Rufomycin Analogues from Streptomyces atratus Strain MJM3502. JOURNAL OF NATURAL PRODUCTS 2020; 83:657-667. [PMID: 32031795 PMCID: PMC7384767 DOI: 10.1021/acs.jnatprod.9b01095] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This study represents a systematic chemical and biological study of the rufomycin (RUF) class of cyclic heptapeptides, which our anti-TB drug discovery efforts have identified as potentially promising anti-TB agents that newly target the caseinolytic protein C1, ClpC1. Eight new RUF analogues, rufomycins NBZ1-NBZ8 (1-8), as well as five known peptides (9-13) were isolated and characterized from the Streptomyces atratus strain MJM3502. Advanced Marfey's and X-ray crystallographic analysis led to the assignment of the absolute configuration of the RUFs. Several isolates exhibited potent activity against both pathogens M. tuberculosis H37Rv and M. abscessus, paired with favorable selectivity (selectivity index >60), which collectively underscores the promise of the rufomycins as potential anti-TB drug leads.
Collapse
Affiliation(s)
- Bin Zhou
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
| | - Gauri Shetye
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
| | - Yang Yu
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
| | - Bernard D. Santarsiero
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, 900 S. Ashland Street, Chicago, Illinois 60612, United States
| | - Larry L. Klein
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
| | - Cele Abad-Zapatero
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, 900 S. Ashland Street, Chicago, Illinois 60612, United States
| | - Nina M. Wolf
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
| | - Jinhua Cheng
- Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Cheoin-gu, Yongin-si, Gyeonggi-do, Republic of Korea
- Division of Bioscience and Bioinformatics, College of Natural Science, Myongji University, Cheoin-gu, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Yingyu Jin
- Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Cheoin-gu, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Hanki Lee
- Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Cheoin-gu, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Joo-Won Suh
- Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Cheoin-gu, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Hyun Lee
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, 900 S. Ashland Street, Chicago, Illinois 60612, United States
| | - Jonathan Bisson
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
| | - James B. McAlpine
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
| | - Shao-Nong Chen
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
| | - Sang-Hyun Cho
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
| | - Scott G. Franzblau
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
| | - Guido F. Pauli
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
| |
Collapse
|