51
|
Xie H, Sun Y, Cheng B, Xue S, Cheng D, Liu L, Meng L, Qiang S. Variation in ICE1 Methylation Primarily Determines Phenotypic Variation in Freezing Tolerance in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2019; 60:152-165. [PMID: 30295898 DOI: 10.1093/pcp/pcy197] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Indexed: 05/26/2023]
Abstract
Cold stress is a major abiotic factor plants face during their life cycle. Although plants often exhibit phenotypic variation in cold tolerance, the underlying mechanism remains poorly understood. In the present study, the 50% lethal temperature (LT50) values of 37 Arabidopsis thaliana accessions at latitudes from 15° to 58° ranged from -13.2°C to -4.9°C and were closely correlated with the cold climates of the collection sites. According to a methylation analysis of all C-repeat (CRT)-binding factor (CBF) pathway genes, the coding and promoter regions of AtICE1, a regulator of CBF genes, exhibited the greatest variability in methylation levels among the accessions and included 5-122 methylated cytosine residues. In contrast, unmethylated or only slightly methylated genes in the CBF pathway showed little variation among the accessions. According to a gene expression analysis of four selected A. thaliana populations with distinct methylation patterns, except for the down-regulated gene AtCBF2, the expression levels of all members of the CBF pathway were negatively correlated with AtICE1 gene methylation levels. Treatment of the four A. thaliana populations with the DNA methylation inhibitory reagent 5-azacytidine resulted in a 30.0-78.3% enhancement of freezing tolerance and decreases in LT50 values of approximately 1.9-3.6°C. Similar effects were observed in drm2 mutants, including 30.0-48.3% increases in freezing tolerance and decreases in LT50 values of approximately 0.7-3.4°C. Thus, the AtICE1 methylation-regulated transcription of CBF pathway genes is responsible for the phenotypic variation in the freezing tolerance observed in A. thaliana.
Collapse
Affiliation(s)
- Hongjie Xie
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Yuli Sun
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Biao Cheng
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Siming Xue
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Dan Cheng
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Linli Liu
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Lingchao Meng
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Sheng Qiang
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
52
|
Kuźnicki D, Meller B, Arasimowicz-Jelonek M, Braszewska-Zalewska A, Drozda A, Floryszak-Wieczorek J. BABA-Induced DNA Methylome Adjustment to Intergenerational Defense Priming in Potato to Phytophthora infestans. FRONTIERS IN PLANT SCIENCE 2019; 10:650. [PMID: 31214209 PMCID: PMC6554679 DOI: 10.3389/fpls.2019.00650] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 04/30/2019] [Indexed: 05/21/2023]
Abstract
We provide evidence that alterations in DNA methylation patterns contribute to the regulation of stress-responsive gene expression for an intergenerational resistance of β-aminobutyric acid (BABA)-primed potato to Phytophthora infestans. Plants exposed to BABA rapidly modified their methylation capacity toward genome-wide DNA hypermethylation. De novo induced DNA methylation (5-mC) correlated with the up-regulation of Chromomethylase 3 (CMT3), Domains rearranged methyltransferase 2 (DRM2), and Repressor of silencing 1 (ROS1) genes in potato. BABA transiently activated DNA hypermethylation in the promoter region of the R3a resistance gene triggering its downregulation in the absence of the oomycete pathogen. However, in the successive stages of priming, an excessive DNA methylation state changed into demethylation with the active involvement of potato DNA glycosylases. Interestingly, the 5-mC-mediated changes were transmitted into the next generation in the form of intergenerational stress memory. Descendants of the primed potato, which derived from tubers or seeds carrying the less methylated R3a promoter, showed a higher transcription of R3a that associated with an augmented intergenerational resistance to virulent P. infestans when compared to the inoculated progeny of unprimed plants. Furthermore, our study revealed that enhanced transcription of some SA-dependent genes (NPR1, StWRKY1, and PR1) was not directly linked with DNA methylation changes in the promoter region of these genes, but was a consequence of methylation-dependent alterations in the transcriptional network.
Collapse
Affiliation(s)
- Daniel Kuźnicki
- Department of Plant Physiology, Poznań University of Life Sciences, Poznań, Poland
| | - Barbara Meller
- Department of Plant Physiology, Poznań University of Life Sciences, Poznań, Poland
| | | | - Agnieszka Braszewska-Zalewska
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, The University of Silesia in Katowice, Katowice, Poland
| | - Andżelika Drozda
- Department of Plant Physiology, Poznań University of Life Sciences, Poznań, Poland
| | - Jolanta Floryszak-Wieczorek
- Department of Plant Physiology, Poznań University of Life Sciences, Poznań, Poland
- *Correspondence: Jolanta Floryszak-Wieczorek,
| |
Collapse
|
53
|
Sharma C, Kumar S, Saripalli G, Jain N, Raghuvanshi S, Sharma JB, Prabhu KV, Sharma PK, Balyan HS, Gupta PK. H3K4/K9 acetylation and Lr28-mediated expression of six leaf rust responsive genes in wheat (Triticum aestivum). Mol Genet Genomics 2018; 294:227-241. [PMID: 30298213 DOI: 10.1007/s00438-018-1500-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/28/2018] [Indexed: 10/28/2022]
Abstract
Development of leaf rust-resistant cultivars is a priority during wheat breeding, since leaf rust causes major losses in yield. Resistance against leaf rust due to Lr genes is partly controlled by epigenetic modifications including histone acetylation that is known to respond to biotic/abiotic stresses. In the present study, enrichment of H3K4ac and H3K9ac in promoters of six defense responsive genes (N-acetyltransferase, WRKY 40, WRKY 70, ASR1, Peroxidase 12 and Sarcosine oxidase) was compared with their expression in a pair of near-isogenic lines (NILs) for the gene Lr28 following inoculation with leaf rust pathotype '77-5'; ChIP-qPCR was used for this purpose. The proximal and distal promoters of these genes contained a number of motifs that are known to respond to biotic stresses. The enrichment of two acetylation marks changed with passage of time; changes in expression of two of the six genes (N-acetyltransferase and peroxidase12), largely matched with changes in H3K4/H3K9 acetylation patterns of the two promoter regions. For example, enrichment of both the marks matched with higher expression of N-acetyltransferase gene in susceptible NIL and the deacetylation (H3K4ac) largely matched with reduced gene expression in resistant NIL. In peroxidase12, enrichment of H3K4ac and H3K9ac largely matched with higher expression in both the NILs. In the remaining four genes, changes in H3 acetylation did not always match with gene expression levels. This indicated complexity in the regulation of the expression of these remaining four genes, which may be controlled by other epigenetic/genetic regulatory mechanisms that need further analysis.
Collapse
Affiliation(s)
- Chanchal Sharma
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India.,Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, Gyeongbuk, 38453, South Korea
| | - Santosh Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Gautam Saripalli
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India
| | - Neelu Jain
- Division of Genetics, ICAR-Indian Agricultural Research Institute (IARI), Pusa, New Delhi, 110022, India
| | - Saurabh Raghuvanshi
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - J B Sharma
- Division of Genetics, ICAR-Indian Agricultural Research Institute (IARI), Pusa, New Delhi, 110022, India
| | - K V Prabhu
- Division of Genetics, ICAR-Indian Agricultural Research Institute (IARI), Pusa, New Delhi, 110022, India
| | - P K Sharma
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India
| | - H S Balyan
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India
| | - P K Gupta
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India.
| |
Collapse
|
54
|
Rai KK, Rai N, Rai SP. Salicylic acid and nitric oxide alleviate high temperature induced oxidative damage in Lablab purpureus L plants by regulating bio-physical processes and DNA methylation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 128:72-88. [PMID: 29763836 DOI: 10.1016/j.plaphy.2018.04.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/03/2018] [Accepted: 04/21/2018] [Indexed: 06/08/2023]
Abstract
Salicylic acid (SA) and sodium nitroprusside (SNP, NO donor) modulates plant growth and development processes and recent findings have also revealed their involvement in the regulation of epigenetic factors under stress condition. In the present study, some of these factors were comparatively studied in hyacinth bean plants subjected to high temperature (HT) environment (40-42 °C) with and without exogenous application of SA and SNP under field condition. Exogenous application of SA and SNP substantially modulated the growth and biophysical process of hyacinth bean plants under HT environment. Exogenous application of SA and SNP also remarkably regulated the activities of antioxidant enzymes, modulated mRNA level of certain enzymes, improves plant water relation, enhance photosynthesis and thereby increasing plant defence under HT. Coupled restriction enzyme digestion-random amplification (CRED-RA) technique revealed that many methylation changes were "dose dependent" and HT significantly increased DNA damages as evidenced by both increase and decrease in bands profiles, methylation and de-methylation pattern. Thus, the result of the present study clearly shows that exogenous SA and SNP regulates DNA methylation pattern, modulates stress-responsive genes and can impart transient HT tolerance by synchronizing growth and physiological acclimatization of plants, thus narrowing the gaps between physio-biochemical and molecular events in addressing HT tolerance.
Collapse
Affiliation(s)
- Krishna Kumar Rai
- Indian Institute of Vegetable Research, Post Box-01, P.O.-Jakhini, Shahanshahpur, Varanasi, 221305, Uttar Pradesh, India; Laboratory of Morphogenesis, Centre of Advance Study in Botany, Department of Botany, Faculty of Science, Banaras Hindu University (BHU), Varanasi, 221005, Uttar Pradesh, India
| | - Nagendra Rai
- Indian Institute of Vegetable Research, Post Box-01, P.O.-Jakhini, Shahanshahpur, Varanasi, 221305, Uttar Pradesh, India
| | - Shashi Pandey Rai
- Laboratory of Morphogenesis, Centre of Advance Study in Botany, Department of Botany, Faculty of Science, Banaras Hindu University (BHU), Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
55
|
Plitta-Michalak BP, Naskret-Barciszewska MZ, Kotlarski S, Tomaszewski D, Tylkowski T, Barciszewski J, Chmielarz P, Michalak M. Changes in genomic 5-methylcytosine level mirror the response of orthodox (Acer platanoides L.) and recalcitrant (Acer pseudoplatanus L.) seeds to severe desiccation. TREE PHYSIOLOGY 2018; 38:617-629. [PMID: 29121348 DOI: 10.1093/treephys/tpx134] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 09/26/2017] [Indexed: 06/07/2023]
Abstract
Poor storability of recalcitrant seeds is due to their inability to tolerate low moisture content. Understanding the processes underlying their recalcitrance is a prerequisite to developing a maintenance strategy and prolonging their lifespan. Multiple studies have investigated the differences between orthodox (desiccation-tolerant) and recalcitrant (desiccation-sensitive) seeds. Information on epigenetic regulation, however, is lacking and thus limits our understanding of the processes defining the physiology of seeds. In the present comparative study, changes in the global levels of 5-methylcytosine (m5C) in orthodox and recalcitrant seeds of Acer platanoides L. and Acer pseudoplatanus L. were characterized during progressive stages of severe drying. Concomitant with their differential sensitivity to desiccation stress, we demonstrate variation in the response of embryonic axes and cotyledons to water deficit at the level of DNA methylation. Results indicate that desiccation-induced changes in m5C are both tissue- and seed category-specific and are highly correlated with recalcitrant seed viability. Moreover, we demonstrate that m5C global changes in response to desiccation are not retained in DNA isolated from seedlings, except in seedlings that are derived from strongly desiccated orthodox seeds (moisture content of 3.5%). Finally, the potential utilization of m5C status as a universal seed viability marker is discussed.
Collapse
Affiliation(s)
| | | | - Szymon Kotlarski
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| | - Dominik Tomaszewski
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| | - Tadeusz Tylkowski
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| | - Jan Barciszewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Pawel Chmielarz
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| | - Marcin Michalak
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| |
Collapse
|
56
|
Byeon B, Bilichak A, Kovalchuk I. Tissue-specific heat-induced changes in the expression of ncRNA fragments in Brassica rapa plants. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.03.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
57
|
Annacondia ML, Magerøy MH, Martinez G. Stress response regulation by epigenetic mechanisms: changing of the guards. PHYSIOLOGIA PLANTARUM 2018; 162:239-250. [PMID: 29080251 DOI: 10.1111/ppl.12662] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/25/2017] [Accepted: 10/25/2017] [Indexed: 05/23/2023]
Abstract
Plants are sessile organisms that lack a specialized immune system to cope with biotic and abiotic stress. Instead, plants have complex regulatory networks that determine the appropriate distribution of resources between the developmental and the defense programs. In the last years, epigenetic regulation of repeats and gene expression has evolved as an important player in the transcriptional regulation of stress-related genes. Here, we review the current knowledge about how different stresses interact with different levels of epigenetic control of the genome. Moreover, we analyze the different examples of transgenerational epigenetic inheritance and connect them with the known features of genome epigenetic regulation. Although yet to be explored, the interplay between epigenetics and stress resistance seems to be a relevant and dynamic player of the interaction of plants with their environments.
Collapse
Affiliation(s)
- Maria Luz Annacondia
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | | | - German Martinez
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| |
Collapse
|
58
|
Epigenetics and Epigenomics of Plants. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 164:237-261. [DOI: 10.1007/10_2017_51] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
59
|
Lafon-Placette C, Le Gac AL, Chauveau D, Segura V, Delaunay A, Lesage-Descauses MC, Hummel I, Cohen D, Jesson B, Le Thiec D, Bogeat-Triboulot MB, Brignolas F, Maury S. Changes in the epigenome and transcriptome of the poplar shoot apical meristem in response to water availability affect preferentially hormone pathways. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:537-551. [PMID: 29211860 DOI: 10.1093/jxb/erx409] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/25/2017] [Indexed: 05/04/2023]
Abstract
The adaptive capacity of long-lived organisms such as trees to the predicted climate changes, including severe and successive drought episodes, will depend on the presence of genetic diversity and phenotypic plasticity. Here, the involvement of epigenetic mechanisms in phenotypic plasticity toward soil water availability was examined in Populus×euramericana. This work aimed at characterizing (i) the transcriptome plasticity, (ii) the genome-wide plasticity of DNA methylation, and (iii) the function of genes affected by a drought-rewatering cycle in the shoot apical meristem. Using microarray chips, differentially expressed genes (DEGs) and differentially methylated regions (DMRs) were identified for each water regime. The rewatering condition was associated with the highest variations of both gene expression and DNA methylation. Changes in methylation were observed particularly in the body of expressed genes and to a lesser extent in transposable elements. Together, DEGs and DMRs were significantly enriched in genes related to phytohormone metabolism or signaling pathways. Altogether, shoot apical meristem responses to changes in water availability involved coordinated variations in DNA methylation, as well as in gene expression, with a specific targeting of genes involved in hormone pathways, a factor that may enable phenotypic plasticity.
Collapse
Affiliation(s)
| | | | | | | | - Alain Delaunay
- LBLGC EA 1207, INRA, Université d'Orléans, USC 1328, France
| | | | - Irène Hummel
- EEF, INRA Grand-Est-Nancy, Université de Lorraine, UMR 1137, France
| | - David Cohen
- EEF, INRA Grand-Est-Nancy, Université de Lorraine, UMR 1137, France
| | | | - Didier Le Thiec
- EEF, INRA Grand-Est-Nancy, Université de Lorraine, UMR 1137, France
| | | | | | - Stéphane Maury
- LBLGC EA 1207, INRA, Université d'Orléans, USC 1328, France
| |
Collapse
|
60
|
Bilichak A, Kovalchuk I. Analysis of Global Genome Methylation Using the Cytosine-Extension Assay. Methods Mol Biol 2018; 1456:73-79. [PMID: 27770358 DOI: 10.1007/978-1-4899-7708-3_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DNA methylation is a reversible covalent chemical modification of DNA intended to regulate chromatin structure and gene expression in a cell- and tissue-specific manner and in response to the environment. Cytosine methylation is predominantly occurring in plants, and cytosine nucleotides in plants can be methylated at symmetrical (CpG and CpHpG) and nonsymmetrical sites. Although there exists a number of various methods for the detection of cytosine methylation, most of them are either laborious or expensive or both. Here, we describe a quick inexpensive method for the analysis of global genome methylation using a cytosine-extension assay. The assay can be used for the analysis of the total level of CpG, CpHpG, and CpHpH methylation in a given sample of plant DNA.
Collapse
Affiliation(s)
- Andriy Bilichak
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, AB, Canada.
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB, Canada, T1K 3M4
| |
Collapse
|
61
|
Yao Y, Kovalchuk I. Exposure to zebularine and 5-azaC triggers microsatellite instability in the exposed Arabidopsis thaliana plants and their progeny. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2017.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
62
|
Sexual-lineage-specific DNA methylation regulates meiosis in Arabidopsis. Nat Genet 2017; 50:130-137. [PMID: 29255257 DOI: 10.1038/s41588-017-0008-5] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/10/2017] [Indexed: 01/21/2023]
Abstract
DNA methylation regulates eukaryotic gene expression and is extensively reprogrammed during animal development. However, whether developmental methylation reprogramming during the sporophytic life cycle of flowering plants regulates genes is presently unknown. Here we report a distinctive gene-targeted RNA-directed DNA methylation (RdDM) activity in the Arabidopsis thaliana male sexual lineage that regulates gene expression in meiocytes. Loss of sexual-lineage-specific RdDM causes mis-splicing of the MPS1 gene (also known as PRD2), thereby disrupting meiosis. Our results establish a regulatory paradigm in which de novo methylation creates a cell-lineage-specific epigenetic signature that controls gene expression and contributes to cellular function in flowering plants.
Collapse
|
63
|
Richards CL, Alonso C, Becker C, Bossdorf O, Bucher E, Colomé-Tatché M, Durka W, Engelhardt J, Gaspar B, Gogol-Döring A, Grosse I, van Gurp TP, Heer K, Kronholm I, Lampei C, Latzel V, Mirouze M, Opgenoorth L, Paun O, Prohaska SJ, Rensing SA, Stadler PF, Trucchi E, Ullrich K, Verhoeven KJF. Ecological plant epigenetics: Evidence from model and non-model species, and the way forward. Ecol Lett 2017; 20:1576-1590. [PMID: 29027325 DOI: 10.1111/ele.12858] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/15/2017] [Accepted: 09/04/2017] [Indexed: 12/15/2022]
Abstract
Growing evidence shows that epigenetic mechanisms contribute to complex traits, with implications across many fields of biology. In plant ecology, recent studies have attempted to merge ecological experiments with epigenetic analyses to elucidate the contribution of epigenetics to plant phenotypes, stress responses, adaptation to habitat, and range distributions. While there has been some progress in revealing the role of epigenetics in ecological processes, studies with non-model species have so far been limited to describing broad patterns based on anonymous markers of DNA methylation. In contrast, studies with model species have benefited from powerful genomic resources, which contribute to a more mechanistic understanding but have limited ecological realism. Understanding the significance of epigenetics for plant ecology requires increased transfer of knowledge and methods from model species research to genomes of evolutionarily divergent species, and examination of responses to complex natural environments at a more mechanistic level. This requires transforming genomics tools specifically for studying non-model species, which is challenging given the large and often polyploid genomes of plants. Collaboration among molecular geneticists, ecologists and bioinformaticians promises to enhance our understanding of the mutual links between genome function and ecological processes.
Collapse
Affiliation(s)
- Christina L Richards
- Department of Integrative Biology, University of South Florida, Tampa, FL, 33620, USA
| | | | - Claude Becker
- Gregor Mendel Institute of Molecular Plant Biology, 1030, Vienna, Austrian Academy of Sciences, Vienna Biocenter (VBC), Austria
| | - Oliver Bossdorf
- Plant Evolutionary Ecology, University of Tübingen, 72076, Tübingen, Germany
| | - Etienne Bucher
- Institut de Recherche en Horticulture et Semences, 49071, Beaucouzé Cedex, France
| | - Maria Colomé-Tatché
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, 9713, Groningen, The Netherlands.,Institute of Computational Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany.,School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany
| | - Walter Durka
- Department of Community Ecology, Helmholtz Centre for Environmental Research - UFZ, 06120, Halle, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
| | - Jan Engelhardt
- Institut für Informatik, University of Leipzig, 04107, Leipzig, Germany
| | - Bence Gaspar
- Plant Evolutionary Ecology, University of Tübingen, 72076, Tübingen, Germany
| | - Andreas Gogol-Döring
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany.,Institute of Computer Science, University of Halle, 06120, Halle, Germany
| | - Ivo Grosse
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany.,Institute of Computer Science, University of Halle, 06120, Halle, Germany
| | - Thomas P van Gurp
- Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Katrin Heer
- Conservation Biology, Philipps-University of Marburg, 35037, Marburg, Germany
| | - Ilkka Kronholm
- Department of Biological and Environmental Sciences, Center of Excellence in Biological Interactions, University of Jyväskylä, 40014, Jyväskylän yliopisto, Finland
| | - Christian Lampei
- Institute of Plant Breeding, Seed Science and Population Genetics, 70599, Stuttgart, Germany
| | - Vít Latzel
- Institute of Botany, The Czech Academy of Sciences, 25243, Průhonice, Czech Republic
| | - Marie Mirouze
- Institut de Recherche pour le Développement, Laboratoire Génome et Développement des Plantes, 66860, Perpignan, France
| | - Lars Opgenoorth
- Department of Ecology, Philipps-University Marburg, 35037, Marburg, Germany
| | - Ovidiu Paun
- Plant Ecological Genomics, University of Vienna, 1030, Vienna, Austria
| | - Sonja J Prohaska
- Institut für Informatik, University of Leipzig, 04107, Leipzig, Germany.,The Santa Fe Institute, Santa Fe NM, 87501, USA
| | - Stefan A Rensing
- Plant Cell Biology, Philipps-University Marburg, 35037, Marburg, Germany.,BIOSS Centre for Biological Signaling Studies, University of Freiburg, 79098, Freiburg, Germany
| | - Peter F Stadler
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany.,Institut für Informatik, University of Leipzig, 04107, Leipzig, Germany.,The Santa Fe Institute, Santa Fe NM, 87501, USA.,Max Planck Institute for Mathematics in the Sciences, 04103, Leipzig, Germany
| | - Emiliano Trucchi
- Plant Ecological Genomics, University of Vienna, 1030, Vienna, Austria
| | - Kristian Ullrich
- Plant Cell Biology, Philipps-University Marburg, 35037, Marburg, Germany
| | - Koen J F Verhoeven
- Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| |
Collapse
|
64
|
Kalubi KN, Mehes-Smith M, Spiers G, Omri A. Variation in whole DNA methylation in red maple (Acer rubrum) populations from a mining region: association with metal contamination and cation exchange capacity (CEC) in podzolic soils. ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:405-414. [PMID: 28204976 DOI: 10.1007/s10646-017-1773-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/02/2017] [Indexed: 06/06/2023]
Abstract
Although a number of publications have provided convincing evidence that abiotic stresses such as drought and high salinity are involved in DNA methylation reports on the effects of metal contamination, pH, and cation exchange on DNA modifications are limited. The main objective of the present study is to determine the relationship between metal contamination and Cation exchange capacity (CEC) on whole DNA modifications. Metal analysis confirms that nickel and copper are the main contaminants in sampled sites within the Greater Sudbury Region (Ontario, Canada) and liming has increased soil pH significantly even after 30 years following dolomitic limestone applications. The estimated CEC values varied significantly among sites, ranging between 1.8 and 10.5 cmol(+) kg-1, with a strong relationship being observed between CEC and pH (r = 0.96**). Cation exchange capacity, significantly lower in highly metal contaminated sites compared to both reference and less contaminated sites, was higher in the higher organic matter limed compared to unlimed sites. There was a significant variation in the level of cytosine methylation among the metal-contaminated sites. Significant and strong negative correlations between [5mdC]/[dG] and bioavailable nickel (r = -0.71**) or copper (r = -0.72**) contents were observed. The analysis of genomic DNA for adenine methylation in this study showed a very low level of [6N-mdA]/dT] in Acer rubrum plants analyzed ranging from 0 to 0.08%. Significant and very strong positive correlation was observed between [6N-mdA]/dT] and soil bioavailable nickel (r = 0.78**) and copper (r = 0.88**) content. This suggests that the increased bioavailable metal levels associated with contamination by nickel and copper particulates are associated with cytosine and adenine methylation.
Collapse
Affiliation(s)
- K N Kalubi
- Biomolecular Sciences Program, Laurentian University, Sudbury, ON, P3E 2C6, Canada
| | - M Mehes-Smith
- Department of Biology, Laurentian University, Sudbury, ON, P3E 2C6, Canada.
| | - G Spiers
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, P3E 2C6, Canada
| | - A Omri
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, P3E 2C6, Canada
| |
Collapse
|
65
|
Chen J, Zhang Q, Wang Q, Feng M, Li Y, Meng Y, Zhang Y, Liu G, Ma Z, Wu H, Gao J, Ma N. RhMKK9, a rose MAP KINASE KINASE gene, is involved in rehydration-triggered ethylene production in rose gynoecia. BMC PLANT BIOLOGY 2017; 17:51. [PMID: 28231772 PMCID: PMC5322680 DOI: 10.1186/s12870-017-0999-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 02/09/2017] [Indexed: 05/04/2023]
Abstract
BACKGROUND Flower opening is an important process in the life cycle of flowering plants and is influenced by various endogenous and environmental factors. Our previous work demonstrated that rose (Rosa hybrida) flowers are highly sensitive to dehydration during flower opening and the water recovery process after dehydration induced ethylene production rapidly in flower gynoecia. In addition, this temporal- and spatial-specific ethylene production is attributed to a transient but robust activation of the rose MAP KINASE6-ACC SYNTHASE1 (RhMPK6-RhACS1) cascade in gynoecia. However, the upstream component of RhMPK6-RhACS1 is unknown, although RhMKK9 (MAP KINASE KINASE9), a rose homologue of Arabidopsis MKK9, could activate RhMPK6 in vitro. In this study, we monitored RhMKK2/4/5/9 expression, the potential upstream kinase to RhMPK6, in rose gynoecia during dehydration and rehydration. RESULTS We found only RhMKK9 was rapidly and strongly induced by rehydration. Silencing of RhMKK9 significantly decreased rehydration-triggered ethylene production. Consistently, the expression of several ethylene-responsive genes was down regulated in the petals of RhMKK9-silenced flowers. Moreover, we detected the DNA methylation level in the promoter and gene body of RhMKK9 by Chop-PCR. The results showed that rehydration specifically elevated the DNA methylation level on the RhMKK9 gene body, whereas it resulted in hypomethylation in its promoter. CONCLUSIONS Our results showed that RhMKK9 possibly acts as the upstream component of the RhMKK9-RhMPK6-RhACS1 cascade and is responsible for water recovery-triggered ethylene production in rose gynoecia, and epigenetic DNA methylation is involved in the regulation of RhMKK9 expression by rehydration.
Collapse
Affiliation(s)
- Jiwei Chen
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193 China
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 China
| | - Qian Zhang
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193 China
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 China
| | - Qigang Wang
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| | - Ming Feng
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193 China
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 China
| | - Yang Li
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193 China
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 China
| | - Yonglu Meng
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193 China
- College of Biology and Environmental Engineering, Provincial Key Laboratory of Biocontrol, Guiyang University, Guiyang, 550005 China
| | - Yi Zhang
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193 China
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 China
| | - Guoqin Liu
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193 China
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 China
| | - Zhimin Ma
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193 China
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 China
| | - Hongzhi Wu
- College of Horticulture and Landscape, University, Yunnan Agricultural University, Kunming, 650201 China
| | - Junping Gao
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193 China
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 China
| | - Nan Ma
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193 China
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 China
| |
Collapse
|
66
|
Li G, Deng Y, Geng Y, Zhou C, Wang Y, Zhang W, Song Z, Gao L, Yang J. Differentially Expressed microRNAs and Target Genes Associated with Plastic Internode Elongation in Alternanthera philoxeroides in Contrasting Hydrological Habitats. FRONTIERS IN PLANT SCIENCE 2017; 8:2078. [PMID: 29259617 PMCID: PMC5723390 DOI: 10.3389/fpls.2017.02078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/21/2017] [Indexed: 05/10/2023]
Abstract
Phenotypic plasticity is crucial for plants to survive in changing environments. Discovering microRNAs, identifying their targets and further inferring microRNA functions in mediating plastic developmental responses to environmental changes have been a critical strategy for understanding the underlying molecular mechanisms of phenotypic plasticity. In this study, the dynamic expression patterns of microRNAs under contrasting hydrological habitats in the amphibious species Alternanthera philoxeroides were identified by time course expression profiling using high-throughput sequencing technology. A total of 128 known and 18 novel microRNAs were found to be differentially expressed under contrasting hydrological habitats. The microRNA:mRNA pairs potentially associated with plastic internode elongation were identified by integrative analysis of microRNA and mRNA expression profiles, and were validated by qRT-PCR and 5' RLM-RACE. The results showed that both the universal microRNAs conserved across different plants and the unique microRNAs novelly identified in A. philoxeroides were involved in the responses to varied water regimes. The results also showed that most of the differentially expressed microRNAs were transiently up-/down-regulated at certain time points during the treatments. The fine-scale temporal changes in microRNA expression highlighted the importance of time-series sampling in identifying stress-responsive microRNAs and analyzing their role in stress response/tolerance.
Collapse
Affiliation(s)
- Gengyun Li
- Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Ying Deng
- Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education, Fudan University, Shanghai, China
| | - Yupeng Geng
- Institute of Ecology and Geobotany, Yunnan University, Kunming, China
| | - Chengchuan Zhou
- Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education, Fudan University, Shanghai, China
| | - Yuguo Wang
- Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education, Fudan University, Shanghai, China
| | - Wenju Zhang
- Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education, Fudan University, Shanghai, China
| | - Zhiping Song
- Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education, Fudan University, Shanghai, China
| | - Lexuan Gao
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
- *Correspondence: Lexuan Gao, Ji Yang,
| | - Ji Yang
- Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
- *Correspondence: Lexuan Gao, Ji Yang,
| |
Collapse
|
67
|
Viggiano L, de Pinto MC. Dynamic DNA Methylation Patterns in Stress Response. PLANT EPIGENETICS 2017. [DOI: 10.1007/978-3-319-55520-1_15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
68
|
Wong MM, Chong GL, Verslues PE. Epigenetics and RNA Processing: Connections to Drought, Salt, and ABA? Methods Mol Biol 2017; 1631:3-21. [PMID: 28735388 DOI: 10.1007/978-1-4939-7136-7_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
There have been great research advances in epigenetics, RNA splicing, and mRNA processing over recent years. In parallel, there have been many advances in abiotic stress and Abscisic Acid (ABA) signaling. Here we overview studies that have examined stress-induced changes in the epigenome and RNA processing as well as cases where disrupting these processes changes the plant response to abiotic stress. We also highlight some examples where specific connections of stress or ABA signaling to epigenetics or RNA processing have been found. By implication, this also points out cases where such mechanistic connections are likely to exist but are yet to be characterized. In the absence of such specific connections to stress signaling, it should be kept in mind that stress sensitivity phenotypes of some epigenetic or RNA processing mutants maybe the result of indirect, pleiotropic effects and thus may perhaps not indicate a direct function in stress acclimation.
Collapse
Affiliation(s)
- Min May Wong
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Academia Road, Taipei, 11529, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan.,Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, 40227, Taiwan
| | - Geeng Loo Chong
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Academia Road, Taipei, 11529, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan.,Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, 40227, Taiwan
| | - Paul E Verslues
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Academia Road, Taipei, 11529, Taiwan. .,Biotechnology Center, National Chung-Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
69
|
Pandey G, Sharma N, Sahu PP, Prasad M. Chromatin-Based Epigenetic Regulation of Plant Abiotic Stress Response. Curr Genomics 2016; 17:490-498. [PMID: 28217005 PMCID: PMC5282600 DOI: 10.2174/1389202917666160520103914] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 12/10/2015] [Accepted: 12/13/2015] [Indexed: 12/15/2022] Open
Abstract
Plants are continuously exposed to various abiotic and biotic factors limiting their growth and reproduction. In response, they need various sophisticated ways to adapt to adverse environmental conditions without compromising their proper development, reproductive success and eventually survival. This requires an intricate network to regulate gene expression at transcriptional and post-transcriptional levels, including epigenetic switches. Changes in chromatin modifications such as DNA and histone methylation have been observed in plants upon exposure to several abiotic stresses. In the present review, we highlight the changes of DNA methylation in diverse plants in response to several abiotic stresses such as salinity, drought, cold and heat. We also discuss the progresses made in understanding how these DNA methylation changes might contribute to the abiotic stress tolerance.
Collapse
Affiliation(s)
- Garima Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Namisha Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Pranav Pankaj Sahu
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India,Address correspondence to this author at the National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India; Tel: 91-11-26735160; Fax: 91-11-26741658; 26741146;, E-mails: ,
| |
Collapse
|
70
|
Herman JJ, Sultan SE. DNA methylation mediates genetic variation for adaptive transgenerational plasticity. Proc Biol Sci 2016; 283:20160988. [PMID: 27629032 PMCID: PMC5031651 DOI: 10.1098/rspb.2016.0988] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/24/2016] [Indexed: 12/21/2022] Open
Abstract
Environmental stresses experienced by individual parents can influence offspring phenotypes in ways that enhance survival under similar conditions. Although such adaptive transgenerational plasticity is well documented, its transmission mechanisms are generally unknown. One possible mechanism is environmentally induced DNA methylation changes. We tested this hypothesis in the annual plant Polygonum persicaria, a species known to express adaptive transgenerational plasticity in response to parental drought stress. Replicate plants of 12 genetic lines (sampled from natural populations) were grown in dry versus moist soil. Their offspring were exposed to the demethylating agent zebularine or to control conditions during germination and then grown in dry soil. Under control germination conditions, the offspring of drought-stressed parents grew longer root systems and attained greater biomass compared with offspring of well-watered parents of the same genetic lines. Demethylation removed these adaptive developmental effects of parental drought, but did not significantly alter phenotypic expression in offspring of well-watered parents. The effect of demethylation on the expression of the parental drought effect varied among genetic lines. Differential seed provisioning did not contribute to the effect of parental drought on offspring phenotypes. These results demonstrate that DNA methylation can mediate adaptive, genotype-specific effects of parental stress on offspring phenotypes.
Collapse
Affiliation(s)
- Jacob J Herman
- Biology Department, Wesleyan University, Middletown, CT 06459, USA
| | - Sonia E Sultan
- Biology Department, Wesleyan University, Middletown, CT 06459, USA
| |
Collapse
|
71
|
Latzel V, Rendina González AP, Rosenthal J. Epigenetic Memory as a Basis for Intelligent Behavior in Clonal Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:1354. [PMID: 27630664 PMCID: PMC5006084 DOI: 10.3389/fpls.2016.01354] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 08/24/2016] [Indexed: 05/20/2023]
Abstract
Environmentally induced epigenetic change enables plants to remember past environmental interactions. If this memory capability is exploited to prepare plants for future challenges, it can provide a basis for highly sophisticated behavior, considered intelligent by some. Against the backdrop of an overview of plant intelligence, we hypothesize: (1) that the capability of plants to engage in such intelligent behavior increases with the additional level of complexity afforded by clonality, and; (2) that more faithful inheritance of epigenetic information in clonal plants, in conjunction with information exchange and coordination between connected ramets, is likely to enable especially advanced intelligent behavior in this group. We therefore further hypothesize that this behavior provides ecological and evolutionary advantages to clonal plants, possibly explaining, at least in part, their widespread success. Finally, we suggest avenues of inquiry to enable assessing intelligent behavior and the role of epigenetic memory in clonal species.
Collapse
Affiliation(s)
- Vít Latzel
- Institute of Botany of Czech Academy of SciencesPrůhonice, Czech Republic
| | | | | |
Collapse
|
72
|
Cao L, Yu N, Li J, Qi Z, Wang D, Chen L. Heritability and Reversibility of DNA Methylation Induced by in vitro Grafting between Brassica juncea and B. oleracea. Sci Rep 2016; 6:27233. [PMID: 27257143 PMCID: PMC4891673 DOI: 10.1038/srep27233] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 05/17/2016] [Indexed: 01/07/2023] Open
Abstract
Grafting between tuber mustard and red cabbage produced a chimeric shoot apical meristem (SAM) of TTC, consisting of Layers I and II from Tuber mustard and Layer III from red Cabbage. Phenotypic variations, which mainly showed in leaf shape and SAM, were observed in selfed progenies GSn (GS = grafting-selfing, n = generations) of TTC. Here the heritability of phenotypic variation and its association with DNA methylation changes in GSn were investigated. Variation in leaf shape was found to be stably inherited to GS5, but SAM variation reverted over generations. Subsequent measurement of DNA methylation in GS1 revealed 5.29–6.59% methylation changes compared with tuber mustard (TTT), and 31.58% of these changes were stably transmitted to GS5, but the remainder reverted to the original status over generations, suggesting grafting-induced DNA methylation changes could be both heritable and reversible. Sequence analysis of differentially methylated fragments (DMFs) revealed methylation mainly changed within transposons and exon regions, which further affected the expression of genes, including flowering time- and gibberellin response-related genes. Interestingly, DMFs could match differentially expressed siRNA of GS1, GS3 and GS5, indicating that grafting-induced DNA methylation could be directed by siRNA changes. These results suggest grafting-induced DNA methylation may contribute to phenotypic variations induced by grafting.
Collapse
Affiliation(s)
- Liwen Cao
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, P. R. China.,Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Ningning Yu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, P. R. China.,Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Junxing Li
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, P. R. China.,Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Zhenyu Qi
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, P. R. China.,Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Dan Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, P. R. China.,Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Liping Chen
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, P. R. China.,Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
73
|
Wibowo A, Becker C, Marconi G, Durr J, Price J, Hagmann J, Papareddy R, Putra H, Kageyama J, Becker J, Weigel D, Gutierrez-Marcos J. Hyperosmotic stress memory in Arabidopsis is mediated by distinct epigenetically labile sites in the genome and is restricted in the male germline by DNA glycosylase activity. eLife 2016; 5:13546. [PMID: 27242129 PMCID: PMC4887212 DOI: 10.7554/elife.13546] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/25/2016] [Indexed: 12/31/2022] Open
Abstract
Inducible epigenetic changes in eukaryotes are believed to enable rapid adaptation to environmental fluctuations. We have found distinct regions of the Arabidopsis genome that are susceptible to DNA (de)methylation in response to hyperosmotic stress. The stress-induced epigenetic changes are associated with conditionally heritable adaptive phenotypic stress responses. However, these stress responses are primarily transmitted to the next generation through the female lineage due to widespread DNA glycosylase activity in the male germline, and extensively reset in the absence of stress. Using the CNI1/ATL31 locus as an example, we demonstrate that epigenetically targeted sequences function as distantly-acting control elements of antisense long non-coding RNAs, which in turn regulate targeted gene expression in response to stress. Collectively, our findings reveal that plants use a highly dynamic maternal 'short-term stress memory' with which to respond to adverse external conditions. This transient memory relies on the DNA methylation machinery and associated transcriptional changes to extend the phenotypic plasticity accessible to the immediate offspring.
Collapse
Affiliation(s)
- Anjar Wibowo
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Claude Becker
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Gianpiero Marconi
- School of Life Sciences, University of Warwick, Coventry, United Kingdom.,Department of Agricultural, Food and Environmental Science, University of Perugia, Perugia, Italy
| | - Julius Durr
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Jonathan Price
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Jorg Hagmann
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Ranjith Papareddy
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Hadi Putra
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Jorge Kageyama
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Jorg Becker
- Instituto Gulbenkian de Ciencia, Oeiras, Portugal
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | |
Collapse
|
74
|
Groot MP, Kooke R, Knoben N, Vergeer P, Keurentjes JJB, Ouborg NJ, Verhoeven KJF. Effects of Multi-Generational Stress Exposure and Offspring Environment on the Expression and Persistence of Transgenerational Effects in Arabidopsis thaliana. PLoS One 2016; 11:e0151566. [PMID: 26982489 PMCID: PMC4794210 DOI: 10.1371/journal.pone.0151566] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/01/2016] [Indexed: 01/01/2023] Open
Abstract
Plant phenotypes can be affected by environments experienced by their parents. Parental environmental effects are reported for the first offspring generation and some studies showed persisting environmental effects in second and further offspring generations. However, the expression of these transgenerational effects proved context-dependent and their reproducibility can be low. Here we study the context-dependency of transgenerational effects by evaluating parental and transgenerational effects under a range of parental induction and offspring evaluation conditions. We systematically evaluated two factors that can influence the expression of transgenerational effects: single- versus multiple-generation exposure and offspring environment. For this purpose, we exposed a single homozygous Arabidopsis thaliana Col-0 line to salt stress for up to three generations and evaluated offspring performance under control and salt conditions in a climate chamber and in a natural environment. Parental as well as transgenerational effects were observed in almost all traits and all environments and traced back as far as great-grandparental environments. The length of exposure exerted strong effects; multiple-generation exposure often reduced the expression of the parental effect compared to single-generation exposure. Furthermore, the expression of transgenerational effects strongly depended on offspring environment for rosette diameter and flowering time, with opposite effects observed in field and greenhouse evaluation environments. Our results provide important new insights into the occurrence of transgenerational effects and contribute to a better understanding of the context-dependency of these effects.
Collapse
Affiliation(s)
- Maartje P. Groot
- Experimental Plant Ecology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands
- * E-mail:
| | - Rik Kooke
- Department of Plant Physiology, Wageningen University, Wageningen, The Netherlands
- Department of Genetics, Wageningen University, Wageningen, The Netherlands
- Centre for BioSystems Genomics, Wageningen, The Netherlands
| | - Nieke Knoben
- Experimental Plant Ecology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Philippine Vergeer
- Plant Ecology and Nature Conservation Group, Wageningen, The Netherlands
| | - Joost J. B. Keurentjes
- Department of Genetics, Wageningen University, Wageningen, The Netherlands
- Centre for BioSystems Genomics, Wageningen, The Netherlands
| | - N. Joop Ouborg
- Experimental Plant Ecology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Koen J. F. Verhoeven
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Terrestrial Ecology, Wageningen, The Netherlands
| |
Collapse
|
75
|
Bilichak A, Kovalchuk I. Transgenerational response to stress in plants and its application for breeding. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2081-92. [PMID: 26944635 DOI: 10.1093/jxb/erw066] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A growing number of reports indicate that plants possess the ability to maintain a memory of stress exposure throughout their ontogenesis and even transmit it faithfully to the following generation. Some of the features of transgenerational memory include elevated genome instability, a higher tolerance to stress experienced by parents, and a cross-tolerance. Although the underlying molecular mechanisms of this phenomenon are not clear, a likely contributing factor is the absence of full-scale reprogramming of the epigenetic landscape during gametogenesis; therefore, epigenetic marks can occasionally escape the reprogramming process and can be passed on to the progeny. To date, it is not entirely clear which part of the epigenetic landscape is more likely to escape the reprogramming events, and whether such a process is random or directed and sequence specific. The identification of specific epigenetic marks associated with specific stressors would allow generation of stress-tolerant plants through the recently discovered techniques for precision epigenome engineering. The engineered DNA-binding domains (e.g. ZF, TALE, and dCas9) fused to particular chromatin modifiers would make it possible to target epigenetic modifications to the selected loci, probably allowing stress tolerance to be achieved in the progeny. This approach, termed epigenetic breeding, along with other methods has great potential to be used for both the assessment of the propagation of epigenetic marks across generations and trait improvement in plants. In this communication, we provide a short overview of recent reports demonstrating a transgenerational response to stress in plants, and discuss the underlying potential molecular mechanisms of this phenomenon and its use for plant biotechnology applications.
Collapse
Affiliation(s)
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, University Drive 4401, Lethbridge, AB, T1K 3M4, Canada
| |
Collapse
|
76
|
Virdi KS, Wamboldt Y, Kundariya H, Laurie JD, Keren I, Kumar KRS, Block A, Basset G, Luebker S, Elowsky C, Day PM, Roose JL, Bricker TM, Elthon T, Mackenzie SA. MSH1 Is a Plant Organellar DNA Binding and Thylakoid Protein under Precise Spatial Regulation to Alter Development. MOLECULAR PLANT 2016; 9:245-260. [PMID: 26584715 DOI: 10.1016/j.molp.2015.10.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 10/20/2015] [Accepted: 10/29/2015] [Indexed: 05/20/2023]
Abstract
As metabolic centers, plant organelles participate in maintenance, defense, and signaling. MSH1 is a plant-specific protein involved in organellar genome stability in mitochondria and plastids. Plastid depletion of MSH1 causes heritable, non-genetic changes in development and DNA methylation. We investigated the msh1 phenotype using hemi-complementation mutants and transgene-null segregants from RNAi suppression lines to sub-compartmentalize MSH1 effects. We show that MSH1 expression is spatially regulated, specifically localizing to plastids within the epidermis and vascular parenchyma. The protein binds DNA and localizes to plastid and mitochondrial nucleoids, but fractionation and protein-protein interactions data indicate that MSH1 also associates with the thylakoid membrane. Plastid MSH1 depletion results in variegation, abiotic stress tolerance, variable growth rate, and delayed maturity. Depletion from mitochondria results in 7%-10% of plants altered in leaf morphology, heat tolerance, and mitochondrial genome stability. MSH1 does not localize within the nucleus directly, but plastid depletion produces non-genetic changes in flowering time, maturation, and growth rate that are heritable independent of MSH1. MSH1 depletion alters non-photoactive redox behavior in plastids and a sub-set of mitochondrially altered lines. Ectopic expression produces deleterious effects, underlining its strict expression control. Unraveling the complexity of the MSH1 effect offers insight into triggers of plant-specific, transgenerational adaptation behaviors.
Collapse
Affiliation(s)
- Kamaldeep S Virdi
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Yashitola Wamboldt
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA
| | - Hardik Kundariya
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA
| | - John D Laurie
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA
| | - Ido Keren
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA
| | - K R Sunil Kumar
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA
| | - Anna Block
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA
| | - Gilles Basset
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA
| | - Steve Luebker
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA
| | - Christian Elowsky
- Center for Biotechnology, University of Nebraska, Lincoln, NE 68588, USA
| | - Philip M Day
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA
| | - Johnna L Roose
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Terry M Bricker
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Thomas Elthon
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA
| | - Sally A Mackenzie
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA.
| |
Collapse
|
77
|
Cho EJ, Choi SH, Kim JH, Kim JE, Lee MH, Chung BY, Woo HR, Kim JH. A Mutation in Plant-Specific SWI2/SNF2-Like Chromatin-Remodeling Proteins, DRD1 and DDM1, Delays Leaf Senescence in Arabidopsis thaliana. PLoS One 2016; 11:e0146826. [PMID: 26752684 PMCID: PMC4709239 DOI: 10.1371/journal.pone.0146826] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/22/2015] [Indexed: 01/08/2023] Open
Abstract
Leaf senescence is a finely regulated complex process; however, evidence for the involvement of epigenetic processes in the regulation of leaf senescence is still fragmentary. Therefore, we chose to examine the functions of DRD1, a SWI2/SNF2 chromatin remodeling protein, in epigenetic regulation of leaf senescence, particularly because drd1-6 mutants exhibited a delayed leaf senescence phenotype. Photosynthetic parameters such as Fv/Fm and ETRmax were decreased in WT leaves compared to leaves of drd1-6 mutants after dark treatment. The WT leaves remarkably lost more chlorophyll and protein content during dark-induced senescence (DIS) than the drd1-6 leaves did. The induction of senescence-associated genes was noticeably inhibited in the drd1-6 mutant after 5-d of DIS. We compared changes in epigenetic regulation during DIS via quantitative expression analysis of 180-bp centromeric (CEN) and transcriptionally silent information (TSI) repeats. Their expression levels significantly increased in both the WT and the drd1-6 mutant, but did much less in the latter. Moreover, the delayed leaf senescence was observed in ddm1-2 mutants as well as the drd1-6, but not in drd1-p mutants. These data suggest that SWI2/SNF2 chromatin remodeling proteins such as DRD1 and DDM1 may influence leaf senescence possibly via epigenetic regulation.
Collapse
Affiliation(s)
- Eun Ju Cho
- Advanced Radiation Technology Institute, Korea Atomic Energy ResearchInstitute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Seung Hee Choi
- Advanced Radiation Technology Institute, Korea Atomic Energy ResearchInstitute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Ji Hong Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy ResearchInstitute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Ji Eun Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy ResearchInstitute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Min Hee Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy ResearchInstitute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Byung Yeoup Chung
- Advanced Radiation Technology Institute, Korea Atomic Energy ResearchInstitute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Hye Ryun Woo
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Jin-Hong Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy ResearchInstitute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
- Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| |
Collapse
|
78
|
Ma R, Sun L, Chen X, Mei B, Chang G, Wang M, Zhao D. Proteomic Analyses Provide Novel Insights into Plant Growth and Ginsenoside Biosynthesis in Forest Cultivated Panax ginseng (F. Ginseng). FRONTIERS IN PLANT SCIENCE 2016; 7:1. [PMID: 26858731 PMCID: PMC4726751 DOI: 10.3389/fpls.2016.00001] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/05/2016] [Indexed: 05/18/2023]
Abstract
F. Ginseng (Panax ginseng) is planted in the forest to enhance the natural ginseng resources, which have an immense medicinal and economic value. The morphology of the cultivated plants becomes similar to that of wild growing ginseng (W. Ginseng) over the years. So far, there have been no studies highlighting the physiological or functional changes in F. Ginseng and its wild counterparts. In the present study, we used proteomic technologies (2DE and iTRAQ) coupled to mass spectrometry to compare W. Ginseng and F. Ginseng at various growth stages. Hierarchical cluster analysis based on protein abundance revealed that the protein expression profile of 25-year-old F. Ginseng was more like W. Ginseng than less 20-year-old F. Ginseng. We identified 192 differentially expressed protein spots in F. Ginseng. These protein spots increased with increase in growth years of F. Ginseng and were associated with proteins involved in energy metabolism, ginsenosides biosynthesis, and stress response. The mRNA, physiological, and metabolic analysis showed that the external morphology, protein expression profile, and ginsenoside synthesis ability of the F. Ginseng increased just like that of W. Ginseng with the increase in age. Our study represents the first characterization of the proteome of F. Ginseng during development and provides new insights into the metabolism and accumulation of ginsenosides.
Collapse
Affiliation(s)
- Rui Ma
- Jilin Technology Innovation Center for Chinese Medicine Biotechnology, College of Chemistry and Biology, Beihua UniversityJilin, China
- Ginseng Research Center, Changchun University of Chinese MedicineChangchun, China
| | - Liwei Sun
- Jilin Technology Innovation Center for Chinese Medicine Biotechnology, College of Chemistry and Biology, Beihua UniversityJilin, China
- *Correspondence: Liwei Sun
| | - Xuenan Chen
- Ginseng Research Center, Changchun University of Chinese MedicineChangchun, China
- The first affiliated hospital to Changchun University of Chinese MedicineChangchun, China
| | - Bing Mei
- Ginseng Research Center, Changchun University of Chinese MedicineChangchun, China
| | - Guijuan Chang
- Ginseng Research Center, Changchun University of Chinese MedicineChangchun, China
| | - Manying Wang
- Jilin Technology Innovation Center for Chinese Medicine Biotechnology, College of Chemistry and Biology, Beihua UniversityJilin, China
| | - Daqing Zhao
- Ginseng Research Center, Changchun University of Chinese MedicineChangchun, China
- Daqing Zhao
| |
Collapse
|
79
|
Shah JN, Kirioukhova O, Pawar P, Tayyab M, Mateo JL, Johnston AJ. Depletion of Key Meiotic Genes and Transcriptome-Wide Abiotic Stress Reprogramming Mark Early Preparatory Events Ahead of Apomeiotic Transition. FRONTIERS IN PLANT SCIENCE 2016; 7:1539. [PMID: 27833618 PMCID: PMC5080521 DOI: 10.3389/fpls.2016.01539] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 09/30/2016] [Indexed: 05/19/2023]
Abstract
Molecular dissection of apomixis - an asexual reproductive mode - is anticipated to solve the enigma of loss of meiotic sex, and to help fixing elite agronomic traits. The Brassicaceae genus Boechera comprises of both sexual and apomictic species, permitting comparative analyses of meiotic circumvention (apomeiosis) and parthenogenesis. Whereas previous studies reported local transcriptome changes during these events, it remained unclear whether global changes associated with hybridization, polyploidy and environmental adaptation that arose during evolution of Boechera might serve as (epi)genetic regulators of early development prior apomictic initiation. To identify these signatures during vegetative stages, we compared seedling RNA-seq transcriptomes of an obligate triploid apomict and a diploid sexual, both isolated from a drought-prone habitat. Uncovered were several genes differentially expressed between sexual and apomictic seedlings, including homologs of meiotic genes ASYNAPTIC 1 (ASY1) and MULTIPOLAR SPINDLE 1 (MPS1) that were down-regulated in apomicts. An intriguing class of apomict-specific deregulated genes included several NAC transcription factors, homologs of which are known to be transcriptionally reprogrammed during abiotic stress in other plants. Deregulation of both meiotic and stress-response genes during seedling stages might possibly be important in preparation for meiotic circumvention, as similar transcriptional alteration was discernible in apomeiotic floral buds too. Furthermore, we noted that the apomict showed better tolerance to osmotic stress in vitro than the sexual, in conjunction with significant upregulation of a subset of NAC genes. In support of the current model that DNA methylation epigenetically regulates stress, ploidy, hybridization and apomixis, we noted that ASY1, MPS1 and NAC019 homologs were deregulated in Boechera seedlings upon DNA demethylation, and ASY1 in particular seems to be repressed by global DNA methylation exclusively in the apomicts. Variability in stress and transcriptional response in a diploid apomict, which is geographically distinct from the triploid apomict, pinpoints both common and independent features of apomixis evolution. Our study provides a molecular frame-work to investigate how the adaptive traits associated with the evolutionary history of apomicts co-adapted with meiotic gene deregulation at early developmental stage, in order to predate meiotic recombination, which otherwise is thought to be favorable in stress and low-fitness conditions.
Collapse
Affiliation(s)
- Jubin N. Shah
- Laboratory of Germline Genetics & Evo-Devo, Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
| | - Olga Kirioukhova
- Laboratory of Germline Genetics & Evo-Devo, Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
- Leibniz Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| | - Pallavi Pawar
- Laboratory of Germline Genetics & Evo-Devo, Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
| | - Muhammad Tayyab
- Laboratory of Germline Genetics & Evo-Devo, Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
| | - Juan L. Mateo
- Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
- *Correspondence: Amal J. Johnston, ; Juan L. Mateo,
| | - Amal J. Johnston
- Laboratory of Germline Genetics & Evo-Devo, Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
- Leibniz Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
- *Correspondence: Amal J. Johnston, ; Juan L. Mateo,
| |
Collapse
|
80
|
Vannier N, Mony C, Bittebière AK, Vandenkoornhuyse P. Epigenetic Mechanisms and Microbiota as a Toolbox for Plant Phenotypic Adjustment to Environment. FRONTIERS IN PLANT SCIENCE 2015; 6:1159. [PMID: 26779191 PMCID: PMC4688372 DOI: 10.3389/fpls.2015.01159] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/07/2015] [Indexed: 05/24/2023]
Abstract
The classic understanding of organisms focuses on genes as the main source of species evolution and diversification. The recent concept of genetic accommodation questions this gene centric view by emphasizing the importance of phenotypic plasticity on evolutionary trajectories. Recent discoveries on epigenetics and symbiotic microbiota demonstrated their deep impact on plant survival, adaptation and evolution thus suggesting a novel comprehension of the plant phenotype. In addition, interplays between these two phenomena controlling plant plasticity can be suggested. Because epigenetic and plant-associated (micro-) organisms are both key sources of phenotypic variation allowing environmental adjustments, we argue that they must be considered in terms of evolution. This 'non-conventional' set of mediators of phenotypic variation can be seen as a toolbox for plant adaptation to environment over short, medium and long time-scales.
Collapse
Affiliation(s)
- Nathan Vannier
- Université de Rennes 1, CNRS, UMR6553 EcoBioRennes, France
| | - Cendrine Mony
- Université de Rennes 1, CNRS, UMR6553 EcoBioRennes, France
| | | | | |
Collapse
|
81
|
Wang Y, Cheng ZZ, Chen X, Zheng Q, Yang ZM. CrGNAT gene regulates excess copper accumulation and tolerance in Chlamydomonas reinhardtii. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 240:120-129. [PMID: 26475193 DOI: 10.1016/j.plantsci.2015.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 06/05/2023]
Abstract
Excess copper (Cu) in environment affects the growth and metabolism of plants and green algae. However, the molecular mechanism for regulating plant tolerance to excess Cu is not fully understood. Here, we report a gene CrGNAT enconding an acetyltransferase in Chlamydomonas reinhardtii and identified its role in regulating tolerance to Cu toxicity. Expression of CrGNAT was significantly induced by 75-400μM Cu. The top induction occurred at 100μM. Transgenic algae overexpressing CrGNAT (35S::CrGNAT) in C. reinhardtii showed high tolerance to excess Cu, with improved cell population, chlorophyll accumulation and photosynthesis efficiency, but with low degree of oxidation with regard to reduced hydrogen peroxide, lipid peroxides and non-protein thiol compounds. In contrast, CrGNAT knock-down lines with antisense led to sensitivity to Cu stress. 35S::CrGNAT algae accumulated more Cu and other metals (Zn, Fe, Cu, Mn and Mg) than wild-type, whereas the CrGNAT down-regulated algae (35S::AntiCrGNAT) had moderate levels of Cu and Mn, but no effects on Zn, Fe and Mg accumulation as compared to wild-type. The elevated metal absorption in CrGNAT overexpression algae implies that the metals can be removed from water media. Quantitative RT-PCR analysis revealed that expression of two genes encoding N-lysine histone methyltransferases was repressed in 35S::CrGNAT algae, suggesting that CrGNAT-regulated algal tolerance to Cu toxicity is likely associated with histone methylation and chromatin remodeling. The present work provided an example a basis to develop techniques for environmental restoration of metal-contaminated aquatic ecosystems.
Collapse
Affiliation(s)
- Ye Wang
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, China
| | - Zhen Zhen Cheng
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, China
| | - Xi Chen
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, China
| | - Qi Zheng
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, China
| | - Zhi Min Yang
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
82
|
Divergent DNA methylation patterns associated with gene expression in rice cultivars with contrasting drought and salinity stress response. Sci Rep 2015; 5:14922. [PMID: 26449881 PMCID: PMC4598828 DOI: 10.1038/srep14922] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/14/2015] [Indexed: 12/22/2022] Open
Abstract
DNA methylation is an epigenetic mechanism that play an important role in gene regulation in response to environmental conditions. The understanding of DNA methylation at the whole genome level can provide insights into the regulatory mechanisms underlying abiotic stress response/adaptation. We report DNA methylation patterns and their influence on transcription in three rice (Oryza sativa) cultivars (IR64, stress-sensitive; Nagina 22, drought-tolerant; Pokkali, salinity-tolerant) via an integrated analysis of whole genome bisulphite sequencing and RNA sequencing. We discovered extensive DNA methylation at single-base resolution in rice cultivars, identified the sequence context and extent of methylation at each site. Overall, methylation levels were significantly different in the three rice cultivars. Numerous differentially methylated regions (DMRs) among different cultivars were identified and many of which were associated with differential expression of genes important for abiotic stress response. Transposon-associated DMRs were found coupled to the transcript abundance of nearby protein-coding gene(s). Small RNA (smRNA) abundance was found to be positively correlated with hypermethylated regions. These results provide insights into interplay among DNA methylation, gene expression and smRNA abundance, and suggest a role in abiotic stress adaptation in rice.
Collapse
|
83
|
Reis RS, Hart-Smith G, Eamens AL, Wilkins MR, Waterhouse PM. MicroRNA Regulatory Mechanisms Play Different Roles in Arabidopsis. J Proteome Res 2015; 14:4743-51. [DOI: 10.1021/acs.jproteome.5b00616] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rodrigo S. Reis
- School
of Biological Sciences, University of Sydney, Macleay Building A12, Sydney, NSW 2006, Australia
- Faculty
of Agriculture and Environment, University of Sydney, Eveleigh, NSW 2015, Australia
| | - Gene Hart-Smith
- Systems
Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Andrew L. Eamens
- School
of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Marc R. Wilkins
- Systems
Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Peter M. Waterhouse
- School
of Biological Sciences, University of Sydney, Macleay Building A12, Sydney, NSW 2006, Australia
- Centre
for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD 4001, Australia
| |
Collapse
|
84
|
Preite V, Snoek LB, Oplaat C, Biere A, van der Putten WH, Verhoeven KJF. The epigenetic footprint of poleward range-expanding plants in apomictic dandelions. Mol Ecol 2015. [DOI: 10.1111/mec.13329] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- V. Preite
- Department of Terrestrial Ecology; Netherlands Institute of Ecology (NIOO-KNAW); Droevendaalsesteeg 10 NL-6708PB Wageningen The Netherlands
- Laboratory of Nematology; Wageningen University; Droevendaalsesteeg 1 6708 PB Wageningen The Netherlands
| | - L. B. Snoek
- Department of Terrestrial Ecology; Netherlands Institute of Ecology (NIOO-KNAW); Droevendaalsesteeg 10 NL-6708PB Wageningen The Netherlands
- Laboratory of Nematology; Wageningen University; Droevendaalsesteeg 1 6708 PB Wageningen The Netherlands
| | - C. Oplaat
- Department of Terrestrial Ecology; Netherlands Institute of Ecology (NIOO-KNAW); Droevendaalsesteeg 10 NL-6708PB Wageningen The Netherlands
| | - A. Biere
- Department of Terrestrial Ecology; Netherlands Institute of Ecology (NIOO-KNAW); Droevendaalsesteeg 10 NL-6708PB Wageningen The Netherlands
| | - W. H. van der Putten
- Department of Terrestrial Ecology; Netherlands Institute of Ecology (NIOO-KNAW); Droevendaalsesteeg 10 NL-6708PB Wageningen The Netherlands
- Laboratory of Nematology; Wageningen University; Droevendaalsesteeg 1 6708 PB Wageningen The Netherlands
| | - K. J. F. Verhoeven
- Department of Terrestrial Ecology; Netherlands Institute of Ecology (NIOO-KNAW); Droevendaalsesteeg 10 NL-6708PB Wageningen The Netherlands
| |
Collapse
|
85
|
Avramova Z. Transcriptional 'memory' of a stress: transient chromatin and memory (epigenetic) marks at stress-response genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:149-59. [PMID: 25788029 DOI: 10.1111/tpj.12832] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/10/2015] [Accepted: 03/13/2015] [Indexed: 05/17/2023]
Abstract
Drought, salinity, extreme temperature variations, pathogen and herbivory attacks are recurring environmental stresses experienced by plants throughout their life. To survive repeated stresses, plants provide responses that may be different from their response during the first encounter with the stress. A different response to a similar stress represents the concept of 'stress memory'. A coordinated reaction at the organismal, cellular and gene/genome levels is thought to increase survival chances by improving the plant's tolerance/avoidance abilities. Ultimately, stress memory may provide a mechanism for acclimation and adaptation. At the molecular level, the concept of stress memory indicates that the mechanisms responsible for memory-type transcription during repeated stresses are not based on repetitive activation of the same response pathways activated by the first stress. Some recent advances in the search for transcription 'memory factors' are discussed with an emphasis on super-induced dehydration stress memory response genes in Arabidopsis.
Collapse
Affiliation(s)
- Zoya Avramova
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
86
|
Analysis of methylation-sensitive amplified polymorphism in different cotton accessions under salt stress based on capillary electrophoresis. Genes Genomics 2015. [DOI: 10.1007/s13258-015-0301-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
87
|
Vriet C, Hennig L, Laloi C. Stress-induced chromatin changes in plants: of memories, metabolites and crop improvement. Cell Mol Life Sci 2015; 72:1261-73. [PMID: 25578097 PMCID: PMC11113909 DOI: 10.1007/s00018-014-1792-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 01/18/2023]
Abstract
Exposure of plants to adverse environmental conditions leads to extensive transcriptional changes. Genome-wide approaches and gene function studies have revealed the importance of chromatin-level control in the regulation of stress-responsive gene expression. Advances in understanding chromatin modifications implicated in plant stress response and identifying proteins involved in chromatin-mediated transcriptional responses to stress are briefly presented in this review. We then highlight how chromatin-mediated gene expression changes can be coupled to the metabolic status of the cell, since many of the chromatin-modifying proteins involved in transcriptional regulation depend on cofactors and metabolites that are shared with enzymes in basic metabolism. Lastly, we discuss the stability and heritability of stress-induced chromatin changes and the potential of chromatin-based strategies for increasing stress tolerance of crops.
Collapse
Affiliation(s)
- Cécile Vriet
- BVME UMR 7265, Lab Genet Biophys Plantes, Aix Marseille Université, Marseille, 13284, France,
| | | | | |
Collapse
|
88
|
Xie HJ, Li H, Liu D, Dai WM, He JY, Lin S, Duan H, Liu LL, Chen SG, Song XL, Valverde BE, Qiang S. ICE1demethylation drives the range expansion of a plant invader through cold tolerance divergence. Mol Ecol 2015; 24:835-50. [DOI: 10.1111/mec.13067] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 12/23/2014] [Accepted: 01/06/2015] [Indexed: 01/24/2023]
Affiliation(s)
- H. J. Xie
- Weed Research Laboratory; Nanjing Agricultural University; Nanjing 210095 China
| | - H. Li
- Weed Research Laboratory; Nanjing Agricultural University; Nanjing 210095 China
| | - D. Liu
- Weed Research Laboratory; Nanjing Agricultural University; Nanjing 210095 China
| | - W. M. Dai
- Weed Research Laboratory; Nanjing Agricultural University; Nanjing 210095 China
| | - J. Y. He
- Weed Research Laboratory; Nanjing Agricultural University; Nanjing 210095 China
| | - S. Lin
- Weed Research Laboratory; Nanjing Agricultural University; Nanjing 210095 China
| | - H. Duan
- Weed Research Laboratory; Nanjing Agricultural University; Nanjing 210095 China
| | - L. L. Liu
- Weed Research Laboratory; Nanjing Agricultural University; Nanjing 210095 China
| | - S. G. Chen
- Weed Research Laboratory; Nanjing Agricultural University; Nanjing 210095 China
| | - X. L. Song
- Weed Research Laboratory; Nanjing Agricultural University; Nanjing 210095 China
| | - B. E. Valverde
- Weed Research Laboratory; Nanjing Agricultural University; Nanjing 210095 China
- Department of Plant and Environmental Sciences, The University of Copenhagen, Hojebakkegaard Allé 13, Taastrup DK-2630, Denmark
| | - S. Qiang
- Weed Research Laboratory; Nanjing Agricultural University; Nanjing 210095 China
| |
Collapse
|
89
|
Nicotra AB, Segal DL, Hoyle GL, Schrey AW, Verhoeven KJF, Richards CL. Adaptive plasticity and epigenetic variation in response to warming in an Alpine plant. Ecol Evol 2015; 5:634-47. [PMID: 25691987 PMCID: PMC4328768 DOI: 10.1002/ece3.1329] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/04/2014] [Accepted: 11/05/2014] [Indexed: 01/17/2023] Open
Abstract
Environmentally induced phenotypic plasticity may be a critical component of response to changing environments. We examined local differentiation and adaptive phenotypic plasticity in response to elevated temperature in half-sib lines collected across an elevation gradient for the alpine herb, Wahlenbergia ceracea. Using Amplified Fragment Length Polymorphism (AFLP), we found low but significant genetic differentiation between low- and high-elevation seedlings, and seedlings originating from low elevations grew faster and showed stronger temperature responses (more plasticity) than those from medium and high elevations. Furthermore, plasticity was more often adaptive for plants of low-elevation origin and maladaptive for plants of high elevation. With methylation sensitive-AFLP (MS-AFLP), we revealed an increase in epigenetic variation in response to temperature in low-elevation seedlings. Although we did not find significant direct correlations between MS-AFLP loci and phenotypes, our results demonstrate that adaptive plasticity in temperature response to warming varies over fine spatial scales and suggest the involvement of epigenetic mechanisms in this response.
Collapse
Affiliation(s)
- Adrienne B Nicotra
- Research School of Biology, The Australian National UniversityCanberra, Australian Capital Territory, Australia
| | - Deborah L Segal
- Research School of Biology, The Australian National UniversityCanberra, Australian Capital Territory, Australia
| | - Gemma L Hoyle
- Research School of Biology, The Australian National UniversityCanberra, Australian Capital Territory, Australia
| | - Aaron W Schrey
- Department Biology, Science Center, Armstrong University11935 Abercorn Street, Savannah, Georgia, 31419
| | - Koen J F Verhoeven
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW)Droevendaalsesteeg 10, Wageningen, 6708 PB, the Netherlands
| | - Christina L Richards
- Department of Integrative Biology, University of South FloridaTampa, Florida, 33617
| |
Collapse
|
90
|
Naydenov M, Baev V, Apostolova E, Gospodinova N, Sablok G, Gozmanova M, Yahubyan G. High-temperature effect on genes engaged in DNA methylation and affected by DNA methylation in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 87:102-8. [PMID: 25576840 DOI: 10.1016/j.plaphy.2014.12.022] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/31/2014] [Indexed: 05/20/2023]
Abstract
Along with its essential role in the maintenance of genome integrity, DNA methylation takes part in regulation of genes which are important for plant development and stress response. In plants, DNA methylation process can be directed by small RNAs in process known as RNA-directed DNA methylation (RdDM) involving two plant-specific RNA polymerases - PolIV and PolV. The aim of the present study was to investigate the effect of heat stress on the expression of genes encoding key players in DNA methylation - DNA methyltransferase (MET1, CMT3, and DRM2), the largest subunits of PoIIV and PolV (NRPD1 and NRPE1 respectively) and the DNA demethylase ROS1. We also examined the high-temperature effect on two protein-coding genes - At3g50770 and At5g43260 whose promoters contain transposon insertions and are affected by DNA-methylation, as well as on the AtSN1, a SINE-like retrotransposon. To assess the involvement of PolIV and PolV in heat stress response, the promoter methylation status and transcript levels of these genes were compared between wild type and double mutant lacking NRPD1 and NRPE1. The results demonstrate coordinated up-regulation of the DRM2, NRPD1 and NRPE1 in response to high temperature and suggest that PolIV and/or PolV might be required for the induction of DRM2 expression under heat stress. The ROS1 expression was confirmed to be suppressed in the mutant lacking active PolIV and PolV that might be a consequence of abolished DNA methylation. The increased expression of At3g50770 in response to elevated temperature correlated with reduced promoter DNA methylation, while the stress response of At5g43260 did not show inverse correlation between promoter methylation and gene expression. Our results also imply that PolIV and/or PolV could regulate gene expression under stress conditions not only through RdDM but also by acting in other regulatory processes.
Collapse
Affiliation(s)
- Mladen Naydenov
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 24 Tsar Assen St, 4000 Plovdiv, Bulgaria
| | - Vesselin Baev
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 24 Tsar Assen St, 4000 Plovdiv, Bulgaria
| | - Elena Apostolova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 24 Tsar Assen St, 4000 Plovdiv, Bulgaria
| | - Nadezhda Gospodinova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 24 Tsar Assen St, 4000 Plovdiv, Bulgaria
| | - Gaurav Sablok
- Department of Biodiversity and Molecular Ecology, Fondazione Edmund Mach, IASMA, San Michele 38010, Italy
| | - Mariyana Gozmanova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 24 Tsar Assen St, 4000 Plovdiv, Bulgaria
| | - Galina Yahubyan
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 24 Tsar Assen St, 4000 Plovdiv, Bulgaria.
| |
Collapse
|
91
|
Sidler C, Li D, Kovalchuk O, Kovalchuk I. Development-Dependent Expression of DNA Repair Genes and Epigenetic Regulators in Arabidopsis Plants Exposed to Ionizing Radiation. Radiat Res 2015; 183:219-32. [DOI: 10.1667/rr13840.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Corinne Sidler
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada
| | - Dongping Li
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada
| |
Collapse
|
92
|
Kim JM, Sasaki T, Ueda M, Sako K, Seki M. Chromatin changes in response to drought, salinity, heat, and cold stresses in plants. FRONTIERS IN PLANT SCIENCE 2015; 6:114. [PMID: 25784920 PMCID: PMC4345800 DOI: 10.3389/fpls.2015.00114] [Citation(s) in RCA: 260] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/11/2015] [Indexed: 05/11/2023]
Abstract
Chromatin regulation is essential to regulate genes and genome activities. In plants, the alteration of histone modification and DNA methylation are coordinated with changes in the expression of stress-responsive genes to adapt to environmental changes. Several chromatin regulators have been shown to be involved in the regulation of stress-responsive gene networks under abiotic stress conditions. Specific histone modification sites and the histone modifiers that regulate key stress-responsive genes have been identified by genetic and biochemical approaches, revealing the importance of chromatin regulation in plant stress responses. Recent studies have also suggested that histone modification plays an important role in plant stress memory. In this review, we summarize recent progress on the regulation and alteration of histone modification (acetylation, methylation, phosphorylation, and SUMOylation) in response to the abiotic stresses, drought, high-salinity, heat, and cold in plants.
Collapse
Affiliation(s)
- Jong-Myong Kim
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Taku Sasaki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology, Kawaguchi, Japan
| | - Minoru Ueda
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology, Kawaguchi, Japan
| | - Kaori Sako
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology, Kawaguchi, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
- *Correspondence: Motoaki Seki, Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan e-mail:
| |
Collapse
|
93
|
Colicchio JM, Monnahan PJ, Kelly JK, Hileman LC. Gene expression plasticity resulting from parental leaf damage in Mimulus guttatus. THE NEW PHYTOLOGIST 2015; 205:894-906. [PMID: 25297849 DOI: 10.1111/nph.13081] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 08/20/2014] [Indexed: 06/04/2023]
Abstract
Leaf trichome density in Mimulus guttatus can be altered by the parental environment. In this study, we compared global gene expression patterns in progeny of damaged and control plants. Significant differences in gene expression probably explain the observed trichome response, and identify additional responsive pathways. Using whole transcriptome RNA sequencing, we estimated differential gene expression between isogenic seedlings whose parents had, or had not, been subject to leaf damage. We identified over 900 genes that were differentially expressed in response to parental wounding. These genes clustered into groups involved in cell wall and cell membrane development, stress response pathways, and secondary metabolism. Gene expression is modified as a consequence of the parental environment in a targeted way that probably alters multiple developmental pathways, and may increase progeny fitness if they experience environments similar to that of their parents.
Collapse
Affiliation(s)
- Jack M Colicchio
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
| | | | | | | |
Collapse
|
94
|
Bilichak A, Ilnytskyy Y, Wóycicki R, Kepeshchuk N, Fogen D, Kovalchuk I. The elucidation of stress memory inheritance in Brassica rapa plants. FRONTIERS IN PLANT SCIENCE 2015; 6:5. [PMID: 25653665 PMCID: PMC4300914 DOI: 10.3389/fpls.2015.00005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/05/2015] [Indexed: 05/05/2023]
Abstract
Plants are able to maintain the memory of stress exposure throughout their ontogenesis and faithfully propagate it into the next generation. Recent evidence argues for the epigenetic nature of this phenomenon. Small RNAs (smRNAs) are one of the vital epigenetic factors because they can both affect gene expression at the place of their generation and maintain non-cell-autonomous gene regulation. Here, we have made an attempt to decipher the contribution of smRNAs to the heat-shock-induced transgenerational inheritance in Brassica rapa plants using sequencing technology. To do this, we have generated comprehensive profiles of a transcriptome and a small RNAome (smRNAome) from somatic and reproductive tissues of stressed plants and their untreated progeny. We have demonstrated that the highest tissue-specific alterations in the transcriptome and smRNAome profile are detected in tissues that were not directly exposed to stress, namely, in the endosperm and pollen. Importantly, we have revealed that the progeny of stressed plants exhibit the highest fluctuations at the smRNAome level but not at the transcriptome level. Additionally, we have uncovered the existence of heat-inducible and transgenerationally transmitted tRNA-derived small RNA fragments in plants. Finally, we suggest that miR168 and braAGO1 are involved in the stress-induced transgenerational inheritance in plants.
Collapse
Affiliation(s)
- Andriy Bilichak
- Lethbridge Research Centre, Agriculture and Agri-Food CanadaLethbridge, AB, Canada
| | - Yaroslav Ilnytskyy
- Department of Biological Sciences, University of LethbridgeLethbridge, AB, Canada
| | - Rafal Wóycicki
- Department of Biological Sciences, University of LethbridgeLethbridge, AB, Canada
| | - Nina Kepeshchuk
- Department of Biological Sciences, University of LethbridgeLethbridge, AB, Canada
| | - Dawson Fogen
- Department of Biological Sciences, University of LethbridgeLethbridge, AB, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of LethbridgeLethbridge, AB, Canada
- *Correspondence: Igor Kovalchuk, Department of Biological Sciences, University of Lethbridge, University Drive 4401, Lethbridge, AB, T1K 3M4, Canada e-mail:
| |
Collapse
|
95
|
Eichten SR, Springer NM. Minimal evidence for consistent changes in maize DNA methylation patterns following environmental stress. FRONTIERS IN PLANT SCIENCE 2015; 6:308. [PMID: 25999972 PMCID: PMC4422006 DOI: 10.3389/fpls.2015.00308] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/17/2015] [Indexed: 05/22/2023]
Abstract
DNA methylation is a chromatin modification that is sometimes associated with epigenetic regulation of gene expression. As DNA methylation can be reversible at some loci, it is possible that methylation patterns may change within an organism that is subjected to environmental stress. In order to assess the effects of abiotic stress on DNA methylation patterns in maize (Zea mays), seeding plants were subjected to heat, cold, and UV stress treatments. Tissue was later collected from individual adult plants that had been subjected to stress or control treatments and used to perform DNA methylation profiling to determine whether there were consistent changes in DNA methylation triggered by specific stress treatments. DNA methylation profiling was performed by immunoprecipitation of methylated DNA followed by microarray hybridization to allow for quantitative estimates of DNA methylation abundance throughout the low-copy portion of the maize genome. By comparing the DNA methylation profiles of each individual plant to the average of the control plants it was possible to identify regions of the genome with variable DNA methylation. However, we did not find evidence of consistent DNA methylation changes resulting from the stress treatments used in this study. Instead, the data suggest that there is a low-rate of stochastic variation that is present in both control and stressed plants.
Collapse
Affiliation(s)
| | - Nathan M. Springer
- *Correspondence: Nathan M. Springer, Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota, 250 Biosciences Center, 1445 Gortner Ave., Saint Paul, MN 55108, USA
| |
Collapse
|
96
|
Hettiarachchi N, Kryukov K, Sumiyama K, Saitou N. Lineage-specific conserved noncoding sequences of plant genomes: their possible role in nucleosome positioning. Genome Biol Evol 2014; 6:2527-42. [PMID: 25364802 PMCID: PMC4202324 DOI: 10.1093/gbe/evu188] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2014] [Indexed: 01/01/2023] Open
Abstract
Many studies on conserved noncoding sequences (CNSs) have found that CNSs are enriched significantly in regulatory sequence elements. We conducted whole-genome analysis on plant CNSs to identify lineage-specific CNSs in eudicots, monocots, angiosperms,and vascular plants based on the premise that lineage-specific CNSs define lineage-specific characters and functions in groups of organisms. We identified 27 eudicot, 204 monocot, 6,536 grass, 19 angiosperm, and 2 vascular plant lineage-specific CNSs(lengths range from 16 to 1,517 bp) that presumably originated in their respective common ancestors. A stronger constraint on the CNSs located in the untranslated regions was observed. The CNSs were often flanked by genes involved in transcription regulation. A drop of A+T content near the border of CNSs was observed and CNS regions showed a higher nucleosome occupancy probability. These CNSs are candidate regulatory elements, which are expected to define lineage-specific features of various plant groups.
Collapse
Affiliation(s)
- Nilmini Hettiarachchi
- Department of Genetics, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan
- Division of Population Genetics, National Institute of Genetics, Mishima, Japan
| | - Kirill Kryukov
- Division of Population Genetics, National Institute of Genetics, Mishima, Japan
| | - Kenta Sumiyama
- Department of Genetics, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan
- Division of Population Genetics, National Institute of Genetics, Mishima, Japan
| | - Naruya Saitou
- Department of Genetics, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan
- Division of Population Genetics, National Institute of Genetics, Mishima, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Japan
| |
Collapse
|
97
|
Sokolova DA, Vengzhen GS, Kravets AP. Effect of epigenetic polymorphism of corn seeds on their germination rate and resistance of seedlings under UV-C exposure. CYTOL GENET+ 2014. [DOI: 10.3103/s0095452714040082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
98
|
Ay N, Janack B, Humbeck K. Epigenetic control of plant senescence and linked processes. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3875-87. [PMID: 24683182 DOI: 10.1093/jxb/eru132] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Senescence processes are part of the plant developmental programme. They involve reprogramming of gene expression and are under the control of a complex regulatory network closely linked to other developmental and stress-responsive pathways. Recent evidence indicates that leaf senescence is regulated via epigenetic mechanisms. In the present review, the epigenetic control of plant senescence is discussed in the broader context of environment-sensitive plant development. The review outlines the concept of epigenetic control of interconnected regulatory pathways steering stress responses and plant development. Besides giving an overview of techniques used in the field, it summarizes recent findings on global alterations in chromatin structure, histone and DNA modifications, and ATP-dependent chromatin remodelling during plant senescence and linked processes.
Collapse
Affiliation(s)
- Nicole Ay
- Department of Plant Physiology, Institute of Biology, Martin-Luther University Halle-Wittenberg, Weinbergweg 10, D-06120 Halle, Germany
| | - Bianka Janack
- Department of Plant Physiology, Institute of Biology, Martin-Luther University Halle-Wittenberg, Weinbergweg 10, D-06120 Halle, Germany
| | - Klaus Humbeck
- Department of Plant Physiology, Institute of Biology, Martin-Luther University Halle-Wittenberg, Weinbergweg 10, D-06120 Halle, Germany
| |
Collapse
|
99
|
Eichten SR, Schmitz RJ, Springer NM. Epigenetics: Beyond Chromatin Modifications and Complex Genetic Regulation. PLANT PHYSIOLOGY 2014; 165:933-947. [PMID: 24872382 PMCID: PMC4081347 DOI: 10.1104/pp.113.234211] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Chromatin modifications and epigenetics may play important roles in many plant processes, including developmental regulation, responses to environmental stimuli, and local adaptation. Chromatin modifications describe biochemical changes to chromatin state, such as alterations in the specific type or placement of histones, modifications of DNA or histones, or changes in the specific proteins or RNAs that associate with a genomic region. The term epigenetic is often used to describe a variety of unexpected patterns of gene regulation or inheritance. Here, we specifically define epigenetics to include the key aspects of heritability (stable transmission of gene expression states through mitotic or meiotic cell divisions) and independence from DNA sequence changes. We argue against generically equating chromatin and epigenetics; although many examples of epigenetics involve chromatin changes, those chromatin changes are not always heritable or may be influenced by genetic changes. Careful use of the terms chromatin modifications and epigenetics can help separate the biochemical mechanisms of regulation from the inheritance patterns of altered chromatin states. Here, we also highlight examples in which chromatin modifications and epigenetics affect important plant processes.
Collapse
Affiliation(s)
- Steven R Eichten
- Microbial and Plant Genomics Institute, Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108 (S.R.E., N.M.S.); andDepartment of Genetics, University of Georgia, Athens, Georgia 30602 (R.J.S.)
| | - Robert J Schmitz
- Microbial and Plant Genomics Institute, Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108 (S.R.E., N.M.S.); andDepartment of Genetics, University of Georgia, Athens, Georgia 30602 (R.J.S.)
| | - Nathan M Springer
- Microbial and Plant Genomics Institute, Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108 (S.R.E., N.M.S.); andDepartment of Genetics, University of Georgia, Athens, Georgia 30602 (R.J.S.)
| |
Collapse
|
100
|
Roles, and establishment, maintenance and erasing of the epigenetic cytosine methylation marks in plants. J Genet 2014; 92:629-66. [PMID: 24371187 DOI: 10.1007/s12041-013-0273-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Heritable information in plants consists of genomic information in DNA sequence and epigenetic information superimposed on DNA sequence. The latter is in the form of cytosine methylation at CG, CHG and CHH elements (where H = A, T orC) and a variety of histone modifications in nucleosomes. The epialleles arising from cytosine methylation marks on the nuclear genomic loci have better heritability than the epiallelic variation due to chromatin marks. Phenotypic variation is increased manifold by epiallele comprised methylomes. Plants (angiosperms) have highly conserved genetic mechanisms to establish, maintain or erase cytosine methylation from epialleles. The methylation marks in plants fluctuate according to the cell/tissue/organ in the vegetative and reproductive phases of plant life cycle. They also change according to environment. Epialleles arise by gain or loss of cytosine methylation marks on genes. The changes occur due to the imperfection of the processes that establish and maintain the marks and on account of spontaneous and stress imposed removal of marks. Cytosine methylation pattern acquired in response to abiotic or biotic stress is often inherited over one to several subsequent generations.Cytosine methylation marks affect physiological functions of plants via their effect(s) on gene expression levels. They also repress transposable elements that are abundantly present in plant genomes. The density of their distribution along chromosome lengths affects meiotic recombination rate, while their removal increases mutation rate. Transposon activation due to loss of methylation causes rearrangements such that new gene regulatory networks arise and genes for microRNAs may originate. Cytosine methylation dynamics contribute to evolutionary changes. This review presents and discusses the available evidence on origin, removal and roles of cytosine methylation and on related processes, such as RNA directed DNA methylation, imprinting, paramutation and transgenerational memory in plants.
Collapse
|