51
|
Hwa JJ, Beckouche N, Huang L, Kram Y, Lindskog H, Wang RA. Abnormal arterial-venous fusions and fate specification in mouse embryos lacking blood flow. Sci Rep 2017; 7:11965. [PMID: 28931948 PMCID: PMC5607254 DOI: 10.1038/s41598-017-12353-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/25/2017] [Indexed: 02/08/2023] Open
Abstract
The functions of blood flow in the morphogenesis of mammalian arteries and veins are not well understood. We examined the development of the dorsal aorta (DA) and the cardinal vein (CV) in Ncx1 -/- mutants, which lack blood flow due to a deficiency in a sodium calcium ion exchanger expressed specifically in the heart. The mutant DA and CV were abnormally connected. The endothelium of the Ncx1 -/- mutant DA lacked normal expression of the arterial markers ephrin-B2 and Connexin-40. Notch1 activation, known to promote arterial specification, was decreased in mutant DA endothelial cells (ECs), which ectopically expressed the venous marker Coup-TFII. These findings suggest that flow has essential functions in the DA by promoting arterial and suppressing venous marker expression. In contrast, flow plays a lesser role in the CV, because expression of arterial-venous markers in CV ECs was not as dramatically affected in Ncx1 -/- mutants. We propose a molecular mechanism by which blood flow mediates DA and CV morphogenesis, by regulating arterial-venous specification of DA ECs to ensure proper separation of the developing DA and CV.
Collapse
Affiliation(s)
- Jennifer J Hwa
- Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Nathan Beckouche
- Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Lawrence Huang
- Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Yoseph Kram
- Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Henrik Lindskog
- Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Rong A Wang
- Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
52
|
Pericyte degeneration leads to neurovascular uncoupling and limits oxygen supply to brain. Nat Neurosci 2017; 20:406-416. [PMID: 28135240 PMCID: PMC5323291 DOI: 10.1038/nn.4489] [Citation(s) in RCA: 375] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 12/30/2016] [Indexed: 12/11/2022]
Abstract
Pericytes are perivascular mural cells of brain capillaries that are positioned centrally within the neurovascular unit between endothelial cells, astrocytes and neurons. This unique position allows them to play a major role in regulating key neurovascular functions of the brain. The role of pericytes in the regulation of cerebral blood flow (CBF) and neurovascular coupling remains, however, debatable. Using loss-of-function pericyte-deficient mice, here we show that pericyte degeneration diminishes global and individual capillary CBF responses to neuronal stimulus resulting in neurovascular uncoupling, reduced oxygen supply to brain and metabolic stress. We show that these neurovascular deficits lead over time to impaired neuronal excitability and neurodegenerative changes. Thus, pericyte degeneration as seen in neurological disorders such as Alzheimer’s disease may contribute to neurovascular dysfunction and neurodegeneration associated with human disease.
Collapse
|
53
|
Chen Y, Wang D, Khan A, Wang Y, Borwege S, Sanai N, Liu JTC. Video-rate in vivo fluorescence imaging with a line-scanned dual-axis confocal microscope. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:106011. [PMID: 26509413 PMCID: PMC4881331 DOI: 10.1117/1.jbo.20.10.106011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/30/2015] [Indexed: 05/18/2023]
Abstract
Video-rate optical-sectioning microscopy of living organisms would allow for the investigation of dynamic biological processes and would also reduce motion artifacts, especially for in vivo imaging applications. Previous feasibility studies, with a slow stage-scanned line-scanned dual-axis confocal (LS-DAC) microscope, have demonstrated that LS-DAC microscopy is capable of imaging tissues with subcellular resolution and high contrast at moderate depths of up to several hundred microns. However, the sensitivity and performance of a video-rate LS-DAC imaging system, with low-numerical aperture optics, have yet to be demonstrated. Here, we report on the construction and validation of a video-rate LS-DAC system that possesses sufficient sensitivity to visualize fluorescent contrast agents that are topically applied or systemically delivered in animal and human tissues. We present images of murine oral mucosa that are topically stained with methylene blue, and images of protoporphyrin IX-expressing brain tumor from glioma patients that have been administered 5-aminolevulinic acid prior to surgery. In addition, we demonstrate in vivo fluorescence imaging of red blood cells trafficking within the capillaries of a mouse ear, at frame rates of up to 30 fps. These results can serve as a benchmark for miniature in vivo microscopy devices under development.
Collapse
Affiliation(s)
- Ye Chen
- University of Washington, Department of Mechanical Engineering, Molecular Biophotonics Laboratory, Seattle, Washington 98195, United States
- Address all correspondence to: Ye Chen, E-mail:
| | - Danni Wang
- Stony Brook University, Department of Biomedical Engineering, Molecular Biophotonics Laboratory, Stony Brook, New York 11794, United States
| | - Altaz Khan
- Stony Brook University, Department of Biomedical Engineering, Molecular Biophotonics Laboratory, Stony Brook, New York 11794, United States
| | - Yu Wang
- University of Washington, Department of Mechanical Engineering, Molecular Biophotonics Laboratory, Seattle, Washington 98195, United States
| | - Sabine Borwege
- Barrow Brain Tumor Research Center, Division of Neurosurgical Oncology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona 85013, United States
| | - Nader Sanai
- Barrow Brain Tumor Research Center, Division of Neurosurgical Oncology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona 85013, United States
| | - Jonathan T. C. Liu
- University of Washington, Department of Mechanical Engineering, Molecular Biophotonics Laboratory, Seattle, Washington 98195, United States
| |
Collapse
|
54
|
Choi M, Kwok SJJ, Yun SH. In vivo fluorescence microscopy: lessons from observing cell behavior in their native environment. Physiology (Bethesda) 2015; 30:40-9. [PMID: 25559154 DOI: 10.1152/physiol.00019.2014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Microscopic imaging techniques to visualize cellular behaviors in their natural environment play a pivotal role in biomedical research. Here, we review how recent technical advances in intravital microscopy have enabled unprecedented access to cellular physiology in various organs of mice in normal and diseased states.
Collapse
Affiliation(s)
- Myunghwan Choi
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts; and
| | - Sheldon J J Kwok
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts; and Harvard-MIT Health Sciences and Technology, Cambridge, Massachusetts
| | - Seok Hyun Yun
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts; and Harvard-MIT Health Sciences and Technology, Cambridge, Massachusetts
| |
Collapse
|
55
|
Maeda A, Kulbatski I, DaCosta RS. Emerging Applications for Optically Enabled Intravital Microscopic Imaging in Radiobiology. Mol Imaging 2015. [DOI: 10.2310/7290.2015.00022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Azusa Maeda
- From the Princess Margaret Cancer Centre, University Health Network, MaRS Centre; Techna Institute for Advancement of Technologies for Health; and Department of Medical Biophysics, University of Toronto, MaRS Centre, Toronto, ON
| | - Iris Kulbatski
- From the Princess Margaret Cancer Centre, University Health Network, MaRS Centre; Techna Institute for Advancement of Technologies for Health; and Department of Medical Biophysics, University of Toronto, MaRS Centre, Toronto, ON
| | - Ralph S. DaCosta
- From the Princess Margaret Cancer Centre, University Health Network, MaRS Centre; Techna Institute for Advancement of Technologies for Health; and Department of Medical Biophysics, University of Toronto, MaRS Centre, Toronto, ON
| |
Collapse
|
56
|
Tang P, Zhang Y, Chen C, Ji X, Ju F, Liu X, Gan WB, He Z, Zhang S, Li W, Zhang L. In vivo two-photon imaging of axonal dieback, blood flow, and calcium influx with methylprednisolone therapy after spinal cord injury. Sci Rep 2015; 5:9691. [PMID: 25989524 PMCID: PMC4437044 DOI: 10.1038/srep09691] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 03/17/2015] [Indexed: 12/30/2022] Open
Abstract
Severe spinal cord injury (SCI) can cause neurological dysfunction and paralysis. However, the early dynamic changes of neurons and their surrounding environment after SCI are poorly understood. Although methylprednisolone (MP) is currently the standard therapeutic agent for treating SCI, its efficacy remains controversial. The purpose of this project was to investigate the early dynamic changes and MP's efficacy on axonal damage, blood flow, and calcium influx into axons in a mouse SCI model. YFP H-line and Thy1-GCaMP transgenic mice were used in this study. Two-photon microscopy was used for imaging of axonal dieback, blood flow, and calcium influx post-injury. We found that MP treatment attenuated progressive damage of axons, increased blood flow, and reduced calcium influx post-injury. Furthermore, microglia/macrophages accumulated in the lesion site after SCI and expressed the proinflammatory mediators iNOS, MCP-1 and IL-1β. MP treatment markedly inhibited the accumulation of microglia/macrophages and reduced the expression of the proinflammatory mediators. MP treatment also improved the recovery of behavioral function post-injury. These findings suggest that MP exerts a neuroprotective effect on SCI treatment by attenuating progressive damage of axons, increasing blood flow, reducing calcium influx, and inhibiting the accumulation of microglia/macrophages after SCI.
Collapse
Affiliation(s)
- Peifu Tang
- Department of Orthopedics, the General Hospital of Chinese People's Liberation Army, Beijing, China, 100853
| | - Yiling Zhang
- 1] Department of Orthopedics, the General Hospital of Chinese People's Liberation Army, Beijing, China, 100853 [2] Key Laboratory of Chemical Genomics, Shenzhen Graduate School, Peking University, Shenzhen, China, 518055
| | - Chao Chen
- 1] Department of Orthopedics, the General Hospital of Chinese People's Liberation Army, Beijing, China, 100853 [2] Key Laboratory of Chemical Genomics, Shenzhen Graduate School, Peking University, Shenzhen, China, 518055
| | - Xinran Ji
- Department of Orthopedics, the General Hospital of Chinese People's Liberation Army, Beijing, China, 100853
| | - Furong Ju
- School of Life Sciences, Lanzhou University, Lanzhou, China, 73000
| | - Xingyu Liu
- Beijing YouAn Hospital, Capital Medical University, Beijing, China, 100069
| | - Wen-Biao Gan
- 1] Key Laboratory of Chemical Genomics, Shenzhen Graduate School, Peking University, Shenzhen, China, 518055 [2] Skirball Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, USA, 10016
| | - Zhigang He
- F.M. Kirby Program in Neuroscience, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, USA, 02115
| | - Shengxiang Zhang
- School of Life Sciences, Lanzhou University, Lanzhou, China, 73000
| | - Wei Li
- Key Laboratory of Chemical Genomics, Shenzhen Graduate School, Peking University, Shenzhen, China, 518055
| | - Lihai Zhang
- Department of Orthopedics, the General Hospital of Chinese People's Liberation Army, Beijing, China, 100853
| |
Collapse
|
57
|
Letourneur A, Chen V, Waterman G, Drew PJ. A method for longitudinal, transcranial imaging of blood flow and remodeling of the cerebral vasculature in postnatal mice. Physiol Rep 2014; 2:2/12/e12238. [PMID: 25524276 PMCID: PMC4332216 DOI: 10.14814/phy2.12238] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
In the weeks following birth, both the brain and the vascular network that supplies it undergo dramatic alteration. While studies of the postnatal evolution of the pial vasculature and blood flow through its vessels have been previously done histologically or acutely, here we describe a neonatal reinforced thin‐skull preparation for longitudinally imaging the development of the pial vasculature in mice using two‐photon laser scanning microscopy. Starting with mice as young as postnatal day 2 (P2), we are able to chronically image cortical areas >1 mm2, repeatedly for several consecutive days, allowing us to observe the remodeling of the pial arterial and venous networks. We used this method to measure blood velocity in individual vessels over multiple days, and show that blood flow through individual pial venules was correlated with subsequent diameter changes. This preparation allows the longitudinal imaging of the developing mammalian cerebral vascular network and its physiology. We developed a technique to longitudinally image blood vessels in the neonatal mouse cortex transcranially using two‐photon microscopy. The blood vessels on the surface of the brain undergo substantial pruning after birth. Blood flow through a vessel was correlated with the subsequent diameter change of the vessel.
Collapse
Affiliation(s)
- Annelise Letourneur
- Department of Engineering Science and Mechanics, Center for Neural Engineering, Pennsylvania State University, University Park, Pennsylvania CNRS, CEA, Université de Caen Basse-Normandie, UMR 6301 ISTCT, CERVOxy. GIP CYCERON, Caen, France
| | - Victoria Chen
- Department of Engineering Science and Mechanics, Center for Neural Engineering, Pennsylvania State University, University Park, Pennsylvania
| | - Gar Waterman
- Department of Engineering Science and Mechanics, Center for Neural Engineering, Pennsylvania State University, University Park, Pennsylvania
| | - Patrick J Drew
- Department of Engineering Science and Mechanics, Center for Neural Engineering, Pennsylvania State University, University Park, Pennsylvania Department of Neurosurgery, Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
58
|
Sironi L, Bouzin M, Inverso D, D'Alfonso L, Pozzi P, Cotelli F, Guidotti LG, Iannacone M, Collini M, Chirico G. In vivo flow mapping in complex vessel networks by single image correlation. Sci Rep 2014; 4:7341. [PMID: 25475129 PMCID: PMC4256590 DOI: 10.1038/srep07341] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/17/2014] [Indexed: 01/10/2023] Open
Abstract
We describe a novel method (FLICS, FLow Image Correlation Spectroscopy) to extract flow speeds in complex vessel networks from a single raster-scanned optical xy-image, acquired in vivo by confocal or two-photon excitation microscopy. Fluorescent flowing objects produce diagonal lines in the raster-scanned image superimposed to static morphological details. The flow velocity is obtained by computing the Cross Correlation Function (CCF) of the intensity fluctuations detected in pairs of columns of the image. The analytical expression of the CCF has been derived by applying scanning fluorescence correlation concepts to drifting optically resolved objects and the theoretical framework has been validated in systems of increasing complexity. The power of the technique is revealed by its application to the intricate murine hepatic microcirculatory system where blood flow speed has been mapped simultaneously in several capillaries from a single xy-image and followed in time at high spatial and temporal resolution.
Collapse
Affiliation(s)
- Laura Sironi
- Università degli Studi di Milano-Bicocca, Physics Department, Piazza della Scienza 3, I-20126, Milan, Italy
| | - Margaux Bouzin
- Università degli Studi di Milano-Bicocca, Physics Department, Piazza della Scienza 3, I-20126, Milan, Italy
| | - Donato Inverso
- 1] Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, I-20132, Milan, Italy [2] Vita-Salute San Raffaele University, I-20132, Milan, Italy
| | - Laura D'Alfonso
- Università degli Studi di Milano-Bicocca, Physics Department, Piazza della Scienza 3, I-20126, Milan, Italy
| | - Paolo Pozzi
- Università degli Studi di Milano-Bicocca, Physics Department, Piazza della Scienza 3, I-20126, Milan, Italy
| | - Franco Cotelli
- Università degli Studi di Milano, Department of Life Sciences, Via Celoria 26, I-20133, Milan, Italy
| | - Luca G Guidotti
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, I-20132, Milan, Italy
| | - Matteo Iannacone
- 1] Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, I-20132, Milan, Italy [2] Vita-Salute San Raffaele University, I-20132, Milan, Italy
| | - Maddalena Collini
- Università degli Studi di Milano-Bicocca, Physics Department, Piazza della Scienza 3, I-20126, Milan, Italy
| | - Giuseppe Chirico
- Università degli Studi di Milano-Bicocca, Physics Department, Piazza della Scienza 3, I-20126, Milan, Italy
| |
Collapse
|
59
|
Constitutively active Notch4 receptor elicits brain arteriovenous malformations through enlargement of capillary-like vessels. Proc Natl Acad Sci U S A 2014; 111:18007-12. [PMID: 25468970 DOI: 10.1073/pnas.1415316111] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Arteriovenous (AV) malformation (AVM) is a devastating condition characterized by focal lesions of enlarged, tangled vessels that shunt blood from arteries directly to veins. AVMs can form anywhere in the body and can cause debilitating ischemia and life-threatening hemorrhagic stroke. The mechanisms that underlie AVM formation remain poorly understood. Here, we examined the cellular and hemodynamic changes at the earliest stages of brain AVM formation by time-lapse two-photon imaging through cranial windows of mice expressing constitutively active Notch4 (Notch4*). AVMs arose from enlargement of preexisting microvessels with capillary diameter and blood flow and no smooth muscle cell coverage. AV shunting began promptly after Notch4* expression in endothelial cells (ECs), accompanied by increased individual EC areas, rather than increased EC number or proliferation. Alterations in Notch signaling in ECs of all vessels, but not arteries alone, affected AVM formation, suggesting that Notch functions in the microvasculature and/or veins to induce AVM. Increased Notch signaling interfered with the normal biological control of hemodynamics, permitting a positive feedback loop of increasing blood flow and vessel diameter and driving focal AVM growth from AV connections with higher blood velocity at the expense of adjacent AV connections with lower velocity. Endothelial expression of constitutively active Notch1 also led to brain AVMs in mice. Our data shed light on cellular and hemodynamic mechanisms underlying AVM pathogenesis elicited by increased Notch signaling in the endothelium.
Collapse
|
60
|
Fumagalli S, Ortolano F, De Simoni MG. A close look at brain dynamics: Cells and vessels seen by in vivo two-photon microscopy. Prog Neurobiol 2014; 121:36-54. [DOI: 10.1016/j.pneurobio.2014.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 06/17/2014] [Accepted: 06/29/2014] [Indexed: 01/11/2023]
|
61
|
You J, Du C, Volkow ND, Pan Y. Optical coherence Doppler tomography for quantitative cerebral blood flow imaging. BIOMEDICAL OPTICS EXPRESS 2014; 5:3217-30. [PMID: 25401033 PMCID: PMC4230874 DOI: 10.1364/boe.5.003217] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 07/28/2014] [Accepted: 08/04/2014] [Indexed: 05/03/2023]
Abstract
Optical coherence Doppler tomography (ODT) is a promising neurotechnique that permits 3D imaging of the cerebral blood flow (CBF) network; however, quantitative CBF velocity (CBFv) imaging remains challenging. Here we present a simple phase summation method to enhance slow capillary flow detection sensitivity without sacrificing dynamic range for fast flow and vessel tracking to improve angle correction for absolute CBFv quantification. Flow phantom validation indicated that the CBFv quantification accuracy increased from 15% to 91% and the coefficient of variation (CV) decreased 9.3-fold; in vivo mouse brain validation showed that CV decreased 4.4-/10.8- fold for venular/arteriolar flows. ODT was able to identify cocaine-elicited microischemia and quantify CBFv disruption in branch vessels and capillaries that otherwise would have not been possible.
Collapse
Affiliation(s)
- Jiang You
- Department of Biomedical Engineering Stony Brook University, Stony Brook, NY 11794, USA
| | - Congwu Du
- Department of Biomedical Engineering Stony Brook University, Stony Brook, NY 11794, USA
| | - Nora D. Volkow
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yingtian Pan
- Department of Biomedical Engineering Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
62
|
Yalcin HC. Femtosecond laser photodisruption of vitelline vessels of avian embryos as a technique to study embryonic vascular remodeling. Exp Biol Med (Maywood) 2014; 239:1644-52. [DOI: 10.1177/1535370214546272] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
During cardiogenesis, congenital heart defects (CHDs), generally start as local tissue abnormalities without underlying genetic causes, suggesting abnormal hemodynamics may be an important source. Due to the scarcity of experimental techniques that permits the formation of minimally-invasive and well-controlled cardiac perturbations, experimental investigation of embryonic development of CHD via in-vivo models is difficult. In this study, in order to investigate the relationship between abnormal mechanical signaling and embryonic CHD development, a previously developed laser-based technique was adopted to alter chicken embryonic cardiovascular development. The technique incorporates two-photon fluorescence microscopy to visualize deep tissue while femtosecond-pulsed laser photodisruption is used to ablate targeted tissue. Vitelline vessel remodeling under abnormal hemodynamics was the prime concern of the study. In order to alter the hemodynamics, blood flowing inside 50–300 µm diameter Hamburger–Hamilton 24 embryonic vessels was selectively ablated. Red blood cells in the blood and endothelial cells of the vessel walls were damaged as a result of ablation. Cellular injuries led to micro-occlusions in the vessels. Several micro-occlusions formed stable clots, resulting in a complete cessation of blood flow in the targeted vessels. By measuring blood velocities in the surrounding vessels via line scanning technique, the subsequent redistribution of blood flow in the immediate upstream and downstream vessels was revealed. The network was analyzed after 24 h, and it was found to be degraded. Degradation of the entire network can be attributed to the abnormalities in hemodynamics within the vessels. For studying embryonic development of heart defects under disturbed flow conditions, the present study can be extended to clot a blood vessel inside the embryo or a vitelline vessel in the vicinity of the heart. These results demonstrate that, laser-based noninvasive tools should be considered as powerful techniques to analyze hemodynamic signals encountered in embryonic development of CHD.
Collapse
Affiliation(s)
- Huseyin C Yalcin
- Mechanical Engineering Department, Dogus University, Kadikoy, 34722 İstanbul, Turkey
| |
Collapse
|
63
|
Dietzel S, Pircher J, Nekolla AK, Gull M, Brändli AW, Pohl U, Rehberg M. Label-free determination of hemodynamic parameters in the microcirculaton with third harmonic generation microscopy. PLoS One 2014; 9:e99615. [PMID: 24933027 PMCID: PMC4059650 DOI: 10.1371/journal.pone.0099615] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/16/2014] [Indexed: 01/02/2023] Open
Abstract
Determination of blood flow velocity and related hemodynamic parameters is an important aspect of physiological studies which in many settings requires fluorescent labeling. Here we show that Third Harmonic Generation (THG) microscopy is a suitable tool for label-free intravital investigations of the microcirculation in widely-used physiological model systems. THG microscopy is a non-fluorescent multi-photon scanning technique combining the advantages of label-free imaging with restriction of signal generation to a focal spot. Blood flow was visualized and its velocity was measured in adult mouse cremaster muscle vessels, non-invasively in mouse ear vessels and in Xenopus tadpoles. In arterioles, THG line scanning allowed determination of the flow pulse velocity curve and hence the heart rate. By relocating the scan line we obtained velocity profiles through vessel diameters, allowing shear rate calculations. The cell free layer containing the glycocalyx was also visualized. Comparison of the current microscopic resolution with theoretical, diffraction limited resolution let us conclude that an about sixty-fold THG signal intensity increase may be possible with future improved optics, optimized for 1200-1300 nm excitation. THG microscopy is compatible with simultaneous two-photon excited fluorescence detection. It thus also provides the opportunity to determine important hemodynamic parameters in parallel to common fluorescent observations without additional label.
Collapse
Affiliation(s)
- Steffen Dietzel
- Walter-Brendel-Zentrum für Experimentelle Medizin, Ludwig-Maximilians-Universität München, München, Germany
| | - Joachim Pircher
- Walter-Brendel-Zentrum für Experimentelle Medizin, Ludwig-Maximilians-Universität München, München, Germany
| | - A. Katharina Nekolla
- Walter-Brendel-Zentrum für Experimentelle Medizin, Ludwig-Maximilians-Universität München, München, Germany
| | - Mazhar Gull
- Walter-Brendel-Zentrum für Experimentelle Medizin, Ludwig-Maximilians-Universität München, München, Germany
| | - André W. Brändli
- Walter-Brendel-Zentrum für Experimentelle Medizin, Ludwig-Maximilians-Universität München, München, Germany
| | - Ulrich Pohl
- Walter-Brendel-Zentrum für Experimentelle Medizin, Ludwig-Maximilians-Universität München, München, Germany
- SyNergy, Munich Cluster for Systems Neurology, München, Germany
- Deutsches Zentrum für Herz-Kreislaufforschung e.V., München, Germany
| | - Markus Rehberg
- Walter-Brendel-Zentrum für Experimentelle Medizin, Ludwig-Maximilians-Universität München, München, Germany
| |
Collapse
|
64
|
Lindskog H, Kim YH, Jelin EB, Kong Y, Guevara-Gallardo S, Kim TN, Wang RA. Molecular identification of venous progenitors in the dorsal aorta reveals an aortic origin for the cardinal vein in mammals. Development 2014; 141:1120-8. [PMID: 24550118 DOI: 10.1242/dev.101808] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Coordinated arterial-venous differentiation is crucial for vascular development and function. The origin of the cardinal vein (CV) in mammals is unknown, while conflicting theories have been reported in chick and zebrafish. Here, we provide the first molecular characterization of endothelial cells (ECs) expressing venous molecular markers, or venous-fated ECs, within the emergent dorsal aorta (DA). These ECs, expressing the venous molecular markers Coup-TFII and EphB4, cohabited the early DA with ECs expressing the arterial molecular markers ephrin B2, Notch and connexin 40. These mixed ECs in the early DA expressed either the arterial or venous molecular marker, but rarely both. Subsequently, the DA exhibited uniform arterial markers. Real-time imaging of mouse embryos revealed EC movement from the DA to the CV during the stage when venous-fated ECs occupied the DA. We analyzed mutants for EphB4, which encodes a receptor tyrosine kinase for the ephrin B2 ligand, as we hypothesized that ephrin B2/EphB4 signaling may mediate the repulsion of venous-fated ECs from the DA to the CV. Using an EC quantification approach, we discovered that venous-fated ECs increased in the DA and decreased in the CV in the mutants, whereas the rest of the ECs in each vessel were unaffected. This result suggests that the venous-fated ECs were retained in the DA and missing in the CV in the EphB4 mutant, and thus that ephrin B2/EphB4 signaling normally functions to clear venous-fated ECs from the DA to the CV by cell repulsion. Therefore, our cellular and molecular evidence suggests that the DA harbors venous progenitors that move to participate in CV formation, and that ephrin B2/EphB4 signaling regulates this aortic contribution to the mammalian CV.
Collapse
Affiliation(s)
- Henrik Lindskog
- Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery, University of California, San Francisco, CA 94143, USA
| | | | | | | | | | | | | |
Collapse
|
65
|
Alexander S, Weigelin B, Winkler F, Friedl P. Preclinical intravital microscopy of the tumour-stroma interface: invasion, metastasis, and therapy response. Curr Opin Cell Biol 2013; 25:659-71. [PMID: 23896198 DOI: 10.1016/j.ceb.2013.07.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/01/2013] [Accepted: 07/02/2013] [Indexed: 01/10/2023]
Abstract
Key steps of cancer progression and therapy response depend upon interactions between cancer cells with the reactive tumour microenvironment. Intravital microscopy enables multi-modal and multi-scale monitoring of cancer progression as a dynamic step-wise process within anatomic and functional niches provided by the microenvironment. These niches deliver cell-derived and matrix-derived signals that enable cell subsets or single cancer cells to survive, migrate, grow, undergo dormancy, and escape immune surveillance. Beyond basic research, intravital microscopy has reached preclinical application to identify mechanisms of tumour-stroma interactions and outcome. We here summarise how n-dimensional 'dynamic histopathology' of tumours by intravital microscopy shapes mechanistic insight into cell-cell and cell-tissue interactions that underlie single-cell and collective cancer invasion, metastatic seeding at distant sites, immune evasion, and therapy responses.
Collapse
Affiliation(s)
- Stephanie Alexander
- David H. Koch Center for Applied Research of Genitourinary Cancers, Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | | | | | | |
Collapse
|
66
|
Chhatbar PY, Kara P. Improved blood velocity measurements with a hybrid image filtering and iterative Radon transform algorithm. Front Neurosci 2013; 7:106. [PMID: 23807877 PMCID: PMC3684769 DOI: 10.3389/fnins.2013.00106] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 05/24/2013] [Indexed: 11/13/2022] Open
Abstract
Neural activity leads to hemodynamic changes which can be detected by functional magnetic resonance imaging (fMRI). The determination of blood flow changes in individual vessels is an important aspect of understanding these hemodynamic signals. Blood flow can be calculated from the measurements of vessel diameter and blood velocity. When using line-scan imaging, the movement of blood in the vessel leads to streaks in space-time images, where streak angle is a function of the blood velocity. A variety of methods have been proposed to determine blood velocity from such space-time image sequences. Of these, the Radon transform is relatively easy to implement and has fast data processing. However, the precision of the velocity measurements is dependent on the number of Radon transforms performed, which creates a trade-off between the processing speed and measurement precision. In addition, factors like image contrast, imaging depth, image acquisition speed, and movement artifacts especially in large mammals, can potentially lead to data acquisition that results in erroneous velocity measurements. Here we show that pre-processing the data with a Sobel filter and iterative application of Radon transforms address these issues and provide more accurate blood velocity measurements. Improved signal quality of the image as a result of Sobel filtering increases the accuracy and the iterative Radon transform offers both increased precision and an order of magnitude faster implementation of velocity measurements. This algorithm does not use a priori knowledge of angle information and therefore is sensitive to sudden changes in blood flow. It can be applied on any set of space-time images with red blood cell (RBC) streaks, commonly acquired through line-scan imaging or reconstructed from full-frame, time-lapse images of the vasculature.
Collapse
Affiliation(s)
- Pratik Y Chhatbar
- Department of Neurosciences, Medical University of South Carolina Charleston, SC, USA
| | | |
Collapse
|