51
|
Searle KM, Katowa B, Kobayashi T, Siame MNS, Mharakurwa S, Carpi G, Norris DE, Stevenson JC, Thuma PE, Moss WJ. Distinct parasite populations infect individuals identified through passive and active case detection in a region of declining malaria transmission in southern Zambia. Malar J 2017; 16:154. [PMID: 28420399 PMCID: PMC5395854 DOI: 10.1186/s12936-017-1810-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 04/08/2017] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Substantial reductions in the burden of malaria have been documented in parts of sub-Saharan Africa, with elimination strategies and goals being formulated in some regions. Within this context, understanding the epidemiology of low-level malaria transmission is crucial to achieving and sustaining elimination. A 24 single-nucleotide-polymorphism Plasmodium falciparum molecular barcode was used to characterize parasite populations from infected individuals identified through passive and active case detection in an area approaching malaria elimination in southern Zambia. METHODS The study was conducted in the catchment area of Macha Hospital in Choma District, Southern Province, Zambia, where the parasite prevalence declined over the past decade, from 9.2% in 2008 to less than 1% in 2013. Parasite haplotypes from actively detected, P. falciparum-infected participants enrolled in a serial cross-sectional, community-based cohort study from 2008 to 2013 and from passively detected, P. falciparum-infected individuals enrolled at five rural health centres from 2012 to 2015 were compared. Changes in P. falciparum genetic relatedness, diversity and complexity were analysed as malaria transmission declined. RESULTS Actively detected cases identified in the community were most commonly rapid diagnostic test negative, asymptomatic and had submicroscopic parasitaemia. Phylogenetic reconstruction using concatenated 24 SNP barcode revealed a separation of parasite haplotypes from passively and actively detected infections, consistent with two genetically distinct parasite populations. For passively detected infections identified at health centres, the proportion of detectable polyclonal infections was consistently low in all seasons, in contrast with actively detected infections in which the proportion of polyclonal infections was high. The mean genetic divergence for passively detected infections was 34.5% for the 2012-2013 transmission season, 37.8% for the 2013-2014 season, and 30.8% for the 2014-2015 season. The mean genetic divergence for actively detected infections was 22.3% in the 2008 season and 29.0% in the 2008-2009 season and 9.9% across the 2012-2014 seasons. CONCLUSIONS Distinct parasite populations were identified among infected individuals identified through active and passive surveillance, suggesting that infected individuals detected through active surveillance may not have contributed substantially to ongoing transmission. As parasite prevalence and diversity within these individuals declined, resource-intensive efforts to identify the chronically infected reservoir may not be necessary to eliminate malaria in this setting.
Collapse
Affiliation(s)
- Kelly M Searle
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| | - Ben Katowa
- Macha Research Trust, Choma District, Zambia
| | - Tamaki Kobayashi
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | | | | | - Giovanna Carpi
- Johns Hopkins Malaria Research Institute, Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Douglas E Norris
- Johns Hopkins Malaria Research Institute, Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Jennifer C Stevenson
- Macha Research Trust, Choma District, Zambia.,Johns Hopkins Malaria Research Institute, Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Philip E Thuma
- Macha Research Trust, Choma District, Zambia.,Johns Hopkins Malaria Research Institute, Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - William J Moss
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.,Johns Hopkins Malaria Research Institute, Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
52
|
Clear: Composition of Likelihoods for Evolve and Resequence Experiments. Genetics 2017; 206:1011-1023. [PMID: 28396506 PMCID: PMC5499160 DOI: 10.1534/genetics.116.197566] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/31/2017] [Indexed: 01/26/2023] Open
Abstract
The advent of next generation sequencing technologies has made whole-genome and whole-population sampling possible, even for eukaryotes with large genomes. With this development, experimental evolution studies can be designed to observe molecular evolution "in action" via evolve-and-resequence (E&R) experiments. Among other applications, E&R studies can be used to locate the genes and variants responsible for genetic adaptation. Most existing literature on time-series data analysis often assumes large population size, accurate allele frequency estimates, or wide time spans. These assumptions do not hold in many E&R studies. In this article, we propose a method-composition of likelihoods for evolve-and-resequence experiments (Clear)-to identify signatures of selection in small population E&R experiments. Clear takes whole-genome sequences of pools of individuals as input, and properly addresses heterogeneous ascertainment bias resulting from uneven coverage. Clear also provides unbiased estimates of model parameters, including population size, selection strength, and dominance, while being computationally efficient. Extensive simulations show that Clear achieves higher power in detecting and localizing selection over a wide range of parameters, and is robust to variation of coverage. We applied the Clear statistic to multiple E&R experiments, including data from a study of adaptation of Drosophila melanogaster to alternating temperatures and a study of outcrossing yeast populations, and identified multiple regions under selection with genome-wide significance.
Collapse
|
53
|
Wong W, Griggs AD, Daniels RF, Schaffner SF, Ndiaye D, Bei AK, Deme AB, MacInnis B, Volkman SK, Hartl DL, Neafsey DE, Wirth DF. Genetic relatedness analysis reveals the cotransmission of genetically related Plasmodium falciparum parasites in Thiès, Senegal. Genome Med 2017; 9:5. [PMID: 28118860 PMCID: PMC5260019 DOI: 10.1186/s13073-017-0398-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 12/23/2016] [Indexed: 12/30/2022] Open
Abstract
Background As public health interventions drive parasite populations to elimination, genetic epidemiology models that incorporate population genomics can be powerful tools for evaluating the effectiveness of continued intervention. However, current genetic epidemiology models may not accurately simulate the population genetic profile of parasite populations, particularly with regard to polygenomic (multi-strain) infections. Current epidemiology models simulate polygenomic infections via superinfection (multiple mosquito bites), despite growing evidence that cotransmission (a single mosquito bite) may contribute to polygenomic infections. Methods Here, we quantified the relatedness of strains within 31 polygenomic infections collected from patients in Thiès, Senegal using a hidden Markov model to measure the proportion of the genome that is inferred to be identical by descent. Results We found that polygenomic infections can be composed of highly related parasites and that superinfection models drastically underestimate the relatedness of strains within polygenomic infections. Conclusions Our findings suggest that cotransmission is a major contributor to polygenomic infections in Thiès, Senegal. The incorporation of cotransmission into existing genetic epidemiology models may enhance our ability to characterize and predict changes in population structure associated with reduced transmission intensities and the emergence of important phenotypes like drug resistance that threaten to undermine malaria elimination activities. Electronic supplementary material The online version of this article (doi:10.1186/s13073-017-0398-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wesley Wong
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | | | - Rachel F Daniels
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA.,Broad Institute, Cambridge, MA, 02142, USA
| | | | - Daouda Ndiaye
- Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar, Senegal
| | - Amy K Bei
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA.,Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar, Senegal
| | - Awa B Deme
- Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar, Senegal
| | | | - Sarah K Volkman
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA.,Broad Institute, Cambridge, MA, 02142, USA.,School of Nursing and Health Sciences, Simmons College, Boston, MA, 02115, USA
| | - Daniel L Hartl
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | | | - Dyann F Wirth
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA. .,Broad Institute, Cambridge, MA, 02142, USA.
| |
Collapse
|
54
|
Chang HH, Worby CJ, Yeka A, Nankabirwa J, Kamya MR, Staedke SG, Dorsey G, Murphy M, Neafsey DE, Jeffreys AE, Hubbart C, Rockett KA, Amato R, Kwiatkowski DP, Buckee CO, Greenhouse B. THE REAL McCOIL: A method for the concurrent estimation of the complexity of infection and SNP allele frequency for malaria parasites. PLoS Comput Biol 2017; 13:e1005348. [PMID: 28125584 PMCID: PMC5300274 DOI: 10.1371/journal.pcbi.1005348] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 02/09/2017] [Accepted: 01/05/2017] [Indexed: 12/24/2022] Open
Abstract
As many malaria-endemic countries move towards elimination of Plasmodium falciparum, the most virulent human malaria parasite, effective tools for monitoring malaria epidemiology are urgent priorities. P. falciparum population genetic approaches offer promising tools for understanding transmission and spread of the disease, but a high prevalence of multi-clone or polygenomic infections can render estimation of even the most basic parameters, such as allele frequencies, challenging. A previous method, COIL, was developed to estimate complexity of infection (COI) from single nucleotide polymorphism (SNP) data, but relies on monogenomic infections to estimate allele frequencies or requires external allele frequency data which may not available. Estimates limited to monogenomic infections may not be representative, however, and when the average COI is high, they can be difficult or impossible to obtain. Therefore, we developed THE REAL McCOIL, Turning HEterozygous SNP data into Robust Estimates of ALelle frequency, via Markov chain Monte Carlo, and Complexity Of Infection using Likelihood, to incorporate polygenomic samples and simultaneously estimate allele frequency and COI. This approach was tested via simulations then applied to SNP data from cross-sectional surveys performed in three Ugandan sites with varying malaria transmission. We show that THE REAL McCOIL consistently outperforms COIL on simulated data, particularly when most infections are polygenomic. Using field data we show that, unlike with COIL, we can distinguish epidemiologically relevant differences in COI between and within these sites. Surprisingly, for example, we estimated high average COI in a peri-urban subregion with lower transmission intensity, suggesting that many of these cases were imported from surrounding regions with higher transmission intensity. THE REAL McCOIL therefore provides a robust tool for understanding the molecular epidemiology of malaria across transmission settings.
Collapse
Affiliation(s)
- Hsiao-Han Chang
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States
| | - Colin J. Worby
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States
| | - Adoke Yeka
- Makerere University School of Public Health, College of Health Sciences, Kampala, Uganda
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Joaniter Nankabirwa
- Infectious Disease Research Collaboration, Kampala, Uganda
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Moses R. Kamya
- Infectious Disease Research Collaboration, Kampala, Uganda
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Sarah G. Staedke
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Grant Dorsey
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States
| | - Maxwell Murphy
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States
| | - Daniel E. Neafsey
- Genome Sequencing and Analysis Program, Broad Institute, Cambridge, Massachusetts, United States
| | - Anna E. Jeffreys
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Christina Hubbart
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Kirk A. Rockett
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Roberto Amato
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Dominic P. Kwiatkowski
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Caroline O. Buckee
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States
| | - Bryan Greenhouse
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States
| |
Collapse
|
55
|
Rice BL, Golden CD, Anjaranirina EJG, Botelho CM, Volkman SK, Hartl DL. Genetic evidence that the Makira region in northeastern Madagascar is a hotspot of malaria transmission. Malar J 2016; 15:596. [PMID: 27998292 PMCID: PMC5175380 DOI: 10.1186/s12936-016-1644-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/01/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Encouraging advances in the control of Plasmodium falciparum malaria have been observed across much of Africa in the past decade. However, regions of high relative prevalence and transmission that remain unaddressed or unrecognized provide a threat to this progress. Difficulties in identifying such localized hotspots include inadequate surveillance, especially in remote regions, and the cost and labor needed to produce direct estimates of transmission. Genetic data can provide a much-needed alternative to such empirical estimates, as the pattern of genetic variation within malaria parasite populations is indicative of the level of local transmission. Here, genetic data were used to provide the first empirical estimates of P. falciparum malaria prevalence and transmission dynamics for the rural, remote Makira region of northeastern Madagascar. METHODS Longitudinal surveys of a cohort of 698 total individuals (both sexes, 0-74 years of age) were performed in two communities bordering the Makira Natural Park protected area. Rapid diagnostic tests, with confirmation by molecular methods, were used to estimate P. falciparum prevalence at three seasonal time points separated by 4-month intervals. Genomic loci in a panel of polymorphic, putatively neutral markers were genotyped for 94 P. falciparum infections and used to characterize genetic parameters known to correlate with transmission levels. RESULTS Overall, 27.8% of individuals tested positive for P. falciparum over the 10-month course of the study, a rate approximately sevenfold higher than the countrywide average for Madagascar. Among those P. falciparum infections, a high level of genotypic diversity and a high frequency of polygenomic infections (68.1%) were observed, providing a pattern consistent with high and stable transmission. CONCLUSIONS Prevalence and genetic diversity data indicate that the Makira region is a hotspot of P. falciparum transmission in Madagascar. This suggests that the area should be highlighted for future interventions and that additional areas of high transmission may be present in ecologically similar regions nearby.
Collapse
Affiliation(s)
- Benjamin L. Rice
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA USA
| | - Christopher D. Golden
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA USA
- Harvard University Center for the Environment, Cambridge, MA USA
- Madagascar Health and Environmental Research (MAHERY), Maroantsetra, Madagascar
| | | | | | - Sarah K. Volkman
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Daniel L. Hartl
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA USA
| |
Collapse
|
56
|
Dieye B, Affara M, Sangare L, Joof F, Ndiaye YD, Gomis JF, Ndiaye M, Mbaye A, Diakite M, Sy N, Mbengue B, Deme AB, Daniels R, Ahouidi AD, Dieye T, Abdullahi A, Doumbia S, Ndiaye JL, Diarra A, Ismaela A, Coulibaly M, Welty C, Ngwa AA, Shaffer J, D'Alessandro U, Volkman SK, Wirth DF, Krogstad DJ, Koita O, Nwakanma D, Ndiaye D. West Africa International Centers of Excellence for Malaria Research: Drug Resistance Patterns to Artemether-Lumefantrine in Senegal, Mali, and The Gambia. Am J Trop Med Hyg 2016; 95:1054-1060. [PMID: 27549635 DOI: 10.4269/ajtmh.16-0053] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 06/29/2016] [Indexed: 01/09/2023] Open
Abstract
In 2006, artemether-lumefantrine (AL) became the first-line treatment of uncomplicated malaria in Senegal, Mali, and the Gambia. To monitor its efficacy, between August 2011 and November 2014, children with uncomplicated Plasmodium falciparum malaria were treated with AL and followed up for 42 days. A total of 463 subjects were enrolled in three sites (246 in Senegal, 97 in Mali, and 120 in Gambia). No early treatment failure was observed and malaria infection cleared in all patients by day 3. Polymerase chain reaction (PCR)-adjusted adequate clinical and parasitological response (ACPR) was 100% in Mali, and the Gambia, and 98.8% in Senegal. However, without PCR adjustment, ACPR was 89.4% overall; 91.5% in Mali, 98.8% in Senegal, and 64.3% in the Gambia (the lower value in the Gambia attributed to poor compliance of the full antimalarial course). However, pfmdr1 mutations were prevalent in Senegal and a decrease in parasite sensitivity to artesunate and lumefantrine (as measured by ex vivo drug assay) was observed at all sites. Recrudescent parasites did not show Kelch 13 (K13) mutations and AL remains highly efficacious in these west African sites.
Collapse
Affiliation(s)
- Baba Dieye
- Cheikh Anta Diop University, Dakar, Senegal
| | | | | | | | | | | | | | | | | | - Ngayo Sy
- Cheikh Anta Diop University, Dakar, Senegal
| | | | - Awa B Deme
- Cheikh Anta Diop University, Dakar, Senegal
| | - Rachel Daniels
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | | | | | | | | | | | | | | | | | | | | | | | - Umberto D'Alessandro
- Medical Research Council, The Gambia.,London School of Hygiene and Tropical Medicine, London, United Kingdom.,Institute of Tropical Medicine, Antwerp, Belgium
| | - Sarah K Volkman
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,The Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Simmons College School of Nursing and Health Sciences, Boston, Massachusetts
| | - Dyann F Wirth
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | | | | | | | | |
Collapse
|
57
|
Zhou Z, Mitchell RM, Kariuki S, Odero C, Otieno P, Otieno K, Onyona P, Were V, Wiegand RE, Gimnig JE, Walker ED, Desai M, Shi YP. Assessment of submicroscopic infections and gametocyte carriage of Plasmodium falciparum during peak malaria transmission season in a community-based cross-sectional survey in western Kenya, 2012. Malar J 2016; 15:421. [PMID: 27543112 PMCID: PMC4992329 DOI: 10.1186/s12936-016-1482-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/10/2016] [Indexed: 11/10/2022] Open
Abstract
Background Although malaria control intervention has greatly decreased malaria morbidity and mortality in many African countries, further decline in parasite prevalence has stagnated in western Kenya. In order to assess if malaria transmission reservoir is associated with this stagnation, submicroscopic infection and gametocyte carriage was estimated. Risk factors and associations between malaria control interventions and gametocyte carriage were further investigated in this study. Methods A total of 996 dried blood spot samples were used from two strata, all smear-positives (516 samples) and randomly selected smear-negatives (480 samples), from a community cross-sectional survey conducted at peak transmission season in 2012 in Siaya County, western Kenya. Plasmodium falciparum parasite presence and density were determined by stained blood smear and by 18S mRNA transcripts using nucleic acid sequence-based amplification assay (NASBA), gametocyte presence and density were determined by blood smear and by Pfs25 mRNA-NASBA, and gametocyte diversity by Pfg377 mRNA RT-PCR and RT-qPCR. Results Of the randomly selected smear-negative samples, 69.6 % (334/480) were positive by 18S-NASBA while 18S-NASBA detected 99.6 % (514/516) smear positive samples. Overall, 80.2 % of the weighted population was parasite positive by 18S-NASBA vs 30.6 % by smear diagnosis and 44.0 % of the weighted population was gametocyte positive by Pfs25-NASBA vs 2.6 % by smear diagnosis. Children 5–15 years old were more likely to be parasitaemic and gametocytaemic by NASBA than individuals >15 years old or children <5 years old while gametocyte density decreased with age. Anaemia and self-reported fever within the past 24 h were associated with increased odds of gametocytaemia. Fever was also positively associated with parasite density, but not with gametocyte density. Anti-malarial use within the past 2 weeks decreased the odds of gametocytaemia, but not the odds of parasitaemia. In contrast, recent anti-malarial use was associated with lowered parasite density, but not the gametocyte density. Use of ITNs was associated with lower odds for parasitaemia in part of the study area with a longer history of ITN interventions. In the same part of study area, the odds of having multiple gametocyte alleles were also lower in individuals using ITNs than in those not using ITNs and parasite density was positively associated with gametocyte diversity. Conclusion A large proportion of submicroscopic parasites and gametocytes in western Kenya might contribute to the stagnation in malaria prevalence, suggesting that additional interventions targeting the infectious reservoir are needed. As school aged children and persons with anaemia and fever were major sources for gametocyte reservoir, these groups should be targeted for intervention and prevention to reduce malaria transmission. Anti-malarial use was associated with lower parasite density and odds of gametocytaemia, but not the gametocyte density, indicating a limitation of anti-malarial impact on the transmission reservoir. ITN use had a protective role against parasitaemia and gametocyte diversity in western Kenya. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1482-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhiyong Zhou
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Rebecca M Mitchell
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Simon Kariuki
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Christopher Odero
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Peter Otieno
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Kephas Otieno
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Philip Onyona
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Vincent Were
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Ryan E Wiegand
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - John E Gimnig
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Edward D Walker
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Meghna Desai
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ya Ping Shi
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
58
|
Nabet C, Doumbo S, Jeddi F, Konaté S, Manciulli T, Fofana B, L'Ollivier C, Camara A, Moore S, Ranque S, Théra MA, Doumbo OK, Piarroux R. Genetic diversity of Plasmodium falciparum in human malaria cases in Mali. Malar J 2016; 15:353. [PMID: 27401016 PMCID: PMC4940954 DOI: 10.1186/s12936-016-1397-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 06/15/2016] [Indexed: 11/25/2022] Open
Abstract
Background In Mali, Plasmodium falciparum malaria is highly endemic and remains stable despite the implementation of various malaria control measures. Understanding P. falciparum population structure variations across the country could provide new insights to guide malaria control programmes. In this study, P. falciparum genetic diversity and population structure in regions of varying patterns of malaria transmission in Mali were analysed. Methods A total of 648 blood isolates adsorbed onto filter papers during population surveillance surveys (December 2012–March 2013, October 2013) in four distinct sites of Mali were screened for the presence of P. falciparum via quantitative PCR (qPCR). Multiple loci variable number of tandem repeats analysis (MLVA) using eight microsatellite markers was then performed on positive qPCR samples. Complete genotypes were then analysed for genetic diversity, genetic differentiation and linkage disequilibrium. Results Of 156 qPCR-positive samples, complete genotyping of 112 samples was achieved. The parasite populations displayed high genetic diversity (mean He = 0.77), which was consistent with a high level of malaria transmission in Mali. Genetic differentiation was low (FST < 0.02), even between sites located approximately 900 km apart, thereby illustrating marked gene flux amongst parasite populations. The lack of linkage disequilibrium further revealed an absence of local clonal expansion, which was corroborated by the genotype relationship results. In contrast to the stable genetic diversity level observed throughout the country, mean multiplicity of infection increased from north to south (from 1.4 to 2.06) and paralleled malaria transmission levels observed locally. Conclusions In Mali, the high level of genetic diversity and the pronounced gene flux amongst P. falciparum populations may represent an obstacle to control malaria. Indeed, results suggest that parasite populations are polymorphic enough to adapt to their host and to counteract interventions, such as anti-malarial vaccination. Additionally, the panmictic parasite population structure imply that resistance traits may disseminate freely from one area to another, making control measures performed at a local level ineffective. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1397-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cécile Nabet
- UMR MD3 IP-TPT, Parasitology Laboratory, Timone Hospital, Aix-Marseilles University, Marseilles, France.
| | - Safiatou Doumbo
- Malaria Research and Training Centre, Parasitic Diseases Epidemiology Department, UMI 3189, University of Sciences, Technique and Technology, Bamako, Mali
| | - Fakhri Jeddi
- UMR MD3 IP-TPT, Parasitology Laboratory, Timone Hospital, Aix-Marseilles University, Marseilles, France
| | - Salimata Konaté
- Malaria Research and Training Centre, Parasitic Diseases Epidemiology Department, UMI 3189, University of Sciences, Technique and Technology, Bamako, Mali
| | - Tommaso Manciulli
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, Division of Infectious and Tropical Diseases and Hepatology, University of Pavia, Pavia, Italy
| | - Bakary Fofana
- Malaria Research and Training Centre, Parasitic Diseases Epidemiology Department, UMI 3189, University of Sciences, Technique and Technology, Bamako, Mali
| | - Coralie L'Ollivier
- UMR MD3 IP-TPT, Parasitology Laboratory, Timone Hospital, Aix-Marseilles University, Marseilles, France
| | - Aminata Camara
- Malaria Research and Training Centre, Parasitic Diseases Epidemiology Department, UMI 3189, University of Sciences, Technique and Technology, Bamako, Mali
| | - Sandra Moore
- UMR MD3 IP-TPT, Parasitology Laboratory, Timone Hospital, Aix-Marseilles University, Marseilles, France
| | - Stéphane Ranque
- UMR MD3 IP-TPT, Parasitology Laboratory, Timone Hospital, Aix-Marseilles University, Marseilles, France
| | - Mahamadou A Théra
- Malaria Research and Training Centre, Parasitic Diseases Epidemiology Department, UMI 3189, University of Sciences, Technique and Technology, Bamako, Mali
| | - Ogobara K Doumbo
- Malaria Research and Training Centre, Parasitic Diseases Epidemiology Department, UMI 3189, University of Sciences, Technique and Technology, Bamako, Mali
| | - Renaud Piarroux
- UMR MD3 IP-TPT, Parasitology Laboratory, Timone Hospital, Aix-Marseilles University, Marseilles, France
| |
Collapse
|
59
|
Mohd Abd Razak MR, Sastu UR, Norahmad NA, Abdul-Karim A, Muhammad A, Muniandy PK, Jelip J, Rundi C, Imwong M, Mudin RN, Abdullah NR. Genetic Diversity of Plasmodium falciparum Populations in Malaria Declining Areas of Sabah, East Malaysia. PLoS One 2016; 11:e0152415. [PMID: 27023787 PMCID: PMC4811561 DOI: 10.1371/journal.pone.0152415] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/14/2016] [Indexed: 11/19/2022] Open
Abstract
Malaysia has a national goal to eliminate malaria by 2020. Understanding the genetic diversity of malaria parasites in residual transmission foci can provide invaluable information which may inform the intervention strategies used to reach elimination targets. This study was conducted to determine the genetic diversity level of P. falciparum isolates in malaria residual foci areas of Sabah. Malaria active case detection was conducted in Kalabakan and Kota Marudu. All individuals in the study sites were screened for malaria infection by rapid diagnostic test. Blood from P. falciparum-infected individuals were collected on filter paper prior to DNA extraction. Genotyping was performed using merozoite surface protein-1 (MSP-1), merozoite surface protein-2 (MSP-2), glutamate rich protein (GLURP) and 10 neutral microsatellite loci markers. The size of alleles, multiplicity of infection (MOI), mean number of alleles (Na), expected heterozygosity (He), linkage disequilibrium (LD) and genetic differentiation (FST) were determined. In Kalabakan, the MSP-1 and MSP-2 alleles were predominantly K1 and FC27 family types, respectively. The GLURP genotype VI (751-800 bp) was predominant. The MOI for MSP-1 and MSP-2 were 1.65 and 1.20, respectively. The Na per microsatellite locus was 1.70. The He values for MSP-1, MSP-2, GLURP and neutral microsatellites were 0.17, 0.37, 0.70 and 0.33, respectively. In Kota Marudu, the MSP-1 and MSP-2 alleles were predominantly MAD20 and 3D7 family types, respectively. The GLURP genotype IV (651-700 bp) was predominant. The MOI for both MSP-1 and MSP-2 was 1.05. The Na per microsatellite locus was 3.60. The He values for MSP-1, MSP-2, GLURP and neutral microsatellites were 0.24, 0.25, 0.69 and 0.30, respectively. A significant LD was observed in Kalabakan (0.495, p<0.01) and Kota Marudu P. falciparum populations (0.601, p<0.01). High genetic differentiation between Kalabakan and Kota Marudu P. falciparum populations was observed (FST = 0.532). The genetic data from the present study highlighted the limited diversity and contrasting genetic pattern of P. falciparum populations in the malaria declining areas of Sabah.
Collapse
Affiliation(s)
| | - Umi Rubiah Sastu
- Herbal Medicine Research Center, Institute for Medical Research, Kuala Lumpur, Malaysia
| | - Nor Azrina Norahmad
- Herbal Medicine Research Center, Institute for Medical Research, Kuala Lumpur, Malaysia
| | - Abass Abdul-Karim
- Zonal Public Health Laboratory, Tamale Teaching Hospital, Tamale, Northern Region, Ghana, West Africa
| | - Amirrudin Muhammad
- Herbal Medicine Research Center, Institute for Medical Research, Kuala Lumpur, Malaysia
| | - Prem Kumar Muniandy
- Herbal Medicine Research Center, Institute for Medical Research, Kuala Lumpur, Malaysia
| | - Jenarun Jelip
- Sabah State Health Department, Rumah Persekutuan, Kota Kinabalu, Sabah, Malaysia
| | - Christina Rundi
- Sabah State Health Department, Rumah Persekutuan, Kota Kinabalu, Sabah, Malaysia
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rose Nani Mudin
- Vector Borne Disease Sector, Disease Control Division, Ministry of Health, Federal Government Administrative Centre, Putrajaya, Malaysia
| | - Noor Rain Abdullah
- Herbal Medicine Research Center, Institute for Medical Research, Kuala Lumpur, Malaysia
| |
Collapse
|
60
|
Friedrich LR, Popovici J, Kim S, Dysoley L, Zimmerman PA, Menard D, Serre D. Complexity of Infection and Genetic Diversity in Cambodian Plasmodium vivax. PLoS Negl Trop Dis 2016; 10:e0004526. [PMID: 27018585 PMCID: PMC4809505 DOI: 10.1371/journal.pntd.0004526] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/18/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Plasmodium vivax is the most widely distributed human malaria parasite with 2.9 billion people living in endemic areas. Despite intensive malaria control efforts, the proportion of cases attributed to P. vivax is increasing in many countries. Genetic analyses of the parasite population and its dynamics could provide an assessment of the efficacy of control efforts, but, unfortunately, these studies are limited in P. vivax by the lack of informative markers and high-throughput genotyping methods. METHODOLOGY/PRINCIPAL FINDINGS We developed a sequencing-based assay to simultaneously genotype more than 100 SNPs and applied this approach to ~500 P. vivax-infected individuals recruited across nine locations in Cambodia between 2004 and 2013. Our analyses showed that the vast majority of infections are polyclonal (92%) and that P. vivax displays high genetic diversity in Cambodia without apparent geographic stratification. Interestingly, our analyses also revealed that the proportion of monoclonal infections significantly increased between 2004 and 2013, possibly suggesting that malaria control strategies in Cambodia may be successfully affecting the parasite population. CONCLUSIONS/SIGNIFICANCE Our findings demonstrate that this high-throughput genotyping assay is efficient in characterizing P. vivax diversity and can provide valuable insights to assess the efficacy of malaria elimination programs or to monitor the spread of specific parasites.
Collapse
Affiliation(s)
- Lindsey R. Friedrich
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Jean Popovici
- Unite d’Epidemiologie Moleculaire, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Saorin Kim
- Unite d’Epidemiologie Moleculaire, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Lek Dysoley
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Peter A. Zimmerman
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Didier Menard
- Unite d’Epidemiologie Moleculaire, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - David Serre
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
61
|
Gunawardena S, Karunaweera ND. Advances in genetics and genomics: use and limitations in achieving malaria elimination goals. Pathog Glob Health 2016; 109:123-41. [PMID: 25943157 DOI: 10.1179/2047773215y.0000000015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Success of the global research agenda towards eradication of malaria will depend on the development of new tools, including drugs, vaccines, insecticides and diagnostics. Genetic and genomic information now available for the malaria parasites, their mosquito vectors and human host, can be harnessed to both develop these tools and monitor their effectiveness. Here we review and provide specific examples of current technological advances and how these genetic and genomic tools have increased our knowledge of host, parasite and vector biology in relation to malaria elimination and in turn enhanced the potential to reach that goal. We then discuss limitations of these tools and future prospects for the successful achievement of global malaria elimination goals.
Collapse
|
62
|
Targeting vivax malaria in the Asia Pacific: The Asia Pacific Malaria Elimination Network Vivax Working Group. Malar J 2015; 14:484. [PMID: 26627892 PMCID: PMC4667409 DOI: 10.1186/s12936-015-0958-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/21/2015] [Indexed: 11/17/2022] Open
Abstract
The Asia Pacific Malaria Elimination Network (APMEN) is a collaboration of 18 country partners committed to eliminating malaria from within their borders. Over the past 5 years, APMEN has helped to build the knowledge, tools and in-country technical expertise required to attain this goal. At its inaugural meeting in Brisbane in 2009, Plasmodium vivax infections were identified across the region as a common threat to this ambitious programme; the APMEN Vivax Working Group was established to tackle specifically this issue. The Working Group developed a four-stage strategy to identify knowledge gaps, build regional consensus on shared priorities, generate evidence and change practice to optimize malaria elimination activities. This case study describes the issues faced and the solutions found in developing this robust strategic partnership between national programmes and research partners within the Working Group. The success of the approach adopted by the group may facilitate similar applications in other regions seeking to deploy evidence-based policy and practice.
Collapse
Affiliation(s)
- The Vivax Working Group
- The APMEN Vivax Working Group, Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT 0810 Australia
| |
Collapse
|
63
|
A Venue-Based Survey of Malaria, Anemia and Mobility Patterns among Migrant Farm Workers in Amhara Region, Ethiopia. PLoS One 2015; 10:e0143829. [PMID: 26619114 PMCID: PMC4664424 DOI: 10.1371/journal.pone.0143829] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 11/10/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Mobile populations present unique challenges to malaria control and elimination efforts. Each year, a large number of individuals travel to northwest Amhara Region, Ethiopia to seek seasonal employment on large-scale farms. Agricultural areas typically report the heaviest malaria burden within Amhara thereby placing migrants at high risk of infection. Yet little is known about these seasonal migrants and their malaria-related risk factors. METHODS AND FINDINGS In July 2013, a venue-based survey of 605 migrant laborers 18 years or older was conducted in two districts of North Gondar zone, Amhara. The study population was predominantly male (97.7%) and young (mean age 22.8 years). Plasmodium prevalence by rapid diagnostic test (RDT) was 12.0%; One quarter (28.3%) of individuals were anemic (hemoglobin <13 g/dl). Nearly all participants (95.6%) originated from within Amhara Region, with half (51.6%) coming from within North Gondar zone. Around half (51.2%) slept in temporary shelters, while 20.5% regularly slept outside. Only 11.9% of participants had access to a long lasting insecticidal net (LLIN). Reported net use the previous night was 8.8% overall but 74.6% among those with LLIN access. Nearly one-third (30.1%) reported having fever within the past two weeks, of whom 31.3% sought care. Cost and distance were the main reported barriers to seeking care. LLIN access (odds ratio [OR] = 0.30, P = 0.04) and malaria knowledge (OR = 0.50, P = 0.02) were significantly associated with reduced Plasmodium infection among migrants, with a similar but non-significant trend observed for reported net use the previous night (OR = 0.16, P = 0.14). CONCLUSIONS High prevalence of malaria and anemia were observed among a young population that originated from relatively proximate areas. Low access to care and low IRS and LLIN coverage likely place migrant workers at significant risk of malaria in this area and their return home may facilitate parasite transport to other areas. Strategies specifically tailored to migrant farm workers are needed to support malaria control and elimination activities in Ethiopia.
Collapse
|
64
|
Daniels R, Hamilton EJ, Durfee K, Ndiaye D, Wirth DF, Hartl DL, Volkman SK. Methods to Increase the Sensitivity of High Resolution Melting Single Nucleotide Polymorphism Genotyping in Malaria. J Vis Exp 2015:e52839. [PMID: 26575471 PMCID: PMC4692701 DOI: 10.3791/52839] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Despite decades of eradication efforts, malaria remains a global burden. Recent renewed interest in regional elimination and global eradication has been accompanied by increased genomic information about Plasmodium parasite species responsible for malaria, including characteristics of geographical populations as well as variations associated with reduced susceptibility to anti-malarial drugs. One common genetic variation, single-nucleotide polymorphisms (SNPs), offers attractive targets for parasite genotyping. These markers are useful not only for tracking drug resistance markers but also for tracking parasite populations using markers not under drug or other selective pressures. SNP genotyping methods offer the ability to track drug resistance as well as to fingerprint individual parasites for population surveillance, particularly in response to malaria control efforts in regions nearing elimination status. While informative SNPs have been identified that are agnostic to specific genotyping technologies, high-resolution melting (HRM) analysis is particularly suited to field-based studies. Compared to standard fluorescent-probe based methods that require individual SNPs in a single labeled probe and offer at best 10% sensitivity to detect SNPs in samples that contain multiple genomes (polygenomic), HRM offers 2-5% sensitivity. Modifications to HRM, such as blocked probes and asymmetric primer concentrations as well as optimization of amplification annealing temperatures to bias PCR towards amplification of the minor allele, further increase the sensitivity of HRM. While the sensitivity improvement depends on the specific assay, we have increased detection sensitivities to less than 1% of the minor allele. In regions approaching malaria eradication, early detection of emerging or imported drug resistance is essential for prompt response. Similarly, the ability to detect polygenomic infections and differentiate imported parasite types from cryptic local reservoirs can inform control programs. This manuscript describes modifications to high resolution melting technology that further increase its sensitivity to identify polygenomic infections in patient samples.
Collapse
Affiliation(s)
- Rachel Daniels
- Department of Organismic and Evolutionary Biology, Harvard University; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health;
| | - Elizabeth J Hamilton
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health
| | - Katelyn Durfee
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health
| | - Daouda Ndiaye
- Faculty of Medicine and Pharmacy, Cheikh Anta Diop University
| | - Dyann F Wirth
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health; Institute of Infectious Diseases, Broad Institute
| | - Daniel L Hartl
- Department of Organismic and Evolutionary Biology, Harvard University
| | - Sarah K Volkman
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health; School of Nursing and Health Sciences, Simmons College
| |
Collapse
|
65
|
Okoth SA, Chenet SM, Arrospide N, Gutierrez S, Cabezas C, Matta JA, Udhayakumar V. Molecular Investigation into a Malaria Outbreak in Cusco, Peru: Plasmodium falciparum BV1 Lineage is Linked to a Second Outbreak in Recent Times. Am J Trop Med Hyg 2015; 94:128-31. [PMID: 26483121 DOI: 10.4269/ajtmh.15-0442] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/29/2015] [Indexed: 11/07/2022] Open
Abstract
In November 2013, a Plasmodium falciparum malaria outbreak of 11 cases occurred in Cusco, southern Peru, where falciparum malaria had not been reported since 1946. Although initial microscopic diagnosis reported only Plasmodium vivax infection in each of the specimens, subsequent examination by the national reference laboratory confirmed P. falciparum infection in all samples. Molecular typing of four available isolates revealed identity as the B-variant (BV1) strain that was responsible for a malaria outbreak in Tumbes, northern Peru, between 2010 and 2012. The P. falciparum BV1 strain is multidrug resistant, can escape detection by PfHRP2-based rapid diagnostic tests, and has contributed to two malaria outbreaks in Peru. This investigation highlights the importance of accurate species diagnosis given the potential for P. falciparum to be reintroduced to regions where it may have been absent. Similar molecular epidemiological investigations can track the probable source(s) of outbreak parasite strains for malaria surveillance and control purposes.
Collapse
Affiliation(s)
- Sheila Akinyi Okoth
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia; Atlanta Research and Education Foundation, Atlanta, Georgia; Instituto Nacional de Salud del Peru, Lima, Peru; Laboratorio de Referencia de La Convención, Cusco, Peru
| | - Stella M Chenet
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia; Atlanta Research and Education Foundation, Atlanta, Georgia; Instituto Nacional de Salud del Peru, Lima, Peru; Laboratorio de Referencia de La Convención, Cusco, Peru
| | - Nancy Arrospide
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia; Atlanta Research and Education Foundation, Atlanta, Georgia; Instituto Nacional de Salud del Peru, Lima, Peru; Laboratorio de Referencia de La Convención, Cusco, Peru
| | - Sonia Gutierrez
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia; Atlanta Research and Education Foundation, Atlanta, Georgia; Instituto Nacional de Salud del Peru, Lima, Peru; Laboratorio de Referencia de La Convención, Cusco, Peru
| | - Cesar Cabezas
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia; Atlanta Research and Education Foundation, Atlanta, Georgia; Instituto Nacional de Salud del Peru, Lima, Peru; Laboratorio de Referencia de La Convención, Cusco, Peru
| | - Jose Antonio Matta
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia; Atlanta Research and Education Foundation, Atlanta, Georgia; Instituto Nacional de Salud del Peru, Lima, Peru; Laboratorio de Referencia de La Convención, Cusco, Peru
| | - Venkatachalam Udhayakumar
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia; Atlanta Research and Education Foundation, Atlanta, Georgia; Instituto Nacional de Salud del Peru, Lima, Peru; Laboratorio de Referencia de La Convención, Cusco, Peru
| |
Collapse
|
66
|
Chenet SM, Taylor JE, Blair S, Zuluaga L, Escalante AA. Longitudinal analysis of Plasmodium falciparum genetic variation in Turbo, Colombia: implications for malaria control and elimination. Malar J 2015; 14:363. [PMID: 26395166 PMCID: PMC4578328 DOI: 10.1186/s12936-015-0887-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/02/2015] [Indexed: 11/15/2022] Open
Abstract
Background Malaria programmes estimate changes in prevalence to evaluate their efficacy. In this study, parasite genetic data was used to explore how the demography of the parasite population can inform about the processes driving variation in prevalence. In particular, how changes in treatment and population movement have affected malaria prevalence in an area with seasonal malaria. Methods Samples of Plasmodium falciparum collected over 8 years from a population in Turbo, Colombia were genotyped at nine microsatellite loci and three drug-resistance loci. These data were analysed using several population genetic methods to detect changes in parasite genetic diversity and population structure. In addition, a coalescent-based method was used to estimate substitution rates at the microsatellite loci. Results The estimated mean microsatellite substitution rates varied between 5.35 × 10−3 and 3.77 × 10−2 substitutions/locus/month. Cluster analysis identified six distinct parasite clusters, five of which persisted for the full duration of the study. However, the frequencies of the clusters varied significantly between years, consistent with a small effective population size. Conclusions Malaria control programmes can detect re-introductions and changes in transmission using rapidly evolving microsatellite loci. In this population, the steadily decreasing diversity and the relatively constant effective population size suggest that an increase in malaria prevalence from 2004 to 2007 was primarily driven by local rather than imported cases. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-0887-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stella M Chenet
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| | - Jesse E Taylor
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, USA.
| | - Silvia Blair
- Malaria Group, Universidad de Antioquia, Medellín, Colombia.
| | - Lina Zuluaga
- Malaria Group, Universidad de Antioquia, Medellín, Colombia.
| | - Ananias A Escalante
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
67
|
Carlton JM, Volkman SK, Uplekar S, Hupalo DN, Alves JMP, Cui L, Donnelly M, Roos DS, Harb OS, Acosta M, Read A, Ribolla PEM, Singh OP, Valecha N, Wassmer SC, Ferreira M, Escalante AA. Population Genetics, Evolutionary Genomics, and Genome-Wide Studies of Malaria: A View Across the International Centers of Excellence for Malaria Research. Am J Trop Med Hyg 2015; 93:87-98. [PMID: 26259940 PMCID: PMC4574278 DOI: 10.4269/ajtmh.15-0049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/13/2015] [Indexed: 12/21/2022] Open
Abstract
The study of the three protagonists in malaria-the Plasmodium parasite, the Anopheles mosquito, and the human host-is key to developing methods to control and eventually eliminate the disease. Genomic technologies, including the recent development of next-generation sequencing, enable interrogation of this triangle to an unprecedented level of scrutiny, and promise exciting progress toward real-time epidemiology studies and the study of evolutionary adaptation. We discuss the use of genomics by the International Centers of Excellence for Malaria Research, a network of field sites and laboratories in malaria-endemic countries that undertake cutting-edge research, training, and technology transfer in malarious countries of the world.
Collapse
Affiliation(s)
- Jane M. Carlton
- *Address correspondence to Jane M. Carlton, Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY 10003. E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Escalante AA, Ferreira MU, Vinetz JM, Volkman SK, Cui L, Gamboa D, Krogstad DJ, Barry AE, Carlton JM, van Eijk AM, Pradhan K, Mueller I, Greenhouse B, Andreina Pacheco M, Vallejo AF, Herrera S, Felger I. Malaria Molecular Epidemiology: Lessons from the International Centers of Excellence for Malaria Research Network. Am J Trop Med Hyg 2015; 93:79-86. [PMID: 26259945 PMCID: PMC4574277 DOI: 10.4269/ajtmh.15-0005] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 05/15/2015] [Indexed: 01/31/2023] Open
Abstract
Molecular epidemiology leverages genetic information to study the risk factors that affect the frequency and distribution of malaria cases. This article describes molecular epidemiologic investigations currently being carried out by the International Centers of Excellence for Malaria Research (ICEMR) network in a variety of malaria-endemic settings. First, we discuss various novel approaches to understand malaria incidence and gametocytemia, focusing on Plasmodium falciparum and Plasmodium vivax. Second, we describe and compare different parasite genotyping methods commonly used in malaria epidemiology and population genetics. Finally, we discuss potential applications of molecular epidemiological tools and methods toward malaria control and elimination efforts.
Collapse
Affiliation(s)
- Ananias A. Escalante
- *Address correspondence to Ananias A. Escalante, Institute for Genomics and Evolutionary Medicine, Temple University, SERC Building, 1925 N. 12th Street Philadelphia, PA 19122-1801, E-mail: or Marcelo U. Ferreira, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 1374 - Edifício Biomédicas II, São Paulo, Brazil CEP CEP 05508-900, E-mail: or Ingrid Felger, Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland, E-mail:
| | - Marcelo U. Ferreira
- *Address correspondence to Ananias A. Escalante, Institute for Genomics and Evolutionary Medicine, Temple University, SERC Building, 1925 N. 12th Street Philadelphia, PA 19122-1801, E-mail: or Marcelo U. Ferreira, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 1374 - Edifício Biomédicas II, São Paulo, Brazil CEP CEP 05508-900, E-mail: or Ingrid Felger, Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland, E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Ingrid Felger
- *Address correspondence to Ananias A. Escalante, Institute for Genomics and Evolutionary Medicine, Temple University, SERC Building, 1925 N. 12th Street Philadelphia, PA 19122-1801, E-mail: or Marcelo U. Ferreira, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 1374 - Edifício Biomédicas II, São Paulo, Brazil CEP CEP 05508-900, E-mail: or Ingrid Felger, Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland, E-mail:
| |
Collapse
|
69
|
Affiliation(s)
- Bryan Greenhouse
- Department of Medicine, University of California, San Francisco, CA 94143;
| | - David L Smith
- Sanaria Institute for Global Health and Tropical Medicine, Rockville, MD 20850; and Spatial Ecology and Epidemiology Group, Department of Zoology, Oxford University, Oxford OX1 3PS, United Kingdom
| |
Collapse
|
70
|
Modeling malaria genomics reveals transmission decline and rebound in Senegal. Proc Natl Acad Sci U S A 2015; 112:7067-72. [PMID: 25941365 DOI: 10.1073/pnas.1505691112] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
To study the effects of malaria-control interventions on parasite population genomics, we examined a set of 1,007 samples of the malaria parasite Plasmodium falciparum collected in Thiès, Senegal between 2006 and 2013. The parasite samples were genotyped using a molecular barcode of 24 SNPs. About 35% of the samples grouped into subsets with identical barcodes, varying in size by year and sometimes persisting across years. The barcodes also formed networks of related groups. Analysis of 164 completely sequenced parasites revealed extensive sharing of genomic regions. In at least two cases we found first-generation recombinant offspring of parents whose genomes are similar or identical to genomes also present in the sample. An epidemiological model that tracks parasite genotypes can reproduce the observed pattern of barcode subsets. Quantification of likelihoods in the model strongly suggests a reduction of transmission from 2006-2010 with a significant rebound in 2012-2013. The reduced transmission and rebound were confirmed directly by incidence data from Thiès. These findings imply that intensive intervention to control malaria results in rapid and dramatic changes in parasite population genomics. The results also suggest that genomics combined with epidemiological modeling may afford prompt, continuous, and cost-effective tracking of progress toward malaria elimination.
Collapse
|
71
|
Daniels RF, Rice BL, Daniels NM, Volkman SK, Hartl DL. The utility of genomic data for Plasmodium vivax population surveillance. Pathog Glob Health 2015; 109:153-61. [PMID: 25892032 DOI: 10.1179/2047773215y.0000000014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Genetic polymorphisms identified from genomic sequencing can be used to track changes in parasite populations through time. Such tracking is particularly informative when applying control strategies and evaluating their effectiveness. Using genomic approaches may also enable improved ability to categorise populations and to stratify them according to the likely effectiveness of intervention. Clinical applications of genomic approaches also allow relapses to be classified according to reinfection or recrudescence. These tools can be used not only to assess the effectiveness of malaria interventions but also to appraise the strategies for malaria elimination.
Collapse
|
72
|
Baniecki ML, Faust AL, Schaffner SF, Park DJ, Galinsky K, Daniels RF, Hamilton E, Ferreira MU, Karunaweera ND, Serre D, Zimmerman PA, Sá JM, Wellems TE, Musset L, Legrand E, Melnikov A, Neafsey DE, Volkman SK, Wirth DF, Sabeti PC. Development of a single nucleotide polymorphism barcode to genotype Plasmodium vivax infections. PLoS Negl Trop Dis 2015; 9:e0003539. [PMID: 25781890 PMCID: PMC4362761 DOI: 10.1371/journal.pntd.0003539] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 01/15/2015] [Indexed: 12/30/2022] Open
Abstract
Plasmodium vivax, one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25–40% of malaria cases worldwide. Malaria global elimination efforts will benefit from accurate and effective genotyping tools that will provide insight into the population genetics and diversity of this parasite. The recent sequencing of P. vivax isolates from South America, Africa, and Asia presents a new opportunity by uncovering thousands of novel single nucleotide polymorphisms (SNPs). Genotyping a selection of these SNPs provides a robust, low-cost method of identifying parasite infections through their unique genetic signature or barcode. Based on our experience in generating a SNP barcode for P. falciparum using High Resolution Melting (HRM), we have developed a similar tool for P. vivax. We selected globally polymorphic SNPs from available P. vivax genome sequence data that were located in putatively selectively neutral sites (i.e., intergenic, intronic, or 4-fold degenerate coding). From these candidate SNPs we defined a barcode consisting of 42 SNPs. We analyzed the performance of the 42-SNP barcode on 87 P. vivax clinical samples from parasite populations in South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We found that the P. vivax barcode is robust, as it requires only a small quantity of DNA (limit of detection 0.3 ng/μl) to yield reproducible genotype calls, and detects polymorphic genotypes with high sensitivity. The markers are informative across all clinical samples evaluated (average minor allele frequency > 0.1). Population genetic and statistical analyses show the barcode captures high degrees of population diversity and differentiates geographically distinct populations. Our 42-SNP barcode provides a robust, informative, and standardized genetic marker set that accurately identifies a genomic signature for P. vivax infections. Plasmodium vivax malaria is a major global public health problem, with nearly 2.5 billion people at risk for infection and approximately 132–391 million clinical infections annually. It has a wide geographical range, with a high disease burden in Asia, Central and South America, the Middle East, Oceania, and East Africa. Advances in sequencing technology and sample processing have made it possible to characterize the genetic diversity of P. vivax populations. This genetic variation provides a means to identify parasites by unique genetic signatures, or “barcodes.” We developed such a genetic barcode for P. vivax, composed of 42 robust and informative variants. Here we report its development and validation based on 87 clinical samples identified by microscopy to contain P. vivax from geographically diverse parasite populations from South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We show that the SNP barcode provides a genotyping tool that can be performed at low cost, providing a means to uniquely identify parasite infections and distinguish geographic origins, and that barcode data may offer new insights into P. vivax population structure and diversity.
Collapse
Affiliation(s)
- Mary Lynn Baniecki
- Broad Institute, Cambridge, Massachusetts, United States of America
- * E-mail:
| | - Aubrey L. Faust
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | | | - Daniel J. Park
- Broad Institute, Cambridge, Massachusetts, United States of America
| | - Kevin Galinsky
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Rachel F. Daniels
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Elizabeth Hamilton
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | | | - Nadira D. Karunaweera
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - David Serre
- Department of Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Peter A. Zimmerman
- Department of International Health, Biology and Genetics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Juliana M. Sá
- Laboratory of Malaria and Vector Research, Malaria Genetics Section, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, United States of America
| | - Thomas E. Wellems
- Laboratory of Malaria and Vector Research, Malaria Genetics Section, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, United States of America
| | - Lise Musset
- Department of Parasitology, Institute Pasteur de la Guyane, Cayenne, French Guiana
| | - Eric Legrand
- Department of Parasitology, Institute Pasteur de la Guyane, Cayenne, French Guiana
| | | | | | - Sarah K. Volkman
- Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
- School of Nursing and Health Sciences, Simmons College, Boston, Massachusetts, United States of America
| | - Dyann F. Wirth
- Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Pardis C. Sabeti
- Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
73
|
Modelling the effects of mass drug administration on the molecular epidemiology of schistosomes. ADVANCES IN PARASITOLOGY 2015; 87:293-327. [PMID: 25765198 DOI: 10.1016/bs.apar.2014.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
As national governments scale up mass drug administration (MDA) programs aimed to combat neglected tropical diseases (NTDs), novel selection pressures on these parasites increase. To understand how parasite populations are affected by MDA and how to maximize the success of control programmes, it is imperative for epidemiological, molecular and mathematical modelling approaches to be combined. Modelling of parasite population genetic and genomic structure, particularly of the NTDs, has been limited through the availability of only a few molecular markers to date. The landscape of infectious disease research is being dramatically reshaped by next-generation sequencing technologies and our understanding of how repeated selective pressures are shaping parasite populations is radically altering. Genomics can provide high-resolution data on parasite population structure, and identify how loci may contribute to key phenotypes such as virulence and/or drug resistance. We discuss the incorporation of genetic and genomic data, focussing on the recently sequenced Schistosoma spp., into novel mathematical transmission models to inform our understanding of the impact of MDA and other control methods. We summarize what is known to date, the models that exist and how population genetics has given us an understanding of the effects of MDA on the parasites. We consider how genetic and genomic data have the potential to shape future research, highlighting key areas where data are lacking, and how future molecular epidemiology knowledge can aid understanding of transmission dynamics and the effects of MDA, ultimately informing public health policy makers of the best interventions for NTDs.
Collapse
|
74
|
Sisya TJ, Kamn'gona RM, Vareta JA, Fulakeza JM, Mukaka MFJ, Seydel KB, Laufer MK, Taylor TE, Nkhoma SC. Subtle changes in Plasmodium falciparum infection complexity following enhanced intervention in Malawi. Acta Trop 2015; 142:108-14. [PMID: 25460345 PMCID: PMC4296692 DOI: 10.1016/j.actatropica.2014.11.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/25/2014] [Accepted: 11/17/2014] [Indexed: 11/29/2022]
Abstract
We examined impact of intense malaria control on parasite genetic structure in Malawi. Malaria infections sampled before and after intense control were genotyped at 24 SNPs. Despite intense control efforts, parasite genetic diversity was unchanged over time. Only the mean number of heterozygous SNPs within infections showed change over time. Findings suggest minimal or no change in malaria transmission despite intense control.
With support from the Global Fund, the United States President's Malaria Initiative (PMI) and other cooperating partners, Malawi is implementing a comprehensive malaria control programme involving indoor residual spraying in targeted districts, universal coverage with insecticide-treated bed nets, use of rapid diagnostic tests to confirm the clinical diagnosis of malaria and use of the highly effective artemisinin-based combination therapy, artemether-lumefantrine (AL), as the first-line treatment for malaria. We genotyped 24 genome-wide single nucleotide polymorphisms (SNPs) in Plasmodium falciparum infections (n = 316) sampled from a single location in Malawi before (2006 and 2007) and after enhanced intervention (2008 and 2012). The SNP data generated were used to examine temporal changes in the proportion of multiple-genotype infections (MIs), mean number of heterozygous SNPs within MIs, parasite genetic diversity (expected heterozygosity and genotypic richness), multilocus linkage disequilibrium and effective population size (Ne). While the proportion of MIs, expected heterozygosity, genotypic richness, multilocus linkage disequilibrium and Ne were unchanged over time, the mean number (±standard deviation) of heterozygous SNPs within MIs decreased significantly (p = 0.01) from 9(±1) in 2006 to 7(±1) in 2012. These findings indicate that the genetic diversity of P. falciparum malaria parasites in this area remains high, suggesting that only subtle gains, if any, have been made in reducing malaria transmission. Continued surveillance is required to evaluate the impact of malaria control interventions in this area and the rest of Malawi, and to better target control interventions.
Collapse
Affiliation(s)
- Tamika J Sisya
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Raphael M Kamn'gona
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Jimmy A Vareta
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | - Joseph M Fulakeza
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi; Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | - Mavuto F J Mukaka
- Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Karl B Seydel
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi; Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Miriam K Laufer
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi; Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Terrie E Taylor
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi; Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Standwell C Nkhoma
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi; Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA Liverpool, UK.
| |
Collapse
|
75
|
COIL: a methodology for evaluating malarial complexity of infection using likelihood from single nucleotide polymorphism data. Malar J 2015; 14:4. [PMID: 25599890 PMCID: PMC4417311 DOI: 10.1186/1475-2875-14-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 12/16/2014] [Indexed: 12/15/2022] Open
Abstract
Background Complex malaria infections are defined as those containing more than one genetically distinct lineage of Plasmodium parasite. Complexity of infection (COI) is a useful parameter to estimate from patient blood samples because it is associated with clinical outcome, epidemiology and disease transmission rate. This manuscript describes a method for estimating COI using likelihood, called COIL, from a panel of bi-allelic genotyping assays. Methods COIL assumes that distinct parasite lineages in complex infections are unrelated and that genotyped loci do not exhibit significant linkage disequilibrium. Using the population minor allele frequency (MAF) of the genotyped loci, COIL uses the binomial distribution to estimate the likelihood of a COI level given the prevalence of observed monomorphic or polymorphic genotypes within each sample. Results COIL reliably estimates COI up to a level of three or five with at least 24 or 96 unlinked genotyped loci, respectively, as determined by in silico simulation and empirical validation. Evaluation of COI levels greater than five in patient samples may require a very large collection of genotype data, making sequencing a more cost-effective approach for evaluating COI under conditions when disease transmission is extremely high. Performance of the method is positively correlated with the MAF of the genotyped loci. COI estimates from existing SNP genotype datasets create a more detailed portrait of disease than analyses based simply on the number of polymorphic genotypes observed within samples. Conclusions The capacity to reliably estimate COI from a genome-wide panel of SNP genotypes provides a potentially more accurate alternative to methods relying on PCR amplification of a small number of loci for estimating COI. This approach will also increase the number of applications of SNP genotype data, providing additional motivation to employ SNP barcodes for studies of disease epidemiology or control measure efficacy. The COIL program is available for download from GitHub, and users may also upload their SNP genotype data to a web interface for simple and efficient determination of sample COI. Electronic supplementary material The online version of this article (doi:10.1186/1475-2875-14-4) contains supplementary material, which is available to authorized users.
Collapse
|
76
|
Immune characterization of Plasmodium falciparum parasites with a shared genetic signature in a region of decreasing transmission. Infect Immun 2014; 83:276-85. [PMID: 25368109 DOI: 10.1128/iai.01979-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As the intensity of malaria transmission has declined, Plasmodium falciparum parasite populations have displayed decreased clonal diversity resulting from the emergence of many parasites with common genetic signatures (CGS). We have monitored such CGS parasite clusters from 2006 to 2013 in Thiès, Senegal, using the molecular barcode. The first, and one of the largest observed clusters of CGS parasites, was present in 24% of clinical isolates in 2008, declined to 3.4% of clinical isolates in 2009, and then disappeared. To begin to explore the relationship between the immune responses of the population and the emergence and decline of specific parasite genotypes, we have determined whether antibodies to CGS parasites correlate with their prevalence. We measured (i) antibodies capable of inhibiting parasite growth in culture and (ii) antibodies recognizing the surfaces of infected erythrocytes (RBCs). IgG obtained from volunteers in 2009 showed increased reactivity to the surfaces of CGS-parasitized erythrocytes over IgG from 2008. Since P. falciparum EMP-1 (PfEMP-1) is a major variant surface antigen, we used var Ups quantitative reverse transcription-PCR (qRT-PCR) and sequencing with degenerate DBL1α domain primers to characterize the var genes expressed by CGS parasites after short-term in vitro culture. CGS parasites show upregulation of UpsA var genes and 2-cysteine-containing PfEMP-1 molecules and express the same dominant var transcript. Our work indicates that the CGS parasites in this cluster express similar var genes, more than would be expected by chance in the population, and that there is year-to-year variation in immune recognition of surface antigens on CGS parasite-infected erythrocytes. This study lays the groundwork for detailed investigations of the mechanisms driving the expansion or contraction of specific parasite clones in the population.
Collapse
|
77
|
Obaldia N, Baro NK, Calzada JE, Santamaria AM, Daniels R, Wong W, Chang HH, Hamilton EJ, Arevalo-Herrera M, Herrera S, Wirth DF, Hartl DL, Marti M, Volkman SK. Clonal outbreak of Plasmodium falciparum infection in eastern Panama. J Infect Dis 2014; 211:1087-96. [PMID: 25336725 DOI: 10.1093/infdis/jiu575] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Identifying the source of resurgent parasites is paramount to a strategic, successful intervention for malaria elimination. Although the malaria incidence in Panama is low, a recent outbreak resulted in a 6-fold increase in reported cases. We hypothesized that parasites sampled from this epidemic might be related and exhibit a clonal population structure. We tested the genetic relatedness of parasites, using informative single-nucleotide polymorphisms and drug resistance loci. We found that parasites were clustered into 3 clonal subpopulations and were related to parasites from Colombia. Two clusters of Panamanian parasites shared identical drug resistance haplotypes, and all clusters shared a chloroquine-resistance genotype matching the pfcrt haplotype of Colombian origin. Our findings suggest these resurgent parasite populations are highly clonal and that the high clonality likely resulted from epidemic expansion of imported or vestigial cases. Malaria outbreak investigations that use genetic tools can illuminate potential sources of epidemic malaria and guide strategies to prevent further resurgence in areas where malaria has been eliminated.
Collapse
Affiliation(s)
| | | | - Jose E Calzada
- Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama City, Panama
| | - Ana M Santamaria
- Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama City, Panama
| | - Rachel Daniels
- Department of Organismic and Evolutionary Biology, Harvard University
| | - Wesley Wong
- Department of Immunology and Infectious Diseases
| | | | | | - Myriam Arevalo-Herrera
- Centro de Investigación Científica Caucaseco/Centro Latino Americano de Investigación en Malaria, Cali, Colombia
| | - Socrates Herrera
- Centro de Investigación Científica Caucaseco/Centro Latino Americano de Investigación en Malaria, Cali, Colombia
| | - Dyann F Wirth
- Department of Immunology and Infectious Diseases Broad Institute, Cambridge, Massachusetts
| | - Daniel L Hartl
- Department of Organismic and Evolutionary Biology, Harvard University
| | | | - Sarah K Volkman
- Department of Immunology and Infectious Diseases Simmons College, Boston Broad Institute, Cambridge, Massachusetts
| |
Collapse
|
78
|
Nunes JK, Woods C, Carter T, Raphael T, Morin MJ, Diallo D, Leboulleux D, Jain S, Loucq C, Kaslow DC, Birkett AJ. Development of a transmission-blocking malaria vaccine: progress, challenges, and the path forward. Vaccine 2014; 32:5531-9. [PMID: 25077422 DOI: 10.1016/j.vaccine.2014.07.030] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/12/2014] [Accepted: 07/08/2014] [Indexed: 10/25/2022]
Abstract
New interventions are needed to reduce morbidity and mortality associated with malaria, as well as to accelerate elimination and eventual eradication. Interventions that can break the cycle of parasite transmission, and prevent its reintroduction, will be of particular importance in achieving the eradication goal. In this regard, vaccines that interrupt malaria transmission (VIMT) have been highlighted as an important intervention, including transmission-blocking vaccines that prevent human-to-mosquito transmission by targeting the sexual, sporogonic, or mosquito stages of the parasite (SSM-VIMT). While the significant potential of this vaccine approach has been appreciated for decades, the development and licensure pathways for vaccines that target transmission and the incidence of infection, as opposed to prevention of clinical malaria disease, remain ill-defined. This article describes the progress made in critical areas since 2010, highlights key challenges that remain, and outlines important next steps to maximize the potential for SSM-VIMTs to contribute to the broader malaria elimination and eradication objectives.
Collapse
Affiliation(s)
- Julia K Nunes
- PATH Malaria Vaccine Initiative, Washington, DC, USA
| | - Colleen Woods
- PATH Malaria Vaccine Initiative, Washington, DC, USA; PATH Malaria Vaccine Initiative, Seattle, WA, USA
| | | | | | | | | | | | - Sanjay Jain
- PATH Malaria Vaccine Initiative, Washington, DC, USA
| | | | - David C Kaslow
- PATH Malaria Vaccine Initiative, Washington, DC, USA; PATH, Seattle, WA, USA
| | | |
Collapse
|
79
|
Abstract
Detecting signals of selection in the genome of malaria parasites is a key to identify targets for drug and vaccine development. Malaria parasites have a unique life cycle alternating between vector and host organism with a population bottleneck at each transition. These recurrent bottlenecks could influence the patterns of genetic diversity and the power of existing population genetic tools to identify sites under positive selection. We therefore simulated the site-frequency spectrum of a beneficial mutant allele through time under the malaria life cycle. We investigated the power of current population genetic methods to detect positive selection based on the site-frequency spectrum as well as temporal changes in allele frequency. We found that a within-host selective advantage is difficult to detect using these methods. Although a between-host transmission advantage could be detected, the power is decreased when compared with the classical Wright–Fisher (WF) population model. Using an adjusted null site-frequency spectrum that takes the malaria life cycle into account, the power of tests based on the site-frequency spectrum to detect positive selection is greatly improved. Our study demonstrates the importance of considering the life cycle in genetic analysis, especially in parasites with complex life cycles.
Collapse
|
80
|
The Sri Lankan paradox: high genetic diversity in Plasmodium vivax populations despite decreasing levels of malaria transmission. Parasitology 2014; 141:880-90. [PMID: 24533989 DOI: 10.1017/s0031182013002278] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Here we examined whether the recent dramatic decline in malaria transmission in Sri Lanka led to a major bottleneck in the local Plasmodium vivax population, with a substantial decrease in the effective population size. To this end, we typed 14 highly polymorphic microsatellite markers in 185 P. vivax patient isolates collected from 13 districts in Sri Lanka over a period of 5 years (2003-2007). Overall, we found a high degree of polymorphism, with 184 unique haplotypes (12-46 alleles per locus) and average genetic diversity (expected heterozygosity) of 0·8744. Almost 69% (n = 127) isolates had multiple-clone infections (MCI). Significant spatial and temporal differentiation (F ST = 0·04-0·25; P⩽0·0009) between populations was observed. The effective population size was relatively high but showed a decline from 2003-4 to 2006-7 periods (estimated as 45 661 to 22 896 or 10 513 to 7057, depending on the underlying model used). We used three approaches - namely, mode-shift in allele frequency distribution, detection of heterozygote excess and the M-ratio statistics - to test for evidence of a recent population bottleneck but only the low values of M-ratio statistics (ranging between 0·15-0·33, mean 0·26) were suggestive of such a bottleneck. The persistence of high genetic diversity and high proportion of MCI, with little change in effective population size, despite the collapse in demographic population size of P. vivax in Sri Lanka indicates the importance of maintaining stringent control and surveillance measures to prevent resurgence.
Collapse
|
81
|
Abstract
Both genetic drift and natural selection cause the frequencies of alleles in a population to vary over time. Discriminating between these two evolutionary forces, based on a time series of samples from a population, remains an outstanding problem with increasing relevance to modern data sets. Even in the idealized situation when the sampled locus is independent of all other loci, this problem is difficult to solve, especially when the size of the population from which the samples are drawn is unknown. A standard χ(2)-based likelihood-ratio test was previously proposed to address this problem. Here we show that the χ(2)-test of selection substantially underestimates the probability of type I error, leading to more false positives than indicated by its P-value, especially at stringent P-values. We introduce two methods to correct this bias. The empirical likelihood-ratio test (ELRT) rejects neutrality when the likelihood-ratio statistic falls in the tail of the empirical distribution obtained under the most likely neutral population size. The frequency increment test (FIT) rejects neutrality if the distribution of normalized allele-frequency increments exhibits a mean that deviates significantly from zero. We characterize the statistical power of these two tests for selection, and we apply them to three experimental data sets. We demonstrate that both ELRT and FIT have power to detect selection in practical parameter regimes, such as those encountered in microbial evolution experiments. Our analysis applies to a single diallelic locus, assumed independent of all other loci, which is most relevant to full-genome selection scans in sexual organisms, and also to evolution experiments in asexual organisms as long as clonal interference is weak. Different techniques will be required to detect selection in time series of cosegregating linked loci.
Collapse
|
82
|
Malaria life cycle intensifies both natural selection and random genetic drift. Proc Natl Acad Sci U S A 2013; 110:20129-34. [PMID: 24259712 DOI: 10.1073/pnas.1319857110] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Analysis of genome sequences of 159 isolates of Plasmodium falciparum from Senegal yields an extraordinarily high proportion (26.85%) of protein-coding genes with the ratio of nonsynonymous to synonymous polymorphism greater than one. This proportion is much greater than observed in other organisms. Also unusual is that the site-frequency spectra of synonymous and nonsynonymous polymorphisms are virtually indistinguishable. We hypothesized that the complicated life cycle of malaria parasites might lead to qualitatively different population genetics from that predicted from the classical Wright-Fisher (WF) model, which assumes a single random-mating population with a finite and constant population size in an organism with nonoverlapping generations. This paper summarizes simulation studies of random genetic drift and selection in malaria parasites that take into account their unusual life history. Our results show that random genetic drift in the malaria life cycle is more pronounced than under the WF model. Paradoxically, the efficiency of purifying selection in the malaria life cycle is also greater than under WF, and the relative efficiency of positive selection varies according to conditions. Additionally, the site-frequency spectrum under neutrality is also more skewed toward low-frequency alleles than expected with WF. These results highlight the importance of considering the malaria life cycle when applying existing population genetic tools based on the WF model. The same caveat applies to other species with similarly complex life cycles.
Collapse
|
83
|
Khaireh BA, Assefa A, Guessod HH, Basco LK, Khaireh MA, Pascual A, Briolant S, Bouh SM, Farah IH, Ali HM, Abdi AIA, Aden MO, Abdillahi Z, Ayeh SN, Darar HY, Koeck JL, Rogier C, Pradines B, Bogreau H. Population genetics analysis during the elimination process of Plasmodium falciparum in Djibouti. Malar J 2013; 12:201. [PMID: 23758989 PMCID: PMC3685531 DOI: 10.1186/1475-2875-12-201] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 05/28/2013] [Indexed: 11/26/2022] Open
Abstract
Background Case management of imported malaria within the context of malaria pre-elimination is increasingly considered to be relevant because of the risk of resurgence. The assessment of malaria importation would provide key data i) to select countries with propitious conditions for pre-elimination phase and ii) to predict its feasibility. Recently, a sero-prevalence study in Djibouti indicated low malaria prevalence, which is propitious for the implementation of pre-elimination, but data on the extent of malaria importation remain unknown. Methods Djiboutian plasmodial populations were analysed over an eleven-year period (1998, 1999, 2002 and 2009). The risk of malaria importation was indirectly assessed by using plasmodial population parameters. Based on 5 microsatellite markers, expected heterozygosity (H.e.), multiplicity of infection, pairwise Fst index, multiple correspondence analysis and individual genetic relationship were determined. The prevalence of single nucleotide polymorphisms associated with pyrimethamine resistance was also determined. Results Data indicated a significant decline in genetic diversity (0.51, 0.59, 0.51 and 0 in 1998, 1999, 2002 and 2009, respectively) over the study period, which is inconsistent with the level of malaria importation described in a previous study. This suggested that Djiboutian malaria situation may have benefited from the decline of malaria prevalence that occurred in neighbouring countries, in particular in Ethiopia. The high Fst indices derived from plasmodial populations from one study period to another (0.12 between 1999 and 2002, and 0.43 between 2002 and 2009) suggested a random sampling of parasites, probably imported from neighbouring countries, leading to oligo-clonal expansion of few different strains during each transmission season. Nevertheless, similar genotypes observed during the study period suggested recurrent migrations and imported malaria. Conclusion In the present study, the extent of genetic diversity was used to assess the risk of malaria importation in the low malaria transmission setting of Djibouti. The molecular approach highlights i) the evolution of Djiboutian plasmodial population profiles that are consistent and compatible with Djiboutian pre-elimination goals and ii) the necessity to implement the monitoring of plasmodial populations and interventions at the regional scale in the Horn of Africa to ensure higher efficiency of malaria control and elimination.
Collapse
Affiliation(s)
- Bouh Abdi Khaireh
- Unité de Parasitologie, Département d'Infectiologie de Terrain, Institut de Recherche Biomédicale des Armées, Allée du Médecin Colonel E, Jamot, Parc du Pharo, BP 60109, 13262 Marseille Cedex 07, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|