51
|
Tudó G, Lopez-Gavin A, Portell-Buj E, Freixes J, Vila J, Roman A, Monté MR, Gonzalez-Martin J. In Vitro Activity of a Novel Quinolone, UB-8902, Against Ofloxacin-Resistant Mycobacterium tuberculosis Isolates. Microb Drug Resist 2020; 26:1019-1022. [PMID: 32159449 DOI: 10.1089/mdr.2019.0367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The main objective of this study was to compare in vitro activities of a novel fluoroquinolone (FQ), UB-8902, with ofloxacin (OFX), levofloxacin (LFX), and moxifloxacin (MOX) against Mycobacterium tuberculosis isolates. Eleven OFX-resistant and 11 drug-susceptible clinical isolates were studied. Individual minimum inhibitory concentrations of OFX, LFX, MOX, and UB-8902 were determined using Middlebrook 7H11 agar. The concentrations studied ranged from 0.125 to 128 μg/mL in twofold dilutions. UB-8902 was more active than LFX and similar to MOX for OFX-resistant M. tuberculosis isolates. In addition, UB-8902 and MOX showed equal activity against drug-susceptible isolates, both being more active than OFX and LFX. In conclusion, the new FQ, UB-8902, showed good activity against OFX-resistant isolates. Moreover, it showed better activity than OFX and LFX and was equivalent to MOX against FQ-susceptible clinical isolates. UB-8902 can be considered as a drug with potential antituberculous activity, similar to MOX.
Collapse
Affiliation(s)
- Griselda Tudó
- Microbiology Department, CDB, Hospital Clinic-Barcelona Institute of Global Health (ISGlobal), University of Barcelona, Barcelona, Spain
| | - Alexandre Lopez-Gavin
- Microbiology Department, CDB, Hospital Clinic-Barcelona Institute of Global Health (ISGlobal), University of Barcelona, Barcelona, Spain
| | - Elena Portell-Buj
- Microbiology Department, CDB, Hospital Clinic-Barcelona Institute of Global Health (ISGlobal), University of Barcelona, Barcelona, Spain
| | - Joan Freixes
- Cenavisa Plc Laboratories, Reus, Tarragona, Spain
| | - Jordi Vila
- Microbiology Department, CDB, Hospital Clinic-Barcelona Institute of Global Health (ISGlobal), University of Barcelona, Barcelona, Spain
| | - Angely Roman
- Microbiology Department, CDB, Hospital Clinic-Barcelona Institute of Global Health (ISGlobal), University of Barcelona, Barcelona, Spain
| | - Maria Rosa Monté
- Microbiology Department, CDB, Hospital Clinic-Barcelona Institute of Global Health (ISGlobal), University of Barcelona, Barcelona, Spain
| | - Julian Gonzalez-Martin
- Microbiology Department, CDB, Hospital Clinic-Barcelona Institute of Global Health (ISGlobal), University of Barcelona, Barcelona, Spain
| |
Collapse
|
52
|
Rufai SB, Umay K, Singh PK, Singh S. Performance of Genotype MTBDRsl V2.0 over the Genotype MTBDRsl V1 for detection of second line drug resistance: An Indian perspective. PLoS One 2020; 15:e0229419. [PMID: 32130233 PMCID: PMC7055869 DOI: 10.1371/journal.pone.0229419] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/05/2020] [Indexed: 02/07/2023] Open
Abstract
Genotype MTBDRsl Version 1 (V1.0) was recommended as an initial test for rapid detection of pre-extensively drug resistant (pre-XDR) and extensively drug resistant tuberculosis (XDR-TB). However, in recent years a number of novel mutations are identified that confer resistance. Thus, Genotype MTBDRsl V2.0 was endorsed by WHO. Though, Genotype MTBDRsl V2.0 has been rolled out in national TB programme in 2018, there is dearth of data from India on its performance for second line drug susceptibility testing (DST). For this, performance of new version was evaluated on 113 MDR-TB isolates. The results showed that 39 (34.5%) of these isolates were resistant to FQ and 7 (6.2%) were XDR by Genotype MTBDRsl V2.0. Amongst the FQ resistant isolates most prevalent mutation was ΔWT3-D94G (17; 38.6%) and N538D (12; 85.7%). Among the AG/CP and KAN resistant isolates most common mutation in the rrs region was ΔWT1-A1401G (5; 71.4%) and C-14T (2; 28.5%) in eis gene. Second line Bactec MGIT-960 detected 40 (35.4%) isolates as resistant to FQ and 6 (5.3%) as XDR isolates, whereas Genotype MTBDRsl V1.0 also detected 39 (34.5%) as resistant to FQ but missed 2 isolates in correctly identifying as XDR (5; 4.4%). Thus, concordance of second line Bactec MGIT-960 with Genotype MTBDRsl V2.0 was similar (100%) for FQ detection but it has improvised the diagnostic sensitivity for correctly identifying XDR isolates. Nevertheless, the cost of Genotype MTBDRsl V2.0 remains an issue for screening of second line drug (SLDs) resistance from countries with high burden of MDR-TB.
Collapse
Affiliation(s)
- Syed Beenish Rufai
- Division of Clinical Microbiology and Molecular Medicine, Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, India
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal, India
| | - Kulsum Umay
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal, India
| | - Praveen Kumar Singh
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal, India
| | - Sarman Singh
- Division of Clinical Microbiology and Molecular Medicine, Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, India
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal, India
| |
Collapse
|
53
|
Campelo TA, Lima LNC, Lima KVB, Silva CS, da Conceição ML, Barreto JAP, Mota APP, Sancho SDO, Frota CC. Molecular characterization of pre-extensive drug resistant Mycobacterium tuberculosis in Northeast Brazil. Rev Inst Med Trop Sao Paulo 2020; 62:e4. [PMID: 32049255 PMCID: PMC7014566 DOI: 10.1590/s1678-9946202062004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/14/2019] [Indexed: 12/19/2022] Open
Abstract
In Fortaleza, the capital of Ceara State, Brazil, the detection rate of tuberculosis (TB) in 2018 was 65.5/100,000 inhabitants with a cure rate of 59.1%, which is higher than the country average. This study investigated the risk factors associated with drug-resistant tuberculosis (DR-TB) and identified the drug-resistance phenotype and resistance-conferring mutations. The geographic distribution of DR-TB in Fortaleza, Brazil, was also determined. From March 2017 to February 2018, 41 DR-TB isolates and 69 drug-susceptible pulmonary TB isolates were obtained from patients seen at a referral hospital in Fortaleza, Brazil. Samples were subjected to phenotypic and genetic analysis of resistance; the spatial distribution of the participants was also analyzed. Primary resistance was high (50.9%) among participants. The following risk factors for DR were identified: being female ( p = 0.03), having diabetes ( p < 0.01), history of previous TB disease ( p < 0.01), and the number of intra-domiciliary contacts ( p < 0.01). Analysis by multiplex allele-specific polymerase chain reaction detected mutations in the genes katG (65.8%) , rpoB (43.9%), inhA promoter (14.6%), and gyrA (9.8%). Sequencing identified mutations in the the genes katG (75.6%), inhA promoter (19.5%), rpoB (85.4%), and gyrA (100%). There was no mutation in the rrs gene. Spatial analysis showed DR-TB isolates distributed in areas of low socioeconomic status in the city of Fortaleza. Our results emphasized the importance of detecting resistance to TB drugs. The resistance found in the gene gyrA is of concern due to the high number of pre-extensive DR-TB cases in Fortaleza.
Collapse
Affiliation(s)
- Thales Alves Campelo
- Universidade Federal do Ceará , Faculdade de Medicina, Departamento de Patologia e Medicina Legal , Fortaleza , Ceará , Brazil
| | - Luana Nepomuceno Costa Lima
- Instituto Evandro Chagas , Seção de Bacteriologia e Micologia, Ananindeua , Pará , Brazil
- Universidade do Estado do Pará , Programa de Pós-Graduação em Biologia Parasitária na Amazônia , Belém , Pará , Brazil
| | - Karla Valéria Batista Lima
- Instituto Evandro Chagas , Seção de Bacteriologia e Micologia, Ananindeua , Pará , Brazil
- Universidade do Estado do Pará , Programa de Pós-Graduação em Biologia Parasitária na Amazônia , Belém , Pará , Brazil
| | - Caroliny Soares Silva
- Universidade Federal do Ceará , Faculdade de Medicina, Departamento de Patologia e Medicina Legal , Fortaleza , Ceará , Brazil
| | - Marília Lima da Conceição
- Universidade do Estado do Pará , Programa de Pós-Graduação em Biologia Parasitária na Amazônia , Belém , Pará , Brazil
| | | | - Aquiles Paulino Peres Mota
- Universidade Federal do Ceará , Faculdade de Medicina, Departamento de Patologia e Medicina Legal , Fortaleza , Ceará , Brazil
| | - Soraya de Oliveira Sancho
- Universidade Federal do Ceará , Faculdade de Medicina, Departamento de Patologia e Medicina Legal , Fortaleza , Ceará , Brazil
| | - Cristiane Cunha Frota
- Universidade Federal do Ceará , Faculdade de Medicina, Departamento de Patologia e Medicina Legal , Fortaleza , Ceará , Brazil
| |
Collapse
|
54
|
Desikan P, Panwalkar N, Chaudhuri S, Khan Z, Punde RP, Pauranik A, Mirza SB, Ranjan R, Anand S, Sachdeva KS. Burden of baseline resistance of Mycobacterium tuberculosis to fluoroquinolones and second-line injectables in central India. Trans R Soc Trop Med Hyg 2020; 114:249-254. [DOI: 10.1093/trstmh/trz121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 10/18/2019] [Accepted: 10/29/2019] [Indexed: 11/15/2022] Open
Abstract
Abstract
Background
Drug-resistant TB is a serious public health problem in India. Pre-existing resistance to fluoroquinolones (FQs) and second-line injectable drugs (SLIDs) in strains of Mycobacterium tuberculosis (MTB) resistant to rifampicin (RIF) and/or isoniazid (INH) contributes to treatment failures and consequent transmission of drug-resistant TB. A baseline assessment of resistance of MTB to FQs and SLIDs may help guide policies to further improve management of drug-resistant TB in India. This study aims to determine the prevalence of resistance to FQs and SLIDs among MTB strains having RIF and/or INH resistance in central India.
Method
A total of 1032 smear positive sputum samples were subjected to line probe assay (GenoType MTBDRsl version 2) to test for resistance to FQs and SLIDs, according to the integrated diagnostic algorithm of the revised national TB control programme.
Results
Of 1032 samples, 92 (8.91%) were not interpretable and hence excluded, 295 (31.38%) were resistant to FQs alone, 13 (1.38%) were resistant to SLIDs alone, 15 (1.59%) were resistant to both FQs as well as SLIDs and 617 (65.63%) were sensitive to both FQs and SLIDs. The most common mutations in gyrA and gyrB genes were observed at codons D94G and E540V, respectively. Mutations at codon A1401G in rrs genes and in the C-14 T region of eis genes were most frequently observed.
Conclusion
High levels of FQ resistance points towards indiscriminate use of this class of drugs. Regulation for judicial use of FQs is an urgent requirement.
Collapse
Affiliation(s)
- Prabha Desikan
- National Reference laboratory, Department of Microbiology, Bhopal Memorial Hospital, and Research Centre, Bhopal M.P. 462038, India
| | - Nikita Panwalkar
- National Reference laboratory, Department of Microbiology, Bhopal Memorial Hospital, and Research Centre, Bhopal M.P. 462038, India
| | - Shreya Chaudhuri
- National Reference laboratory, Department of Microbiology, Bhopal Memorial Hospital, and Research Centre, Bhopal M.P. 462038, India
| | - Zeba Khan
- National Reference laboratory, Department of Microbiology, Bhopal Memorial Hospital, and Research Centre, Bhopal M.P. 462038, India
| | - Ram Prakash Punde
- National Reference laboratory, Department of Microbiology, Bhopal Memorial Hospital, and Research Centre, Bhopal M.P. 462038, India
| | - Ankur Pauranik
- National Reference laboratory, Department of Microbiology, Bhopal Memorial Hospital, and Research Centre, Bhopal M.P. 462038, India
| | - Shaina Beg Mirza
- National Reference laboratory, Department of Microbiology, Bhopal Memorial Hospital, and Research Centre, Bhopal M.P. 462038, India
| | - Rajeev Ranjan
- National Reference laboratory, Department of Microbiology, Bhopal Memorial Hospital, and Research Centre, Bhopal M.P. 462038, India
| | | | - K S Sachdeva
- Central Tuberculosis Division, Ministry of Health and Family Welfare, New Delhi-110011, India
| |
Collapse
|
55
|
Danchuk SN, McIntosh F, Jamieson FB, May K, Behr MA. Bacillus Calmette-Guérin strains with defined resistance mutations: a new tool for tuberculosis laboratory quality control. Clin Microbiol Infect 2019; 26:384.e5-384.e8. [PMID: 31705996 DOI: 10.1016/j.cmi.2019.10.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/23/2019] [Accepted: 10/29/2019] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Laboratory quality control (QC) is essential to assess the reliability of tuberculosis diagnostic testing. To provide safe QC reagents for the detection of drug-resistant Mycobacterium tuberculosis, we generated antibiotic-resistant mycobacterial strains of attenuated virulence (M. bovis bacillus Calmette-Guérin (BCG)). METHODS Seven mono-resistant BCG strains were developed by introducing resistance-conferring mutations into wild-type BCG strains. Mutations were confirmed by dideoxynucleotide sequencing. Phenotypic resistance was quantified by microbroth dilution to determine the MIC90. The capacity of two commercial tests (GeneXpert TB/RIF and Genotype MTBDRplus) to detect resistance-conferring mutations was evaluated independently. RESULTS Our panel included BCG strains with mutations in rpoB (S450L, I491F), katG (deletion at AA428), gyrA (D94G), rpsL (K43R) and Rv0678c (S63R). These mutations translated respectively into phenotypic resistance to rifampin (MIC ≥8 mg/L), isoniazid (MIC ≥8 mg/L), moxifloxacin (MIC 4 mg/L) and streptomycin (MIC ≥8 mg/L); the Rv0678c mutant showed decreased susceptibility to both clofazimine (MIC 4 mg/L) and bedaqualine (MIC 1 mg/L). GeneXpert (Cepheid) and Genotype MTBDRplus (Hain Lifesciences) both called the rpoB S450L strain rifampin-resistant and the I491F mutant rifampin-susceptible, as expected based on single nucleotide polymorphism positions. Likewise, MTBDRplus called the novel katG deletion mutant isoniazid susceptible despite phenotypic resistance. CONCLUSION BCG strains engineered to be mono-resistant to anti-tuberculosis drugs can be used as safe QC reagents for tuberculosis diagnostics and drug susceptibility testing.
Collapse
Affiliation(s)
- S N Danchuk
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada; Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; McGill International TB Centre, Montreal, Quebec, Canada
| | - F McIntosh
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; McGill International TB Centre, Montreal, Quebec, Canada
| | - F B Jamieson
- Public Health Ontario, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - K May
- Public Health Ontario, Toronto, Ontario, Canada
| | - M A Behr
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada; Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; McGill International TB Centre, Montreal, Quebec, Canada.
| |
Collapse
|
56
|
Kamsri P, Punkvang A, Hannongbua S, Suttisintong K, Kittakoop P, Spencer J, Mulholland AJ, Pungpo P. In silico study directed towards identification of the key structural features of GyrB inhibitors targeting MTB DNA gyrase: HQSAR, CoMSIA and molecular dynamics simulations. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2019; 30:775-800. [PMID: 31607177 DOI: 10.1080/1062936x.2019.1658218] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/17/2019] [Indexed: 06/10/2023]
Abstract
Mycobacterium tuberculosis DNA gyrase subunit B (GyrB) has been identified as a promising target for rational drug design against fluoroquinolone drug-resistant tuberculosis. In this study, we attempted to identify the key structural feature for highly potent GyrB inhibitors through 2D-QSAR using HQSAR, 3D-QSAR using CoMSIA and molecular dynamics (MD) simulations approaches on a series of thiazole urea core derivatives. The best HQSAR and CoMSIA models based on IC50 and MIC displayed the structural basis required for good activity against both GyrB enzyme and mycobacterial cell. MD simulations and binding free energy analysis using MM-GBSA and waterswap calculations revealed that the urea core of inhibitors has the strongest interaction with Asp79 via hydrogen bond interactions. In addition, cation-pi interaction and hydrophobic interactions of the R2 substituent with Arg82 and Arg141 help to enhance the binding affinity in the GyrB ATPase binding site. Thus, the present study provides crucial structural features and a structural concept for rational design of novel DNA gyrase inhibitors with improved biological activities against both enzyme and mycobacterial cell, and with good pharmacokinetic properties and drug safety profiles.
Collapse
Affiliation(s)
- P Kamsri
- Division of Chemistry, Faculty of Science, Nakhon Phanom University , Nakhon Phanon , Thailand
| | - A Punkvang
- Division of Chemistry, Faculty of Science, Nakhon Phanom University , Nakhon Phanon , Thailand
| | - S Hannongbua
- Department of Chemistry, Faculty of Science, Kasetsart University , Bangkok , Thailand
| | - K Suttisintong
- National Nanotechnology Center, NSTDA , Pathum Thani , Thailand
| | - P Kittakoop
- Chulabhorn Graduate Institute, Chemical Biology Program, Chulabhorn Royal Academy , Bangkok , Thailand
- Chulabhorn Research Institute , Bangkok , Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), CHE, Ministry of Education , Bangkok , Thailand
| | - J Spencer
- School of Cellular and Molecular Medicine, University of Bristol , Bristol , UK
| | - A J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol , Bristol , UK
| | - P Pungpo
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University , Ubon Ratchathani , Thailand
| |
Collapse
|
57
|
Hameed HMA, Tan Y, Islam MM, Guo L, Chhotaray C, Wang S, Liu Z, Gao Y, Tan S, Yew WW, Zhong N, Liu J, Zhang T. Phenotypic and genotypic characterization of levofloxacin- and moxifloxacin-resistant Mycobacterium tuberculosis clinical isolates in southern China. J Thorac Dis 2019; 11:4613-4625. [PMID: 31903250 DOI: 10.21037/jtd.2019.11.03] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Levofloxacin (LVX) and Moxifloxacin (MXF) are the cornerstones for treatment of multidrug-resistant tuberculosis (MDR-TB). China is one of the highest MDR- and fluoroquinolones (FQ)-resistant TB burdens countries. DNA gyrase encoded by gyr genes is the main target of FQ in Mycobacterium tuberculosis (MTB). The prevalence and molecular characterization of LVX- and MXF-resistant MTB strains from southern China were examined in this study. Methods Drug susceptibility testing (DST) of 400 MTB clinical isolates was evaluated by proportion method on Löwenstein-Jensen (LJ) medium against ten drugs. The sequencing of entire gyrA and gyrB genes and multiplex PCR were performed to distinguish the prevalence of mutant types in Beijing and non-Beijing genotypes. Results Three hundred and twenty-one out of four hundred (80.25%) drug-resistant isolates (resistant > one drug) were categorized as 83/321 (25.80%) MDR, 174/321 (54.20%) pre-XDR and 64/321 (19.93%) XDR-MTB. Overall, 303/400 (75.75%) LVX- and 292/400 (73.00%) MXF-resistant (R) MTB strains were identified. Two hundred seventy-one out of three hundred and three (89.43%) resistant strains carried mutations in gyrA and 91/303 (30.03%) in gyrB. Interestingly, 18 novel mutations were detected in gyrA and gyrB genes. Mutations at (A90, D94) and (T500, G510, G512) frequently existed in QRDR(s) of gyrA and gyrB respectively in 286/400 (71.50%) LVXRMXFR strains. The novel mutations in- and out-side the QRDR of gyrA (L105R, A126E, M127K, D151T, V165A) and gyrB (D461H, N499S, G520A) increased the sensitivity and consistency of genotypic tests. Notably, 25 LVXRMXFR strains were found with unknown resistance mechanisms. Conclusions Mutations in QRDR(s) were concomitantly associated with Beijing and non-Beijing genotypes. The prevalence of resistance and cross-resistance between LVX and MXF in MTB isolates from southern China was immensely higher than other countries. Our valuable findings provide the substantial implications to improve the reliability of genotypic diagnostic tests relying on potential resistance conferring mutations in entire gyr genes.
Collapse
Affiliation(s)
- H M Adnan Hameed
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China.,University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Yaoju Tan
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Md Mahmudul Islam
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China.,University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Lingmin Guo
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China.,University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Chiranjibi Chhotaray
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China.,University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Shuai Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China.,University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Zhiyong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China
| | - Yamin Gao
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China.,University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Shouyong Tan
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Wing Wai Yew
- Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Jianxiong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China.,University of Chinese Academy of Sciences (UCAS), Beijing 100049, China.,State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China
| |
Collapse
|
58
|
Yoshida M, Nakata N, Miyamoto Y, Fukano H, Ato M, Hoshino Y. A rapid and non-pathogenic assay for association of Mycobacterium tuberculosis gyrBA mutations and fluoroquinolone resistance using recombinant Mycobacterium smegmatis. FEMS Microbiol Lett 2019; 365:5173037. [PMID: 30418577 DOI: 10.1093/femsle/fny266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/07/2018] [Indexed: 12/13/2022] Open
Abstract
We developed a method involving recombinant Mycobacterium bovis bacillus Calmette-Guérin (BCG) and recombinant Mycobacterium smegmatis to determine which mutations in Mycobacterium tuberculosis (Mtb) gyrBA are associated with fluoroquinolone (FQ) resistance. The minimal inhibitory concentration (MIC) for FQ for recombinant strains with wild-type Mtb gyrBA was equivalent to that for strains with intrinsic gyrBA. Among 27 gyrBA mutations, the fold-changes in FQ MIC for M. smegmatis and M. bovis BCG backgrounds were comparable and were in part equivalent to those previously reported for recombinant Mtb strains. Mutations at position 90 or 94 of gyrA conferred strong and synergistic FQ resistance, which may be associated with the clinical observation that isolates carrying these mutations are the most or second most frequent. Sitafloxacin hydrate had the lowest MIC among the FQs tested in this study, which is similar to findings from a previous in vivo animal study. Most gyrBA mutations detected in clinical Mtb isolates could confer FQ resistance, but several mutations reduced bacterial growth rates. Overall, recombinant M. smegmatis appears to be a beneficial surrogate system to evaluate FQ susceptibility of virulent mycobacteria.
Collapse
Affiliation(s)
- Mitsunori Yoshida
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Noboru Nakata
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan.,Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuji Miyamoto
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hanako Fukano
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Manabu Ato
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshihiko Hoshino
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
59
|
Rigouts L, Miotto P, Schats M, Lempens P, Cabibbe AM, Galbiati S, Lampasona V, de Rijk P, Cirillo DM, de Jong BC. Fluoroquinolone heteroresistance in Mycobacterium tuberculosis: detection by genotypic and phenotypic assays in experimentally mixed populations. Sci Rep 2019; 9:11760. [PMID: 31409849 PMCID: PMC6692311 DOI: 10.1038/s41598-019-48289-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 08/01/2019] [Indexed: 12/19/2022] Open
Abstract
Heteroresistance - the simultaneous presence of drug-susceptible and -resistant organisms - is common in Mycobacterium tuberculosis. In this study, we aimed to determine the limit of detection (LOD) of genotypic assays to detect gatifloxacin-resistant mutants in experimentally mixed populations. A fluoroquinolone-susceptible M. tuberculosis mother strain (S) and its in vitro selected resistant daughter strain harbouring the D94G mutation in gyrA (R) were mixed at different ratio’s. Minimum inhibitory concentrations (MICs) against gatifloxacin were determined, while PCR-based techniques included: line probe assays (Genotype MTBDRsl and GenoScholar-FQ + KM TB II), Sanger sequencing and targeted deep sequencing. Droplet digital PCR was used as molecular reference method. A breakpoint concentration of 0.25 mg/L allows the phenotypic detection of ≥1% resistant bacilli, whereas at 0.5 mg/L ≥ 5% resistant bacilli are detected. Line probe assays detected ≥5% mutants. Sanger sequencing required the presence of around 15% mutant bacilli to be detected as (hetero) resistant, while targeted deep sequencing detected ≤1% mutants. Deep sequencing and phenotypic testing are the most sensitive methods for detection of fluoroquinolone-resistant minority populations, followed by line probe assays (provided that the mutation is confirmed by a mutation band), while Sanger sequencing proved to be the least sensitive method.
Collapse
Affiliation(s)
- L Rigouts
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium. .,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | - P Miotto
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - M Schats
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - P Lempens
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - A M Cabibbe
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - S Galbiati
- Unit of Genomic for the Diagnosis of Human Pathologies, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - V Lampasona
- Unit of Genomic for the Diagnosis of Human Pathologies, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - P de Rijk
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - D M Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - B C de Jong
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
60
|
Li Q, Gao H, Zhang Z, Tian Y, Liu T, Wang Y, Lu J, Liu Y, Dai E. Mutation and Transmission Profiles of Second-Line Drug Resistance in Clinical Isolates of Drug-Resistant Mycobacterium tuberculosis From Hebei Province, China. Front Microbiol 2019; 10:1838. [PMID: 31447823 PMCID: PMC6692474 DOI: 10.3389/fmicb.2019.01838] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/25/2019] [Indexed: 11/30/2022] Open
Abstract
The emergence of drug-resistant tuberculosis (TB) is involved in ineffective treatment of TB, especially multidrug resistant/extensively resistant TB (MDR/XDR-TB), leading to acquired resistance and transmission of drug-resistant strains. Second-line drugs (SLD), including both fluoroquinolones and injectable drugs, were commonly proved to be the effective drugs for treatment of drug-resistant TB. The purpose of this study was to investigate the prevalence of SLD-resistant strains and its specific mutations in drug-resistant Mycobacterium tuberculosis clinical isolates, and to acknowledge the transmission pattern of SLD resistance strains in Hebei. The genes gyrA, gyrB, rrs, eis promoter and tlyA of 257 drug-resistant clinical isolates were sequenced to identify mutations that could be responsible for resistance against fluoroquinolones and second-line injectable drugs. Each isolate was genotyped by Spoligotyping and 15-loci MIRU-VNTR. Our results indicated that 48.2% isolates were resistant to at least one of five SLD. Of them, 37.7% isolates were resistant to fluoroquinolones and 24.5% isolates were resistant to second-line injectable drugs. Mutations in genes gyrA, gyrB, rrs, eis promoter and tlyA were detected in 73 (75.3%), 7 (7.2%), 24 (38.1%), 5 (7.9%), and 3 (4.8%) isolates, respectively. The most prevalent mutations were the D94G (23.7%) in gyrA gene and the A1401G (33.3%) in rrs gene. A combination of gyrA, rrs and eis promoter can act as a valuable predicator for predicting XDR phenotype. These results highlight the development of rapid diagnosis are the effective manners for the control of SLD-TB or XDR-TB.
Collapse
Affiliation(s)
- Qianlin Li
- Department of Epidemiology and Statistics, North China University of Science and Technology, Tangshan, China
| | - Huixia Gao
- Department of Laboratory Medicine, The Fifth Affiliated Hospital of Shijiazhuang, North China University of Science and Technology, Shijiazhuang, China
| | - Zhi Zhang
- Department of Laboratory Medicine, The Fifth Affiliated Hospital of Shijiazhuang, North China University of Science and Technology, Shijiazhuang, China
| | - Yueyang Tian
- Department of Laboratory Medicine, The Fifth Affiliated Hospital of Shijiazhuang, North China University of Science and Technology, Shijiazhuang, China
| | - Tengfei Liu
- Department of Laboratory Medicine, The Fifth Affiliated Hospital of Shijiazhuang, North China University of Science and Technology, Shijiazhuang, China
| | - Yuling Wang
- Department of Laboratory Medicine, The Fifth Affiliated Hospital of Shijiazhuang, North China University of Science and Technology, Shijiazhuang, China
| | - Jianhua Lu
- Department of Laboratory Medicine, The Fifth Affiliated Hospital of Shijiazhuang, North China University of Science and Technology, Shijiazhuang, China
| | - Yuzhen Liu
- Department of Laboratory Medicine, The Fifth Affiliated Hospital of Shijiazhuang, North China University of Science and Technology, Shijiazhuang, China
| | - Erhei Dai
- Department of Laboratory Medicine, The Fifth Affiliated Hospital of Shijiazhuang, North China University of Science and Technology, Shijiazhuang, China
| |
Collapse
|
61
|
Retrospective Analysis of Archived Pyrazinamide Resistant Mycobacterium tuberculosis Complex Isolates from Uganda-Evidence of Interspecies Transmission. Microorganisms 2019; 7:microorganisms7080221. [PMID: 31362370 PMCID: PMC6723201 DOI: 10.3390/microorganisms7080221] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/15/2019] [Accepted: 07/24/2019] [Indexed: 11/16/2022] Open
Abstract
The contribution of Mycobacterium bovis to the proportion of tuberculosis cases in humans is unknown. A retrospective study was undertaken on archived Mycobacterium tuberculosis complex (MTBC) isolates from a reference laboratory in Uganda to identify the prevalence of human M. bovis infection. A total of 5676 isolates maintained in this repository were queried and 136 isolates were identified as pyrazinamide resistant, a hallmark phenotype of M. bovis. Of these, 1.5% (n = 2) isolates were confirmed as M. bovis by using regions of difference PCR analysis. The overall size of whole genome sequences (WGSs) of these two M. bovis isolates were ~4.272 Mb (M. bovis Bz_31150 isolated from a captive chimpanzee) and 4.17 Mb (M. bovis B2_7505 from a human patient), respectively. Alignment of these genomes against 15 MTBC genome sequences revealed 7248 single nucleotide polumorphisms (SNPs). Theses SNPs were used for phylogenetic analysis that indicated a strong relationship between M. bovis and the chimpanzee isolate (Bz_31150) while the other M. bovis genome from the human patient (B2_7505) analyzed did not cluster with any M. bovis or M. tuberculosis strains. WGS analysis also revealed multidrug resistance genotypes; these genomes revealed pncA mutations at positions H57D in Bz_31150 and B2_7505. Phenotypically, B2_7505 was an extensively drug-resistant strain and this was confirmed by the presence of mutations in the major resistance-associated proteins for all anti-tuberculosis (TB) drugs, including isoniazid (KatG (S315T) and InhA (S94A)), fluoroquinolones (S95T), streptomycin (rrs (R309C)), and rifampin (D435Y, a rare but disputed mutation in rpoB). The presence of these mutations exclusively in the human M. bovis isolate suggested that these occurred after transmission from cattle. Genome analysis in this study identified M. bovis in humans and great apes, suggesting possible transmission from domesticated ruminants in the area due to a dynamic and changing interface, which has created opportunity for exposure and transmission.
Collapse
|
62
|
Kateete DP, Kamulegeya R, Kigozi E, Katabazi FA, Lukoye D, Sebit SI, Abdi H, Arube P, Kasule GW, Musisi K, Dlamini MG, Khumalo D, Joloba ML. Frequency and patterns of second-line resistance conferring mutations among MDR-TB isolates resistant to a second-line drug from eSwatini, Somalia and Uganda (2014-2016). BMC Pulm Med 2019; 19:124. [PMID: 31291943 PMCID: PMC6617586 DOI: 10.1186/s12890-019-0891-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/03/2019] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Pulmonary tuberculosis is a leading cause of morbidity and mortality in developing countries. Drug resistance, a huge problem in this contagious disease, is driven by point mutations in the Mycobacterium tuberculosis genome however, their frequencies vary geographically and this affects applicability of molecular diagnostics for rapid detection of resistance. Here, we report the frequency and patterns of mutations associated with resistance to second-line anti-TB drugs in multidrug-resistant (MDR) M. tuberculosis isolates from eSwatini, Somalia and Uganda that were resistant to a second-line anti-TB drug. METHODS The quinolone resistance determining region (QRDR) of gyrA/gyrB genes and the drug resistance associated fragment of rrs gene from 80 isolates were sequenced and investigated for presence of drug resistance mutations. Of the 80 isolates, 40 were MDR, of which 28 (70%) were resistant to a second-line anti-TB injectable drug, 18 (45%) were levofloxacin resistant while 12 (30%) were extensively drug resistant (XDR). The remaining 40 isolates were susceptible to anti-TB drugs. MIRU-VNTR analysis was performed for M/XDR isolates. RESULTS We successfully sub-cultured 38 of the 40 M/XDR isolates. The gyrA resistance mutations (Gly88Ala/Cys/Ala, Ala90Val, Ser91Pro, Asp94Gly/Asn) and gyrB resistance mutations (Asp500His, Asn538Asp) were detected in 72.2% (13/18) and 22.2% (4/18) of the MDR and levofloxacin resistant isolates, respectively. Overall, drug resistance mutations in gyrA/gyrB QRDRs occurred in 77.8% (14/18) of the MDR and levofloxacin resistant isolates. Furthermore, drug resistance mutations a1401g and g1484 t in rrs occurred in 64.3% (18/28) of the MDR isolates resistant to a second-line anti-TB injectable drug. Drug resistance mutations were not detected in drug susceptible isolates. CONCLUSIONS The frequency of resistance mutations to second-line anti-TB drugs in MDR-TB isolates resistant to second line anti-TB drugs from eSwatini, Somalia and Uganda is high, implying that rapid molecular tests are useful in detecting second-line anti-TB drug resistance in those countries. Relatedly, the frequency of fluoroquinolone resistance mutations in gyrB/QRDR is high relative to global estimates, and they occurred independently of gyrA/QRDR mutations implying that their absence in panels of molecular tests for detecting fluoroquinolone resistance may yield false negative results in our setting.
Collapse
Affiliation(s)
- David Patrick Kateete
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Department of Medical Microbiology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Rogers Kamulegeya
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Department of Medical Microbiology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Edgar Kigozi
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Department of Medical Microbiology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Fred Ashaba Katabazi
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Department of Medical Microbiology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Deus Lukoye
- National Tuberculosis/Leprosy Program, Ministry of Health Uganda, Kampala, Uganda
| | | | - Hergeye Abdi
- Ministry of Health, Hargeisa, Somaliland Somalia
| | | | | | - Kenneth Musisi
- National Tuberculosis Reference Laboratory, Kampala, Uganda
| | - Myalo Glen Dlamini
- National TB Reference Laboratory / eSwatini Health Laboratory Services, Ministry of Health, Hospital Hill Mbabane, Mbabane, eSwatini
| | - Derrick Khumalo
- National TB Reference Laboratory / eSwatini Health Laboratory Services, Ministry of Health, Hospital Hill Mbabane, Mbabane, eSwatini
| | - Moses L. Joloba
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Department of Medical Microbiology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| |
Collapse
|
63
|
Yamaba Y, Ito Y, Suzuki K, Kikuchi T, Ogawa K, Fujiuchi S, Hasegawa N, Kurashima A, Higuchi T, Uchiya KI, Watanabe A, Niimi A. Moxifloxacin resistance and genotyping of Mycobacterium avium and Mycobacterium intracellulare isolates in Japan. J Infect Chemother 2019; 25:995-1000. [PMID: 31239192 DOI: 10.1016/j.jiac.2019.05.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/10/2019] [Accepted: 05/24/2019] [Indexed: 11/15/2022]
Abstract
BACKGROUND Although fluoroquinolones are considered as alternative therapies of pulmonary Mycobacterium avium complex (MAC) disease, the association between fluoroquinolone resistance and MAC genotypes in clinical isolates from individuals not previously treated for MAC infection is not fully clear. METHODS Totals of 154 M. avium isolates and 35 Mycobacterium intracellulare isolates were obtained from treatment-naïve patients with pulmonary MAC disease at the diagnosis of MAC infection at 8 hospitals in Japan. Their susceptibilities of moxifloxacin were determined by broth microdilution methods. Moxifloxacin-resistant isolates were examined for mutations of gyrA and gyrB. Variable numbers of tandem repeats (VNTR) assay was performed using 15 M. avium VNTR loci and 16 M. intracellulare VNTR loci. RESULTS Moxifloxacin susceptibility was categorized as resistant and intermediate for 6.5% and 16.9%, respectively, of M. avium isolates and 8.6% and 17.1% of M. intracellulare isolates. Although the isolates of both species had amino acid substitutions of Thr 96 and Thr 522 at the sites corresponding to Ser 95 in the M. tuberculosis GyrA and Gly 520 in the M. tuberculosis GyrB, respectively, these substitutions were observed irrespective of susceptibility and did not confer resistance. The VNTR assays showed revealed three clusters among M. avium isolates and two clusters among M. intracellulare isolates. No significant differences in moxifloxacin resistance were observed among these clusters. CONCLUSIONS Although resistance or intermediate resistance to moxifloxacin was observed in approximately one-fourth of M. avium and M. intracellulare isolates, this resistance was not associated with mutations in gyrA and gyrB or with VNTR genotypes.
Collapse
Affiliation(s)
- Yusuke Yamaba
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yutaka Ito
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Katsuhiro Suzuki
- Department of Internal Medicine, National Hospital Organization Kinki-chuo Chest Medical Center, Osaka, Japan
| | - Toshiaki Kikuchi
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kenji Ogawa
- Department of Respiratory Medicine, National Hospital Organization, Higashinagoya National Hospital, Nagoya, Japan
| | - Satoru Fujiuchi
- Department of Respiratory Medicine, National Hospital Organization, Asahikawa Medical Center, Asahikawa, Japan
| | - Naoki Hasegawa
- Center for Infectious Diseases and Infection Control, Keio University School of Medicine, Tokyo, Japan
| | - Atsuyuki Kurashima
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Takeshi Higuchi
- Laboratory for Clinical Investigation, Kyoto University Hospital, Kyoto, Japan
| | - Kei-Ichi Uchiya
- Department of Microbiology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Akira Watanabe
- Research Division for Development of Anti-Infective Agents, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Akio Niimi
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
64
|
Wood HN, Venken T, Willems H, Jacobs A, Reis AJ, Almeida da Silva PE, Homolka S, Niemann S, Rohde KH, Hooyberghs J. Molecular drug susceptibility testing and strain typing of tuberculosis by DNA hybridization. PLoS One 2019; 14:e0212064. [PMID: 30730960 PMCID: PMC6366778 DOI: 10.1371/journal.pone.0212064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/25/2019] [Indexed: 11/19/2022] Open
Abstract
In Mycobacterium tuberculosis (Mtb) the detection of single nucleotide polymorphisms (SNPs) is of high importance both for diagnostics, since drug resistance is primarily caused by the acquisition of SNPs in multiple drug targets, and for epidemiological studies in which strain typing is performed by SNP identification. To provide the necessary coverage of clinically relevant resistance profiles and strain types, nucleic acid-based measurement techniques must be able to detect a large number of potential SNPs. Since the Mtb problem is pressing in many resource-poor countries, requiring low-cost point-of-care biosensors, this is a non-trivial technological challenge. This paper presents a proof-of-concept in which we chose simple DNA-DNA hybridization as a sensing principle since this can be transferred to existing low-cost hardware platforms, and we pushed the multiplex boundaries of it. With a custom designed probe set and a physicochemical-driven data analysis it was possible to simultaneously detect the presence of SNPs associated with first- and second-line drug resistance and Mtb strain typing. We have demonstrated its use for the identification of drug resistance and strain type from a panel of phylogenetically diverse clinical strains. Furthermore, reliable detection of the presence of a minority population (<5%) of drug-resistant Mtb was possible.
Collapse
Affiliation(s)
- Hillary N. Wood
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
| | - Tom Venken
- Flemish Institute for Technological Research, VITO, Mol, Belgium
| | - Hanny Willems
- Flemish Institute for Technological Research, VITO, Mol, Belgium
| | - An Jacobs
- Flemish Institute for Technological Research, VITO, Mol, Belgium
| | - Ana Júlia Reis
- Laboratory of Tuberculosis, Faculty of Medicine, Universidade Federal do Rio Grande- FURG, Rio Grande so Sul, RS, Brazil
| | - Pedro Eduardo Almeida da Silva
- Laboratory of Tuberculosis, Faculty of Medicine, Universidade Federal do Rio Grande- FURG, Rio Grande so Sul, RS, Brazil
| | - Susanne Homolka
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research, Borstel, Germany
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research, Borstel, Germany
| | - Kyle H. Rohde
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
- * E-mail:
| | - Jef Hooyberghs
- Flemish Institute for Technological Research, VITO, Mol, Belgium
- Theoretical Physics, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
65
|
Tang P, Xu P, Shu W, Wang X, Guo J, Song H, Li S, Pang Y, Wu M. Additional benefits of GeneXpert MTB/RIF assay for the detection of pulmonary tuberculosis patients with prior exposure to fluoroquinolones. Infect Drug Resist 2018; 12:87-93. [PMID: 30643436 PMCID: PMC6314046 DOI: 10.2147/idr.s181259] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background We performed a prospective study to investigate the association between pre-diagnosis exposure to fluoroquinolone (FQ) and laboratory testing results among tuberculosis (TB) patients. Patients and methods Each TB-suspected patient provided sputum specimen for mycobacteria growth indicator tube (MGIT) culture and GeneXpert among pulmonary TB patients. Confirmed TB patients and clinically diagnosed TB patients were further enrolled in the final analysis. Results A total of 661 TB patients were included in the final analysis. The distribution of rural TB patients in the FQ-exposed group was significantly higher than that of urban TB patients (P=0.02). GeneXpert showed significantly better positive rate than MGIT technology for TB cases with prior FQ exposure (30.6% for GeneXpert vs 20.1% for MGIT, P=0.01). The positive rate of GeneXpert was significantly higher than that of MGIT for 7–13 days (P=0.04) and ≥14 days FQ exposure (P=0.01) groups, respectively. We also found that the positive rate of MGIT was significantly decreased from 31.5% for <7 days levofloxacin (LFX) exposure group to 9.4% for ≥14 days LFX exposure group (P=0.01), whereas the positive rate of MGIT displayed significant decrease after 7–13 days exposure to moxifloxacin (P=0.04). Conclusion In conclusion, our data demonstrate that TB patients prior to sputum collection are prone to yield negative culture results. GeneXpert could bring additional benefits for the detection of pulmonary TB patients with prior exposure to FQs. In addition, the exposure to moxifloxacin affected mycobacterial culture at an earlier stage compared with LFX.
Collapse
Affiliation(s)
- Peijun Tang
- Department of Tuberculosis, The Fifth People's Hospital of Suzhou, Suzhou, China,
| | - Ping Xu
- Department of Tuberculosis, The Fifth People's Hospital of Suzhou, Suzhou, China,
| | - Wei Shu
- National Clinical Laboratory on Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China,
| | - Xiafang Wang
- Department of Tuberculosis, The Fifth People's Hospital of Suzhou, Suzhou, China,
| | - Jian Guo
- Department of Tuberculosis, The Fifth People's Hospital of Suzhou, Suzhou, China,
| | - Huafeng Song
- Department of Tuberculosis, The Fifth People's Hospital of Suzhou, Suzhou, China,
| | - Sumei Li
- Department of Tuberculosis, The Fifth People's Hospital of Suzhou, Suzhou, China,
| | - Yu Pang
- National Clinical Laboratory on Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China,
| | - Meiying Wu
- Department of Tuberculosis, The Fifth People's Hospital of Suzhou, Suzhou, China,
| |
Collapse
|
66
|
Mycobacterium tuberculosis Next-Generation Whole Genome Sequencing: Opportunities and Challenges. Tuberc Res Treat 2018; 2018:1298542. [PMID: 30631597 PMCID: PMC6304523 DOI: 10.1155/2018/1298542] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/29/2018] [Accepted: 11/25/2018] [Indexed: 11/29/2022] Open
Abstract
Mycobacterium tuberculosis drug resistance is a threat to global tuberculosis (TB) control. Comprehensive and timely drug susceptibility determination is critical to inform appropriate treatment of drug-resistant tuberculosis (DR-TB). Phenotypic drug susceptibility testing (DST) is the gold standard for M. tuberculosis drug resistance determination. M. tuberculosis whole genome sequencing (WGS) has the potential to be a one-stop method for both comprehensive DST and epidemiological investigations. We discuss in this review the tremendous opportunities that next-generation WGS presents in terms of understanding the molecular epidemiology of tuberculosis and mechanisms of drug resistance. The potential clinical value and public health impact in the areas of DST for patient management and tracing of transmission chains for timely public health intervention are also discussed. We present the current challenges for the implementation of WGS in low and middle-income settings. WGS analysis has already been adapted routinely in laboratories to inform patient management and public health interventions in low burden high-income settings such as the United Kingdom. We predict that the technology will be adapted similarly in high burden settings where the impact on the epidemic will be greatest.
Collapse
|
67
|
DNA markers for tuberculosis diagnosis. Tuberculosis (Edinb) 2018; 113:139-152. [PMID: 30514496 DOI: 10.1016/j.tube.2018.09.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 09/23/2018] [Accepted: 09/27/2018] [Indexed: 02/07/2023]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis complex (MTBC), is an infectious disease with more than 10.4 million cases and 1.7 million deaths reported worldwide in 2016. The classical methods for detection and differentiation of mycobacteria are: acid-fast microscopy (Ziehl-Neelsen staining), culture, and biochemical methods. However, the microbial phenotypic characterization is time-consuming and laborious. Thus, fast, easy, and sensitive nucleic acid amplification tests (NAATs) have been developed based on specific DNA markers, which are commercially available for TB diagnosis. Despite these developments, the disease remains uncontrollable. The identification and differentiation among MTBC members with the use of NAATs remains challenging due, among other factors, to the high degree of homology within the members and mutations, which hinders the identification of specific target sequences in the genome with potential impact in the diagnosis and treatment outcomes. In silico methods provide predictive identification of many new target genes/fragments/regions that can specifically be used to identify species/strains, which have not been fully explored. This review focused on DNA markers useful for MTBC detection, species identification and antibiotic resistance determination. The use of DNA targets with new technological approaches will help to develop NAATs applicable to all levels of the health system, mainly in low resource areas, which urgently need customized methods to their specific conditions.
Collapse
|
68
|
Javed H, Bakuła Z, Pleń M, Hashmi HJ, Tahir Z, Jamil N, Jagielski T. Evaluation of Genotype MTBDR plus and MTBDR sl Assays for Rapid Detection of Drug Resistance in Extensively Drug-Resistant Mycobacterium tuberculosis Isolates in Pakistan. Front Microbiol 2018; 9:2265. [PMID: 30319577 PMCID: PMC6169422 DOI: 10.3389/fmicb.2018.02265] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 09/05/2018] [Indexed: 11/13/2022] Open
Abstract
Pakistan ranks 5th among the world's highest tuberculosis (TB) burden countries alongside the 6th among countries with the highest burden of drug-resistant TB, including multi-drug resistant (MDR)-TB. Methods for rapid and reliable drug susceptibility testing (DST) are prerequisite for the prompt institution of effective anti-TB treatment. The aim of this study was to evaluate the efficiency of Genotype MTBDRplus and MTBDRsl assays for the detection of MDR and (pre-) extensively drug-resistant (XDR-TB) isolates in Pakistan. The study included 47 pre-XDR and 6 XDR-TB isolates, recovered from 53 patients from Pakistan. Conventional DST was performed using the standard 1% proportion method on the Löwenstein-Jensen medium. For molecular determination of drug resistance, GenoType MTBDRplus and GenoType MTBDRsl assays (Hain Lifescience, Germany) were used. To evaluate discrepancies between conventional and molecular DST results, mutation profiling was performed by amplifying and sequencing seven genetic loci, i.e., katG, inhA, and mabA-inhA promoter, rpoB, gyrA, embB, rrs. The sensitivity of Genotype MTBDRplus was 71.7% for isoniazid (INH) and 79.2% for rifampicin (RIF). Sequence analysis revealed non-synonymous mutations in 93.3 and 27.3% of isolates phenotypically resistant to INH and RIF, respectively, albeit susceptible when tested by GenoType MTBDRplus. GenoType MTBDRsl had a sensitivity of 73.6, 64.7, 20, 25, and 100% for the detection of fluoroquinolones, ethambutol, kanamycin, amikacin, and capreomycin resistance, respectively. Upon sequencing, mutations were detected in 20, 77.8%, and all isolates phenotypically resistant to aminoglycosides, ethambutol, and fluoroquinolones, respectively, yet declared as susceptible with GenoType MTBDRsl. Low sensitivities seriously impede the large-scale application of the Genotype MTBDRplus and MTBDRsl assays. Unless further optimized, the currently available line-probe assays should rather be auxiliary to the conventional, phenotype-based methods in the detection of MDR- and XDR-TB in Pakistan.
Collapse
Affiliation(s)
- Hasnain Javed
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Zofia Bakuła
- Department of Applied Microbiology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Małgorzata Pleń
- Department of Applied Microbiology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Hafiza Jawairia Hashmi
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | | | - Nazia Jamil
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Tomasz Jagielski
- Department of Applied Microbiology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
69
|
Jazeela K, Chakraborty G, Shetty SS, Rohit A, Karunasagar I, Vijaya Kumar D. Comparison of Mismatch Amplification Mutation Assay PCR and PCR-Restriction Fragment Length Polymorphism for Detection of Major Mutations in gyrA and parC of Escherichia coli Associated with Fluoroquinolone Resistance. Microb Drug Resist 2018; 25:23-31. [PMID: 30036132 DOI: 10.1089/mdr.2017.0351] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Fluoroquinolones are the drug of choice for most of the infections caused by Escherichia coli, and their indiscriminate use has resulted in increased selective pressure for antibiotic resistance. At present, sequencing is the only reliable and direct technique to detect mutations in the quinolone resistance determining region (QRDR). In this study, a rapid and reliable mismatch amplification mutation assay (MAMA) PCR to detect mutations in the QRDR was evaluated and compared to PCR-restriction fragment length polymorphism (PCR-RFLP). One hundred one clinical isolates of E. coli were subjected to MAMA-PCR and PCR-RFLP to detect QRDR mutations. Overall, 92 (91.08%) resistant isolates harbored a point mutation of S83L in gyrA. Double mutations in gyrA were also detected in 45 (44.55%) isolates. Similarly, 41 (40.59%) isolates possessed a point mutation at parC 80, and 25 (24.75%) isolates possessed a point mutation at parC 84. Additionally, MAMA-PCR-the first of its kind-was also standardized to detect mutations in regions gyrB 447 and parE 416, although no mutations were detected in these regions. The rapid and sensitive MAMA-PCR method evaluated in this study would be helpful in exploring the underlying mechanism of fluoroquinolone resistance to enhance control strategies.
Collapse
Affiliation(s)
- Kadeeja Jazeela
- 1 Nitte University Center for Science Education and Research (NUCSER), Nitte University , Mangalore, India
| | - Gunimala Chakraborty
- 1 Nitte University Center for Science Education and Research (NUCSER), Nitte University , Mangalore, India
| | - Shruthi Seetharam Shetty
- 1 Nitte University Center for Science Education and Research (NUCSER), Nitte University , Mangalore, India
| | - Anusha Rohit
- 2 Department of Microbiology, Madras Medical Mission , Chennai, India
| | - Indrani Karunasagar
- 1 Nitte University Center for Science Education and Research (NUCSER), Nitte University , Mangalore, India
| | - Deekshit Vijaya Kumar
- 1 Nitte University Center for Science Education and Research (NUCSER), Nitte University , Mangalore, India
| |
Collapse
|
70
|
Szafran MJ, Kołodziej M, Skut P, Medapi B, Domagała A, Trojanowski D, Zakrzewska-Czerwińska J, Sriram D, Jakimowicz D. Amsacrine Derivatives Selectively Inhibit Mycobacterial Topoisomerase I (TopA), Impair M. smegmatis Growth and Disturb Chromosome Replication. Front Microbiol 2018; 9:1592. [PMID: 30065714 PMCID: PMC6056748 DOI: 10.3389/fmicb.2018.01592] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/26/2018] [Indexed: 01/21/2023] Open
Abstract
Amsacrine, which inhibits eukaryotic type II topoisomerase via DNA intercalation and stabilization of the cleavable topoisomerase-DNA complex, promotes DNA damage and eventually cell death. Amsacrine has also been shown to inhibit structurally distinct bacterial type I topoisomerases (TopAs), including mycobacterial TopA, the only and essential topoisomerase I in Mycobacterium tuberculosis. Here, we describe the modifications of an amsacrine sulfonamide moiety that presumably interacts with mycobacterial TopA, which notably increased the enzyme inhibition and drug selectivity in vivo. To analyse the effects of amsacrine and its derivatives treatment on cell cycle, we used time-lapse fluorescence microscopy (TLMM) and fusion of the β-subunit of DNA polymerase III with enhanced green fluorescence protein (DnaN-EGFP). We determined that treatment with amsacrine and its derivatives increased the number of DnaN-EGFP complexes and/or prolonged the time of chromosome replication and cell cycle notably. The analysis of TopA depletion strain confirmed that lowering TopA level results in similar disturbances of chromosome replication. In summary, since TopA is crucial for mycobacterial cell viability, the compounds targeting the enzyme disturbed the cell cycle and thus may constitute a new class of anti-tuberculosis drugs.
Collapse
Affiliation(s)
- Marcin J Szafran
- Laboratory of Molecular Microbiology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Marta Kołodziej
- Laboratory of Molecular Microbiology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Patrycja Skut
- Laboratory of Molecular Microbiology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Brahmam Medapi
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad, India
| | | | - Damian Trojanowski
- Laboratory of Molecular Microbiology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Jolanta Zakrzewska-Czerwińska
- Laboratory of Molecular Microbiology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland.,Laboratory of Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Dharmarajan Sriram
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad, India
| | - Dagmara Jakimowicz
- Laboratory of Molecular Microbiology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland.,Laboratory of Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
71
|
A Novel Oligonucleotide Pair for Genotyping Members of the Pseudomonas Genus by Single-Round PCR Amplification of the gyrB Gene. Methods Protoc 2018. [PMCID: PMC6481054 DOI: 10.3390/mps1030024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pseudomonas is a phylogenetically diverse bacterial genus which is broadly distributed in different ecological niches, and whose taxonomy is continuously under revision. For that purpose, gyrB is one of the housekeeping genes routinely used for multilocus sequence analysis (MLSA). As we noticed that there was not a single primer pair available in the literature suitable for direct sequencing of this gene, we decided to design a unique oligonucleotide pair and to set up a polymerase chain reaction (PCR) protocol to obtain a single amplicon for the entire Pseudomonas genus. Based on the available gyrB sequence from 148 Pseudomonas species, we identified highly conserved regions to design oligonucleotides without fully degenerate positions. We then set up cycling conditions for achieving high specificity and yield of the PCR protocol. Then, we showed that the amplicons produced with this procedure were appropriate for direct sequencing with both primers, obtaining more than 95% of amplicons coverage. Finally, we demonstrated that a PCR-RFLP (restriction fragment length polymorphism) approach served to differentiate among Pseudomonas species, and even between members of the same species.
Collapse
|
72
|
Klotoe BJ, Molina-Moya B, Gomes HM, Gomgnimbou MK, Oliveira Suzarte L, Féres Saad MH, Ali S, Dominguez J, Pimkina E, Zholdybayeva E, Sola C, Refrégier G. TB-EFI, a novel 18-Plex microbead-based method for prediction of second-line drugs and ethambutol resistance in Mycobacterium tuberculosis complex. J Microbiol Methods 2018; 152:10-17. [PMID: 29913189 DOI: 10.1016/j.mimet.2018.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 10/28/2022]
Abstract
Several diagnostic tests are being developed to detect drug resistance in tuberculosis. In line with previous developments detecting rifampicin and isoniazid resistance using microbead-based systems (spoligoriftyping and TB-SPRINT), we present here an assay called TB-EFI detecting mutations involved in resistance to ethambutol, fluoroquinolones and the three classical injectable drugs (kanamycin, amikacin and capreomycin) in Mycobacterium tuberculosis. The proposed test includes both wild-type and mutant probes for each targeted locus. Basic analysis can be performed manually. An upgraded interpretation is made available in Excel 2016®. Using a reference set of 61 DNA extracts, we show that TB-EFI provides perfect concordance with pyrosequencing. Concordance between genotypic resistance and phenotypic DST was relatively good (72 to 98% concordance), with lower efficiency for fluoroquinolones and ethambutol due to some untargeted mutations. When compared to phenotypical resistance, performances were similar to those obtained with Hain MTBDRsl assay, possibly thanks to the use of automatized processing of data although some mutations involved in fluoroquinolone resistance could not be included. When applied on three uncharacterized sets, phenotype could be predicted for 51% to 98% depending on the setting and the drug investigated, detecting one extensively drug-resistant isolate in each of a Pakistan and a Brazilian set of 91 samples, and 9 XDR among 43 multi-resistant Kazakhstan samples. By allowing high-throughput detection of second-line drugs resistance and of resistance to ethambutol that is often combined to second-line treatments, TB-EFI is a cost-effective assay for large-scale worldwide surveillance of resistant tuberculosis and XDR-TB control.
Collapse
Affiliation(s)
- Bernice J Klotoe
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Barbara Molina-Moya
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Universitat Autonoma de Barcelona, Badalona, Spain
| | - Harrison Magdinier Gomes
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France; Laboratório de Biologia Molecular Aplicada à Micobactérias, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Michel K Gomgnimbou
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France; Centre Muraz, Bobo-Dioulasso, Burkina Faso; Univ. Polytech, Bobo-Dioulasso, Burkina Faso
| | - Lorenna Oliveira Suzarte
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Maria H Féres Saad
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Av. Brasil, 4365 - 20245, Rio de Janeiro, Brazil
| | - Sajid Ali
- Microbiology Department, Quaid-i-Azam University, Islamabad, Pakistan
| | - José Dominguez
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Universitat Autonoma de Barcelona, Badalona, Spain
| | - Edita Pimkina
- Infectious Diseases and Tuberculosis Hospital, Affiliate of Vilnius University Hospital Santariskiu klinikos, Vilnius, Lithuania
| | - Elena Zholdybayeva
- National Center for Biotechnology, Astana, Kazakhstan; Universitat Autònoma de Barcelona. CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Spain
| | - Christophe Sola
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France.
| | - Guislaine Refrégier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France.
| |
Collapse
|
73
|
Chawla K, Kumar A, Shenoy VP, Chakrabarty S, Satyamoorthy K. Genotypic detection of fluoroquinolone resistance in drug-resistant Mycobacterium tuberculosis at a tertiary care centre in south Coastal Karnataka, India. J Glob Antimicrob Resist 2018; 13:250-253. [DOI: 10.1016/j.jgar.2018.01.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/06/2018] [Accepted: 01/29/2018] [Indexed: 11/16/2022] Open
|
74
|
Luo T, Yuan J, Peng X, Yang G, Mi Y, Sun C, Wang C, Zhang C, Bao L. Double mutation in DNA gyrase confers moxifloxacin resistance and decreased fitness of Mycobacterium smegmatis. J Antimicrob Chemother 2018; 72:1893-1900. [PMID: 28387828 DOI: 10.1093/jac/dkx110] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 03/13/2017] [Indexed: 11/13/2022] Open
Abstract
Objectives Ofloxacin and moxifloxacin are the most commonly used fluoroquinolones (FQs) for the treatment of tuberculosis. As a new generation FQ, moxifloxacin has been recommended for the treatment of ofloxacin-resistant TB. However, the mechanism by which ofloxacin-resistant Mycobacterium tuberculosis further gains resistance to moxifloxacin remains unclear. Methods We used Mycobacterium smegmatis as a model for studying FQ resistance in M. tuberculosis . Moxifloxacin-resistant M. smegmatis was selected in vitro based on strains with primary ofloxacin resistance. The gyrA and gyrB genes of the resistant strains were sequenced to identify resistance-associated mutations. An in vitro competition assay was applied to explore the influence of gyrA / gyrB mutations on bacterial fitness. Finally, we evaluated the clinical relevance of our findings by analysing the WGS data of 1984 globally collected M. tuberculosis strains. Results A total of 57 moxifloxacin-resistant M. smegmatis strains based on five ofloxacin-resistant strains were obtained. Sequencing results revealed that all moxifloxacin-resistant strains harboured second-step mutations in gyrA or gyrB . The relative fitnesses of the double-mutation strains varied from 0.65 to 0.93 and were mostly lower than those of their mono-mutation parents. From the genomic data, we identified 37 clinical M. tuberculosis strains harbouring double mutations in gyrA and/or gyrB and 36 of them carried at least one low-level FQ-resistance mutation. Conclusions Double mutation in DNA gyrase leads to moxifloxacin resistance and decreased fitness in M. smegmatis . Under current dosing of moxifloxacin, double mutations mainly happened in M. tuberculosis strains with primary low-level resistance mutations.
Collapse
Affiliation(s)
- Tao Luo
- Laboratory of Infection and Immunity, West China Center of Medical Sciences, Sichuan University, Chengdu 610041, China
| | - Jinning Yuan
- Laboratory of Infection and Immunity, West China Center of Medical Sciences, Sichuan University, Chengdu 610041, China
| | - Xuan Peng
- Laboratory of Infection and Immunity, West China Center of Medical Sciences, Sichuan University, Chengdu 610041, China
| | - Guoping Yang
- Laboratory of Infection and Immunity, West China Center of Medical Sciences, Sichuan University, Chengdu 610041, China
| | - Youjun Mi
- Laboratory of Infection and Immunity, West China Center of Medical Sciences, Sichuan University, Chengdu 610041, China
| | - Changfeng Sun
- Laboratory of Infection and Immunity, West China Center of Medical Sciences, Sichuan University, Chengdu 610041, China
| | - Chuhan Wang
- Laboratory of Infection and Immunity, West China Center of Medical Sciences, Sichuan University, Chengdu 610041, China
| | - Chunxi Zhang
- Laboratory of Infection and Immunity, West China Center of Medical Sciences, Sichuan University, Chengdu 610041, China
| | - Lang Bao
- Laboratory of Infection and Immunity, West China Center of Medical Sciences, Sichuan University, Chengdu 610041, China
| |
Collapse
|
75
|
Pang H, Wan K, Wei L. Single-nucleotide polymorphisms related to fluoroquinolone and aminoglycoside resistance in Mycobacterium avium isolates. Infect Drug Resist 2018; 11:515-521. [PMID: 29674849 PMCID: PMC5898888 DOI: 10.2147/idr.s160899] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Objective The relationships between fluoroquinolone and aminoglycoside resistance and single-nucleotide polymorphisms (SNPs) in gyrA, gyrB, and rpsL genes were investigated in 95 clinical isolates of Mycobacterium avium from China. Methods Fluoroquinolone and aminoglycoside resistance were determined by the broth microdilution method. GyrA, gyrB, and rpsL were sequenced, SNPs were identified, and the corresponding amino acid mutations were recorded. Results The M. avium isolates displayed high levels of ofloxacin (93.68%), ciprofloxacin (92.63%), and streptomycin (65.26%) resistance. Moxifloxacin (18.95%) and amikacin (2.11%) were highly active against the strains. Fluoroquinolone resistance involving gyrA and gyrB gene mutations was identified. For gyrA, the most frequent SNPs were T→C (71/95, 74.74%), followed by A→G (64/95, 67.37%) and T→C (62/95, 65.26%). The amino acid mutations occurred mainly at Gly2444Asp (GGT→GAT) (20/95, 21.05%), Ala2445Ser (GCC→TCC) (20/95, 21.05%), Ala2447Val (GCC→GTC) (20/95, 21.05%), Val2449Ile (GTC→ATC) (20/95, 21.05%), and Glu2450Gln (GAA→CAA) (20/95, 21.05%). Prominent SNPs in gyrB included A→C (69/95, 72.63%), C→T (51/95, 53.68%), and T→G (29/95, 30.53%), and their amino acid substitutions were Ile2160Val (ATT→GTT) (21/95, 22.11%), Ile2160Met (ATT→ATG) (20/95, 21.05%), and Ile2273Leu (ATC→CTC) (11/95, 11.58%). Among the strains with aminoglycoside resistance, SNPs in rpsL were identified mostly at position G→A (73/95, 76.84%). G→C (21/95, 22.11%) was commonly seen. The amino acid mutations primarily involved Ala1539985Thr (GCC→ACC) (19/95, 20.00%), His1539992Asp (CAC→GAC) (19/95, 20.00%), and Gln-1539983Glu (CAG→GAG) (18/95, 18.95%). Conclusion Our study provides valuable information that could be used for the future diagnosis and treatment of M. avium disease.
Collapse
Affiliation(s)
- Hui Pang
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China.,Department of Immunology, Changzhi Medical College, Changzhi, Shanxi, China
| | - Kanglin Wan
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lin Wei
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
76
|
Osei-Wusu S, Amo Omari M, Asante-Poku A, Darko Otchere I, Asare P, Forson A, Otu J, Antonio M, Yeboah-Manu D. Second-line anti-tuberculosis drug resistance testing in Ghana identifies the first extensively drug-resistant tuberculosis case. Infect Drug Resist 2018; 11:239-246. [PMID: 29503573 PMCID: PMC5825993 DOI: 10.2147/idr.s152720] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Drug resistance surveillance is crucial for tuberculosis (TB) control. Therefore, our goal was to determine the prevalence of second-line anti-TB drug resistance among diverse primary drug-resistant Mycobacterium tuberculosis complex (MTBC) isolates in Ghana. MATERIALS AND METHODS One hundred and seventeen MTBC isolates with varying first-line drug resistance were analyzed. Additional resistance to second-line anti-TB drugs (streptomycin [STR], amikacin [AMK] and moxifloxacin [MOX]) was profiled using the Etest and GenoType MTBDRsl version 2.0. Genes associated with resistance to AMK and MOX (gyrA, gyrB, eis, rrs, tap, whiB7 and tlyA) were then analyzed for mutation. RESULTS Thirty-seven (31.9%) isolates had minimum inhibitory concentration (MIC) values ≥2 µg/mL against STR while 12 (10.3%) isolates had MIC values ≥1 µg/mL for AMK. Only one multidrug-resistant (MDR) isolate (Isolate ID: TB/Nm 919) had an MIC value of ≥0.125 µg/mL for MOX (MIC = 3 µg/mL). This isolate also had the highest MIC value for AMK (MIC = 16 µg/mL) and was confirmed as resistant to AMK and MOX by the line probe assay GenoType MTBDRsl version 2.0. Mutations associated with the resistance were: gyrA (G88C) and rrs (A514C and A1401G). CONCLUSION Our findings suggest the need to include routine second-line anti-TB drug susceptibility testing of MDR/rifampicin-resistant isolates in our diagnostic algorithm.
Collapse
Affiliation(s)
- Stephen Osei-Wusu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
- West Africa Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
| | - Michael Amo Omari
- Department of Chest Diseases, Korle-Bu Teaching Hospital, Accra, Ghana
| | - Adwoa Asante-Poku
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Isaac Darko Otchere
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Prince Asare
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Audrey Forson
- Department of Chest Diseases, Korle-Bu Teaching Hospital, Accra, Ghana
| | - Jacob Otu
- Medical Research Council Unit, Fajara, The Gambia
| | | | - Dorothy Yeboah-Manu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| |
Collapse
|
77
|
Tadesse G, Tessema TS, Beyene G, Aseffa A. Molecular epidemiology of fluoroquinolone resistant Salmonella in Africa: A systematic review and meta-analysis. PLoS One 2018; 13:e0192575. [PMID: 29432492 PMCID: PMC5809059 DOI: 10.1371/journal.pone.0192575] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 01/25/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Wide-ranging evidence on the occurrence of fluoroquinolone (FQ) resistance genetic determinants in African Salmonella strains is not available. The main objectives of this study were to assess the heterogeneity, estimate pooled proportions and describe the preponderance of FQ-resistance determinants in typhoidal and non-typhoidal Salmonella (NTS) isolates of Africa. METHODS Genetic and phenotypic data on 6103 Salmonella isolates were considered. Meta- and frequency analyses were performed depending on the number of studies by category, number of isolates and risks of bias. A random effects model was used to assess heterogeneity and estimate pooled proportions. Relative and cumulative frequencies were calculated to describe the overall preponderance of FQ-resistance determinants in quinolone resistant isolates. RESULTS The pooled proportion of gyrA mutants (Salmonella enterica serovar Typhi, Salmonella enterica serovar Typhimurium, and Salmonella enterica serovar Enteritidis) was estimated at 5.7% (95% Confidence interval (CI) = 2.6, 9.8; Tau squared (T2) = 0.1105), and was higher in S. Typhi than in S. Typhimurium (odds ratio (OR) = 3.3, 95%CI = 2, 5.7). The proportions of each of gyrB and parC mutants, and strains with Plasmid Mediated Quinolone Resistance genes (qnrA, qnrB and qnrS) were low (≤ 0.3%). Overall, 23 mutant serotypes were identified, and most strains had mutations at codons encoding Ser83 and Asp87 of gyrA (82%, 95%CI = 78, 86). CONCLUSIONS Mutations at gyrA appear to account for ciprofloxacin non-susceptibility in most clinical Salmonella strains in Africa. The estimates could be harnessed to develop a mismatch-amplification mutation-assay for the detection of FQ-resistant strains in Africa.
Collapse
Affiliation(s)
- Getachew Tadesse
- Department of Biomedical Sciences, College of Veterinary Medicine and Agriculture, Addis Ababa University, Debre Zeit, Ethiopia
| | - Tesfaye S. Tessema
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Getenet Beyene
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Abraham Aseffa
- Armauer Hansen Research Institute (AHRI), ALERT Campus, Addis Ababa, Ethiopia
| |
Collapse
|
78
|
Rapid Microarray-Based Detection of Rifampin, Isoniazid, and Fluoroquinolone Resistance in Mycobacterium tuberculosis by Use of a Single Cartridge. J Clin Microbiol 2018; 56:JCM.01249-17. [PMID: 29212699 PMCID: PMC5786735 DOI: 10.1128/jcm.01249-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/23/2017] [Indexed: 02/07/2023] Open
Abstract
The rapid and robust identification of mutations in Mycobacterium tuberculosis complex (MTBC) strains mediating multidrug-resistant (MDR) and extensively drug-resistant (XDR) phenotypes is crucial to combating the MDR tuberculosis (TB) epidemic. Currently available molecular anti-TB drug susceptibility tests either are restricted to a single target or drug (i.e., the Xpert MTB/RIF test) or present a risk of cross-contamination due to the design limitations of the open platform (i.e., line probe assays). With a good understanding of the technical and commercial boundaries, we designed a test cartridge based on an oligonucleotide array into which dried reagents are introduced and which has the ability to identify MTBC strains resistant to isoniazid, rifampin, and the fluoroquinolones. The melting curve assay interrogates 43 different mutations in the rifampin resistance-determining region (RRDR) of rpoB, rpoB codon 572, katG codon 315, the inhA promoter region, and the quinolone resistance-determining region (QRDR) of gyrA in a closed cartridge system within 90 min. Assay performance was evaluated with 265 clinical MTBC isolates, including MDR/XDR, non-MDR, and fully susceptible isolates, from a drug resistance survey performed in Swaziland in 2009 and 2010. In 99.5% of the cases, the results were consistent with data previously acquired utilizing Sanger sequencing. The assay, which uses a closed cartridge system in combination with a battery-powered Alere q analyzer and which has the potential to extend the current gene target panel, could serve as a rapid and robust point-of-care test in settings lacking a comprehensive molecular laboratory infrastructure to differentiate TB patients infected with MDR and non-MDR strains and to assist clinicians with their early treatment decisions.
Collapse
|
79
|
Molecular detection of drug resistance to ofloxacin and kanamycin in Mycobacterium tuberculosis by using multiplex allele-specific PCR. J Infect Public Health 2018; 11:54-58. [DOI: 10.1016/j.jiph.2017.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 02/18/2017] [Accepted: 03/26/2017] [Indexed: 11/21/2022] Open
|
80
|
Abstract
The following study is investigating the different GyrB mutations associated withEscherichia coliclinical isolates. The study interrogates part of the ATPase binding site (a.a 132-199) as it covers most of the naturally occurring mutations in GyrB. The following results were obtained: for Arg-136 two isolates had mutations, the first is isolate-1 (Ala-136), and the second is isolate-5 (Cys-136). Gly-164 had no changes for all tested isolates. For Thr-165 only isolate-3 had a change to Ser-165. Accuracy of sequence translation was checked by sequencing both CFT073 and MG1655. The current study presents novel mutations in the GyrB24 subdomain of the gyrase enzyme. These new mutations showed normal enzyme activity (no reduction in ATPase functions) indicating that they might be a result of GyrB interaction with ATP analog molecules rather than antibacterial agents such as coumarins. Furthermore, our findings are supporting the idea that mutations in the GyrB24 would require synchronization with the efflux pumps to maintain antibiotic resistance against coumarins.
Collapse
|
81
|
Leechawengwongs M, Prammananan T, Jaitrong S, Billamas P, Makhao N, Thamnongdee N, Thanormchat A, Phurattanakornkul A, Rattanarangsee S, Ratanajaraya C, Disratthakit A, Chaiprasert A. In Vitro Activity and MIC of Sitafloxacin against Multidrug-Resistant and Extensively Drug-Resistant Mycobacterium tuberculosis Isolated in Thailand. Antimicrob Agents Chemother 2018; 62:e00825-17. [PMID: 29061759 PMCID: PMC5740303 DOI: 10.1128/aac.00825-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 09/06/2017] [Indexed: 11/20/2022] Open
Abstract
New fluoroquinolones (FQs) have been shown to be more active against drug-resistant Mycobacterium tuberculosis strains than early FQs, such as ofloxacin. Sitafloxacin (STFX) is a new fluoroquinolone with in vitro activity against a broad range of bacteria, including M. tuberculosis This study aimed to determine the in vitro activity of STFX against all groups of drug-resistant strains, including multidrug-resistant M. tuberculosis (MDR M. tuberculosis), MDR M. tuberculosis with quinolone resistance (pre-XDR), and extensively drug-resistant (XDR) strains. A total of 374 drug-resistant M. tuberculosis strains were tested for drug susceptibility by the conventional proportion method, and 95 strains were randomly submitted for MIC determination using the microplate alamarBlue assay (MABA). The results revealed that all the drug-resistant strains were susceptible to STFX at a critical concentration of 2 μg/ml. Determination of the MIC90s of the strains showed different MIC levels; MDR M. tuberculosis strains had a MIC90 of 0.0625 μg/ml, whereas pre-XDR and XDR M. tuberculosis strains had identical MIC90s of 0.5 μg/ml. Common mutations within the quinolone resistance-determining region (QRDR) of gyrA and/or gyrB did not confer resistance to STFX, except that double mutations of GyrA at Ala90Val and Asp94Ala were found in strains with a MIC of 1.0 μg/ml. The results indicated that STFX had potent in vitro activity against all the groups of drug-resistant M. tuberculosis strains and should be considered a new repurposed drug for treatment of multidrug-resistant and extensively drug-resistant TB.
Collapse
Affiliation(s)
- Manoon Leechawengwongs
- Vichaiyut Hospital, Bangkok, Thailand
- Drug Resistant Tuberculosis Research Fund, Siriraj Foundation, Bangkok, Thailand
| | - Therdsak Prammananan
- Drug Resistant Tuberculosis Research Fund, Siriraj Foundation, Bangkok, Thailand
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Ministry of Science and Technology, Pathumthani, Thailand
| | - Sarinya Jaitrong
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Ministry of Science and Technology, Pathumthani, Thailand
| | - Pamaree Billamas
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Ministry of Science and Technology, Pathumthani, Thailand
| | - Nampueng Makhao
- Drug Resistant Tuberculosis Research Fund, Siriraj Foundation, Bangkok, Thailand
| | - Nongnard Thamnongdee
- Drug Resistant Tuberculosis Research Fund, Siriraj Foundation, Bangkok, Thailand
| | - Arirat Thanormchat
- Drug Resistant Tuberculosis Research Fund, Siriraj Foundation, Bangkok, Thailand
| | | | | | - Chate Ratanajaraya
- Drug Resistant Tuberculosis Research Fund, Siriraj Foundation, Bangkok, Thailand
| | - Areeya Disratthakit
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Angkana Chaiprasert
- Drug Resistant Tuberculosis Research Fund, Siriraj Foundation, Bangkok, Thailand
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
82
|
Lee YS, Lee BY, Jo KW, Shim TS. Performance of the GenoType MTBDRsl assay for the detection second-line anti-tuberculosis drug resistance. J Infect Chemother 2017; 23:820-825. [PMID: 29066216 DOI: 10.1016/j.jiac.2017.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/09/2017] [Accepted: 08/15/2017] [Indexed: 10/18/2022]
Abstract
The rapid detection of drug-resistant tuberculosis (TB) is important to improve treatment outcomes and prevent disease transmission. The GenoType MTBDRsl assay (MTBDRsl assay) was developed to detect fluoroquinolone (FQ) and second-line injectable drug (SLID) resistance. The aim of this study was to evaluate the performance and clinical utility of MTBDRsl assay. We retrospectively reviewed patient medical records with MTBDRsl assay data between December 2011 and February 2017. MTBDRsl assay results were compared with that of phenotypic drug susceptibility testing. In addition, treatment outcomes were analyzed to evaluate the clinical utility of the MTBDRsl assay. Among 107 clinical isolates (84 cultured isolates and 23 sputum specimens), 85 (79.4%) were multidrug-resistant TB and 9 (8.4%) were extensively drug-resistant TB (XDR-TB). The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy of MTBDRsl assay for detecting FQ resistance was 87.5%, 94.7%, 87.5%, 94.7%, and 92.5%, respectively. The sensitivity, specificity, PPV, NPV, and accuracy of MTBDRsl assay for detecting SLID resistance was 88.9%, 98.9%, 94.1%, 97.8%, and 97.2%, respectively. Novel drugs such as bedaquiline and linezolid were more commonly used in patients with FQ or SLID resistance detected by the MTBDRsl assay and, probably therefore, the treatment outcome was favorable irrespective of FQ or SLID resistance. The MTBDRsl assay could be used as a rule-in test to detect FQ and SLID resistance. By detecting FQ- and SLID-drug resistance rapidly, novel or repurposed drugs could be initiated earlier, suggesting that better treatment outcomes would be expected in patients with pre-XDR- and XDR-TB.
Collapse
Affiliation(s)
- Young Seok Lee
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Korea University Medical Center, Guro Hospital, Seoul, South Korea
| | - Bo Young Lee
- Division of Allergy and Respiratory Diseases, SoonChunHyang University Hospital, Seoul, South Korea
| | - Kyung-Wook Jo
- Department of Pulmonary and Critical Care Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Tae Sun Shim
- Department of Pulmonary and Critical Care Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea.
| |
Collapse
|
83
|
Chaoui I, Oudghiri A, El Mzibri M. Characterization of gyrA and gyrB mutations associated with fluoroquinolone resistance in Mycobacterium tuberculosis isolates from Morocco. J Glob Antimicrob Resist 2017; 12:171-174. [PMID: 29033301 DOI: 10.1016/j.jgar.2017.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES Fluoroquinolones (FQs) are the cornerstone of treatment for drug-resistant tuberculosis (TB). They are the most effective second-line antimycobacterial drugs and are recommended for the treatment of multidrug-resistant TB (MDR-TB). However, it is widely accepted that FQ resistance is high among MDR-TB isolates. Thus, characterisation of mutations conferring resistance to FQs will be of a great interest for effective and efficient management of TB resistance in Morocco. METHODS A laboratory collection of 30 Mycobacterium tuberculosis isolates previously characterised as phenotypically and genotypically MDR as well as 20 randomly selected pan-susceptible isolates were included in this retrospective study. The mutation profiles associated with resistance to FQs were assessed by PCR and DNA sequencing. Target sequences for two genes (gyrA and gyrB) were examined. All strains had their fingerprint previously established by spoligotyping. RESULTS Molecular analyses showed that 30% of the MDR-TB isolates harboured FQ resistance mutations in gyrA, with the most prevalent being an alanine to threonine at position 90 (Ala90Thr) (56%; 5/9). None of the isolates harboured mutations in gyrB. All gyrA resistance mutant strains belonged to the LAM lineage, mostly LAM9, raising the possible emergence of a specific clone (gyrA mutant/LAM9). CONCLUSION The results of this preliminary study highlight the high prevalence of FQ resistance among MDR-TB isolates in Morocco and consequently the need for rapid detection of FQ resistance once MDR-TB is confirmed to adjust treatment in a timely manner and to interrupt the propagation of more severe forms of M. tuberculosis drug resistance.
Collapse
Affiliation(s)
- Imane Chaoui
- Unité de Biologie et Recherches Médicales, Centre National de l'Energie, des Sciences et Techniques Nucléaires, BP 1382 RP. 10001, Rabat, Morocco.
| | - Amal Oudghiri
- Unité de Biologie et Recherches Médicales, Centre National de l'Energie, des Sciences et Techniques Nucléaires, BP 1382 RP. 10001, Rabat, Morocco
| | - Mohammed El Mzibri
- Unité de Biologie et Recherches Médicales, Centre National de l'Energie, des Sciences et Techniques Nucléaires, BP 1382 RP. 10001, Rabat, Morocco
| |
Collapse
|
84
|
Ergeshov A, Andreevskaya SN, Larionova EE, Smirnova TG, Chernousova LN. The spectrum of mutations in genes associated with resistance to rifampicin, isoniazid, and fluoroquinolones in the clinical strains of M. tuberculosis reflects the transmissibility of mutant clones. Mol Biol 2017. [DOI: 10.1134/s0026893317030049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
85
|
Yi L, Aono A, Chikamatsu K, Igarashi Y, Yamada H, Takaki A, Mitarai S. In vitro activity of sitafloxacin against Mycobacterium tuberculosis with gyrA/B mutations isolated in Japan. J Med Microbiol 2017; 66:770-776. [PMID: 28598311 DOI: 10.1099/jmm.0.000493] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Purpose. Sitafloxacin (SFX) is a new fluoroquinolone (FQ) that has shown a strong bactericidal effect against Mycobacterium tuberculosis (Mtb) in vitro. However, data on SFX efficacy against Mtb with gyrA/B mutations and its epidemiological cut-off (ECOFF) value remain limited. Therefore, we evaluated and compared the in vitro activity of SFX against gyrA/B-mutant Mtb to that of moxifloxacin (MFX), levofloxacin (LFX) and ciprofloxacin (CFX), and determined the ECOFF for SFX.Methodology. A total of 109 clinical Mtb isolates, including 73 multidrug-resistant (MDR) isolates, were subjected to minimum inhibitory concentration (MIC) analysis in oleic-albumin-dextrose-catalase (OADC)-supplemented Middlebrook 7H9 medium. Our results showed that SFX had lower cumulative MIC than MFX, LFX and CFX. Furthermore, we performed direct DNA sequencing of the quinolone-resistance-determining regions (QRDRs).Results. We identified the following mutations: D94G, D94A, A90V, D94H, D94N and G88A in gyrA; and A543V, A543T, E540D, R485C, D500A, I552S and D577A in gyrB. Based on our results, an ECOFF of 0.125 µg ml-1 was proposed for SFX. With this ECOFF, 15 % of LFX-resistant isolates with MIC ≥2 µg ml-1 were susceptible to SFX.Conclusion. SFX had the lowest cumulative MIC and a relatively low ECOFF value against Mtb, indicating that SFX was not only more effective against gyrA-mutant isolates, but also MDR isolates in Japan.
Collapse
Affiliation(s)
- Lina Yi
- Department of Basic Mycobacteriology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Japan.,Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Kiyose, Japan
| | - Akio Aono
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Japan
| | - Kinuyo Chikamatsu
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Japan
| | - Yuriko Igarashi
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Japan
| | - Hiroyuki Yamada
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Japan
| | - Akiko Takaki
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Japan
| | - Satoshi Mitarai
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Japan.,Department of Basic Mycobacteriology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
86
|
Correia S, Poeta P, Hébraud M, Capelo JL, Igrejas G. Mechanisms of quinolone action and resistance: where do we stand? J Med Microbiol 2017; 66:551-559. [DOI: 10.1099/jmm.0.000475] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Susana Correia
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Portugal
- UCIBIO-REQUIMTE, Faculty of Science and Technology, NOVA University of Lisbon, Lisbon, Portugal
- Veterinary Science Department, University of Trás-os-Montes and Alto Douro, Portugal
| | - Patrícia Poeta
- Veterinary Science Department, University of Trás-os-Montes and Alto Douro, Portugal
- UCIBIO-REQUIMTE, Faculty of Science and Technology, NOVA University of Lisbon, Lisbon, Portugal
| | - Michel Hébraud
- Université Clermont Auvergne (UCA), UMR Microbiologie Environnement Digestif et Santé (MEDiS), Institut National de la Recherche Agronomique (INRA), Centre Auvergne-Rhône-Alpes, site de Theix, France
- Plate-Forme d’Exploration du Métabolisme composante protéomique, UR370 QuaPA, Institut National de la Recherche Agronomique (INRA), Centre Auvergne-Rhône-Alpes, site de Theix, France
| | - José Luis Capelo
- UCIBIO-REQUIMTE, Faculty of Science and Technology, NOVA University of Lisbon, Lisbon, Portugal
- ProteoMass Scientific Society, Faculty of Sciences and Technology, Caparica Campus, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, Portugal
- UCIBIO-REQUIMTE, Faculty of Science and Technology, NOVA University of Lisbon, Lisbon, Portugal
| |
Collapse
|
87
|
Chen J, Peng P, Du Y, Ren Y, Chen L, Rao Y, Wang W. Early detection of multidrug- and pre-extensively drug-resistant tuberculosis from smear-positive sputum by direct sequencing. BMC Infect Dis 2017; 17:300. [PMID: 28438132 PMCID: PMC5402665 DOI: 10.1186/s12879-017-2409-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 04/19/2017] [Indexed: 01/06/2023] Open
Abstract
Background Emergence of multidrug- and extensively drug-resistant tuberculosis (M/XDR-TB) is a major hurdle for TB control programs especially in developing countries like China. Resistance to fluoroquinolones is high among MDR-TB patients. Early diagnosis of MDR/pre-XDR-TB is essential for lowering transmission of drug-resistant TB and adjusting the treatment regimen. Methods Smear-positive sputum specimens (n = 186) were collected from Wuhan Institute for Tuberculosis Control. The DNA was extracted from the specimens and run through a Sanger sequencing assay to detect mutations associated with MDR/pre-XDR-TB including the rpoB core region for rifampicin (RIF) resistance; katG and inhA promoter for isoniazid (INH) resistance; and gyrA for fluoroquinolone (FQ) resistance. Sequencing data were compared to phenotypic Lowenstein-Jensen (L-J) proportion method drug susceptibility testing (DST) results for performance analysis. Results By comparing the mutation data with phenotypic results, the detection rates of MDR-TB and pre-XDR-TB were 84.31% (43/51) and 83.33% (20/24), respectively. The sequencing assay illustrated good sensitivity for the detection of resistance to RIF (96.92%), INH (86.89%), FQ (77.50%). The specificities of the assay were 98.35% for RIF, 99.20% for INH, and 97.26% for FQ. Conclusions The sequencing assay is an efficient, accurate method for detection of MDR-TB and pre-XDR-TB from clinical smear-positive sputum specimens, should be considered as a supplemental method for obtaining early DST results before the availability of phenotypic DST results. This could be of benefit to early diagnosis, adjusting the treatment regimen and controlling transmission of drug-resistant TB.
Collapse
Affiliation(s)
- Jun Chen
- Department of Laboratory Medicine, Wuhan Institute for Tuberculosis Control, Wuhan Pulmonary Hospital, Wuhan, 430030, China
| | - Peng Peng
- Department of Internal Medicine, Wuhan Institute for Tuberculosis Control, Wuhan Pulmonary Hospital, Wuhan, 430030, China
| | - Yixiang Du
- Department of Tuberculosis Control, Wuhan Institute for Tuberculosis Control, Wuhan Pulmonary Hospital, Wuhan, 430030, China
| | - Yi Ren
- Department of Laboratory Medicine, Wuhan Institute for Tuberculosis Control, Wuhan Pulmonary Hospital, Wuhan, 430030, China
| | - Lifeng Chen
- Department of Laboratory Medicine, Wuhan Institute for Tuberculosis Control, Wuhan Pulmonary Hospital, Wuhan, 430030, China
| | - Youyi Rao
- Department of Laboratory Medicine, Wuhan Institute for Tuberculosis Control, Wuhan Pulmonary Hospital, Wuhan, 430030, China
| | - Weihua Wang
- Department of Internal Medicine, Wuhan Institute for Tuberculosis Control, Wuhan Pulmonary Hospital, Wuhan, 430030, China.
| |
Collapse
|
88
|
Wang Z, Xie T, Mu C, Wang C, Ju H, Zhao H, Sun R. Molecular characteristics of ofloxacin mono-resistant Mycobacterium tuberculosis isolates from new and previously treated tuberculosis patients. J Clin Lab Anal 2017; 32. [PMID: 28317169 DOI: 10.1002/jcla.22202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/21/2017] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Ofloxacin (OFX) resistant Mycobacterium tuberculosis (MTB) isolates have been increasingly observed and are a major concern in recent years. This study investigated the genetic mutations associated with OFX resistance among clinical OFX mono-resistant MTB isolates from new and previously treated tuberculosis patients. METHODS A total of 50 unrelated OFX mono-resistant MTB isolates were analyzed. For all isolates, the quinolone resistance determining regions of gyrA and gyrB were PCR amplified and sequenced. RESULTS Single mutations in the quinolone resistance determining regions of gyrA (positions D94A, G, N, and Y; A90V; and S91P) and gyrB (positions T539A and E540D) were observed in 62% (31/50) and 4% (2/50) of all OFX mono-resistant isolates, respectively. No differences were detected between the proportions of isolates with mutations in gyrA/gyrB from new and previously treated tuberculosis patients (P=.820). CONCLUSIONS Although mutations in gyrB were rare, they were as important as mutations in gyrA in predicting OFX resistance in MTB in Tianjin, China.
Collapse
Affiliation(s)
- Zhirui Wang
- Department of Microbiology, Tianjin Centers for Disease Control and Prevention, Tianjin, China
| | - Tong Xie
- Department of Microbiology, Tianjin Centers for Disease Control and Prevention, Tianjin, China
| | - Cheng Mu
- Tuberculosis Reference Laboratory, Tianjin Center for Tuberculosis Control, Tianjin, China
| | - Chunhua Wang
- Tuberculosis Reference Laboratory, Tianjin Center for Tuberculosis Control, Tianjin, China
| | - Hanfang Ju
- Tuberculosis Reference Laboratory, Tianjin Center for Tuberculosis Control, Tianjin, China
| | - Hui Zhao
- Tuberculosis Reference Laboratory, Tianjin Center for Tuberculosis Control, Tianjin, China
| | - Rui Sun
- Tuberculosis Reference Laboratory, Tianjin Center for Tuberculosis Control, Tianjin, China
| |
Collapse
|
89
|
Evolution of Phenotypic and Molecular Drug Susceptibility Testing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1019:221-246. [PMID: 29116638 DOI: 10.1007/978-3-319-64371-7_12] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Drug Resistant Tuberculosis (DRTB) is an emerging problem world-wide. In order to control the disease and decrease the number of cases overtime a prompt diagnosis followed by an appropriate treatment should be provided to patients. Phenotypic DST based on liquid automated culture has greatly reduced the time needed to generate reliable data but has the drawback to be expensive and prone to contamination in the absence of appropriate infrastructures. In the past 10 years molecular biology tools have been developed. Those tools target the main mutations responsible for DRTB and are now globally accessible in term of cost and infrastructures needed for the implementation. The dissemination of the Xpert MTB/rif has radically increased the capacity to perform the detection of rifampicin resistant TB cases. One of the main challenges for the large scale implementation of molecular based tests is the emergence of conflicting results between phenotypic and genotypic tests. This mines the confidence of clinicians in the molecular tests and delays the initiation of an appropriate treatment. A new technique is revolutionizing the genotypic approach to DST: the WGS by Next-Generation Sequencing technologies. This methodology promises to become the solution for a rapid access to universal DST, able indeed to overcome the limitations of the current phenotypic and genotypic assays. Today the use of the generated information is still challenging in decentralized facilities due to the lack of automation for sample processing and standardization in the analysis.The growing knowledge of the molecular mechanisms at the basis of drug resistance and the introduction of high-performing user-friendly tools at peripheral level should allow the very much needed accurate diagnosis of DRTB in the near future.
Collapse
|
90
|
Zhang D, Gomez JE, Chien JY, Haseley N, Desjardins CA, Earl AM, Hsueh PR, Hung DT. Genomic Analysis of the Evolution of Fluoroquinolone Resistance in Mycobacterium tuberculosis Prior to Tuberculosis Diagnosis. Antimicrob Agents Chemother 2016; 60:6600-6608. [PMID: 27572408 PMCID: PMC5075065 DOI: 10.1128/aac.00664-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/07/2016] [Indexed: 02/01/2023] Open
Abstract
Fluoroquinolones (FQs) are effective second-line drugs for treating antibiotic-resistant tuberculosis (TB) and are being considered for use as first-line agents. Because FQs are used to treat a range of infections, in a setting of undiagnosed TB, there is potential to select for drug-resistant Mycobacterium tuberculosis mutants during FQ-based treatment of other infections, including pneumonia. Here we present a detailed characterization of ofloxacin-resistant M. tuberculosis samples isolated directly from patients in Taiwan, which demonstrates that selection for FQ resistance can occur within patients who have not received FQs for the treatment of TB. Several of these samples showed no mutations in gyrA or gyrB based on PCR-based molecular assays, but genome-wide next-generation sequencing (NGS) revealed minority populations of gyrA and/or gyrB mutants. In other samples with PCR-detectable gyrA mutations, NGS revealed subpopulations containing alternative resistance-associated genotypes. Isolation of individual clones from these apparently heterogeneous samples confirmed the presence of the minority drug-resistant variants suggested by the NGS data. Further NGS of these purified clones established evolutionary links between FQ-sensitive and -resistant clones derived from the same patient, suggesting de novo emergence of FQ-resistant TB. Importantly, most of these samples were isolated from patients without a history of FQ treatment for TB. Thus, selective pressure applied by FQ monotherapy in the setting of undiagnosed TB infection appears to be able to drive the full or partial emergence of FQ-resistant M. tuberculosis, which has the potential to confound diagnostic tests for antibiotic susceptibility and limit the effectiveness of FQs in TB treatment.
Collapse
Affiliation(s)
- Danfeng Zhang
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, China
| | - James E Gomez
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Jung-Yien Chien
- Graduate Institute of Clinical Medicine, National Taiwan University Medical College, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University Medical College, Taipei, Taiwan
| | - Nathan Haseley
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Ashlee M Earl
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Po-Ren Hsueh
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University Medical College, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University Medical College, Taipei, Taiwan
| | - Deborah T Hung
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
91
|
Bernard C, Aubry A, Chauffour A, Brossier F, Robert J, Veziris N. In vivo Mycobacterium tuberculosisfluoroquinolone resistance emergence: a complex phenomenon poorly detected by current diagnostic tests. J Antimicrob Chemother 2016; 71:3465-3472. [DOI: 10.1093/jac/dkw344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 07/20/2016] [Accepted: 07/25/2016] [Indexed: 11/13/2022] Open
|
92
|
Wild-Type and Non-Wild-Type Mycobacterium tuberculosis MIC Distributions for the Novel Fluoroquinolone Antofloxacin Compared with Those for Ofloxacin, Levofloxacin, and Moxifloxacin. Antimicrob Agents Chemother 2016; 60:5232-7. [PMID: 27324769 PMCID: PMC4997829 DOI: 10.1128/aac.00393-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/10/2016] [Indexed: 12/16/2022] Open
Abstract
Antofloxacin (AFX) is a novel fluoroquinolone that has been approved in China for the treatment of infections caused by a variety of bacterial species. We investigated whether it could be repurposed for the treatment of tuberculosis by studying its in vitro activity. We determined the wild-type and non-wild-type MIC ranges for AFX as well as ofloxacin (OFX), levofloxacin (LFX), and moxifloxacin (MFX), using the microplate alamarBlue assay, of 126 clinical Mycobacterium tuberculosis strains from Beijing, China, of which 48 were OFX resistant on the basis of drug susceptibility testing on Löwenstein-Jensen medium. The MIC distributions were correlated with mutations in the quinolone resistance-determining regions of gyrA (Rv0006) and gyrB (Rv0005). Pharmacokinetic/pharmacodynamic (PK/PD) data for AFX were retrieved from the literature. AFX showed lower MIC levels than OFX but higher MIC levels than LFX and MFX on the basis of the tentative epidemiological cutoff values (ECOFFs) determined in this study. All strains with non-wild-type MICs for AFX harbored known resistance mutations that also resulted in non-wild-type MICs for LFX and MFX. Moreover, our data suggested that the current critical concentration of OFX for Löwenstein-Jensen medium that was recently revised by the World Health Organization might be too high, resulting in the misclassification of phenotypically non-wild-type strains with known resistance mutations as wild type. On the basis of our exploratory PK/PD calculations, the current dose of AFX is unlikely to be optimal for the treatment of tuberculosis, but higher doses could be effective.
Collapse
|
93
|
Sequence Analysis of Fluoroquinolone Resistance-Associated Genes gyrA and gyrB in Clinical Mycobacterium tuberculosis Isolates from Patients Suspected of Having Multidrug-Resistant Tuberculosis in New Delhi, India. J Clin Microbiol 2016; 54:2298-305. [PMID: 27335153 DOI: 10.1128/jcm.00670-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 06/17/2016] [Indexed: 11/20/2022] Open
Abstract
Fluoroquinolones (FQs) are broad-spectrum antibiotics recommended for the treatment of multidrug-resistant tuberculosis (MDR-TB) patients. FQ resistance, caused by mutations in the gyrA and gyrB genes of Mycobacterium tuberculosis, is increasingly reported worldwide; however, information on mutations occurring in strains from the Indian subcontinent is scarce. Hence, in this study, we aimed to characterize mutations in the gyrA and gyrB genes of acid-fast bacillus (AFB) smear-positive sediments or of M. tuberculosis isolates from AFB smear-negative samples from patients in India suspected of having MDR-TB. A total of 152 samples from patients suspected of having MDR-TB were included in the study. One hundred forty-six strains detected in these samples were characterized by sequencing of the gyrA and gyrB genes. The extracted DNA was subjected to successive amplifications using a nested PCR protocol, followed by sequencing. A total of 27 mutations were observed in the gyrA genes of 25 strains, while no mutations were observed in the gyrB genes. The most common mutations occurred at amino acid position 94 (13/27 [48.1%]); of these, the D94G mutation was the most prevalent. The gyrA mutations were significantly associated with patients with rifampin (RIF)-resistant TB. Heterozygosity was seen in 4/27 (14.8%) mutations, suggesting the occurrence of mixed populations with different antimicrobial susceptibilities. A high rate of FQ-resistant mutations (17.1%) was obtained among the isolates of TB patients suspected of having MDR-TB. These observations emphasize the need for accurate and rapid molecular tests for the detection of FQ-resistant mutations at the time of MDR-TB diagnosis.
Collapse
|
94
|
Frequency and Distribution of Tuberculosis Resistance-Associated Mutations between Mumbai, Moldova, and Eastern Cape. Antimicrob Agents Chemother 2016; 60:3994-4004. [PMID: 27090176 DOI: 10.1128/aac.00222-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/12/2016] [Indexed: 01/17/2023] Open
Abstract
Molecular diagnostic assays, with their ability to rapidly detect resistance-associated mutations in bacterial genes, are promising technologies to control the spread of drug-resistant tuberculosis (DR-TB). Sequencing assays provide detailed information for specific gene regions and can help diagnostic assay developers prioritize mutations for inclusion in their assays. We performed pyrosequencing of seven Mycobacterium tuberculosis gene regions (katG, inhA, ahpC, rpoB, gyrA, rrs, and eis) for 1,128 clinical specimens from India, Moldova, and South Africa. We determined the frequencies of each mutation among drug-resistant and -susceptible specimens based on phenotypic drug susceptibility testing results and examined mutation distributions by country. The most common mutation among isoniazid-resistant (INH(r)) specimens was the katG 315ACC mutation (87%). However, in the Eastern Cape, INH(r) specimens had a lower frequency of katG mutations (44%) and higher frequencies of inhA (47%) and ahpC (10%) promoter mutations. The most common mutation among rifampin-resistant (RIF(r)) specimens was the rpoB 531TTG mutation (80%). The mutation was common in RIF(r) specimens in Mumbai (83%) and Moldova (84%) but not the Eastern Cape (17%), where the 516GTC mutation appeared more frequently (57%). The most common mutation among fluoroquinolone-resistant specimens was the gyrA 94GGC mutation (44%). The rrs 1401G mutation was found in 84%, 84%, and 50% of amikacin-resistant, capreomycin-resistant, and kanamycin (KAN)-resistant (KAN(r)) specimens, respectively. The eis promoter mutation -12T was found in 26% of KAN(r) and 4% of KAN-susceptible (KAN(s)) specimens. Inclusion of the ahpC and eis promoter gene regions was critical for optimal test sensitivity for the detection of INH resistance in the Eastern Cape and KAN resistance in Moldova. (This study has been registered at ClinicalTrials.gov under registration number NCT02170441.).
Collapse
|
95
|
Eilertson B, Maruri F, Blackman A, Guo Y, Herrera M, van der Heijden Y, Shyr Y, Sterling TR. A novel resistance mutation in eccC5 of the ESX-5 secretion system confers ofloxacin resistance in Mycobacterium tuberculosis. J Antimicrob Chemother 2016; 71:2419-27. [PMID: 27261264 PMCID: PMC4992850 DOI: 10.1093/jac/dkw168] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/08/2016] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Fluoroquinolone resistance in Mycobacterium tuberculosis is often conferred by DNA gyrase mutations. However, a substantial proportion of fluoroquinolone-resistant M. tuberculosis isolates do not have such mutations. METHODS Ofloxacin-resistant and lineage-matched ofloxacin-susceptible M. tuberculosis isolates underwent WGS. Novel candidate resistance mutations were confirmed by Sanger sequencing and conferral of resistance was assessed via site-directed mutagenesis and allelic exchange. Ofloxacin MIC was determined by resazurin microtitre assay (REMA) and the effects on MICs of efflux pump inhibitors (CCCP, reserpine and verapamil) were determined. RESULTS Of 26 ofloxacin-resistant isolates, 8 (31%) did not have resistance-conferring DNA gyrase mutations. The V762G mutation in Rv1783 (eccC5, encoding a protein in the ESX-5 membrane complex secretion system) was present on WGS in 8/26 (31%) resistant isolates and 0/11 susceptible isolates (P = 0.005). The mutation was identified in five isolates without DNA gyrase mutations and three isolates with such mutations; it was identified in both European-American and East Asian M. tuberculosis lineages. The ofloxacin MIC increased from 1 to 32 mg/L after introduction of the V762G mutation into M. tuberculosis H37Rv. In this strain with the V762G mutation, ofloxacin MIC did not change in the presence of efflux pump inhibitors. CONCLUSIONS A novel V762G mutation in Rv1783 conferred ofloxacin resistance in M. tuberculosis by a mechanism other than drug efflux. This occurred in a substantial proportion of resistant isolates, particularly those without DNA gyrase mutations.
Collapse
Affiliation(s)
- Brandon Eilertson
- Division of Infectious Diseases, Department of Medicine, State University of New York Downstate, New York, NY, USA Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Fernanda Maruri
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA Vanderbilt Tuberculosis Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Amondrea Blackman
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA Vanderbilt Tuberculosis Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yan Guo
- Vanderbilt Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Miguel Herrera
- Vanderbilt Technologies for Advance Genomics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yuri van der Heijden
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA Vanderbilt Tuberculosis Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yu Shyr
- Vanderbilt Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Timothy R Sterling
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA Vanderbilt Tuberculosis Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
96
|
Wang T, Feng GD, Pang Y, Liu JY, Zhou Y, Yang YN, Dai W, Zhang L, Li Q, Gao Y, Chen P, Zhan LP, Marais BJ, Zhao YL, Zhao G. High rate of drug resistance among tuberculous meningitis cases in Shaanxi province, China. Sci Rep 2016; 6:25251. [PMID: 27143630 PMCID: PMC4855176 DOI: 10.1038/srep25251] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/12/2016] [Indexed: 11/18/2022] Open
Abstract
The clinical and mycobacterial features of tuberculous meningitis (TBM) cases in China are not well described; especially in western provinces with poor tuberculosis control. We prospectively enrolled patients in whom TBM was considered in Shaanxi Province, northwestern China, over a 2-year period (September 2010 to December 2012). Cerebrospinal fluid specimens were cultured for Mycobacterium tuberculosis; with phenotypic and genotypic drug susceptibility testing (DST), as well as genotyping of all positive cultures. Among 350 patients included in the study, 27 (7.7%) had culture-confirmed TBM; 84 (24.0%) had probable and 239 (68.3%) had possible TBM. DST was performed on 25/27 (92.3%) culture positive specimens; 12/25 (48.0%) had "any resistance" detected and 3 (12.0%) were multi-drug resistant (MDR). Demographic and clinical features of drug resistant and drug susceptible TBM cases were similar. Beijing was the most common genotype (20/25; 80.0%) with 9/20 (45%) of the Beijing strains exhibiting drug resistance; including all 3 MDR strains. All (4/4) isoniazid resistant strains had mutations in the katG gene; 75% (3/4) of strains with phenotypic rifampicin resistance had mutations in the rpoB gene detected by Xpert MTB/RIF®. High rates of drug resistance were found among culture-confirmed TBM cases; most were Beijing strains.
Collapse
Affiliation(s)
- Ting Wang
- Department of Neurology, Xijing Hospital, the Fourth Military Medical University, no.169 Changle West Road, Xi’an, Shaanxi, 710032, P.R.China
- Department of Neurology, Kunming Medical University affiliated Yan’an Hospital, 245 Renming East Road, Kunming, Yunnan, 650200, P.R.China
| | - Guo-Dong Feng
- Department of Neurology, Xijing Hospital, the Fourth Military Medical University, no.169 Changle West Road, Xi’an, Shaanxi, 710032, P.R.China
| | - Yu Pang
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, no.155 Changbai Road, Beijing, 102206, P.R.China
| | - Jia-Yun Liu
- Department of Inspection, Xijing Hospital, Fourth Military Medical University, no.169 Changle West Road, Xi’an, Shaanxi, 710032, P.R.China
| | - Yang Zhou
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, no.155 Changbai Road, Beijing, 102206, P.R.China
| | - Yi-Ning Yang
- Department of Neurology, Xijing Hospital, the Fourth Military Medical University, no.169 Changle West Road, Xi’an, Shaanxi, 710032, P.R.China
| | - Wen Dai
- Department of Neurology, Xijing Hospital, the Fourth Military Medical University, no.169 Changle West Road, Xi’an, Shaanxi, 710032, P.R.China
| | - Lin Zhang
- Department of Neurology, Xijing Hospital, the Fourth Military Medical University, no.169 Changle West Road, Xi’an, Shaanxi, 710032, P.R.China
| | - Qiao Li
- Department of Neurology, Xijing Hospital, the Fourth Military Medical University, no.169 Changle West Road, Xi’an, Shaanxi, 710032, P.R.China
| | - Yu Gao
- Department of Neurology, Xijing Hospital, the Fourth Military Medical University, no.169 Changle West Road, Xi’an, Shaanxi, 710032, P.R.China
| | - Ping Chen
- Department of Neurology, Xijing Hospital, the Fourth Military Medical University, no.169 Changle West Road, Xi’an, Shaanxi, 710032, P.R.China
| | - Li-Ping Zhan
- Department of Neurology, Kunming Medical University affiliated Yan’an Hospital, 245 Renming East Road, Kunming, Yunnan, 650200, P.R.China
| | - Ben J Marais
- The Children’s Hospital at Westmead and the Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Australia
| | - Yan-Lin Zhao
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, no.155 Changbai Road, Beijing, 102206, P.R.China
| | - Gang Zhao
- Department of Neurology, Xijing Hospital, the Fourth Military Medical University, no.169 Changle West Road, Xi’an, Shaanxi, 710032, P.R.China
| |
Collapse
|
97
|
The Current Case of Quinolones: Synthetic Approaches and Antibacterial Activity. Molecules 2016; 21:268. [PMID: 27043501 PMCID: PMC6274096 DOI: 10.3390/molecules21040268] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/08/2016] [Accepted: 02/15/2016] [Indexed: 11/17/2022] Open
Abstract
Quinolones are broad-spectrum synthetic antibacterial drugs first obtained during the synthesis of chloroquine. Nalidixic acid, the prototype of quinolones, first became available for clinical consumption in 1962 and was used mainly for urinary tract infections caused by Escherichia coli and other pathogenic Gram-negative bacteria. Recently, significant work has been carried out to synthesize novel quinolone analogues with enhanced activity and potential usage for the treatment of different bacterial diseases. These novel analogues are made by substitution at different sites--the variation at the C-6 and C-8 positions gives more effective drugs. Substitution of a fluorine atom at the C-6 position produces fluroquinolones, which account for a large proportion of the quinolones in clinical use. Among others, substitution of piperazine or methylpiperazine, pyrrolidinyl and piperidinyl rings also yields effective analogues. A total of twenty six analogues are reported in this review. The targets of quinolones are two bacterial enzymes of the class II topoisomerase family, namely gyrase and topoisomerase IV. Quinolones increase the concentration of drug-enzyme-DNA cleavage complexes and convert them into cellular toxins; as a result they are bactericidal. High bioavailability, relative low toxicity and favorable pharmacokinetics have resulted in the clinical success of fluoroquinolones and quinolones. Due to these superior properties, quinolones have been extensively utilized and this increased usage has resulted in some quinolone-resistant bacterial strains. Bacteria become resistant to quinolones by three mechanisms: (1) mutation in the target site (gyrase and/or topoisomerase IV) of quinolones; (2) plasmid-mediated resistance; and (3) chromosome-mediated quinolone resistance. In plasmid-mediated resistance, the efflux of quinolones is increased along with a decrease in the interaction of the drug with gyrase (topoisomerase IV). In the case of chromosome-mediated quinolone resistance, there is a decrease in the influx of the drug into the cell.
Collapse
|
98
|
Rigouts L, Coeck N, Gumusboga M, de Rijk WB, Aung KJM, Hossain MA, Fissette K, Rieder HL, Meehan CJ, de Jong BC, Van Deun A. Specific gyrA gene mutations predict poor treatment outcome in MDR-TB. J Antimicrob Chemother 2015; 71:314-23. [PMID: 26604243 PMCID: PMC4710215 DOI: 10.1093/jac/dkv360] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/02/2015] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Mutations in the gyrase genes cause fluoroquinolone resistance in Mycobacterium tuberculosis. However, the predictive value of these markers for clinical outcomes in patients with MDR-TB is unknown to date. The objective of this study was to determine molecular markers and breakpoints predicting second-line treatment outcomes in M. tuberculosis patients treated with fourth-generation fluoroquinolones. METHODS We analysed treatment outcome data in relation to the gyrA and gyrB sequences and MICs of ofloxacin, gatifloxacin and moxifloxacin for pretreatment M. tuberculosis isolates from 181 MDR-TB patients in Bangladesh whose isolates were susceptible to injectable drugs. RESULTS The gyrA 90Val, 94Gly and 94Ala mutations were most frequent, with the highest resistance levels for 94Gly mutants. Increased pretreatment resistance levels (>2 mg/L), related to specific mutations, were associated with lower cure percentages, with no cure in patients whose isolates were resistant to gatifloxacin at 4 mg/L. Any gyrA 94 mutation, except 94Ala, predicted a significantly lower proportion of cure compared with all other gyrA mutations taken together (all non-94 mutants + 94Ala) [OR = 4.3 (95% CI 1.4-13.0)]. The difference in treatment outcome was not explained by resistance to the other drugs. CONCLUSIONS Our study suggests that gyrA mutations at position 94, other than Ala, predict high-level resistance to gatifloxacin and moxifloxacin, as well as poor treatment outcome, in MDR-TB patients in whom an injectable agent is still effective.
Collapse
Affiliation(s)
- L Rigouts
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - N Coeck
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - M Gumusboga
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - W B de Rijk
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | | | | | - K Fissette
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - H L Rieder
- Epidemiology Department, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - C J Meehan
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - B C de Jong
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium Department of Medicine, Division of Infectious Diseases, New York University, New York, NY, USA Vaccinology Department, Medical Research Council Unit, Fajara, The Gambia
| | - A Van Deun
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium International Union Against Tuberculosis and Lung Disease, Paris, France
| |
Collapse
|
99
|
Niward K, Ängeby K, Chryssanthou E, Paues J, Bruchfeld J, Jureen P, Giske CG, Kahlmeter G, Schön T. Susceptibility testing breakpoints for Mycobacterium tuberculosis categorize isolates with resistance mutations in gyrA as susceptible to fluoroquinolones: implications for MDR-TB treatment and the definition of XDR-TB. J Antimicrob Chemother 2015; 71:333-8. [PMID: 26538509 DOI: 10.1093/jac/dkv353] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/29/2015] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Fluoroquinolones (FQs) are important in the treatment of MDR-TB and in the definition of XDR-TB. Our objective was to investigate how discrepancies in the phenotypic and genotypic methods for antimicrobial susceptibility testing could affect the interpretation of antimicrobial susceptibility test results. METHODS We analysed MICs of ofloxacin and levofloxacin in Middlebrook 7H10 broth (7H10) as well as sequencing of the quinolone resistance-determining region of the gyrA gene and the MTBDRsl assay in 75 resistant isolates, including MDR and XDR strains of Mycobacterium tuberculosis. RESULTS Among 75 resistant isolates, 27 had mutations associated with FQ resistance. Among isolates with resistance mutations in gyrA, 26% (seven of 27) were susceptible to levofloxacin and ofloxacin by phenotypic testing at 1 mg/L and 2 mg/L. The most common mutation was in codon 94 and these isolates had significantly increased MICs of levofloxacin (2-8 mg/L) compared with isolates with mutations in codon 90 (0.25-2 mg/L, P < 0.05). The sensitivity and specificity for the MTBDRsl assay compared with gyrA sequencing were 96% and 98%, respectively. CONCLUSION Current critical concentrations may classify up to 26% of isolates with gyrA mutations as susceptible to FQs due to a close relationship between susceptible and resistant populations. These results should be considered while improving clinical breakpoints for M. tuberculosis and may have an impact on the definition of XDR-TB.
Collapse
Affiliation(s)
- Katarina Niward
- Department of Infectious Diseases, Linköping University Hospital, Linköping, Sweden Department of Clinical and Experimental medicine, Linköping University, Linköping, Sweden
| | - Kristian Ängeby
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden Department of Microbiology, The University of the West Indies, Kingston, Jamaica
| | - Erja Chryssanthou
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Jakob Paues
- Department of Infectious Diseases, Linköping University Hospital, Linköping, Sweden Department of Clinical and Experimental medicine, Linköping University, Linköping, Sweden
| | - Judith Bruchfeld
- Unit of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden Department of Medicine, Karolinska Institute, Solna, Sweden
| | - Pontus Jureen
- The Public Health Agency of Sweden, Stockholm, Sweden
| | - Christian G Giske
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Gunnar Kahlmeter
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden Department of Clinical Microbiology, Växjö Hospital, Växjö, Sweden
| | - Thomas Schön
- Department of Clinical Microbiology and Infectious Diseases, Kalmar County Hospital, Kalmar, Sweden Department of Medical microbiology, Linköping University, Linköping, Sweden
| |
Collapse
|
100
|
Rapid Molecular Detection of Multidrug-Resistant Tuberculosis by PCR-Nucleic Acid Lateral Flow Immunoassay. PLoS One 2015; 10:e0137791. [PMID: 26355296 PMCID: PMC4565584 DOI: 10.1371/journal.pone.0137791] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 08/21/2015] [Indexed: 01/18/2023] Open
Abstract
Several existing molecular tests for multidrug-resistant tuberculosis (MDR-TB) are limited by complexity and cost, hindering their widespread application. The objective of this proof of concept study was to develop a simple Nucleic Acid Lateral Flow (NALF) immunoassay as a potential diagnostic alternative, to complement conventional PCR, for the rapid molecular detection of MDR-TB. The NALF device was designed using antibodies for the indirect detection of labeled PCR amplification products. Multiplex PCR was optimized to permit the simultaneous detection of the drug resistant determining mutations in the 81-bp hot spot region of the rpoB gene (rifampicin resistance), while semi-nested PCR was optimized for the S315T mutation detection in the katG gene (isoniazid resistance). The amplification process additionally targeted a conserved region of the genes as Mycobacterium tuberculosis (Mtb) DNA control. The optimized conditions were validated with the H37Rv wild-type (WT) Mtb isolate and Mtb isolates with known mutations (MT) within the rpoB and katG genes. Results indicate the correct identification of WT (drug susceptible) and MT (drug resistant) Mtb isolates, with the least limit of detection (LOD) being 104 genomic copies per PCR reaction. NALF is a simple, rapid and low-cost device suitable for low resource settings where conventional PCR is already employed on a regular basis. Moreover, the use of antibody-based NALF to target primer-labels, without the requirement for DNA hybridization, renders the device generic, which could easily be adapted for the molecular diagnosis of other infectious and non-infectious diseases requiring nucleic acid detection.
Collapse
|