51
|
Sadrekarimi H, Gardanova ZR, Bakhshesh M, Ebrahimzadeh F, Yaseri AF, Thangavelu L, Hasanpoor Z, Zadeh FA, Kahrizi MS. Emerging role of human microbiome in cancer development and response to therapy: special focus on intestinal microflora. Lab Invest 2022; 20:301. [PMID: 35794566 PMCID: PMC9258144 DOI: 10.1186/s12967-022-03492-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022]
Abstract
In recent years, there has been a greater emphasis on the impact of microbial populations inhabiting the gastrointestinal tract on human health and disease. According to the involvement of microbiota in modulating physiological processes (such as immune system development, vitamins synthesis, pathogen displacement, and nutrient uptake), any alteration in its composition and diversity (i.e., dysbiosis) has been linked to a variety of pathologies, including cancer. In this bidirectional relationship, colonization with various bacterial species is correlated with a reduced or elevated risk of certain cancers. Notably, the gut microflora could potentially play a direct or indirect role in tumor initiation and progression by inducing chronic inflammation and producing toxins and metabolites. Therefore, identifying the bacterial species involved and their mechanism of action could be beneficial in preventing the onset of tumors or controlling their advancement. Likewise, the microbial community affects anti-cancer approaches’ therapeutic potential and adverse effects (such as immunotherapy and chemotherapy). Hence, their efficiency should be evaluated in the context of the microbiome, underlining the importance of personalized medicine. In this review, we summarized the evidence revealing the microbiota's involvement in cancer and its mechanism. We also delineated how microbiota could predict colon carcinoma development or response to current treatments to improve clinical outcomes.
Collapse
|
52
|
Scott N, Whittle E, Jeraldo P, Chia N. A systemic review of the role of enterotoxic Bacteroides fragilis in colorectal cancer. Neoplasia 2022; 29:100797. [PMID: 35461079 PMCID: PMC9046963 DOI: 10.1016/j.neo.2022.100797] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/25/2022] [Accepted: 04/01/2022] [Indexed: 12/13/2022]
Abstract
Enterotoxigenic Bacteroides fragilis (ETBF) has received significant attention for a possible association with, or causal role in, colorectal cancer (CRC). The goal of this review was to assess the status of the published evidence supporting (i) the association between ETBF and CRC and (ii) the causal role of ETBF in CRC. PubMed and Scopus searches were performed in August 2021 to identify human, animal, and cell studies pertaining to the role of ETBF in CRC. Inclusion criteria included the use of cell lines, mice, exposure to BFT or ETBF, and detection of bft. Review studies were excluded, and studies were limited to the English language. Quality of study design and risk of bias analysis was performed on the cell, animal, and human studies using ToxRTools, SYRCLE, and NOS, respectively. Ninety-five eligible studies were identified, this included 22 human studies, 24 animal studies, 43 cell studies, and 6 studies that included both cells and mice studies. We found that a large majority of studies supported an association or causal role of ETBF in CRC, as well as high levels of study bias was detected in the in vitro and in vivo studies. The high-level heterogeneity in study design and reporting made it difficult to synthesize these findings into a unified conclusion, suggesting that the need for future studies that include improved mechanistic models, longitudinal in vitro and in vivo evidence, and appropriate control of confounding factors will be required to confirm whether ETBF has a direct role in CRC etiopathogenesis.
Collapse
Affiliation(s)
- Nancy Scott
- Bioinformatics and Computational Biology, University of Minnesota, 111 South Broadway, Rochester, MN 55904, USA
| | - Emma Whittle
- Department of Surgery, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | - Patricio Jeraldo
- Department of Surgery, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA; Microbiome Program, Center for Individualized Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | - Nicholas Chia
- Department of Surgery, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA; Microbiome Program, Center for Individualized Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA.
| |
Collapse
|
53
|
Li J, Zhu Y, Yang L, Wang Z. Effect of gut microbiota in the colorectal cancer and potential target therapy. Discov Oncol 2022; 13:51. [PMID: 35749000 PMCID: PMC9232688 DOI: 10.1007/s12672-022-00517-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/15/2022] [Indexed: 02/05/2023] Open
Abstract
The symbiotic interaction between gut microbiota and the digestive tract is an important factor in maintaining the intestinal environment balance. Colorectal cancer (CRC) is a complex disease involving the interaction between tumour cells and a large number of microorganisms. The microbiota is involved in the occurrence, development and prognosis of colorectal cancer. Several microbiota species have been studied, such as Fusobacterium nucleatum (F. nucleatum), Enterotoxigenic Bacteroides fragilis (ETBF), Streptococcus bovis (S. bovis), Lactobacillus, and Bifidobacterium. Studies about the interaction between microbiota and CRC were retrieved from Embase, PubMed, Ovid and Web of Science up to 21 Oct 2021. This review expounded on the effect of microbiota on CRC, especially the dysregulation of bacteria and carcinogenicity. The methods of gut microbiota modifications representing novel prognostic markers and innovative therapeutic strategies were also described.
Collapse
Affiliation(s)
- Junchuan Li
- Gastrointestinal Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Yuzhou Zhu
- Gastrointestinal Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Lie Yang
- Gastrointestinal Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Ziqiang Wang
- Gastrointestinal Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| |
Collapse
|
54
|
Dai JJ, Fu YY, Zhong XQ, Cen W, Ye MF, Chen XH, Pan YF, Ye LC. Identification of Senescence-Related Subtypes, the Development of a Prognosis Model, and Characterization of Immune Infiltration and Gut Microbiota in Colorectal Cancer. Front Med (Lausanne) 2022; 9:916565. [PMID: 35721059 PMCID: PMC9198838 DOI: 10.3389/fmed.2022.916565] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/05/2022] [Indexed: 12/25/2022] Open
Abstract
Cellular senescence is associated with tumorigenesis, and the subtype and prognostic signatures of senescence-related genes (SRGs) in the tumor microenvironment (TME) and gut microbiota have not been fully determined. Analysis of 91 SRGs obtained from the GSEA and MSigDB, and mRNA sequencing of genes in the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases enabled the identification of two distinct molecular types of colorectal cancer (CRC). Patient samples were clustered into two subtypes, with Kaplan-Meier survival analyses showing significant differences in patient survival between the two subtypes. Cluster C2 was associated with patient clinicopathological features, high immune score, high abundance of immune infiltrating cells and somewhat high abundance of bacteria. A risk model based on eight SRGs showed that a low risk score was characterized by inhibition of immune activity and was indicative of better prognosis in patients with CRC. In combination with clinical characteristics, risk score was found to be an independent prognostic predictor of survival in patients with CRC. In conclusion, the present study showed that senescence-related subtypes and a signature consisting of eight SRGs were associated with CRC patient prognosis, as well as with immune cell infiltration and gut microbiota. These findings may enable better prediction of CRC patient prognosis and facilitate individualized treatments.
Collapse
Affiliation(s)
- Ju-Ji Dai
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yang-Yang Fu
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xi-Qiang Zhong
- Department of Spinal Surgery, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Cen
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mao-Fei Ye
- Department of Urology, Shanghai Baoshan Luodian Hospital, Shanghai, China
| | - Xi-Han Chen
- Department of Gastroenterology, The People's Hospital of Pingyang, Wenzhou, China
| | - Yi-Fei Pan
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Le-Chi Ye
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
55
|
Aitchison A, Pearson JF, Purcell RV, Frizelle FA, Keenan JI. Detection of Fusobacterium nucleatum DNA in primary care patient stool samples does not predict progression of colorectal neoplasia. PLoS One 2022; 17:e0269541. [PMID: 35658028 PMCID: PMC9165787 DOI: 10.1371/journal.pone.0269541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/23/2022] [Indexed: 11/20/2022] Open
Abstract
Background Carriage of certain bacterial species may represent potential biomarkers of colorectal cancer (CRC). Prominent among these is Fusobacterium nucleatum. We explored the association of F. nucleatum DNA in stool samples with the presence of colonic neoplastic lesions in a cohort of primary care patients, and compared our findings with those from an unrelated cohort of colonoscopy patients followed clinically over time. Methods Carriage rates of F. nucleatum in stool samples were assessed in 185 patients referred for a faecal immunochemical test (FIT) by their general practitioners (GPs). Comparisons were made with stool samples from 57 patients diagnosed with CRC and 57 age-matched healthy controls, and with tissue samples taken at colonoscopy from 150 patients with a decade of subsequent clinical follow-up. Findings F. nucleatum DNA was found at a high rate (47.0%) in stool samples from primary care patients, and more often in stool samples from CRC patients (47.4%) than in healthy controls (7.0%), (P = 7.66E-7). No association was found between carriage of F. nucleatum and FIT positivity (P = 0.588). While evidence of stool-associated F. nucleatum DNA was significantly more likely to indicate a lesion in those primary care patients progressed to colonoscopy (P = 0.023), this finding did not extend to the progression of neoplastic lesions in the 150 patients with a decade of follow up. Conclusion The finding of F. nucleatum DNA at similar rates in stool samples from patients diagnosed with CRC and in primary care patients with pre-cancerous lesions supports growing awareness that the presence of these bacteria may be a biomarker for increased risk of disease. However, molecular evidence of F. nucleatum did not predict progression of colonic lesions, which may lessen the utility of this bacterium as a biomarker for increased risk of disease.
Collapse
Affiliation(s)
- Alan Aitchison
- Department of Surgery, University of Otago Christchurch, Christchurch, New Zealand
| | - John F. Pearson
- Biostatistics and Computational Biology Unit, University of Otago Christchurch, Christchurch, New Zealand
| | - Rachel V. Purcell
- Department of Surgery, University of Otago Christchurch, Christchurch, New Zealand
| | - Frank A. Frizelle
- Department of Surgery, University of Otago Christchurch, Christchurch, New Zealand
| | - Jacqueline I. Keenan
- Department of Surgery, University of Otago Christchurch, Christchurch, New Zealand
- * E-mail:
| |
Collapse
|
56
|
Liu Z, Parida S, Wu S, Sears CL, Sharma D, Barman I. Label-Free Vibrational and Quantitative Phase Microscopy Reveals Remarkable Pathogen-Induced Morphomolecular Divergence in Tumor-Derived Cells. ACS Sens 2022; 7:1495-1505. [PMID: 35583030 DOI: 10.1021/acssensors.2c00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Delineating the molecular and morphological changes that cancer cells undergo in response to extracellular stimuli is crucial for identifying factors that promote tumor progression. Label-free optical imaging offers a potentially promising route for retrieving such single-cell information by generating detailed visualization of the morphology and determining alterations in biomolecular composition. The potential of such nonperturbative morphomolecular microscopy for analyzing microbiota-cancer cell interactions has been surprisingly underappreciated, despite the growing evidence of the critical role of dysbiosis in malignant transformations. Here, using a model system of breast cancer cells, we show that label-free Raman microspectroscopy and quantitative phase microscopy can detect biomolecular and morphological changes in single cells exposed to Bacteroides fragilis toxin (BFT), a toxin secreted by enterotoxigenicB. fragilis. Remarkably, using machine learning to elucidate subtle, but consistent, cellular differences, we found that the morphomolecular differences between BFT-exposed and control breast cancer cells became more accentuated after in vivo passage, corroborating our findings that a short-term BFT exposure imparts a long-term effect on cancer cells and promotes a more invasive phenotype. Complementing more classical labeling techniques, our label-free platform offers a global detection approach with measurements representative of the overall cellular phenotype, paving the way for further investigations into the multifaceted interactions between the cancer cell and the microbiota.
Collapse
Affiliation(s)
- Zhenhui Liu
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Sheetal Parida
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland 21287, United States
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Shaoguang Wu
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland 21287, United States
| | - Cynthia L. Sears
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland 21287, United States
| | - Dipali Sharma
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland 21287, United States
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland 21287, United States
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
57
|
Corredoira J, Ayuso B. Bacteremia and colon cancer: Causality or coincidence? Enferm Infecc Microbiol Clin 2022. [DOI: 10.1016/j.eimc.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
58
|
Corredoira J, Ayuso B. Bacteremia and colon cancer: Causality or coincidence? ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA (ENGLISH ED.) 2022; 40:221-223. [PMID: 35577440 DOI: 10.1016/j.eimce.2022.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Juan Corredoira
- Unidad de Enfermedades Infecciosas, Hospital Lucus Augusti, Lugo, Spain.
| | - Blanca Ayuso
- Unidad de Enfermedades Infecciosas, Hospital Lucus Augusti, Lugo, Spain
| |
Collapse
|
59
|
Basu A, Singh R, Gupta S. Bacterial infections in cancer: A bilateral relationship. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1771. [PMID: 34994112 DOI: 10.1002/wnan.1771] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 10/09/2021] [Accepted: 11/12/2021] [Indexed: 12/15/2022]
Abstract
Bacteria share a long commensal relationship with the human body. New findings, however, continue to unravel many complexities associated with this old alliance. In the past decades, the dysbiosis of human microbiome has been linked to tumorigenesis, and more recently to spontaneous colonization of existing tumors. The topic, however, remains open for debate as the claims for causative-prevailing dual characteristics of bacteria are mostly based on epidemiological evidence rather than robust mechanistic models. There are also no reviews linking the collective impact of bacteria in tumor microenvironments to the efficacy of cancer drugs, mechanisms of pathogen-initiated cancer and bacterial colonization, personalized nanomedicine, nanotechnology, and antimicrobial resistance. In this review, we provide a holistic overview of the bilateral relationship between cancer and bacteria covering all these aspects. Our collated evidence from the literature does not merely categorize bacteria as cancer causative or prevailing agents, but also critically highlights the gaps in the literature where more detailed studies may be required to reach such a conclusion. Arguments are made in favor of dual drug therapies that can simultaneously co-target bacteria and cancer cells to overcome drug resistance. Also discussed are the opportunities for leveraging the natural colonization and remission power of bacteria for cancer treatment. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Abhirup Basu
- Department of Chemical Engineering, Indian Institute of Technology, Delhi, India
| | - Rohini Singh
- Department of Chemical Engineering, Indian Institute of Technology, Delhi, India
| | - Shalini Gupta
- Department of Chemical Engineering, Indian Institute of Technology, Delhi, India
| |
Collapse
|
60
|
Roles of Microbiota in Cancer: From Tumor Development to Treatment. JOURNAL OF ONCOLOGY 2022; 2022:3845104. [PMID: 35342407 PMCID: PMC8941494 DOI: 10.1155/2022/3845104] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 12/11/2022]
Abstract
Cancer as a second leading cause of death arises from multifactorial pathology. The association of microbiota and their products with various pathologic conditions including cancer is receiving significant attention over the past few years. Mounting evidence showed that human microbiota is an emerging target in tumor onset, progression, prevention, and even diagnosis. Accordingly, modulating this composition might influence the response to tumor therapy and therapeutic resistance as well. Through this review, one could conceive of complex interaction between the microbiome and cancer in either positive or negative manner by which may hold potential for finding novel preventive and therapeutic strategies against cancer.
Collapse
|
61
|
Messing EM. Antibiotics and BCG. Bladder Cancer 2022; 8:97-99. [PMID: 38994522 PMCID: PMC11181830 DOI: 10.3233/blc-229000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 11/15/2022]
|
62
|
Nouri R, Hasani A, Asgharzadeh M, Sefidan FY, Hemmati F, Rezaee MA. Roles of gut microbiota in colorectal carcinogenesis providing a perspective for early diagnosis and treatment. Curr Pharm Biotechnol 2022; 23:1569-1580. [PMID: 35255786 DOI: 10.2174/1389201023666220307112413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 12/02/2022]
Abstract
Colorectal cancer (CRC) is the third most prevalent malignant neoplasm in the world. CRC is influenced by both environmental and genetic factors. Through toxin-mediated DNA damage and promotion of persistent dysregulated inflammation, the gut microbiota plays a crucial role in the development of CRC. In this review, we discussed the correlation between the bacterial microbiota and CRC carcinogenesis as well as the mechanism by which Streptococcus bovis/gallolyticus, Fusobacterium nucleatum, Bacteroides fragilis, and Escherichia coli can cause CRC.
Collapse
Affiliation(s)
- Roghayeh Nouri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alka Hasani
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Yeganeh Sefidan
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Hemmati
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Ahangarzadeh Rezaee
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Clinical Research Development Unit of Children Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
63
|
Richards J, Chambers T, Hales S, Joy M, Radu T, Woodward A, Humphrey A, Randal E, Baker MG. Nitrate contamination in drinking water and colorectal cancer: Exposure assessment and estimated health burden in New Zealand. ENVIRONMENTAL RESEARCH 2022; 204:112322. [PMID: 34740625 DOI: 10.1016/j.envres.2021.112322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/30/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Epidemiological evidence in multiple jurisdictions has shown an association between nitrate exposure in drinking water and an increased risk of colorectal cancer (CRC). OBJECTIVE We aimed to review the extent of nitrate contamination in New Zealand drinking water and estimate the health and financial burden of nitrate-attributable CRC. METHODS We collated data on nitrate concentrations in drinking water for an estimated 85% of the New Zealand population (∼4 million people) who were on registered supplies. We estimated nitrate levels for the remaining population (∼600,000 people) based on samples from 371 unregistered (private) supplies. We used the effective rate ratio from previous epidemiological studies to estimate CRC cases and deaths attributable to nitrate in drinking water. RESULTS Three-quarters of New Zealanders are on water supplies with less than 1 mg/L NO3-N. The population weighted average for nitrate exposure for people on registered supplies was 0.49 mg/L NO3-N with 1.91% (95%CI 0.49, 3.30) of CRC cases attributable to nitrates. This correlates to 49.7 cases per year (95%CI 14.9, 101.5) at a cost of 21.3 million USD (95% 6.4, 43.5 million USD). When combining registered and unregistered supplies, we estimated 3.26% (95%CI 0.84, 5.57) of CRC cases were attributable to nitrates, resulting in 100 cases (95%CI 25.7, 171.3) and 41 deaths (95%CI 10.5, 69.7) at a cost of 43.2 million USD (95%CI 10.9, 73.4). CONCLUSION A substantial minority of New Zealanders are exposed to high or unknown levels of nitrates in their drinking water. Given the international epidemiological studies showing an association between cancer and nitrate ingestion from drinking water, this exposure may cause an important burden of preventable CRC cases, deaths, and economic costs. We consider there is sufficient evidence to justify a review of drinking water standards. Protecting public health adds to the strong environmental arguments to improve water management in New Zealand.
Collapse
Affiliation(s)
- Jayne Richards
- School of Architecture, Building and Civil Engineering, Loughborough University, Epinal Way, Loughborough, LE11 3TU, UK
| | - Tim Chambers
- Health, Environment & Infection Research Unit, Department of Public Health, University of Otago, Wellington, New Zealand.
| | - Simon Hales
- Health, Environment & Infection Research Unit, Department of Public Health, University of Otago, Wellington, New Zealand
| | - Mike Joy
- School of Government, Victoria University of Wellington, New Zealand
| | - Tanja Radu
- School of Architecture, Building and Civil Engineering, Loughborough University, Epinal Way, Loughborough, LE11 3TU, UK
| | - Alistair Woodward
- Epidemiology & Biostatistics, School of Population Health, University of Auckland, New Zealand
| | | | - Edward Randal
- Health, Environment & Infection Research Unit, Department of Public Health, University of Otago, Wellington, New Zealand
| | - Michael G Baker
- Health, Environment & Infection Research Unit, Department of Public Health, University of Otago, Wellington, New Zealand
| |
Collapse
|
64
|
Wang WY, Zhou H, Wang Z, Zhang YH. RETRACTED: Comparison between diagnostic performance of intestinal Fusobacterium nucleatum, Bacteroides fragilis and Escherichia coli in 5-fluorouracil resistance to colorectal cancer: A meta‑analysis. Cancer Treat Res Commun 2022; 32:100536. [PMID: 35567912 DOI: 10.1016/j.ctarc.2022.100536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/08/2022] [Accepted: 02/15/2022] [Indexed: 02/07/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the authors, as the current findings are incomplete and need to be validated. The reasons include that the results are not comparable to the diagnostic performance of three bacteria species in 5-fluorouracil resistance in CRC from the clinical studies which are conducted to detect each type of bacteria separately. Additional results of quantifying three bacteria species in the same colorectal cancer group are required to validate the conclusion.
Collapse
Affiliation(s)
- Wen-Yu Wang
- Beijing Friendship Hospital, Capital Medical University Beijing,100050 China
| | - Hang Zhou
- Beijing Friendship Hospital, Capital Medical University Beijing,100050 China
| | - Zhi Wang
- Department of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing,100053 China.
| | - Yu-Hang Zhang
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing,100034 China; Institute of Clinical Pharmacology, Peking University First Hospital, Beijing,100191 China.
| |
Collapse
|
65
|
Seely KD, Morgan AD, Hagenstein LD, Florey GM, Small JM. Bacterial Involvement in Progression and Metastasis of Colorectal Neoplasia. Cancers (Basel) 2022; 14:1019. [PMID: 35205767 PMCID: PMC8870662 DOI: 10.3390/cancers14041019] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 02/06/2023] Open
Abstract
While the gut microbiome is composed of numerous bacteria, specific bacteria within the gut may play a significant role in carcinogenesis, progression, and metastasis of colorectal carcinoma (CRC). Certain microbial species are known to be associated with specific cancers; however, the interrelationship between bacteria and metastasis is still enigmatic. Mounting evidence suggests that bacteria participate in cancer organotropism during solid tumor metastasis. A critical review of the literature was conducted to better characterize what is known about bacteria populating a distant site and whether a tumor depends upon the same microenvironment during or after metastasis. The processes of carcinogenesis, tumor growth and metastatic spread in the setting of bacterial infection were examined in detail. The literature was scrutinized to discover the role of the lymphatic and venous systems in tumor metastasis and how microbes affect these processes. Some bacteria have a potent ability to enhance epithelial-mesenchymal transition, a critical step in the metastatic cascade. Bacteria also can modify the microenvironment and the local immune profile at a metastatic site. Early targeted antibiotic therapy should be further investigated as a measure to prevent metastatic spread in the setting of bacterial infection.
Collapse
Affiliation(s)
- Kevin D. Seely
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA; (A.D.M.); (L.D.H.)
| | - Amanda D. Morgan
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA; (A.D.M.); (L.D.H.)
| | - Lauren D. Hagenstein
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA; (A.D.M.); (L.D.H.)
| | - Garrett M. Florey
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80134, USA;
| | - James M. Small
- Department of Biomedical Sciences, Rocky Vista University, Parker, CO 80134, USA;
| |
Collapse
|
66
|
Doocey CM, Finn K, Murphy C, Guinane CM. The impact of the human microbiome in tumorigenesis, cancer progression, and biotherapeutic development. BMC Microbiol 2022; 22:53. [PMID: 35151278 PMCID: PMC8840051 DOI: 10.1186/s12866-022-02465-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/03/2022] [Indexed: 02/08/2023] Open
Abstract
Abstract
Background
Cancer impacts millions of lives globally each year, with approximately 10 million cancer-related deaths recorded worldwide in 2020. Mounting research has recognised the human microbiome as a key area of interest in the pathophysiology of various human diseases including cancer tumorigenesis, progression and in disease outcome. It is suggested that approximately 20% of human cancers may be linked to microbes. Certain residents of the human microbiome have been identified as potentially playing a role, including: Helicobacter pylori, Fusobacterium nucleatum, Escherichia coli, Bacteroides fragilis and Porphyromonas gingivalis.
Main body
In this review, we explore the current evidence that indicate a link between the human microbiome and cancer. Microbiome compositional changes have been well documented in cancer patients. Furthermore, pathogenic microbes harbouring specific virulence factors have been implicated in driving the carcinogenic activity of various malignancies including colorectal, gastric and pancreatic cancer. The associated genetic mechanisms with possible roles in cancer will be outlined. It will be indicated which microbes have a potential direct link with cancer cell proliferation, tumorigenesis and disease progression. Recent studies have also linked certain microbial cytotoxins and probiotic strains to cancer cell death, suggesting their potential to target the tumour microenvironment given that cancer cells are integral to its composition. Studies pertaining to such cytotoxic activity have suggested the benefit of microbial therapies in oncological treatment regimes. It is also apparent that bacterial pathogenic protein products encoded for by certain loci may have potential as oncogenic therapeutic targets given their possible role in tumorigenesis.
Conclusion
Research investigating the impact of the human microbiome in cancer has recently gathered pace. Vast amounts of evidence indicate the human microbiome as a potential player in tumorigenesis and progression. Promise in the development of cancer biomarkers and in targeted oncological therapies has also been demonstrated, although more studies are needed. Despite extensive in vitro and in vivo research, clinical studies involving large cohorts of human patients are lacking. The current literature suggests that further intensive research is necessary to validate both the role of the human microbiome in cancer, and the use of microbiome modification in cancer therapy.
Collapse
|
67
|
Biomarkers to Detect Early-Stage Colorectal Cancer. Biomedicines 2022; 10:biomedicines10020255. [PMID: 35203465 PMCID: PMC8869393 DOI: 10.3390/biomedicines10020255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is a leading cause of mortality worldwide. The high incidence and the acceleration of incidence in younger people reinforces the need for better techniques of early detection. The use of noninvasive biomarkers has potential to more accurately inform how patients are prioritised for clinical investigation, which, in turn, may ultimately translate into improved survival for those subsequently found to have curable-stage CRC. This review surveys a wide range of CRC biomarkers that may (alone or in combination) identify symptomatic patients presenting in primary care who should be progressed for clinical investigation.
Collapse
|
68
|
Liao W, Khan I, Huang G, Chen S, Liu L, Leong WK, Li XA, Wu J, Wendy Hsiao WL. Bifidobacterium animalis: the missing link for the cancer-preventive effect of Gynostemma pentaphyllum. Gut Microbes 2022; 13:1847629. [PMID: 33228450 PMCID: PMC8381792 DOI: 10.1080/19490976.2020.1847629] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Colorectal cancer (CRC) ranks the third most common cancer type in both men and women. Besides the known genetic and epigenetic changes in the gut epithelial cells, we now know that disturbed gut microbes could also contribute to the onset and progression of CRC. Hence, keeping a balanced gut microbiota (GM) has become a novel pursue in the medical field, particularly in the area of gastrointestinal disorders. Gynostemma pentaphyllum (Gp) is a dietary herbal medicine. In our previous study, Gp saponins (GpS) displayed prebiotic and cancer-preventive properties through the modulation of GM in ApcMin/+ mice. However, the specific group(s) of GM links to the health effects of GpS remains unknown. To track down the missing link, we first investigated and found that inoculation with fecal materials from GpS-treated ApcMin/+ mice effectively reduces polyps in ApcMin/+ mice. From the same source of the fecal sample, we successfully isolated 16 bacterial species. Out of the 16 bacteria, Bifidobacterium animalis stands out as the responder to the GpS-growth stimulus. Biochemical and RNAseq analysis demonstrated that GpS enhanced expressions of a wide range of genes encoding biogenesis and metabolic pathways in B. animalis culture. Moreover, we found that colonization of B. animalis markedly reduces the polyp burden in ApcMin/+ mice. These findings reveal a mutualistic interaction between the prebiotic and a probiotic to achieve anticancer and cancer-preventive activities. Our result, for the first time, unveils the anticancer function of B. animalis and extend the probiotic horizon of B. animalis.
Collapse
Affiliation(s)
- Weilin Liao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR
| | - Imran Khan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR
| | - Guoxin Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR
| | - Shengshuang Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR
| | - Wai Kit Leong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR
| | - Xiao Ang Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR
| | - Jianlin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR
| | - W. L. Wendy Hsiao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR,CONTACT W. L. Wendy Hsiao State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR
| |
Collapse
|
69
|
Sędzikowska A, Szablewski L. Human Gut Microbiota in Health and Selected Cancers. Int J Mol Sci 2021; 22:13440. [PMID: 34948234 PMCID: PMC8708499 DOI: 10.3390/ijms222413440] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/24/2022] Open
Abstract
The majority of the epithelial surfaces of our body, and the digestive tract, respiratory and urogenital systems, are colonized by a vast number of bacteria, archaea, fungi, protozoans, and viruses. These microbiota, particularly those of the intestines, play an important, beneficial role in digestion, metabolism, and the synthesis of vitamins. Their metabolites stimulate cytokine production by the human host, which are used against potential pathogens. The composition of the microbiota is influenced by several internal and external factors, including diet, age, disease, and lifestyle. Such changes, called dysbiosis, may be involved in the development of various conditions, such as metabolic diseases, including metabolic syndrome, type 2 diabetes mellitus, Hashimoto's thyroidis and Graves' disease; they can also play a role in nervous system disturbances, such as multiple sclerosis, Alzheimer's disease, Parkinson's disease, and depression. An association has also been found between gut microbiota dysbiosis and cancer. Our health is closely associated with the state of our microbiota, and their homeostasis. The aim of this review is to describe the associations between human gut microbiota and cancer, and examine the potential role of gut microbiota in anticancer therapy.
Collapse
Affiliation(s)
| | - Leszek Szablewski
- Chair and Department of General Biology and Parasitology, Medical University of Warsaw, ul. Chalubinskiego 5, 02-004 Warsaw, Poland;
| |
Collapse
|
70
|
Mohammadi M, Mirzaei H, Motallebi M. The role of anaerobic bacteria in the development and prevention of colorectal cancer: A review study. Anaerobe 2021; 73:102501. [PMID: 34906686 DOI: 10.1016/j.anaerobe.2021.102501] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/15/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is the third most frequently diagnosed cancer in both males and females in the Unites States. Colonoscopy is considered a safe method for screening this disorder; however, it can be challenging for patients. As research on microbiota, especially anaerobic microbiota, has expanded substantially, new links have been determined between anaerobic bacteria and CRC progression. These associations can be useful in screening CRC in the near future. This review discusses current research investigating the presence of anaerobic bacteria, including Bacteroides fragilis, Peptostreptococcus anaerobius, Clostridium septicum, Porphyromonas gingivalis, Fusobacterium nucleatum, and Parvimonas micra in CRC and presents an overview about their mechanisms of action. We also discuss the current anaerobic probiotics used for the treatment and prevention of CRC.
Collapse
Affiliation(s)
- Mehrdad Mohammadi
- Department of Immunology and Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mitra Motallebi
- Department of Immunology and Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
71
|
Duijster JW, Franz E, Neefjes J, Mughini-Gras L. Bacterial and Parasitic Pathogens as Risk Factors for Cancers in the Gastrointestinal Tract: A Review of Current Epidemiological Knowledge. Front Microbiol 2021; 12:790256. [PMID: 34956157 PMCID: PMC8692736 DOI: 10.3389/fmicb.2021.790256] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
The oncogenic potential of viral infections is well established and documented for many years already. However, the contribution of (commensal) bacteria and parasites to the development and progression of cancers has only recently gained momentum, resulting in a rapid growth of publications on the topic. Indeed, various bacteria and parasites have been suggested to play a role in the development of gastrointestinal cancer in particular. Therefore, an overview of the current epidemiological knowledge on the association between infections with bacteria and parasites and cancers of the gastrointestinal tract is needed. In this review, we summarized the methodological characteristics and main results of epidemiological studies investigating the association of 10 different bacteria (Bacteroides fragilis, Campylobacter spp., Clostridium spp., Enterococcus faecalis, Escherichia coli, Fusobacterium nucleatum, Porphyromonas gingivalis, non-typhoidal Salmonella, Salmonella Typhi, and Streptococcus spp.) and three parasites (Cryptosporidium spp., Schistosoma spp., and Strongyloides stercoralis) with gastrointestinal cancer. While the large body of studies based on microbiome sequencing provides valuable insights into the relative abundance of different bacterial taxa in cancer patients as compared to individuals with pre-malignant conditions or healthy controls, more research is needed to fulfill Koch's postulates, possibly making use of follow-up data, to assess the complex role of bacterial and parasitic infections in cancer epidemiology. Studies incorporating follow-up time between detection of the bacterium or parasite and cancer diagnosis remain valuable as these allow for estimation of cause-effect relationships.
Collapse
Affiliation(s)
- Janneke W. Duijster
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Eelco Franz
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Lapo Mughini-Gras
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
72
|
de Souza JB, Brelaz-de-Castro MCA, Cavalcanti IMF. Strategies for the treatment of colorectal cancer caused by gut microbiota. Life Sci 2021; 290:120202. [PMID: 34896161 DOI: 10.1016/j.lfs.2021.120202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/19/2021] [Accepted: 11/29/2021] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC), also named as colon and rectal or bowel cancer, is one of the leading neoplasia diagnosed in the world. Genetic sequencing studies of microorganisms from the intestinal microbiota of patients with CRC revealed that changes in its composition occur with the development of the disease, which can play a fundamental role in its development, being mediated by the production of metabolites and toxins that damage enterocytes. Some microorganisms are frequently reported in the literature as the main agents of this process, such as the bacteria Fusobacterium nucleatum, Escherichia coli and Bacteroides fragilis. Thus, understanding the mechanisms and function of each microorganism in CRC is essential for the development of treatment tools that focus on the gut microbiota. This review verifies current research aimed at evaluating the microorganisms present in the microbiota that can influence the development of CRC, as well as possible forms of treatment that can prevent the initiation and/or spread of this disease. Due to the incidence of CRC, alternatives have been launched considering factors beyond those already known in the disease development, such as diet, fecal microbiota transplantation, use of probiotics and antibiotics, which have been widely studied for this purpose. However, despite being promising, the studies that focus on the development of new therapeutic approaches targeting the microorganisms that cause CRC still need to be improved and better developed, involving new techniques to elucidate the effectiveness and safety of these new methods.
Collapse
Affiliation(s)
- Jaqueline Barbosa de Souza
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | | | - Isabella Macário Ferro Cavalcanti
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Recife, PE, Brazil; Laboratory of Microbiology and Immunology, Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão, PE, Brazil.
| |
Collapse
|
73
|
Lee Y, Kamada N, Moon JJ. Oral nanomedicine for modulating immunity, intestinal barrier functions, and gut microbiome. Adv Drug Deliv Rev 2021; 179:114021. [PMID: 34710529 PMCID: PMC8665886 DOI: 10.1016/j.addr.2021.114021] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022]
Abstract
The gastrointestinal tract (GIT) affects not only local diseases in the GIT but also various systemic diseases. Factors that can affect the health and disease of both GIT and the human body include 1) the mucosal immune system composed of the gut-associated lymphoid tissues and the lamina propria, 2) the intestinal barrier composed of mucus and intestinal epithelium, and 3) the gut microbiota. Selective delivery of drugs, including antigens, immune-modulators, intestinal barrier enhancers, and gut-microbiome manipulators, has shown promising results for oral vaccines, immune tolerance, treatment of inflammatory bowel diseases, and other systemic diseases, including cancer. However, physicochemical and biological barriers of the GIT present significant challenges for successful translation. With the advances of novel nanomaterials, oral nanomedicine has emerged as an attractive option to not only overcome these barriers but also to selectively deliver drugs to the target sites in GIT. In this review, we discuss the GIT factors and physicochemical and biological barriers in the GIT. Furthermore, we present the recent progress of oral nanomedicine for oral vaccines, immune tolerance, and anti-inflammation therapies. We also discuss recent advances in oral nanomedicine designed to fortify the intestinal barrier functions and modulate the gut microbiota and microbial metabolites. Finally, we opine about the future directions of oral nano-immunotherapy.
Collapse
Affiliation(s)
- Yonghyun Lee
- Department of Pharmacy, College of Pharmacy, Ewha Womans University, Seoul 03760, South Korea; Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea.
| | - Nobuhiko Kamada
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109 USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109 USA.
| |
Collapse
|
74
|
Current status of intratumour microbiome in cancer and engineered exogenous microbiota as a promising therapeutic strategy. Biomed Pharmacother 2021; 145:112443. [PMID: 34847476 DOI: 10.1016/j.biopha.2021.112443] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023] Open
Abstract
Research on the relationship between microbiome and cancer has made significant progress in the past few decades. It is now known that the gut microbiome has multiple effects on tumour biology. However, the relationship between intratumoral bacteria and cancers remains unclear. Growing evidence suggests that intratumoral bacteria are important components of the microenvironment in several types of cancers. Furthermore, several studies have demonstrated that intratumoral bacteria may directly influence tumorigenesis, progression and responses to treatment. Limited studies have been conducted on intratumoral bacteria, and using intratumoral bacteria to treat tumours remains a challenge. Bacteria have been studied as anticancer therapeutics since the 19th century when William B. Coley successfully treated patients with inoperable sarcomas using Streptococcus pyogenes. With the development of synthetic biological approaches, several bacterial species have been genetically engineered to increase their applicability for cancer treatment. Genetically engineered bacteria for cancer therapy have unique properties compared to other treatment methods. They can specifically accumulate within tumours and inhibit cancer growth. In addition, genetically engineered bacteria may be used as a vector to deliver antitumour agents or combined with radiation and chemotherapy to synergise the effectiveness of cancer treatment. However, various problems in treating tumours with genetically engineered bacteria need to be addressed. In this review, we focus on the role of intratumoral bacteria on tumour initiation, progression and responses to chemotherapy or immunotherapy. Moreover, we summarised the recent progress in the treatment of tumours with genetically engineered bacteria.
Collapse
|
75
|
Abstract
Metagenomic analyses have revealed microbial dysbiosis in the gut of patients with colorectal cancer (CRC). The gut microbiota influences CRC via a variety of mechanisms, including microbial-derived factors such as metabolites or genotoxins. Pathogenic drivers and opportunistic passenger bacteria may underlie direct effect of the gut microbiota on carcinogenesis. We posit that metabolites generated by gut microbiota can influence CRC through a multitude of epigenetic or genetic effects on malignant transformation. A closer look at the cross talks between the commensals, epithelial cells, immune regulators etc., needs to be established with more substantiated studies. The recurrence of chemoresistant disease following therapy undoubtedly provides the impetus for morbidity and mortality; yet, the role of gut microbiome in drug resistance remains to be fully investigated. We review the current literature on microbial dysbiosis during CRC and discuss the mechanistic basis of CRC-associated bacteria in tumor initiation, progression and drug resistance.
Collapse
|
76
|
Smet A, Kupcinskas J, Link A, Hold GL, Bornschein J. The Role of Microbiota in Gastrointestinal Cancer and Cancer Treatment: Chance or Curse? Cell Mol Gastroenterol Hepatol 2021; 13:857-874. [PMID: 34506954 PMCID: PMC8803618 DOI: 10.1016/j.jcmgh.2021.08.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 02/08/2023]
Abstract
The gastrointestinal (GI) tract is home to a complex and dynamic community of microorganisms, comprising bacteria, archaea, viruses, yeast, and fungi. It is widely accepted that human health is shaped by these microbes and their collective microbial genome. This so-called second genome plays an important role in normal functioning of the host, contributing to processes involved in metabolism and immune modulation. Furthermore, the gut microbiota also is capable of generating energy and nutrients (eg, short-chain fatty acids and vitamins) that are otherwise inaccessible to the host and are essential for mucosal barrier homeostasis. In recent years, numerous studies have pointed toward microbial dysbiosis as a key driver in many GI conditions, including cancers. However, comprehensive mechanistic insights on how collectively gut microbes influence carcinogenesis remain limited. In addition to their role in carcinogenesis, the gut microbiota now has been shown to play a key role in influencing clinical outcomes to cancer immunotherapy, making them valuable targets in the treatment of cancer. It also is becoming apparent that, besides the gut microbiota's impact on therapeutic outcomes, cancer treatment may in turn influence GI microbiota composition. This review provides a comprehensive overview of microbial dysbiosis in GI cancers, specifically esophageal, gastric, and colorectal cancers, potential mechanisms of microbiota in carcinogenesis, and their implications in diagnostics and cancer treatment.
Collapse
Affiliation(s)
- Annemieke Smet
- Laboratory of Experimental Medicine and Paediatrics, Faculty of Medicine and Health Sciences; Infla-Med Research Consortium of Excellence, University of Antwerp, Antwerp, Belgium
| | - Juozas Kupcinskas
- Institute for Digestive Research, Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
| | - Georgina L Hold
- Microbiome Research Centre, St George and Sutherland Clinical School, University of New South Wales, Sydney, Australia
| | - Jan Bornschein
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
| |
Collapse
|
77
|
Association of Polygenic Risk Score and Bacterial Toxins at Screening Colonoscopy with Colorectal Cancer Progression: A Multicenter Case-Control Study. Toxins (Basel) 2021; 13:toxins13080569. [PMID: 34437440 PMCID: PMC8402601 DOI: 10.3390/toxins13080569] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer death worldwide, and its incidence is correlated with infections, chronic inflammation, diet, and genetic factors. An emerging aspect is that microbial dysbiosis and chronic infections triggered by certain bacteria can be risk factors for tumor progression. Recent data suggest that certain bacterial toxins implicated in DNA attack or in proliferation, replication, and death can be risk factors for insurgence and progression of CRC. In this study, we recruited more than 300 biopsy specimens from people undergoing colonoscopy, and we analyzed to determine whether a correlation exists between the presence of bacterial genes coding for toxins possibly involved in CRC onset and progression and the different stages of CRC. We also analyzed to determine whether CRC-predisposing genetic factors could contribute to bacterial toxins response. Our results showed that CIF toxin is associated with polyps or adenomas, whereas pks+ seems to be a predisposing factor for CRC. Toxins from Escherichia coli as a whole have a higher incidence rate in adenocarcinoma patients compared to controls, whereas Bacteroides fragilis toxin does not seem to be associated with pre-cancerous nor with cancerous lesions. These results have been obtained irrespectively of the presence of CRC-risk loci.
Collapse
|
78
|
Sayed IM, Ramadan HKA, El-Mokhtar MA, Abdel-Wahid L. Microbiome and gastrointestinal malignancies. CURRENT OPINION IN PHYSIOLOGY 2021. [DOI: 10.1016/j.cophys.2021.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
79
|
Perumal K, Ahmad S, Mohd-Zahid MH, Wan Hanaffi WN, Z.A. I, Six JL, Ferji K, Jaafar J, Boer JC, Plebanski M, Uskoković V, Mohamud R. Nanoparticles and Gut Microbiota in Colorectal Cancer. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.681760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent years have witnessed an unprecedented growth in the research area of nanomedicine. There is an increasing optimism that nanotechnology applied to medicine will bring significant advances in the diagnosis and treatment of various diseases, including colorectal cancer (CRC), a type of neoplasm affecting cells in the colon or the rectum. Recent findings suggest that the role of microbiota is crucial in the development of CRC and its progression. Dysbiosis is a condition that disturbs the normal microbial environment in the gut and is often observed in CRC patients. In order to detect and treat precancerous lesions, new tools such as nanotechnology-based theranostics, provide a promising option for targeted marker detection or therapy for CRC. Because the presence of gut microbiota influences the route of biomarker detection and the route of the interaction of nanoparticle/drug complexes with target cells, the development of nanoparticles with appropriate sizes, morphologies, chemical compositions and concentrations might overcome this fundamental barrier. Metallic particles are good candidates for nanoparticle-induced intestinal dysbiosis, but this aspect has been poorly explored to date. Herein, we focus on reviewing and discussing nanotechnologies with potential applications in CRC through the involvement of gut microbiota and highlight the clinical areas that would benefit from these new medical technologies.
Collapse
|
80
|
Nutritional Interventions Targeting Gut Microbiota during Cancer Therapies. Microorganisms 2021; 9:microorganisms9071469. [PMID: 34361904 PMCID: PMC8303428 DOI: 10.3390/microorganisms9071469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome is increasingly being recognized for its influence on intestinal and extra-intestinal disorders such as cancer. Today, diet is the most studied environmental modulator of gut microbiota, capable of altering or improving it in terms of richness and diversity. Recent evidence from several preclinical and clinical trials suggested that gut microbiota composition could modulate cancer therapies (toxicities, treatment responses) and vice versa. This review highlights the latest research on the bidirectional associations between gut microbiota and cancer. We also dissect the role of gut microbiota during cancer therapies in terms of toxicity and treatment response and, in turn, how cancer therapies could impact gut microbiota composition and functions. In this context, we summarize the state-of-the-art research regarding the role of various nutritional interventions-prebiotics, dietary strategies, and dietary restrictions-as cutting-edge possibilities to modulate gut microbiota during cancer therapies.
Collapse
|
81
|
DeStefano Shields CE, White JR, Chung L, Wenzel A, Hicks JL, Tam AJ, Chan JL, Dejea CM, Fan H, Michel J, Maiuri AR, Sriramkumar S, Podicheti R, Rusch DB, Wang H, De Marzo AM, Besharati S, Anders RA, Baylin SB, O'Hagan HM, Housseau F, Sears CL. Bacterial-Driven Inflammation and Mutant BRAF Expression Combine to Promote Murine Colon Tumorigenesis That Is Sensitive to Immune Checkpoint Therapy. Cancer Discov 2021; 11:1792-1807. [PMID: 33632774 PMCID: PMC8295175 DOI: 10.1158/2159-8290.cd-20-0770] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 12/29/2020] [Accepted: 02/22/2021] [Indexed: 12/22/2022]
Abstract
Colorectal cancer is multifaceted, with subtypes defined by genetic, histologic, and immunologic features that are potentially influenced by inflammation, mutagens, and/or microbiota. Colorectal cancers with activating mutations in BRAF are associated with distinct clinical characteristics, although the pathogenesis is not well understood. The Wnt-driven multiple intestinal neoplasia (MinApcΔ716/+) enterotoxigenic Bacteroides fragilis (ETBF) murine model is characterized by IL17-dependent, distal colon adenomas. Herein, we report that the addition of the BRAF V600E mutation to this model results in the emergence of a distinct locus of midcolon tumors. In ETBF-colonized BRAF V600E Lgr5 CreMin (BLM) mice, tumors have similarities to human BRAF V600E tumors, including histology, CpG island DNA hypermethylation, and immune signatures. In comparison to Min ETBF tumors, BLM ETBF tumors are infiltrated by CD8+ T cells, express IFNγ signatures, and are sensitive to anti-PD-L1 treatment. These results provide direct evidence for critical roles of host genetic and microbiota interactions in colorectal cancer pathogenesis and sensitivity to immunotherapy. SIGNIFICANCE: Colorectal cancers with BRAF mutations have distinct characteristics. We present evidence of specific colorectal cancer gene-microbial interactions in which colonization with toxigenic bacteria drives tumorigenesis in BRAF V600E Lgr5 CreMin mice, wherein tumors phenocopy aspects of human BRAF-mutated tumors and have a distinct IFNγ-dominant immune microenvironment uniquely responsive to immune checkpoint blockade.This article is highlighted in the In This Issue feature, p. 1601.
Collapse
Affiliation(s)
| | | | - Liam Chung
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alyssa Wenzel
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jessica L Hicks
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ada J Tam
- Bloomberg-Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Flow Cytometry Technology Development Center, Bloomberg-Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - June L Chan
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christine M Dejea
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hongni Fan
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John Michel
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ashley R Maiuri
- Medical Sciences, Cell, Molecular and Cancer Biology Program, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Bloomington, Indiana
| | - Shruthi Sriramkumar
- Medical Sciences, Cell, Molecular and Cancer Biology Program, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Bloomington, Indiana
| | - Ram Podicheti
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, Indiana
| | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, Indiana
| | - Hao Wang
- Division of Biostatistics and Bioinformatics, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Angelo M De Marzo
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sepideh Besharati
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robert A Anders
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Stephen B Baylin
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Heather M O'Hagan
- Medical Sciences, Cell, Molecular and Cancer Biology Program, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Bloomington, Indiana.
| | - Franck Housseau
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Bloomberg-Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Flow Cytometry Technology Development Center, Bloomberg-Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Cynthia L Sears
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Bloomberg-Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
82
|
Mughal MJ, Kwok HF. Multidimensional role of bacteria in cancer: Mechanisms insight, diagnostic, preventive and therapeutic potential. Semin Cancer Biol 2021; 86:1026-1044. [PMID: 34119644 DOI: 10.1016/j.semcancer.2021.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/28/2021] [Accepted: 06/08/2021] [Indexed: 02/08/2023]
Abstract
The active role of bacteria in oncogenesis has long been a topic of debate. Although, it was speculated to be a transmissible cause of cancer as early as the 16th-century, yet the idea about the direct involvement of bacteria in cancer development has only been explored in recent decades. More recently, several studies have uncovered the mechanisms behind the carcinogenic potential of bacteria which are inflammation, immune evasion, pro-carcinogenic metabolite production, DNA damage and genomic instability. On the other side, the recent development on the understanding of tumor microenvironment and technological advancements has turned this enemy into an ally. Studies using bacteria for cancer treatment and detection have shown noticeable effects. Therapeutic abilities of bioengineered live bacteria such as high specificity, selective cytotoxicity to cancer cells, responsiveness to external signals and control after ingestion have helped to overcome the challenges faced by conventional cancer therapies and highlighted the bacterial based therapy as an ideal approach for cancer treatment. In this review, we have made an effort to compile substantial evidence to support the multidimensional role of bacteria in cancer. We have discussed the multifaceted role of bacteria in cancer by highlighting the wide impact of bacteria on different cancer types, their mechanisms of actions in inducing carcinogenicity, followed by the diagnostic and therapeutic potential of bacteria in cancers. Moreover, we have also highlighted the existing gaps in the knowledge of the association between bacteria and cancer as well as the limitation and advantage of bacteria-based therapies in cancer. A better understanding of these multidimensional roles of bacteria in cancer can open up the new doorways to develop early detection strategies, prevent cancer, and develop therapeutic tactics to cure this devastating disease.
Collapse
Affiliation(s)
- Muhammad Jameel Mughal
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau; MOE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macau.
| |
Collapse
|
83
|
Aneke-Nash C, Yoon G, Du M, Liang P. Antibiotic use and colorectal neoplasia: a systematic review and meta-analysis. BMJ Open Gastroenterol 2021; 8:bmjgast-2021-000601. [PMID: 34083227 PMCID: PMC8174505 DOI: 10.1136/bmjgast-2021-000601] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/14/2021] [Accepted: 04/25/2021] [Indexed: 02/06/2023] Open
Abstract
Background and aims Colorectal cancer (CRC) is the third most common cancer for women and men and the second leading cause of cancer death in the USA. There is emerging evidence that the gut microbiome plays a role in CRC development, and antibiotics are one of the most common exposures that can alter the gut microbiome. We performed a systematic review and meta-analysis to characterise the association between antibiotic use and colorectal neoplasia. Methods We searched PubMed, EMBASE, and Web of Science for articles that examined the association between antibiotic exposure and colorectal neoplasia (cancer or adenoma) through 15 December 2019. A total of 6031 citations were identified and 6 papers were included in the final analysis. We assessed the association between the level of antibiotic use (defined as number of courses or duration of therapy) and colorectal neoplasia using a random effects model. Results Six studies provided 16 estimates of the association between level of antibiotic use and colorectal neoplasia. Individuals with the highest levels of antibiotic exposure had a 10% higher risk of colorectal neoplasia than those with the lowest exposure (effect size: 1.10, 95% CI 1.01 to 1.18). We found evidence of high heterogeneity (I2=79%, p=0.0001) but not of publication bias. Conclusions Higher levels of antibiotic exposure is associated with an increased risk of colorectal neoplasia. Given the widespread use of antibiotics in childhood and early adulthood, additional research to further characterise this relationship is needed.
Collapse
Affiliation(s)
- Chino Aneke-Nash
- Department of Medicine, NYU Langone Medical Center, New York, New York, USA
| | - Garrett Yoon
- Department of Medicine, NYU Langone Medical Center, New York, New York, USA
| | - Mengmeng Du
- Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Peter Liang
- Department of Medicine, NYU Langone Medical Center, New York, New York, USA.,Division of Gastroenterology, VA NY Harbor Healthcare System Manhattan Campus Veterans Learning Resources Center, New York, New York, USA
| |
Collapse
|
84
|
Kim SH, Lim YJ. The role of microbiome in colorectal carcinogenesis and its clinical potential as a target for cancer treatment. Intest Res 2021; 20:31-42. [PMID: 34015206 PMCID: PMC8831768 DOI: 10.5217/ir.2021.00034] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/23/2021] [Indexed: 12/02/2022] Open
Abstract
The role of gut microbiome-intestinal immune complex in the development of colorectal cancer and its progression is well recognized. Accordingly, certain microbial strains tend to colonize or vanish in patients with colorectal cancer. Probiotics, prebiotics, and synbiotics are expected to exhibit both anti-tumor effects and chemopreventive effects during cancer treatment through mechanisms such as xenometabolism, immune interactions, and altered eco-community. Microbial modulation can also be safely used to prevent complications during peri-operational periods of colorectal surgery. A deeper understanding of the role of intestinal microbiota as a target for colorectal cancer treatment will lead the way to a better prognosis for colorectal cancer patients.
Collapse
Affiliation(s)
- Sang Hoon Kim
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, Korea
| | - Yun Jeong Lim
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, Korea
| |
Collapse
|
85
|
Boleij A, Fathi P, Dalton W, Park B, Wu X, Huso D, Allen J, Besharati S, Anders RA, Housseau F, Mackenzie AE, Jenkins L, Milligan G, Wu S, Sears CL. G-protein coupled receptor 35 (GPR35) regulates the colonic epithelial cell response to enterotoxigenic Bacteroides fragilis. Commun Biol 2021; 4:585. [PMID: 33990686 PMCID: PMC8121840 DOI: 10.1038/s42003-021-02014-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/18/2021] [Indexed: 02/03/2023] Open
Abstract
G protein-coupled receptor (GPR)35 is highly expressed in the gastro-intestinal tract, predominantly in colon epithelial cells (CEC), and has been associated with inflammatory bowel diseases (IBD), suggesting a role in gastrointestinal inflammation. The enterotoxigenic Bacteroides fragilis (ETBF) toxin (BFT) is an important virulence factor causing gut inflammation in humans and animal models. We identified that BFT signals through GPR35. Blocking GPR35 function in CECs using the GPR35 antagonist ML145, in conjunction with shRNA knock-down and CRISPRcas-mediated knock-out, resulted in reduced CEC-response to BFT as measured by E-cadherin cleavage, beta-arrestin recruitment and IL-8 secretion. Importantly, GPR35 is required for the rapid onset of ETBF-induced colitis in mouse models. GPR35-deficient mice showed reduced death and disease severity compared to wild-type C57Bl6 mice. Our data support a role for GPR35 in the CEC and mucosal response to BFT and underscore the importance of this molecule for sensing ETBF in the colon.
Collapse
Affiliation(s)
- Annemarie Boleij
- Johns Hopkins University, Department of Medicine, Division of Infectious Diseases, Baltimore, MD, USA.
- Radboud University Medical Center (Radboudumc), Department of Pathology, Radboud Institute for Molecular Life sciences (RIMLS), Nijmegen, The Netherlands.
| | - Payam Fathi
- Johns Hopkins University, Department of Medicine, Division of Infectious Diseases, Baltimore, MD, USA
| | - William Dalton
- Johns Hopkins University, Department of Oncology Center-Hematologic Malignancies, Baltimore, MD, USA
| | - Ben Park
- Johns Hopkins University, Department of Oncology Center-Hematologic Malignancies, Baltimore, MD, USA
- Vanderbilt University Medical Center, Department of Medicine, Division of Hematology and Oncology, Nashville, Tenessee, USA
| | - Xinqun Wu
- Johns Hopkins University, Department of Medicine, Division of Infectious Diseases, Baltimore, MD, USA
| | - David Huso
- Johns Hopkins University, Department of Molecular and Comparative Pathobiology, Baltimore, MD, USA
| | - Jawara Allen
- Johns Hopkins University, Department of Medicine, Division of Infectious Diseases, Baltimore, MD, USA
| | - Sepideh Besharati
- Johns Hopkins University, Department of Pathobiology, Baltimore, MD, USA
| | - Robert A Anders
- Johns Hopkins University, Department of Pathobiology, Baltimore, MD, USA
| | - Franck Housseau
- Johns Hopkins University, Department of Oncology Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Amanda E Mackenzie
- Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Laura Jenkins
- Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Graeme Milligan
- Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Shaoguang Wu
- Johns Hopkins University, Department of Medicine, Division of Infectious Diseases, Baltimore, MD, USA
| | - Cynthia L Sears
- Johns Hopkins University, Department of Medicine, Division of Infectious Diseases, Baltimore, MD, USA
| |
Collapse
|
86
|
Dumont-Leblond N, Veillette M, Racine C, Joubert P, Duchaine C. Non-small cell lung cancer microbiota characterization: Prevalence of enteric and potentially pathogenic bacteria in cancer tissues. PLoS One 2021; 16:e0249832. [PMID: 33891617 PMCID: PMC8064568 DOI: 10.1371/journal.pone.0249832] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/25/2021] [Indexed: 01/08/2023] Open
Abstract
Following recent findings linking the human gut microbiota to gastrointestinal cancer and its treatment, the plausible relationship between lung microbiota and pulmonary cancer is explored. This study aims at characterizing the intratumoral and adjacent healthy tissue microbiota by applying a 16S rRNA gene amplicon sequencing protocol to tissue samples of 29 non-small cancer patients. Emphasis was put on contaminant management and a comprehensive comparison of bacterial composition between cancerous and healthy adjacent tissues of lung adenocarcinoma and squamous cell carcinoma is provided. A variable degree of similarity between the two tissues of a same patient was observed. Each patient seems to possess its own bacterial signature. The two types of cancer tissue do not have a distinct bacterial profile that is shared by every patient. In addition, enteric, potentially pathogenic and pro-inflammatory bacteria were more frequently found in cancer than healthy tissue. This work brings insights into the dynamic of bacterial communities in lung cancer and provides prospective data for more targeted studies.
Collapse
Affiliation(s)
- Nathan Dumont-Leblond
- Centre de Recherche de l’institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City (QC), Canada
| | - Marc Veillette
- Centre de Recherche de l’institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City (QC), Canada
| | - Christine Racine
- Centre de Recherche de l’institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City (QC), Canada
| | - Philippe Joubert
- Centre de Recherche de l’institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City (QC), Canada
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval, Quebec City (QC), Canada
| | - Caroline Duchaine
- Centre de Recherche de l’institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City (QC), Canada
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City (QC), Canada
- Canada Research Chair on Bioaerosols, Quebec City (QC), Canada
- * E-mail:
| |
Collapse
|
87
|
Johns MS, Petrelli NJ. Microbiome and colorectal cancer: A review of the past, present, and future. Surg Oncol 2021; 37:101560. [PMID: 33848761 DOI: 10.1016/j.suronc.2021.101560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/22/2020] [Accepted: 03/28/2021] [Indexed: 12/27/2022]
Abstract
The gastrointestinal tract is home to diverse and abundant microorganisms, collectively referred to as the microbiome. This ecosystem typically contains trillions of microbial cells that play an important role in regulation of human health. The microbiome has been implicated in host immunity, nutrient absorption, digestion, and metabolism. In recent years, researchers have shown that alteration of the microbiome is associated with disease development, such as obesity, inflammatory bowel disease, and cancer. This review discusses the five decades of research into the human microbiome and the development of colorectal cancer - the historical context including experiments that sparked interest, the explosion of research that has occurred in the last decade, and finally the future of testing and treatment.
Collapse
Affiliation(s)
- Michael S Johns
- Department of Surgical Oncology, Helen F. Graham Cancer Center, ChristianaCare, Newark, DE, USA.
| | - Nicholas J Petrelli
- Department of Surgical Oncology, Helen F. Graham Cancer Center, ChristianaCare, Newark, DE, USA
| |
Collapse
|
88
|
Barbosa AM, Gomes-Gonçalves A, Castro AG, Torrado E. Immune System Efficiency in Cancer and the Microbiota Influence. Pathobiology 2021; 88:170-186. [PMID: 33588418 DOI: 10.1159/000512326] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/06/2020] [Indexed: 11/19/2022] Open
Abstract
The immune system plays a critical role in preventing cancer development and progression. However, the complex network of cells and soluble factor that form the tumor microenvironment (TME) can dictate the differentiation of tumor-infiltrating leukocytes and shift the antitumor immune response into promoting tumor growth. With the advent of cancer immunotherapy, there has been a reinvigorated interest in defining how the TME shapes the antitumor immune response. This interest brought to light the microbiome as a novel player in shaping cancer immunosurveillance. Indeed, accumulating evidence now suggests that the microbiome may confer susceptibility or resistance to certain cancers and may influence response to therapeutics, particularly immune checkpoint inhibitors. As we move forward into the age of precision medicine, it is vital that we define the factors that influence the interplay between the triad immune system-microbiota-cancer. This knowledge will contribute to improve the therapeutic response to current approaches and will unravel novel targets for immunotherapy.
Collapse
Affiliation(s)
- Ana Margarida Barbosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alexandra Gomes-Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António G Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Egídio Torrado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal, .,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal,
| |
Collapse
|
89
|
Samanta S. Potential Impacts of Prebiotics and Probiotics in Cancer Prevention. Anticancer Agents Med Chem 2020; 22:605-628. [PMID: 33305713 DOI: 10.2174/1871520621999201210220442] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/15/2020] [Accepted: 10/26/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer is a serious problem throughout the world. The pathophysiology of cancer is multifactorial and is also related to gut microbiota. Intestinal microbes are the useful resident of the healthy human. They play various aspects of human health including nutritional biotransformation, flushing of the pathogens, toxin neutralization, immune response, and onco-suppression. Disruption in the interactions among the gut microbiota, intestinal epithelium, and the host immune system are associated with gastrointestinal disorders, neurodegenerative diseases, metabolic syndrome, and cancer. Probiotic bacteria (Lactobacillus spp., Bifidobacterium spp.) have been regarded as beneficial to health and shown to play a significant role in immunomodulation and displayed preventive role against obesity, diabetes, liver disease, inflammatory bowel disease, tumor progression, and cancer. OBJECTIVE The involvement of gut microorganisms in cancer development and prevention has been recognized as a balancing factor. The events of dysbiosis emphasize metabolic disorder and carcinogenesis. The gut flora potentiates immunomodulation and minimizes the limitations of usual chemotherapy. The significant role of prebiotics and probiotics on the improvement of immunomodulation and antitumor properties has been considered. METHODS I had reviewed the literature on the multidimensional activities of prebiotics and probiotics from the NCBI website database PubMed, Springer Nature, Science Direct (Elsevier), Google Scholar database to search relevant articles. Specifically, I had focused on the role of prebiotics and probiotics in immunomodulation and cancer prevention. RESULTS Prebiotics are the nondigestible fermentable sugars that selectively influence the growth of probiotic organisms that exert immunomodulation over the cancerous growth. The oncostatic properties of bacteria are mediated through the recruitment of cytotoxic T cells, natural killer cells, and oxidative stress-induced apoptosis in the tumor microenvironment. Moreover, approaches have also been taken to use probiotics as an adjuvant in cancer therapy. CONCLUSION The present review has indicated that dysbiosis is the crucial factor in many pathological situations including cancer. Applications of prebiotics and probiotics exhibit the immune-surveillance as oncostatic effects. These events increase the possibilities of new therapeutic strategies for cancer prevention.
Collapse
Affiliation(s)
- Saptadip Samanta
- Department of Physiology, Midnapore College, Midnapore, Paschim Medinipur, 721101, West Bengal,. India
| |
Collapse
|
90
|
Loke YL, Chew MT, Ngeow YF, Lim WWD, Peh SC. Colon Carcinogenesis: The Interplay Between Diet and Gut Microbiota. Front Cell Infect Microbiol 2020; 10:603086. [PMID: 33364203 PMCID: PMC7753026 DOI: 10.3389/fcimb.2020.603086] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/28/2020] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) incidence increases yearly, and is three to four times higher in developed countries compared to developing countries. The well-known risk factors have been attributed to low physical activity, overweight, obesity, dietary consumption including excessive consumption of red processed meats, alcohol, and low dietary fiber content. There is growing evidence of the interplay between diet and gut microbiota in CRC carcinogenesis. Although there appears to be a direct causal role for gut microbes in the development of CRC in some animal models, the link between diet, gut microbes, and colonic carcinogenesis has been established largely as an association rather than as a cause-and-effect relationship. This is especially true for human studies. As essential dietary factors influence CRC risk, the role of proteins, carbohydrates, fat, and their end products are considered as part of the interplay between diet and gut microbiota. The underlying molecular mechanisms of colon carcinogenesis mediated by gut microbiota are also discussed. Human biological responses such as inflammation, oxidative stress, deoxyribonucleic acid (DNA) damage can all influence dysbiosis and consequently CRC carcinogenesis. Dysbiosis could add to CRC risk by shifting the effect of dietary components toward promoting a colonic neoplasm together with interacting with gut microbiota. It follows that dietary intervention and gut microbiota modulation may play a vital role in reducing CRC risk.
Collapse
Affiliation(s)
- Yean Leng Loke
- Centre for Biomedical Physics, School of Healthcare and Medical Sciences, Sunway University, Petaling Jaya, Malaysia
| | - Ming Tsuey Chew
- Centre for Biomedical Physics, School of Healthcare and Medical Sciences, Sunway University, Petaling Jaya, Malaysia
| | - Yun Fong Ngeow
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang, Malaysia.,Centre for Research on Communicable Diseases, Universiti Tunku Abdul Rahman, Kajang, Malaysia
| | - Wendy Wan Dee Lim
- Department of Gastroenterology, Sunway Medical Centre, Petaling Jaya, Malaysia
| | - Suat Cheng Peh
- Ageing Health and Well-Being Research Centre, Sunway University, Petaling Jaya, Malaysia.,Department of Medical Sciences, School of Healthcare and Medical Sciences, Sunway University, Petaling Jaya, Malaysia
| |
Collapse
|
91
|
Malagón M, Ramió-Pujol S, Serrano M, Amoedo J, Oliver L, Bahí A, Miquel-Cusachs JO, Ramirez M, Queralt-Moles X, Gilabert P, Saló J, Guardiola J, Piñol V, Serra-Pagès M, Castells A, Aldeguer X, Garcia-Gil LJ. New fecal bacterial signature for colorectal cancer screening reduces the fecal immunochemical test false-positive rate in a screening population. PLoS One 2020; 15:e0243158. [PMID: 33259546 PMCID: PMC7707514 DOI: 10.1371/journal.pone.0243158] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022] Open
Abstract
Guidelines recommend routine screening for colorectal cancer (CRC) in asymptomatic adults starting at age 50. The most extensively used noninvasive test for CRC screening is the fecal immunochemical test (FIT), which has an overall sensitivity for CRC of approximately 61.0%-91.0%, which drops to 27.0%-67.0% for advanced adenomas. These figures contain a high false-positive rate and a low positive predictive value. This work aimed to develop a new, noninvasive CRC screening tool based on fecal bacterial markers capable of decreasing FIT false-positive rates in a FIT-positive population. We defined a fecal bacterial signature (RAID-CRC Screen) in a proof-of-concept with 172 FIT-positive individuals and validated the obtained results on an external cohort of 327 FIT-positive subjects. All study participants had joined the national CRC screening program. In the clinical validation of RAID-CRC Screen, a sensitivity of 83.9% and a specificity of 16.3% were obtained for the detection of advanced neoplasm lesions (advanced adenomas and/or CRC). FIT 20 μg/g produced 184 false-positive results. Using RAID-CRC Screen, this value was reduced to 154, thus reducing the false-positive rate by 16.3%. The RAID-CRC Screen test could be implemented in CRC screening programs to allow a significant reduction in the number of colonoscopies performed unnecessarily for FIT-positive participants of CRC screening programs.
Collapse
Affiliation(s)
- Marta Malagón
- GoodGut SL, Girona, Spain.,Institut d'Investigació Biomèdica de Girona (IDIBGI), Salt, Spain.,Universitat de Girona, Girona, Spain
| | | | | | - Joan Amoedo
- GoodGut SL, Girona, Spain.,Universitat de Girona, Girona, Spain
| | | | - Anna Bahí
- Institut d'Investigació Biomèdica de Girona (IDIBGI), Salt, Spain
| | | | - Manel Ramirez
- Laboratori Clínic Territorial de Girona (LCTG), Salt, Spain
| | | | - Pau Gilabert
- Hospital Universitari de Bellvitge (IDIBELL), l'Hospitalet de Llobregat, Spain
| | - Joan Saló
- Consorci Hospitalari de Vic, Vic, Spain
| | - Jordi Guardiola
- Hospital Universitari de Bellvitge (IDIBELL), l'Hospitalet de Llobregat, Spain
| | - Virginia Piñol
- Universitat de Girona, Girona, Spain.,Hospital Universitari de Girona Dr. Josep Trueta, Girona, Spain
| | | | - Antoni Castells
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, CIBERehd, Barcelona, Spain
| | - Xavier Aldeguer
- GoodGut SL, Girona, Spain.,Institut d'Investigació Biomèdica de Girona (IDIBGI), Salt, Spain.,Hospital Universitari de Girona Dr. Josep Trueta, Girona, Spain
| | | |
Collapse
|
92
|
Bonnamy J. Holding Multiple Identities: a Personal Narrative of Young Onset Colorectal Cancer. JOURNAL OF CANCER EDUCATION : THE OFFICIAL JOURNAL OF THE AMERICAN ASSOCIATION FOR CANCER EDUCATION 2020; 35:1261-1266. [PMID: 32270373 DOI: 10.1007/s13187-020-01740-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This is a personal narrative of my experience as a young man diagnosed with colorectal cancer. It is an exploration of the tension between multiple identities, including a clinical nurse specialist, academic and oncology patient. Young patients with colorectal cancer face particular challenges. They are often diagnosed with more advanced and poorly differentiated cancers. Research around young onset colorectal cancer is controversial, with some studies suggesting poorer survival. Although there is research in this area, there are few qualitative accounts that describe raw, honest and diverse narratives of colorectal cancer experiences, especially in young people. Writing personal narratives is a powerful experience, it has allowed me to tell my story to the world and given me time to reflect and make sense of my new reality. Although this journey has forced me to let go of my old identity, and embrace a new and challenging existence, the truth is that being diagnosed with cancer stinks. Writing this narrative is an uncomfortable process, punctuated with truths that are difficult to speak. However, sharing my story has provided a platform for self-exploration, a safe space to narrate my experience with cancer in the hope that it helps other clinicians, researchers and patients.
Collapse
Affiliation(s)
- James Bonnamy
- School of Nursing and Midwifery, Monash University, 47-49 Moorooduc Highway, Frankston, Victoria, 3199, Australia.
| |
Collapse
|
93
|
|
94
|
Jones RM, Neish AS. Gut Microbiota in Intestinal and Liver Disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2020; 16:251-275. [PMID: 33234022 DOI: 10.1146/annurev-pathol-030320-095722] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It is known that the gut microbiota, the numerically vast and taxonomically diverse microbial communities that thrive in a symbiotic fashion within our alimentary tract, can affect the normal physiology of the gastrointestinal tract and liver. Further, disturbances of the microbiota community structure from both endogenous and exogenous influences as well as the failure of host responsive mechanisms have been implicated in a variety of disease processes. Mechanistically, alterations in intestinal permeability and dysbiosis of the microbiota can result in inflammation, immune activation, and exposure to xenobiotic influences. Additionally, the gut and liver are continually exposed to small molecule products of the microbiota with proinflammatory, gene regulatory, and oxidative properties. Long-term coevolution has led to tolerance and incorporation of these influences into normal physiology and homeostasis; conversely, changes in this equilibrium from either the host or the microbial side can result in a wide variety of immune, inflammatory, metabolic, and neoplastic intestinal and hepatic disorders.
Collapse
Affiliation(s)
- Rheinallt M Jones
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, USA;
| | - Andrew S Neish
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA;
| |
Collapse
|
95
|
Kim M, Lee ST, Choi S, Lee H, Kwon SS, Byun JH, Kim YA, Rhee KJ, Choi JR, Kim TI, Lee K. Fusobacterium nucleatum in biopsied tissues from colorectal cancer patients and alcohol consumption in Korea. Sci Rep 2020; 10:19915. [PMID: 33199749 PMCID: PMC7669878 DOI: 10.1038/s41598-020-76467-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/27/2020] [Indexed: 12/21/2022] Open
Abstract
The roles of individual bacteria and their relationship in the development of colorectal cancer (CRC) remain unclear. We aimed to determine the prevalence of CRC-associated bacteria using quantitative real-time PCR (qPCR) or 16S rRNA analysis and the statistical correlations of patient demographics and clinical characteristics comprising alcohol consumption with CRC-associated bacteria. We determined the prevalence of five CRC-associated bacterial species in 38 CRC patients (39 samples) and 21 normal individuals using qPCR, and the relative abundance of bacterial taxa in the gut microbiome was assessed using 16S rRNA analysis. Fusobacterium nucleatum was the only bacterium that was significantly (P < 0.0001) more prevalent in the cancer tissue (82.1%) than in the normal tissue (0%) by qPCR. 16S rRNA analysis showed a significant correlation between six operational taxonomic units (OTUs), namely, the genera Fusobacterium, Peptostreptococcus, Collinsella, Prevotella, Parvimonas, and Gemella, in patients with CRC. An integrated analysis using 16S rRNA data and epidemiological characteristics showed that alcohol consumption was significantly correlated with the abundance of Fusobacterium OTUs. The correlation of alcohol consumption with the abundance of Fusobacterium OTUs in cancer tissue discovered using 16S rRNA analysis suggests a possible link between alcohol metabolism and subsequent tumorigenesis caused by F. nucleatum.
Collapse
Affiliation(s)
- Myungsook Kim
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Seung-Tae Lee
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Songyi Choi
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Hyukmin Lee
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Sun Sung Kwon
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jung Hyun Byun
- Department of Laboratory Medicine, Gyeonsang National University Hospital, Gyeongsang National University College of Medicine, Jinju, South Korea
| | - Young Ah Kim
- Department of Laboratory Medicine, National Health Insurance Service Ilsan Hospital, Goyang, South Korea
| | - Ki-Jong Rhee
- Department of Biomedical Laboratory Science, Yonsei University College of Health Sciences, Wonju, South Korea
| | - Jong Rak Choi
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Tae Il Kim
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
| | - Kyungwon Lee
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
| |
Collapse
|
96
|
Vacante M, Ciuni R, Basile F, Biondi A. Gut Microbiota and Colorectal Cancer Development: A Closer Look to the Adenoma-Carcinoma Sequence. Biomedicines 2020; 8:E489. [PMID: 33182693 PMCID: PMC7697438 DOI: 10.3390/biomedicines8110489] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/13/2022] Open
Abstract
There is wide evidence that CRC could be prevented by regular physical activity, keeping a healthy body weight, and following a healthy and balanced diet. Many sporadic CRCs develop via the traditional adenoma-carcinoma pathway, starting as premalignant lesions represented by conventional, tubular or tubulovillous adenomas. The gut bacteria play a crucial role in regulating the host metabolism and also contribute to preserve intestinal barrier function and an effective immune response against pathogen colonization. The microbiota composition is different among people, and is conditioned by many environmental factors, such as diet, chemical exposure, and the use of antibiotic or other medication. The gut microbiota could be directly involved in the development of colorectal adenomas and the subsequent progression to CRC. Specific gut bacteria, such as Fusobacterium nucleatum, Escherichia coli, and enterotoxigenic Bacteroides fragilis, could be involved in colorectal carcinogenesis. Potential mechanisms of CRC progression may include DNA damage, promotion of chronic inflammation, and release of bioactive carcinogenic metabolites. The aim of this review was to summarize the current knowledge on the role of the gut microbiota in the development of CRC, and discuss major mechanisms of microbiota-related progression of the adenoma-carcinoma sequence.
Collapse
Affiliation(s)
- Marco Vacante
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Via S. Sofia 78, 95123 Catania, Italy; (R.C.); (F.B.); (A.B.)
| | | | | | | |
Collapse
|
97
|
González-Morelo KJ, Vega-Sagardía M, Garrido D. Molecular Insights Into O-Linked Glycan Utilization by Gut Microbes. Front Microbiol 2020; 11:591568. [PMID: 33224127 PMCID: PMC7674204 DOI: 10.3389/fmicb.2020.591568] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022] Open
Abstract
O-linked glycosylation is a post-translational modification found mainly in eukaryotic cells, which covalently attaches oligosaccharides to secreted proteins in certain threonine or serine residues. Most of O-glycans have N-acetylgalactosamine (GalNAc) as a common core. Several glycoproteins, such as mucins (MUCs), immunoglobulins, and caseins are examples of O-glycosylated structures. These glycans are further elongated with other monosaccharides and sulfate groups. Some of them could be found in dairy foods, while others are produced endogenously, in both cases interacting with the gut microbiota. Interestingly, certain gut microbes can access, release, and consume O-linked glycans as a carbon source. Among these, Akkermansia muciniphila, Bifidobacterium bifidum, and Bacteroides thetaiotaomicron are prominent O-linked glycan utilizers. Their consumption strategies include specialized α-fucosidases and α-sialidases, in addition to endo-α-N-acetylgalactosaminidases that release galacto-N-biose (GNB) from peptides backbones. O-linked glycan utilization by certain gut microbes represents an important niche that allows them to predominate and modulate host responses such as inflammation. Here, we focus on the distinct molecular mechanisms of consumption of O-linked GalNAc glycans by prominent gut microbes, especially from mucin and casein glycomacropeptide (GMP), highlighting the potential of these structures as emerging prebiotics.
Collapse
Affiliation(s)
| | | | - Daniel Garrido
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
98
|
Parida S, Sharma D. The Microbiome and Cancer: Creating Friendly Neighborhoods and Removing the Foes Within. Cancer Res 2020; 81:790-800. [PMID: 33148661 DOI: 10.1158/0008-5472.can-20-2629] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/01/2020] [Accepted: 10/28/2020] [Indexed: 11/16/2022]
Abstract
The human body is colonized by the microbial cells that are estimated to be as abundant as human cells, yet their genome is roughly 100 times the human genome, providing significantly more genetic diversity. The past decade has observed an explosion of interest in examining the existence of microbiota in the human body and understanding its role in various diseases including inflammatory bowel disease, neurologic diseases, cardiovascular disorders, and cancer. Many studies have demonstrated differential community composition between normal tissue and cancerous tissue, paving the way for investigations focused on deciphering the cause-and-effect relationships between specific microbes and initiation and progression of various cancers. Also, evolving are the strategies to alter tumor-associated dysbiosis and move it toward eubiosis with holistic approaches to change the entire neighborhood or to neutralize pathogenic strains. In this review, we discuss important pathogenic bacteria and the underlying mechanisms by which they affect cancer progression. We summarize key microbiota alterations observed in multiple tumor niches, their association with clinical stages, and their potential use in cancer diagnosis and management. Finally, we discuss microbiota-based therapeutic approaches.
Collapse
Affiliation(s)
- Sheetal Parida
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Dipali Sharma
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
99
|
Koliarakis I, Athanasakis E, Sgantzos M, Mariolis-Sapsakos T, Xynos E, Chrysos E, Souglakos J, Tsiaoussis J. Intestinal Microbiota in Colorectal Cancer Surgery. Cancers (Basel) 2020; 12:E3011. [PMID: 33081401 PMCID: PMC7602998 DOI: 10.3390/cancers12103011] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/04/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
The intestinal microbiota consists of numerous microbial species that collectively interact with the host, playing a crucial role in health and disease. Colorectal cancer is well-known to be related to dysbiotic alterations in intestinal microbiota. It is evident that the microbiota is significantly affected by colorectal surgery in combination with the various perioperative interventions, mainly mechanical bowel preparation and antibiotic prophylaxis. The altered postoperative composition of intestinal microbiota could lead to an enhanced virulence, proliferation of pathogens, and diminishment of beneficial microorganisms resulting in severe complications including anastomotic leakage and surgical site infections. Moreover, the intestinal microbiota could be utilized as a possible biomarker in predicting long-term outcomes after surgical CRC treatment. Understanding the underlying mechanisms of these interactions will further support the establishment of genomic mapping of intestinal microbiota in the management of patients undergoing CRC surgery.
Collapse
Affiliation(s)
- Ioannis Koliarakis
- Laboratory of Anatomy, School of Medicine, University of Crete, 70013 Heraklion, Greece;
| | - Elias Athanasakis
- Department of General Surgery, University Hospital of Heraklion, 71110 Heraklion, Greece; (E.A.); (E.C.)
| | - Markos Sgantzos
- Laboratory of Anatomy, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41334 Larissa, Greece;
| | - Theodoros Mariolis-Sapsakos
- Surgical Department, National and Kapodistrian University of Athens, Agioi Anargyroi General and Oncologic Hospital of Kifisia, 14564 Athens, Greece;
| | - Evangelos Xynos
- Department of Surgery, Creta Interclinic Hospital of Heraklion, 71305 Heraklion, Greece;
| | - Emmanuel Chrysos
- Department of General Surgery, University Hospital of Heraklion, 71110 Heraklion, Greece; (E.A.); (E.C.)
| | - John Souglakos
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - John Tsiaoussis
- Laboratory of Anatomy, School of Medicine, University of Crete, 70013 Heraklion, Greece;
| |
Collapse
|
100
|
Dieterich LC, Bikfalvi A. The tumor organismal environment: Role in tumor development and cancer immunotherapy. Semin Cancer Biol 2020; 65:197-206. [DOI: 10.1016/j.semcancer.2019.12.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/03/2019] [Accepted: 12/22/2019] [Indexed: 02/07/2023]
|