51
|
Navarro D, Chaduli D, Taussac S, Lesage-Meessen L, Grisel S, Haon M, Callac P, Courtecuisse R, Decock C, Dupont J, Richard-Forget F, Fournier J, Guinberteau J, Lechat C, Moreau PA, Pinson-Gadais L, Rivoire B, Sage L, Welti S, Rosso MN, Berrin JG, Bissaro B, Favel A. Large-scale phenotyping of 1,000 fungal strains for the degradation of non-natural, industrial compounds. Commun Biol 2021; 4:871. [PMID: 34267314 PMCID: PMC8282864 DOI: 10.1038/s42003-021-02401-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/22/2021] [Indexed: 11/09/2022] Open
Abstract
Fungal biotechnology is set to play a keystone role in the emerging bioeconomy, notably to address pollution issues arising from human activities. Because they preserve biological diversity, Biological Resource Centres are considered as critical infrastructures to support the development of biotechnological solutions. Here, we report the first large-scale phenotyping of more than 1,000 fungal strains with evaluation of their growth and degradation potential towards five industrial, human-designed and recalcitrant compounds, including two synthetic dyes, two lignocellulose-derived compounds and a synthetic plastic polymer. We draw a functional map over the phylogenetic diversity of Basidiomycota and Ascomycota, to guide the selection of fungal taxa to be tested for dedicated biotechnological applications. We evidence a functional diversity at all taxonomic ranks, including between strains of a same species. Beyond demonstrating the tremendous potential of filamentous fungi, our results pave the avenue for further functional exploration to solve the ever-growing issue of ecosystems pollution.
Collapse
Affiliation(s)
- David Navarro
- INRAE, Aix Marseille Univ., BBF, UMR1163, Marseille, France. .,INRAE, Aix Marseille Univ., CIRM-CF, Marseille, France.
| | - Delphine Chaduli
- INRAE, Aix Marseille Univ., BBF, UMR1163, Marseille, France.,INRAE, Aix Marseille Univ., CIRM-CF, Marseille, France
| | - Sabine Taussac
- INRAE, Aix Marseille Univ., BBF, UMR1163, Marseille, France.,INRAE, Aix Marseille Univ., CIRM-CF, Marseille, France
| | - Laurence Lesage-Meessen
- INRAE, Aix Marseille Univ., BBF, UMR1163, Marseille, France.,INRAE, Aix Marseille Univ., CIRM-CF, Marseille, France
| | - Sacha Grisel
- INRAE, Aix Marseille Univ., BBF, UMR1163, Marseille, France
| | - Mireille Haon
- INRAE, Aix Marseille Univ., BBF, UMR1163, Marseille, France
| | | | - Régis Courtecuisse
- Faculté de Pharmacie Lille, Université de Lille, LGCgE, ER4, Lille, France
| | - Cony Decock
- Mycothèque de l'Université Catholique de Louvain (MUCL), Earth and Life Institute, Microbiology, Louvain-la-Neuve, Belgium
| | - Joëlle Dupont
- Institut de Systématique, Evolution et Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France
| | | | | | | | | | | | | | | | - Lucile Sage
- Université Grenoble Alpes, LECA, UMR UGA-USMB-CNRS 5553, CS 40700, Grenoble, France
| | - Stéphane Welti
- Faculté de Pharmacie Lille, Université de Lille, LGCgE, ER4, Lille, France
| | | | | | - Bastien Bissaro
- INRAE, Aix Marseille Univ., BBF, UMR1163, Marseille, France.
| | - Anne Favel
- INRAE, Aix Marseille Univ., BBF, UMR1163, Marseille, France.,INRAE, Aix Marseille Univ., CIRM-CF, Marseille, France
| |
Collapse
|
52
|
Gkoutselis G, Rohrbach S, Harjes J, Obst M, Brachmann A, Horn MA, Rambold G. Microplastics accumulate fungal pathogens in terrestrial ecosystems. Sci Rep 2021; 11:13214. [PMID: 34267241 PMCID: PMC8282651 DOI: 10.1038/s41598-021-92405-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/03/2021] [Indexed: 02/05/2023] Open
Abstract
Microplastic (MP) is a pervasive pollutant in nature that is colonised by diverse groups of microbes, including potentially pathogenic species. Fungi have been largely neglected in this context, despite their affinity for plastics and their impact as pathogens. To unravel the role of MP as a carrier of fungal pathogens in terrestrial ecosystems and the immediate human environment, epiplastic mycobiomes from municipal plastic waste from Kenya were deciphered using ITS metabarcoding as well as a comprehensive meta-analysis, and visualised via scanning electron as well as confocal laser scanning microscopy. Metagenomic and microscopic findings provided complementary evidence that the terrestrial plastisphere is a suitable ecological niche for a variety of fungal organisms, including important animal and plant pathogens, which formed the plastisphere core mycobiome. We show that MPs serve as selective artificial microhabitats that not only attract distinct fungal communities, but also accumulate certain opportunistic human pathogens, such as cryptococcal and Phoma-like species. Therefore, MP must be regarded a persistent reservoir and potential vector for fungal pathogens in soil environments. Given the increasing amount of plastic waste in terrestrial ecosystems worldwide, this interrelation may have severe consequences for the trans-kingdom and multi-organismal epidemiology of fungal infections on a global scale.
Collapse
Affiliation(s)
- Gerasimos Gkoutselis
- Department of Mycology, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Stephan Rohrbach
- Institute of Microbiology, Leibniz University Hannover, 30419, Hannover, Germany
| | - Janno Harjes
- Department of Mycology, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Martin Obst
- Experimental Biogeochemistry, BayCEER, University of Bayreuth, 95448, Bayreuth, Germany
| | - Andreas Brachmann
- Genetics, Faculty of Biology, Ludwig Maximilian University Munich, 82152, Martinsried, Germany
| | - Marcus A Horn
- Institute of Microbiology, Leibniz University Hannover, 30419, Hannover, Germany.
| | - Gerhard Rambold
- Department of Mycology, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany.
| |
Collapse
|
53
|
Cowan AR, Costanzo CM, Benham R, Loveridge EJ, Moody SC. Fungal bioremediation of polyethylene: Challenges and perspectives. J Appl Microbiol 2021; 132:78-89. [PMID: 34218487 DOI: 10.1111/jam.15203] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/18/2021] [Accepted: 06/30/2021] [Indexed: 11/28/2022]
Abstract
Plastics have become ubiquitous in both their adoption as materials and as environmental contaminants. Widespread pollution of these versatile, man-made and largely petroleum-derived polymers has resulted from their long-term mass production, inappropriate disposal and inadequate end of life management. Polyethylene (PE) is at the forefront of this problem, accounting for one-third of plastic demand in Europe in part due to its extensive use in packaging. Current recycling and incineration processes do not represent sustainable solutions to tackle plastic waste, especially once it becomes littered, and the development of new waste-management and remediation technologies are needed. Mycoremediation (fungal-based biodegradation) of PE has been the topic of several studies over the last two decades. The utility of these studies is limited by an inconclusive definition of biodegradation and a lack of knowledge regarding the biological systems responsible. This review highlights relevant features of fungi as potential bioremediation agents, before discussing the evidence for fungal biodegradation of both high- and low-density PE. An up-to-date perspective on mycoremediation as a future solution to PE waste is provided.
Collapse
Affiliation(s)
- Andrew R Cowan
- Faculty of Sport, Health and Social Science, Solent University, Southampton, UK
| | - Chiara M Costanzo
- Department of Chemistry, College of Science, Swansea University, Swansea, UK
| | - Robert Benham
- Faculty of Creative Industries, Architecture and Engineering, Solent University, Southampton, UK
| | - E Joel Loveridge
- Department of Chemistry, College of Science, Swansea University, Swansea, UK
| | - Suzy C Moody
- School of Life Sciences, Pharmacy and Chemistry, Faculty of Science, Engineering and Computing, Kingston University, Kingston-Upon-Thames, UK
| |
Collapse
|
54
|
Cairns TC, Zheng X, Zheng P, Sun J, Meyer V. Turning Inside Out: Filamentous Fungal Secretion and Its Applications in Biotechnology, Agriculture, and the Clinic. J Fungi (Basel) 2021; 7:535. [PMID: 34356914 PMCID: PMC8307877 DOI: 10.3390/jof7070535] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/14/2021] [Accepted: 06/25/2021] [Indexed: 12/15/2022] Open
Abstract
Filamentous fungi are found in virtually every marine and terrestrial habitat. Vital to this success is their ability to secrete a diverse range of molecules, including hydrolytic enzymes, organic acids, and small molecular weight natural products. Industrial biotechnologists have successfully harnessed and re-engineered the secretory capacity of dozens of filamentous fungal species to make a diverse portfolio of useful molecules. The study of fungal secretion outside fermenters, e.g., during host infection or in mixed microbial communities, has also led to the development of novel and emerging technological breakthroughs, ranging from ultra-sensitive biosensors of fungal disease to the efficient bioremediation of polluted environments. In this review, we consider filamentous fungal secretion across multiple disciplinary boundaries (e.g., white, green, and red biotechnology) and product classes (protein, organic acid, and secondary metabolite). We summarize the mechanistic understanding for how various molecules are secreted and present numerous applications for extracellular products. Additionally, we discuss how the control of secretory pathways and the polar growth of filamentous hyphae can be utilized in diverse settings, including industrial biotechnology, agriculture, and the clinic.
Collapse
Affiliation(s)
- Timothy C. Cairns
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Xiaomei Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (X.Z.); (P.Z.); (J.S.)
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ping Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (X.Z.); (P.Z.); (J.S.)
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jibin Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (X.Z.); (P.Z.); (J.S.)
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Vera Meyer
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
55
|
da Costa CHS, Dos Santos AM, Alves CN, Martí S, Moliner V, Santana K, Lameira J. Assessment of the PETase conformational changes induced by poly(ethylene terephthalate) binding. Proteins 2021; 89:1340-1352. [PMID: 34075621 DOI: 10.1002/prot.26155] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/13/2021] [Accepted: 05/29/2021] [Indexed: 12/12/2022]
Abstract
Recently, a bacterium strain of Ideonella sakaiensis was identified with the uncommon ability to degrade the poly(ethylene terephthalate) (PET). The PETase from I. sakaiensis strain 201-F6 (IsPETase) catalyzes the hydrolysis of PET converting it to mono(2-hydroxyethyl) terephthalic acid (MHET), bis(2-hydroxyethyl)-TPA (BHET), and terephthalic acid (TPA). Despite the potential of this enzyme for mitigation or elimination of environmental contaminants, one of the limitations of the use of IsPETase for PET degradation is the fact that it acts only at moderate temperature due to its low thermal stability. Besides, molecular details of the main interactions of PET in the active site of IsPETase remain unclear. Herein, molecular docking and molecular dynamics (MD) simulations were applied to analyze structural changes of IsPETase induced by PET binding. Results from the essential dynamics revealed that the β1-β2 connecting loop is very flexible. This loop is located far from the active site of IsPETase and we suggest that it can be considered for mutagenesis to increase the thermal stability of IsPETase. The free energy landscape (FEL) demonstrates that the main change in the transition between the unbound to the bound state is associated with the β7-α5 connecting loop, where the catalytic residue Asp206 is located. Overall, the present study provides insights into the molecular binding mechanism of PET into the IsPETase structure and a computational strategy for mapping flexible regions of this enzyme, which can be useful for the engineering of more efficient enzymes for recycling plastic polymers using biological systems.
Collapse
Affiliation(s)
| | - Alberto M Dos Santos
- Centro de Ciências Exatas e Tecnologias, Federal University of Maranhão, São Luis, Maranhão, Brazil
| | - Cláudio Nahum Alves
- Institute of Natural Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Sérgio Martí
- Institute of Advanced Materials (INAM), Universitat Jaume I, Castellón, Spain
| | - Vicent Moliner
- Institute of Advanced Materials (INAM), Universitat Jaume I, Castellón, Spain
| | - Kauê Santana
- Institute of Biodiversity, Federal University of Western Pará, Santarém, Pará, Brazil
| | - Jerônimo Lameira
- Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| |
Collapse
|
56
|
Ali SS, Elsamahy T, Koutra E, Kornaros M, El-Sheekh M, Abdelkarim EA, Zhu D, Sun J. Degradation of conventional plastic wastes in the environment: A review on current status of knowledge and future perspectives of disposal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144719. [PMID: 33548729 DOI: 10.1016/j.scitotenv.2020.144719] [Citation(s) in RCA: 215] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/30/2020] [Accepted: 12/21/2020] [Indexed: 05/23/2023]
Abstract
Accumulation of plastic wastes has been recently recognized as one of the most critical environmental challenges, affecting all life forms, natural ecosystems and economy, worldwide. Under this threat, finding alternative environmentally-friendly solutions, such as biodegradation instead of traditional disposal, is of utmost importance. However, up to date, there is limited knowledge on plastic biodegradation mechanisms and efficiency. From this point of view, the purpose of this review is to highlight the negative effects of the accumulation of the most conventional plastic waste (polyethylene, polypropylene, polystyrene, polyvinylchloride, polyethylene terephthalate and polyurethane) on the environment and to present their degradability potential through abiotic and biotic processes. Furthermore, the ability of different microbial species for degradation of these polymers is thoroughly discussed. The present review also addresses the contribution of invertebrates, such as insects, in plastic degradation process, highlighting the vital role that they could play in the future. In total, a schematic pathway of an innovative approach to improve the disposal of plastic wastes is proposed, with view to establishing an effective and sustainable practice for plastic waste management.
Collapse
Affiliation(s)
- Sameh Samir Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Eleni Koutra
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, 26504 Patras, Greece; INVALOR: Research Infrastructure for Waste Valorization and Sustainable Management, University Campus, 26504 Patras, Greece
| | - Michael Kornaros
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, 26504 Patras, Greece; INVALOR: Research Infrastructure for Waste Valorization and Sustainable Management, University Campus, 26504 Patras, Greece
| | - Mostafa El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Esraa A Abdelkarim
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Daochen Zhu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
57
|
DSouza GC, Sheriff RS, Ullanat V, Shrikrishna A, Joshi AV, Hiremath L, Entoori K. Fungal biodegradation of low-density polyethylene using consortium of Aspergillus species under controlled conditions. Heliyon 2021; 7:e07008. [PMID: 34036194 PMCID: PMC8138607 DOI: 10.1016/j.heliyon.2021.e07008] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/05/2021] [Accepted: 04/30/2021] [Indexed: 11/06/2022] Open
Abstract
Low-Density polyethylene is subject to biodegradation using a fungal consortium comprising of Aspergillus niger, Aspergillus flavus and Aspergillus oryzae under laboratory conditions. The extent of biodegradation has been compared with the use of potato dextrose broth and czapek dox broth media and also in the presence and absence of Tween 80 additive. Biodegradation was performed replacing the sucrose in czapek dox broth with shredded Low-Density polyethylene as well. The biodegradation was carried out for a period of 55 days. The degree of biodegradation has been analyzed using the loss of weight, FT-IR, and SEM analysis. A maximum weight loss of 26.15% was obtained by using potato dextrose broth over a period of 55 days.
Collapse
Affiliation(s)
- Glen Cletus DSouza
- Department of Chemical Engineering, R V College of Engineering, Bengaluru, 560059 India.,Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario, N6A 5B9, Canada
| | - Ryna Shireen Sheriff
- Department of Biotechnology, R V College of Engineering, Bengaluru, 560059 India
| | - Varun Ullanat
- Department of Biotechnology, R V College of Engineering, Bengaluru, 560059 India
| | - Aniruddh Shrikrishna
- Department of Chemical Engineering, R V College of Engineering, Bengaluru, 560059 India.,Department of Chemical Engineering, University of Florida, Gainesville, FL, USA 32603
| | - Anupama V Joshi
- Department of Chemical Engineering, R V College of Engineering, Bengaluru, 560059 India
| | - Lingayya Hiremath
- Department of Biotechnology, R V College of Engineering, Bengaluru, 560059 India
| | - Keshamma Entoori
- Department of Biochemistry, Maharani's Science College for Women, Bengaluru, 560001 India
| |
Collapse
|
58
|
From lignocellulose to plastics: Knowledge transfer on the degradation approaches by fungi. Biotechnol Adv 2021; 50:107770. [PMID: 33989704 DOI: 10.1016/j.biotechadv.2021.107770] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 01/21/2023]
Abstract
In this review, we argue that there is much to be learned by transferring knowledge from research on lignocellulose degradation to that on plastic. Plastic waste accumulates in the environment to hazardous levels, because it is inherently recalcitrant to biological degradation. Plants evolved lignocellulose to be resistant to degradation, but with time, fungi became capable of utilising it for their nutrition. Examples of how fungal strategies to degrade lignocellulose could be insightful for plastic degradation include how fungi overcome the hydrophobicity of lignin (e.g. production of hydrophobins) and crystallinity of cellulose (e.g. oxidative approaches). In parallel, knowledge of the methods for understanding lignocellulose degradation could be insightful such as advanced microscopy, genomic and post-genomic approaches (e.g. gene expression analysis). The known limitations of biological lignocellulose degradation, such as the necessity for physiochemical pretreatments for biofuel production, can be predictive of potential restrictions of biological plastic degradation. Taking lessons from lignocellulose degradation for plastic degradation is also important for biosafety as engineered plastic-degrading fungi could also have increased plant biomass degrading capabilities. Even though plastics are significantly different from lignocellulose because they lack hydrolysable C-C or C-O bonds and therefore have higher recalcitrance, there are apparent similarities, e.g. both types of compounds are mixtures of hydrophobic polymers with amorphous and crystalline regions, and both require hydrolases and oxidoreductases for their degradation. Thus, many lessons could be learned from fungal lignocellulose degradation.
Collapse
|
59
|
Madadi R, Bester K. Fungi and biochar applications in bioremediation of organic micropollutants from aquatic media. MARINE POLLUTION BULLETIN 2021; 166:112247. [PMID: 33735702 DOI: 10.1016/j.marpolbul.2021.112247] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/10/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
The conventional wastewater treatment system such as bacteria, is not able to remove recalcitrant micropollutants effectively. While, fungi have shown high capacity in degradation of recalcitrant compounds. Biochar, on the other hand, has gained attention in water and wastewater treatment as a low cost and sustainable adsorbent. This paper aims to review the recent applications of three major fungal divisions including Basidiomycota, Ascomycota, and Mucoromycotina, in organic micropollutants removal from wastewater. Moreover, it presents an insight into fungal bioreactors, fungal biofilm and immobilization system. Biochar adsorption capacities for organic micropollutants removal under different operating conditions are summarized. Finally, few recommendations for further research are established in the context of the combination of fungal biofilm with the technologies relying on the adsorption by porous carbonaceous materials.
Collapse
Affiliation(s)
- Rozita Madadi
- Department of agricultural biotechnology, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Kai Bester
- Department of Environmental Science, Aarhus University, Frederiksborgsvej 399, Roskilde 4000, Denmark; WATEC - Centre for Water Technology, Aarhus University, Ny Munkegade 120, Aarhus 8000, Denmark
| |
Collapse
|
60
|
Ganesh Kumar A, Manisha D, Sujitha K, Magesh Peter D, Kirubagaran R, Dharani G. Genome sequence analysis of deep sea Aspergillus sydowii BOBA1 and effect of high pressure on biodegradation of spent engine oil. Sci Rep 2021; 11:9347. [PMID: 33931710 PMCID: PMC8087790 DOI: 10.1038/s41598-021-88525-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/30/2021] [Indexed: 02/02/2023] Open
Abstract
A deep-sea fungus Aspergillus sydowii BOBA1 isolated from marine sediment at a depth of 3000 m was capable of degrading spent engine (SE) oil. The response of immobilized fungi towards degradation at elevated pressure was studied in customized high pressure reactors without any deviation in simulating in situ deep-sea conditions. The growth rate of A. sydowii BOBA1 in 0.1 MPa was significantly different from the growth at 10 MPa pressure. The degradation percentage reached 71.2 and 82.5% at atmospheric and high pressure conditions, respectively, within a retention period of 21 days. The complete genome sequence of BOBA1 consists of 38,795,664 bp in size, comprises 2582 scaffolds with predicted total coding genes of 18,932. A total of 16,247 genes were assigned with known functions and many families found to have a potential role in PAHs and xenobiotic compound metabolism. Functional genes controlling the pathways of hydrocarbon and xenobiotics compound degrading enzymes such as dioxygenase, decarboxylase, hydrolase, reductase and peroxidase were identified. The spectroscopic and genomic analysis revealed the presence of combined catechol, gentisate and phthalic acid degradation pathway. These results of degradation and genomic studies evidenced that this deep-sea fungus could be employed to develop an eco-friendly mycoremediation technology to combat the oil polluted marine environment. This study expands our knowledge on piezophilic fungi and offer insight into possibilities about the fate of SE oil in deep-sea.
Collapse
Affiliation(s)
- A. Ganesh Kumar
- grid.454780.a0000 0001 0683 2228Marine Biotechnology Division, National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Chennai, 600100 Tamil Nadu India
| | - D. Manisha
- grid.454780.a0000 0001 0683 2228Marine Biotechnology Division, National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Chennai, 600100 Tamil Nadu India
| | - K. Sujitha
- grid.454780.a0000 0001 0683 2228Marine Biotechnology Division, National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Chennai, 600100 Tamil Nadu India
| | - D. Magesh Peter
- grid.454780.a0000 0001 0683 2228Marine Biotechnology Division, National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Chennai, 600100 Tamil Nadu India
| | - R. Kirubagaran
- grid.454780.a0000 0001 0683 2228Marine Biotechnology Division, National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Chennai, 600100 Tamil Nadu India
| | - G. Dharani
- grid.454780.a0000 0001 0683 2228Marine Biotechnology Division, National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Chennai, 600100 Tamil Nadu India
| |
Collapse
|
61
|
Zhelezova AD, Zverev AO, Zueva AI, Leonov VD, Rozanova OL, Zuev AG, Tiunov AV. Prokaryotic community formation on polyethylene films incubated for six months in a tropical soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116126. [PMID: 33261972 DOI: 10.1016/j.envpol.2020.116126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Polyethylene film is one of the most common types of recalcitrant plastic waste materials. Information regarding the fate of plastic films in soil is scarce compared to the fate of plastic films in aquatic environments. The aim of this study was to evaluate the effects of soil fauna and of impregnation of polyethylene films with oil on the colonization of low-density polyethylene films by prokaryotic communities. The field experiment was performed in a monsoon tropical forest (Vietnam). Polyethylene films were incubated in thermally pre-defaunated soil isolated from the surrounding soil by a stainless steel mesh. Three mesh sizes were used, allowing access to different size groups of soil fauna. The diversity, taxonomic structure and co-occurrence patterns in prokaryotic communities were studied using high-throughput sequencing of 16S rRNA gene libraries. The prokaryotic communities that formed on polyethylene films were slightly different from those inhabiting the surrounding soil. Contrary to our expectations, no difference in the diversity of prokaryotes was observed between microcosms with different mesh sizes. Oil impregnation also had only a minor influence on the prokaryotic community structure. Polyethylene films incubated in microcosms with soil appeared to be colonized by various consortia of prokaryotes as a barren and inert surface.
Collapse
Affiliation(s)
- A D Zhelezova
- V.V. Dokuchaev Soil Science Institute, Moscow, 119017, Russia.
| | - A O Zverev
- All-Russian Research Institute of Agricultural Microbiology, St. Petersburg, 196608, Russia
| | - A I Zueva
- A.N. Severtsov Institute of Ecology and Evolution, Moscow, 119071, Russia
| | - V D Leonov
- A.N. Severtsov Institute of Ecology and Evolution, Moscow, 119071, Russia
| | - O L Rozanova
- A.N. Severtsov Institute of Ecology and Evolution, Moscow, 119071, Russia
| | - A G Zuev
- A.N. Severtsov Institute of Ecology and Evolution, Moscow, 119071, Russia
| | - A V Tiunov
- A.N. Severtsov Institute of Ecology and Evolution, Moscow, 119071, Russia; Joint Russian-Vietnamese Tropical Center, Q10, Ho Chi Minh City, Viet Nam
| |
Collapse
|
62
|
Schmid C, Cozzarini L, Zambello E. Microplastic's story. MARINE POLLUTION BULLETIN 2021; 162:111820. [PMID: 33203604 DOI: 10.1016/j.marpolbul.2020.111820] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
The problem of microplastic pollution is now the order of the day in front of everyone's eyes affecting the environment and the health of leaving creature. This work aims to retrace the history of microplastics in a critical way through a substantial bibliographic collection, defining the points still unresolved and those that can be resolved. Presence of marine litter in different environments is reviewed on a global scale, focusing in particular on micro and macro plastics definition, classification and characterization techniques.
Collapse
Affiliation(s)
- Chiara Schmid
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6A, 34127 Trieste, Italy
| | - Luca Cozzarini
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6A, 34127 Trieste, Italy.
| | - Elena Zambello
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6A, 34127 Trieste, Italy
| |
Collapse
|
63
|
Vighi M, Bayo J, Fernández-Piñas F, Gago J, Gómez M, Hernández-Borges J, Herrera A, Landaburu J, Muniategui-Lorenzo S, Muñoz AR, Rico A, Romera-Castillo C, Viñas L, Rosal R. Micro and Nano-Plastics in the Environment: Research Priorities for the Near Future. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 257:163-218. [PMID: 34487249 DOI: 10.1007/398_2021_69] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plastic litter dispersed in the different environmental compartments represents one of the most concerning problems associated with human activities. Specifically, plastic particles in the micro and nano size scale are ubiquitous and represent a threat to human health and the environment. In the last few decades, a huge amount of research has been devoted to evaluate several aspects of micro/nano-plastic contamination: origin and emissions, presence in different compartments, environmental fate, effects on human health and the environment, transfer in the food web and the role of associated chemicals and microorganisms. Nevertheless, despite the bulk of information produced, several knowledge gaps still exist. The objective of this paper is to highlight the most important of these knowledge gaps and to provide suggestions for the main research needs required to describe and understand the most controversial points to better orient the research efforts for the near future. Some of the major issues that need further efforts to improve our knowledge on the exposure, effects and risk of micro/nano-plastics are: harmonization of sampling procedures; development of more accurate, less expensive and less time-consuming analytical methods; assessment of degradation patterns and environmental fate of fragments; evaluating the capabilities for bioaccumulation and transfer to the food web; and evaluating the fate and the impact of chemicals and microorganisms associated with micro/nano-plastics. The major gaps in all sectors of our knowledge, from exposure to potentially harmful effects, refer to small size microplastics and, particularly, to the occurrence, fate and effects of nanoplastics.
Collapse
Affiliation(s)
| | - Javier Bayo
- Department of Chemical and Environmental Engineering, Technical University of Cartagena, Cartagena, Spain
| | | | - Jesús Gago
- Instituto Español de Oceanografía (IEO), Vigo, Spain
| | - May Gómez
- EOMAR: Marine Ecophysiology Group, IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Javier Hernández-Borges
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Alicia Herrera
- EOMAR: Marine Ecophysiology Group, IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | | | - Soledad Muniategui-Lorenzo
- Grupo Química Analítica Aplicada, Instituto Universitario de Medio Ambiente (IUMA), Centro de Investigaciones Científicas Avanzadas (CICA), Facultade de Ciencias, Universidade da Coruña, A Coruña, Spain
| | - Antonio-Román Muñoz
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Andreu Rico
- IMDEA-Water Institute, Madrid, Spain
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| | - Cristina Romera-Castillo
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar-CSIC, Barcelona, Spain
| | - Lucía Viñas
- Instituto Español de Oceanografía (IEO), Vigo, Spain
| | - Roberto Rosal
- Department of Chemical Engineering, University of Alcalá, Madrid, Spain.
| |
Collapse
|
64
|
Núñez-Cacho P, Leyva-Díaz JC, Sánchez-Molina J, Van der Gun R. Plastics and sustainable purchase decisions in a circular economy: The case of Dutch food industry. PLoS One 2020; 15:e0239949. [PMID: 32986772 PMCID: PMC7521728 DOI: 10.1371/journal.pone.0239949] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/16/2020] [Indexed: 11/19/2022] Open
Abstract
Every day, society’s concern over pollution caused by plastic waste grows greater. One of the most intensive sectors for the use of plastic is the food industry. Companies in this sector face the challenge of transitioning to a more sustainable and less intensive model of plastic use, respecting the principles established for a circular economy. Accordingly, one of the questions that industries tend to ask is whether sustainability will influence the consumer’s purchase decision. To respond to this, the factors that determine a consumer’s sustainable purchase decision in relation to the plastic and food industry have been analyzed in this paper. For this, a regression analysis was performed on a sample of Dutch consumers. The results show that the decision of purchase of the consumer of the Food Industry is conditioned by factors such as age, sustainable behavior, knowledge of the Circular economy and the perception of usefulness of plastic.
Collapse
Affiliation(s)
- Pedro Núñez-Cacho
- Department of Business Organization, University of Jaén, Jaén, Spain
- * E-mail:
| | - Juan Carlos Leyva-Díaz
- Department of Chemical and Environmental Engineering, University of Oviedo, Oviedo, Spain
| | - Jorge Sánchez-Molina
- Grupo de Investigación en Materiales Cerámicos - GITEC, University Francisco de Paula Santander, San José de Cúcuta, Colombia
| | | |
Collapse
|
65
|
Microplastics and Nanoplastics in the Freshwater and Terrestrial Environment: A Review. WATER 2020. [DOI: 10.3390/w12092633] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review is a critical analysis of current freshwater and terrestrial research with an emphasis on transport, behaviour, fate and subsequent ecological impacts that plastic pollution poses. The current methods of extraction and evaluation of organic-rich samples are also explored for both micro- and nanoplastics. Furthermore, micro- and nanoplastics are discussed with reference to their environmental and health implications for biota. Regulations imposed on the manufacture and distribution of plastics globally are also noted. Within the review, the current literature has been presented and knowledge gaps identified. These include the characterization and quantification of micro- and nanoplastics entering and forming within the freshwater and terrestrial environment, the fate and behaviour of micro- and nanoplastics under varying conditions and the impacts of micro- and nanoplastics on freshwater and terrestrial ecosystems.
Collapse
|
66
|
Purohit J, Chattopadhyay A, Teli B. Metagenomic Exploration of Plastic Degrading Microbes for Biotechnological Application. Curr Genomics 2020; 21:253-270. [PMID: 33071619 PMCID: PMC7521044 DOI: 10.2174/1389202921999200525155711] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/14/2020] [Accepted: 04/21/2020] [Indexed: 01/08/2023] Open
Abstract
Since the last few decades, the promiscuous and uncontrolled use of plastics led to the accumulation of millions of tons of plastic waste in the terrestrial and marine environment. It elevated the risk of environmental pollution and climate change. The concern arises more due to the reckless and unscientific disposal of plastics containing high molecular weight polymers, viz., polystyrene, polyamide, polyvinylchloride, polypropylene, polyurethane, and polyethylene, etc. which are very difficult to degrade. Thus, the focus is now paid to search for efficient, eco-friendly, low-cost waste management technology. Of them, degradation of non-degradable synthetic polymer using diverse microbial agents, viz., bacteria, fungi, and other extremophiles become an emerging option. So far, very few microbial agents and their secreted enzymes have been identified and characterized for plastic degradation, but with low efficiency. It might be due to the predominance of uncultured microbial species, which consequently remain unexplored from the respective plastic degrading milieu. To overcome this problem, metagenomic analysis of microbial population engaged in the plastic biodegradation is advisable to decipher the microbial community structure and to predict their biodegradation potential in situ. Advancements in sequencing technologies and bioinformatics analysis allow the rapid metagenome screening that helps in the identification of total microbial community and also opens up the scope for mining genes or enzymes (hydrolases, laccase, etc.) engaged in polymer degradation. Further, the extraction of the core microbial population and their adaptation, fitness, and survivability can also be deciphered through comparative metagenomic study. It will help to engineer the microbial community and their metabolic activity to speed up the degradation process.
Collapse
Affiliation(s)
- Jyotika Purohit
- 1Department of Plant Pathology, C.P. College of Agriculture, S.D. Agricultural University, SK Nagar, (Guj.), India; 2Division of Plant Pathology, IARI, New Delhi, India; 3Department of Mycology & Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, (U.P.), India
| | - Anirudha Chattopadhyay
- 1Department of Plant Pathology, C.P. College of Agriculture, S.D. Agricultural University, SK Nagar, (Guj.), India; 2Division of Plant Pathology, IARI, New Delhi, India; 3Department of Mycology & Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, (U.P.), India
| | - Basavaraj Teli
- 1Department of Plant Pathology, C.P. College of Agriculture, S.D. Agricultural University, SK Nagar, (Guj.), India; 2Division of Plant Pathology, IARI, New Delhi, India; 3Department of Mycology & Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, (U.P.), India
| |
Collapse
|
67
|
Lacerda ALDF, Proietti MC, Secchi ER, Taylor JD. Diverse groups of fungi are associated with plastics in the surface waters of the Western South Atlantic and the Antarctic Peninsula. Mol Ecol 2020; 29:1903-1918. [DOI: 10.1111/mec.15444] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Ana L. d. F. Lacerda
- Instituto de Oceanografia Universidade Federal do Rio Grande-FURG Rio Grande Brazil
| | - Maíra C. Proietti
- Instituto de Oceanografia Universidade Federal do Rio Grande-FURG Rio Grande Brazil
| | - Eduardo R. Secchi
- Instituto de Oceanografia Universidade Federal do Rio Grande-FURG Rio Grande Brazil
| | - Joe D. Taylor
- School of Science, Engineering and Environment University of Salford Manchester UK
| |
Collapse
|
68
|
Ability of Trichoderma hamatum Isolated from Plastics-Polluted Environments to Attack Petroleum-Based, Synthetic Polymer Films. Processes (Basel) 2020. [DOI: 10.3390/pr8040467] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Microorganisms colonizing plastic waste material collected in composting-, landfill-, and anaerobic digestion plants were isolated to obtain novel strains maximally adapted to the degradation of plastics due to long-term contact with plastic polymers. Twenty-six bacterial strains were isolated and identified by the 16 S rRNA method, and eighteen strains of yeasts and fungi using 18 S rRNA and the internal transcribed spacer ITS sequencing of the 18 S rRNA gene. In selected strains, the ability to degrade linear low-density polyethylene (LLDPE), low-density polyethylene (LDPE), polystyrene (PS), and polyvinyl chloride (PVC) was tested in aerobic liquid-medium cultures. An oxidative, two-step pretreatment of LLDPE and LDPE using γ- or UV-irradiation followed by a high-temperature treatment was carried out, and the pretreated plastics were also included in the degradation experiments. The respective weight losses after biodegradation by Trichoderma hamatum were: virgin and γ/T90-pretreated LLDPE (2.2 ± 1.2 and 3.9 ± 0.5%), virgin and UV/T60-pretreated LDPE (0.5 ± 0.4 and 1.3 ± 0.4%), and virgin PS (0.9 ± 0.4%). The Fourier transform infrared spectroscopy (FTIR) analysis showed that during the treatment of pretreated LLDPE, T. hamatum attacked low molecular weight LLDPE oligomers, reducing the functional groups (carbonyl C = O), which was paralleled by a slight increase of the molar mass of pretreated LLDPE and a decrease of the dispersity index, as demonstrated by gel permeation chromatography (GPC). Thermogravimetric analysis (TGA) highlighted the formation of functional groups on LLDPE due to polymer pretreatment that favored fungal attack at the polymer surface. The results provide insight into microbial consortia that spontaneously colonize the surface of plastics in various environments and their capability to attack plastic polymers.
Collapse
|
69
|
Sánchez C. Fungal potential for the degradation of petroleum-based polymers: An overview of macro- and microplastics biodegradation. Biotechnol Adv 2019; 40:107501. [PMID: 31870825 DOI: 10.1016/j.biotechadv.2019.107501] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 11/18/2022]
Abstract
Petroleum-based plastic materials as pollutants raise concerns because of their impact on the global ecosystem and on animal and human health. There is an urgent need to remove plastic waste from the environment to overcome the environmental crisis of plastic pollution. This review describes the natural and unique ability of fungi to invade substrates by using enzymes that have the capacity to detoxify pollutants and are able to act on nonspecific substrates, the fungal ability to produce hydrophobins for surface coating to attach hyphae to hydrophobic substrates, and hyphal ability to penetrate three dimensional substrates. Fungal studies on macro- and microplastics biodegradation have shown that fungi are able to use these materials as the sole carbon and energy source. Further research is required on novel isolates from plastisphere ecosystems, on the use of molecular techniques to characterize plastic-degrading fungi and enhance enzymatic activity levels, and on the use of omics-based technologies to accelerate plastic waste biodegradation processes. The addition of pro-oxidants species (photosensitizers) and the reduction of biocides and antioxidant stabilizers used in the plastic manufacturing process should also be considered to promote biodegradation. Interdisciplinary research and innovative fungal strategies for plastic waste biodegradation, as well as ecofriendly manufacturing of petroleum-based plastics, may help to reduce the negative impacts of plastic waste pollution in the biosphere.
Collapse
Affiliation(s)
- Carmen Sánchez
- Laboratory of Biotechnology, Research Centre for Biological Sciences, Universidad Autónoma de Tlaxcala, Ixtacuixtla, C.P. 90120 Tlaxcala, Mexico.
| |
Collapse
|
70
|
Sangale MK, Shahnawaz M, Ade AB. Potential of fungi isolated from the dumping sites mangrove rhizosphere soil to degrade polythene. Sci Rep 2019; 9:5390. [PMID: 30926843 PMCID: PMC6440974 DOI: 10.1038/s41598-019-41448-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 03/06/2019] [Indexed: 11/09/2022] Open
Abstract
Polythene is the most widely used plastic around the globe. Among the total plastic waste generated, polythene contributes the maximum share (64%). Various strategies/methods are being utilized to deal with the increasing rate of plastic waste, but among all the methods, bioremediation is regarded as the ecofriendly and widely accepted method. In the current investigation, we have attempted to discover the elite polythene deteriorating fungi (isolated from the rhizosphere soil of Avicennia marina). From 12 different eco-geographical locations along the West Coast of India, total 109 fungal isolates were recorded. The polythene deteriorating fungi were screened at varied pH (3.5, 7 and 9.5) based on changes in weight and tensile strength of the treated polythene at ambient temperature with continuous shaking for 60 days. BAYF5 isolate (pH 7) results in maximum reduction in weight (58.51 ± 8.14) whereas PNPF15 (pH 3.5) recorded highest reduction in tensile strength (94.44 ± 2.40). Surprisingly, we have also reported weight gain, with highest percent weight gain (28.41 ± 6.99) with MANGF13 at pH 9.5. To test the reproducibility of the results, the elite polythene degrading fungal isolates based on weight loss and reduction in tensile strength were only used for repetition experiment and the results based on the reduction in tensile strength were found only reproducible. Polythene biodegradation was further confirmed using Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR) analysis. The most efficient polythene deteriorating fungal isolates were identified as Aspergillus terreus strain MANGF1/WL and Aspergillus sydowii strain PNPF15/TS using both morphological keys and molecular tools.
Collapse
Affiliation(s)
- Manisha K Sangale
- Department of Botany, Savitribai Phule Pune University, Pune, 411007, Maharashtra, India.,Department of Botany, S. M. Joshi College Hadapsar, Malwadi, Hadapsar, Pune, Maharashtra, 411028, India
| | - Mohd Shahnawaz
- Department of Botany, Savitribai Phule Pune University, Pune, 411007, Maharashtra, India. .,Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road Jammu, Jammu, 180001, Jammu and Kashmir, India.
| | - Avinash B Ade
- Department of Botany, Savitribai Phule Pune University, Pune, 411007, Maharashtra, India.
| |
Collapse
|