51
|
Abstract
The activities of DNA methyltransferases are important for a variety of cellular functions in bacteria. In this study, we developed a modified high-throughput technique called methyl homopolymer tail mediated sequencing (methyl HTM-seq) to identify the undermethylated sites in the Vibrio cholerae genome for the two DNA methyltransferases, Dam, an adenine methyltransferase, and VchM, a cytosine methyltransferase, during growth in rich medium in vitro. Many of the undermethylated sites occurred in intergenic regions, and for most of these sites, we identified the transcription factors responsible for undermethylation. This confirmed the presence of previously hypothesized DNA-protein interactions for these transcription factors and provided insight into the biological state of these cells during growth in vitro. DNA adenine methylation has previously been shown to mediate heritable epigenetic switches in gene regulation. However, none of the undermethylated Dam sites tested showed evidence of regulation by this mechanism. This study is the first to identify undermethylated adenines and cytosines genomewide in a bacterium using second-generation sequencing technology.
Collapse
|
52
|
Characterizing the hexose-6-phosphate transport system of Vibrio cholerae, a utilization system for carbon and phosphate sources. J Bacteriol 2013; 195:1800-8. [PMID: 23417487 DOI: 10.1128/jb.01952-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The facultative human pathogen Vibrio cholerae transits between the gastrointestinal tract of its host and aquatic reservoirs. V. cholerae adapts to different situations by the timely coordinated expression of genes during its life cycle. We recently identified a subclass of genes that are induced at late stages of infection. Initial characterization demonstrated that some of these genes facilitate the transition of V. cholerae from host to environmental conditions. Among these genes are uptake systems lacking detailed characterization or correct annotation. In this study, we comprehensively investigated the function of the VCA0682-to-VCA0687 gene cluster, which was previously identified as in vivo induced. The results presented here demonstrate that the operon encompassing open reading frames VCA0685 to VCA0687 encodes an ABC transport system for hexose-6-phosphates with Km values ranging from 0.275 to 1.273 μM for glucose-6P and fructose-6P, respectively. Expression of the operon is induced by the presence of hexose-6P controlled by the transcriptional activator VCA0682, representing a UhpA homolog. Finally, we provide evidence that the operon is essential for the utilization of hexose-6P as a C and P source. Thereby, a physiological role can be assigned to hexose-6P uptake, which correlates with increased fitness of V. cholerae after a transition from the host into phosphate-limiting environments.
Collapse
|
53
|
Abstract
Understanding the genetic and ecological factors which support the periodic emergence of toxigenic Vibrio cholerae causing outbreaks of cholera in regions where the disease is endemic, is vital to develop preventive measures. Besides environmental factors which are not precisely defined, bacteriophages, and horizontally transmissible genetic elements are known to have a significant role in the epidemiology and evolution of the pathogen. Cholera epidemics are also known to be self-limiting, and hence identifying natural factors which contribute to the collapse of epidemics may have important implications in controlling the disease. Phages have been shown to play a crucial role in modulating cholera epidemics, and enhance V. cholerae evolution through a bactericidal selection process which favors the emergence of new clones.
Collapse
Affiliation(s)
- Shah M Faruque
- Centre for Food and Water Borne Diseases, International Centre for Diarrhoeal Disease Research, Bangladesh, 68, Shaheed Tajuddin Ahmed Sharani, Mohakhali, 1212, Dhaka, Bangladesh,
| |
Collapse
|
54
|
Abstract
Understanding the genetic and ecological factors which support the emergence of new clones of pathogenic bacteria is vital to develop preventive measures. Vibrio cholerae the causative agent of cholera epidemics represents a paradigm for this process in that this organism evolved from environmental non-pathogenic strains by acquisition of virulence genes. The major virulence factors of V. cholerae, cholera toxin (CT) and toxin coregulated pilus (TCP) are encoded by a lysogenic bacteriophage (CTXφ) and a pathogenicity island, respectively. Additional phages which cooperate with the CTXφ in horizontal transfer of genes in V. cholerae have been characterized, and the potential exists for discovering yet new phages or genetic elements which support the transfer of genes for environmental fitness and virulence leading to the emergence of new epidemic strains. Phages have also been shown to play a crucial role in modulating seasonal cholera epidemics. Thus, the complex array of natural phenomena driving the evolution of pathogenic V. cholerae includes, among other factors, phages that either participate in horizontal gene transfer or in a bactericidal selection process favoring the emergence of new clones of V. cholerae.
Collapse
Affiliation(s)
- Shah M Faruque
- Centre for Food and Waterborne Diseases, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh.
| | | |
Collapse
|
55
|
Jubair M, Morris JG, Ali A. Survival of Vibrio cholerae in nutrient-poor environments is associated with a novel "persister" phenotype. PLoS One 2012; 7:e45187. [PMID: 23028836 PMCID: PMC3445476 DOI: 10.1371/journal.pone.0045187] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 08/16/2012] [Indexed: 12/14/2022] Open
Abstract
In response to antibiotic and/or environmental stress, some species of bacteria shift to a “persister” phenotype. Although toxigenic Vibrio cholerae, responsible for the disease cholera, can be found in nutrient-poor aquatic environments in endemic areas, the underlying mechanism(s) by which culturable cells persist in these environmental reservoirs is largely unknown. Here we report that introduction of V. cholerae into a nutrient-poor filter sterilized lake water (FSLW) microcosm promoted a shift to what we have defined as a “persister” phenotype (PP) which was culturable for >700 days. Direct transfer of PP of V. cholerae from original microcosms to freshly prepared FSLW resulted in the same pattern of persistence seen in the original microcosms. Scanning electron microscopy of cells persisting for over 700 days demonstrated cell morphologies that were very small in size, with a high degree of aggregation associated with flagella emanating from all aspects of the cell. V. cholerae PP cells reverted to a typical V. cholerae morphology when transferred to nutrient-rich L- broth. Cell-free supernatants obtained from microcosms at 24 hours, 180 days, and 700 days all showed >2-fold increase in CAI-1 signaling molecules, consistent with quorum sensing activity, as has been described for Pseudomonas aeruginosa persister cells. Chitin and phosphate promoted cell growth. Our data suggest that nutrient stress can select a V. cholerae persister phenotype in environmental reservoirs, with these strains then seeding subsequent cholera epidemics in response to chitin and phosphate availability.
Collapse
Affiliation(s)
- Mohamma Jubair
- Department of Environmental and Global Health, School of Public Health and Health Profession, University of Florida at Gainesville, Gainesville, Florida
| | - J. Glenn Morris
- Emerging Pathogens Institute, University of Florida at Gainesville, Gainesville, Florida
| | - Afsar Ali
- Department of Environmental and Global Health, School of Public Health and Health Profession, University of Florida at Gainesville, Gainesville, Florida
- Emerging Pathogens Institute, University of Florida at Gainesville, Gainesville, Florida
- * E-mail:
| |
Collapse
|
56
|
Seed KD, Faruque SM, Mekalanos JJ, Calderwood SB, Qadri F, Camilli A. Phase variable O antigen biosynthetic genes control expression of the major protective antigen and bacteriophage receptor in Vibrio cholerae O1. PLoS Pathog 2012; 8:e1002917. [PMID: 23028317 PMCID: PMC3441752 DOI: 10.1371/journal.ppat.1002917] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 08/05/2012] [Indexed: 02/05/2023] Open
Abstract
The Vibrio cholerae lipopolysaccharide O1 antigen is a major target of bacteriophages and the human immune system and is of critical importance for vaccine design. We used an O1-specific lytic bacteriophage as a tool to probe the capacity of V. cholerae to alter its O1 antigen and identified a novel mechanism by which this organism can modulate O antigen expression and exhibit intra-strain heterogeneity. We identified two phase variable genes required for O1 antigen biosynthesis, manA and wbeL. manA resides outside of the previously recognized O1 antigen biosynthetic locus, and encodes for a phosphomannose isomerase critical for the initial step in O1 antigen biosynthesis. We determined that manA and wbeL phase variants are attenuated for virulence, providing functional evidence to further support the critical role of the O1 antigen for infectivity. We provide the first report of phase variation modulating O1 antigen expression in V. cholerae, and show that the maintenance of these phase variable loci is an important means by which this facultative pathogen can generate the diverse subpopulations of cells needed for infecting the host intestinal tract and for escaping predation by an O1-specific phage.
Collapse
Affiliation(s)
- Kimberley D. Seed
- Howard Hughes Medical Institute and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Shah M. Faruque
- Molecular Genetics Laboratory, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - John J. Mekalanos
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Stephen B. Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Firdausi Qadri
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Andrew Camilli
- Howard Hughes Medical Institute and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
57
|
Abstract
Cholera is an acute, secretory diarrhoea caused by infection with Vibrio cholerae of the O1 or O139 serogroup. It is endemic in more than 50 countries and also causes large epidemics. Since 1817, seven cholera pandemics have spread from Asia to much of the world. The seventh pandemic began in 1961 and affects 3-5 million people each year, killing 120,000. Although mild cholera can be indistinguishable from other diarrhoeal illnesses, the presentation of severe cholera is distinct, with pronounced diarrhoeal purging. Management of patients with cholera involves aggressive fluid replacement; effective therapy can decrease mortality from more than 50% to less than 0·2%. Antibiotic treatment decreases volume and duration of diarrhoea by 50% and is recommended for patients with moderate to severe dehydration. Prevention of cholera depends on access to safe water and sanitation. Two oral cholera vaccines are available and the most effective use of these in integrated prevention programmes is being actively assessed.
Collapse
Affiliation(s)
- Jason B Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Regina C LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Edward T Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA
| | - Stephen B Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
58
|
Abstract
Cholera has affected humans for at least a millennium and persists as a major cause of illness and death worldwide, with recent epidemics in Zimbabwe (2008-2009) and Haiti (2010). Clinically, evidence exists of increasing severity of disease linked with emergence of atypical Vibrio cholerae organisms that have incorporated genetic material from classical biotype strains into an El Tor biotype background. A key element in transmission may be a recently recognized hyperinfectious phase, which persists for hours after passage in diarrheal feces. We propose a model of transmission in which environmental triggers (such as temperature) lead to increases in V. cholerae in environmental reservoirs, with spillover into human populations. However, once the microorganism is introduced into a human population, transmission occurs primary by "fast" transmission from person to person (taking advantage of the hyperinfectious state), without returning to the aquatic environment.
Collapse
Affiliation(s)
- J Glenn Morris
- University of Florida, Gainesville, Florida 32610-0009, USA. .edu
| |
Collapse
|
59
|
Seper A, Fengler VHI, Roier S, Wolinski H, Kohlwein SD, Bishop AL, Camilli A, Reidl J, Schild S. Extracellular nucleases and extracellular DNA play important roles in Vibrio cholerae biofilm formation. Mol Microbiol 2011; 82:1015-37. [PMID: 22032623 PMCID: PMC3212620 DOI: 10.1111/j.1365-2958.2011.07867.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biofilms are a preferred mode of survival for many microorganisms including Vibrio cholerae, the causative agent of the severe secretory diarrhoeal disease cholera. The ability of the facultative human pathogen V. cholerae to form biofilms is a key factor for persistence in aquatic ecosystems and biofilms act as a source for new outbreaks. Thus, a better understanding of biofilm formation and transmission of V. cholerae is an important target to control the disease. So far the Vibrio exopolysaccharide was the only known constituent of the biofilm matrix. In this study we identify and characterize extracellular DNA as a component of the Vibrio biofilm matrix. Furthermore, we show that extracellular DNA is modulated and controlled by the two extracellular nucleases Dns and Xds. Our results indicate that extracellular DNA and the extracellular nucleases are involved in diverse processes including the development of a typical biofilm architecture, nutrient acquisition, detachment from biofilms and the colonization fitness of biofilm clumps after ingestion by the host. This study provides new insights into biofilm development and transmission of biofilm-derived V. cholerae.
Collapse
Affiliation(s)
- Andrea Seper
- Institut fuer Molekulare Biowissenschaften, Karl-Franzens-Universitaet Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
|
61
|
Abuaita BH, Withey JH. Termination of Vibrio cholerae virulence gene expression is mediated by proteolysis of the major virulence activator, ToxT. Mol Microbiol 2011; 81:1640-53. [PMID: 21883522 DOI: 10.1111/j.1365-2958.2011.07798.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Vibrio cholerae is the causative agent of cholera, a severe diarrhoeal illness. V. cholerae produces two major virulence factors: the cholera toxin, which directly causes diarrhoea, and the toxin-coregulated pilus, which is required for intestinal colonization. Production of these virulence factors is dependent on the major virulence regulator, ToxT. Under virulence-inducing growth conditions, transcription factors ToxR and TcpP initially activate transcription of toxT. However, once ToxT has been expressed, it produces more of itself independent of ToxR and TcpP by activating transcription of the long tcpA operon, within which toxT is located. It is known that V. cholerae terminates virulence gene expression prior to escape from the host, but it is unknown how this ToxT-positive feedback loop is broken, an essential step in terminating virulence gene expression. To better understand how ToxT protein activity is regulated, we monitored ToxT accumulation and activity under virulence-inducing and -repressing growth conditions. Our results suggest that ToxT protein undergoes proteolytic degradation to terminate virulence gene expression. This directed degradation of ToxT supports a model for terminating V. cholerae virulence gene expression late in infection, with both ToxT and TcpP undergoing proteolysis prior to escape from the host.
Collapse
Affiliation(s)
- Basel H Abuaita
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI, USA
| | | |
Collapse
|
62
|
Evidence of a dominant lineage of Vibrio cholerae-specific lytic bacteriophages shed by cholera patients over a 10-year period in Dhaka, Bangladesh. mBio 2011; 2:e00334-10. [PMID: 21304168 PMCID: PMC3037004 DOI: 10.1128/mbio.00334-10] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Lytic bacteriophages are hypothesized to contribute to the seasonality and duration of cholera epidemics in Bangladesh. However, the bacteriophages contributing to this phenomenon have yet to be characterized at a molecular genetic level. In this study, we isolated and sequenced the genomes of 15 bacteriophages from stool samples from cholera patients spanning a 10-year surveillance period in Dhaka, Bangladesh. Our results indicate that a single novel bacteriophage type, designated ICP1 (for the International Centre for Diarrhoeal Disease Research, Bangladesh cholera phage 1) is present in all stool samples from cholera patients, while two other bacteriophage types, one novel (ICP2) and one T7-like (ICP3), are transient. ICP1 is a member of the Myoviridae family and has a 126-kilobase genome comprising 230 open reading frames. Comparative sequence analysis of ICP1 and related isolates from this time period indicates a high level of genetic conservation. The ubiquitous presence of ICP1 in cholera patients and the finding that the O1 antigen of lipopolysaccharide (LPS) serves as the ICP1 receptor suggest that ICP1 is extremely well adapted to predation of human-pathogenic V. cholerae O1.
Collapse
|
63
|
Rajkumar S, Joseph Ratnam VP, Narmada N, Arakawa E, Sundararaj T. Enterotoxigenicity screening of viable environmental Vibrio cholerae strains from rainwater pools in a university campus in Chennai, South India. ACTA ACUST UNITED AC 2011; 43:325-8. [PMID: 21231812 DOI: 10.3109/00365548.2010.548079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Vibrio spp., being primarily inhabitants of the aquatic environment, pose a severe health threat to humans. This problem is escalated in developing countries where water-logging after rainfall is very common. Therefore, screening of environmental water samples for the presence of clinically important species of Vibrio becomes essential. METHODS This study was conducted for a period of 1 y. Water samples were collected every month from 4 locations where water pools formed after rains, on the campus of a university in Chennai, South India. The water samples were monitored for Vibrio species, and characterized isolates were screened for enterotoxigenicity. RESULTS Thirty isolates of Vibrio cholerae belonging to a variety of serogroups and 11 strains of Vibrio species other than cholerae were isolated from the rainwater pools. On polymerase chain reaction (PCR) screening, while all the strains were positive for the ompW gene, none tested positive for the ctxA gene. CONCLUSIONS Though all the environmental isolates of V. cholerae were non-epidemic, 4 isolates demonstrated enterotoxigenicity by rabbit ileal loop method and antibiotic resistance to drugs. This is of concern and underscores the importance of screening environmental specimens and improving civic infrastructure to prevent prolonged water-logging in developing countries.
Collapse
Affiliation(s)
- Samuel Rajkumar
- Department of Microbiology, Dr A.L.M. Postgraduate Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai, India.
| | | | | | | | | |
Collapse
|
64
|
Luque Fernández MÁ, Mason PR, Gray H, Bauernfeind A, Fesselet JF, Maes P. Descriptive spatial analysis of the cholera epidemic 2008-2009 in Harare, Zimbabwe: a secondary data analysis. Trans R Soc Trop Med Hyg 2010; 105:38-45. [PMID: 21075411 DOI: 10.1016/j.trstmh.2010.10.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 10/01/2010] [Accepted: 10/01/2010] [Indexed: 11/16/2022] Open
Abstract
This ecological study describes the cholera epidemic in Harare during 2008-2009 and identifies patterns that may explain transmission. Rates ratios of cholera cases by suburb were calculated by a univariate regression Poisson model and then, through an Empirical Bayes modelling, smoothed rate ratios were estimated and represented geographically. Mbare and southwest suburbs of Harare presented higher rate ratios. Suburbs attack rates ranged from 1.2 (95% Cl = 0.7-1.6) cases per 1000 people in Tynwald to 90.3 (95% Cl = 82.8-98.2) in Hopley. The identification of this spatial pattern in the spread, characterised by low risk in low density residential housing, and a higher risk in high density south west suburbs and Mbare, could be used to advocate for improving water and sanitation conditions and specific preparedness measures in the most affected areas.
Collapse
Affiliation(s)
- Miguel Ángel Luque Fernández
- Médecins Sans Frontières, Medical department (Brussels Operational Center), 94, rue Dupre, 1090 Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
65
|
Nielsen AT, Dolganov NA, Rasmussen T, Otto G, Miller MC, Felt SA, Torreilles S, Schoolnik GK. A bistable switch and anatomical site control Vibrio cholerae virulence gene expression in the intestine. PLoS Pathog 2010; 6:e1001102. [PMID: 20862321 PMCID: PMC2940755 DOI: 10.1371/journal.ppat.1001102] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 08/13/2010] [Indexed: 01/09/2023] Open
Abstract
A fundamental, but unanswered question in host-pathogen interactions is the timing, localization and population distribution of virulence gene expression during infection. Here, microarray and in situ single cell expression methods were used to study Vibrio cholerae growth and virulence gene expression during infection of the rabbit ligated ileal loop model of cholera. Genes encoding the toxin-coregulated pilus (TCP) and cholera toxin (CT) were powerfully expressed early in the infectious process in bacteria adjacent to epithelial surfaces. Increased growth was found to co-localize with virulence gene expression. Significant heterogeneity in the expression of tcpA, the repeating subunit of TCP, was observed late in the infectious process. The expression of tcpA, studied in single cells in a homogeneous medium, demonstrated unimodal induction of tcpA after addition of bicarbonate, a chemical inducer of virulence gene expression. Striking bifurcation of the population occurred during entry into stationary phase: one subpopulation continued to express tcpA, whereas the expression declined in the other subpopulation. ctxA, encoding the A subunit of CT, and toxT, encoding the proximal master regulator of virulence gene expression also exhibited the bifurcation phenotype. The bifurcation phenotype was found to be reversible, epigenetic and to persist after removal of bicarbonate, features consistent with bistable switches. The bistable switch requires the positive-feedback circuit controlling ToxT expression and formation of the CRP-cAMP complex during entry into stationary phase. Key features of this bistable switch also were demonstrated in vivo, where striking heterogeneity in tcpA expression was observed in luminal fluid in later stages of the infection. When this fluid was diluted into artificial seawater, bacterial aggregates continued to express tcpA for prolonged periods of time. The bistable control of virulence gene expression points to a mechanism that could generate a subpopulation of V. cholerae that continues to produce TCP and CT in the rice water stools of cholera patients. Most pathogenic microorganisms infect in a stepwise manner: colonization of host surfaces is followed by invasion and injury of host tissues and, late in the infectious process, dissemination to other hosts occurs. During its residence in the host, the pathogen produces essential virulence determinants and often replicates rapidly, leading to a vast expansion of its biomass. Although this scenario is well established also for Vibrio cholerae, the cause of a potentially fatal diarrheal illness, it has not previously been possible to identify precisely when or where virulence determinants are produced in the intestine. We addressed this question by investigating the expression of virulence genes by individual V. cholerae during infection of the small intestine. Virulence genes were found to be powerfully expressed early in the infectious process by bacteria in close proximity to epithelial surfaces. Increased replication rates were also localized to epithelial surfaces. During later stages of the infection, the population of V. cholerae bifurcates into two fractions: one subpopulation continues to express virulence genes, whereas these genes are silenced in the other subpopulation. The genetic program controlling the continued production of virulence genes may mediate the persistence of a hyper-infectious subpopulation of bacteria in the stools of cholera patients.
Collapse
Affiliation(s)
- Alex T. Nielsen
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Nadia A. Dolganov
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Thomas Rasmussen
- Technical University of Denmark, Department of Systems Biology, Kgs. Lyngby, Denmark
| | - Glen Otto
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Michael C. Miller
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Stephen A. Felt
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Stéphanie Torreilles
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Gary K. Schoolnik
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
66
|
Mucosal immunization with Vibrio cholerae outer membrane vesicles provides maternal protection mediated by antilipopolysaccharide antibodies that inhibit bacterial motility. Infect Immun 2010; 78:4402-20. [PMID: 20679439 DOI: 10.1128/iai.00398-10] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae is the causative agent of cholera, a severe diarrheal disease that remains endemic in many parts of the world and can cause outbreaks wherever sanitation and clean water systems break down. Prevention of disease could be achieved through improved sanitation and clean water provision supported by vaccination. V. cholerae serogroup O1 is the major cause of cholera; O1 serotypes Inaba and Ogawa have similar disease burdens, while O139 is the only non-O1 serogroup to cause epidemics. We showed previously that immunization of adult female mice with purified V. cholerae outer membrane vesicles (OMVs) elicits an antibody response that protect neonates from oral V. cholerae challenge and that suckling from an immunized dam accounts for the majority of protection from V. cholerae colonization. Here we report that lipopolysaccharide (LPS) is the major OMV protective antigen. Mucosal immunization with OMVs from Inaba or Ogawa provides significant cross-serotype protection from V. cholerae colonization, although serotype-specific antigens are dominant. OMVs from O1 or O139 do not provide cross-serogroup protection, but by immunization with a mixture of O1 and O139 OMVs, cross-serogroup protection was achieved. Neonatal protection is not associated with significant bacterial death but may involve inhibition of motility, as antibodies from OMV-immunized mice inhibit V. cholerae motility in vitro, with trends that parallel in vivo protection. Motility assays also reveal that a higher antibody titer is required to immobilize O139 compared to O1, a phenotype that is O139 capsule dependent.
Collapse
|
67
|
Penrose K, de Castro MC, Werema J, Ryan ET. Informal urban settlements and cholera risk in Dar es Salaam, Tanzania. PLoS Negl Trop Dis 2010; 4:e631. [PMID: 20300569 PMCID: PMC2838775 DOI: 10.1371/journal.pntd.0000631] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 01/28/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND As a result of poor economic opportunities and an increasing shortage of affordable housing, much of the spatial growth in many of the world's fastest-growing cities is a result of the expansion of informal settlements where residents live without security of tenure and with limited access to basic infrastructure. Although inadequate water and sanitation facilities, crowding and other poor living conditions can have a significant impact on the spread of infectious diseases, analyses relating these diseases to ongoing global urbanization, especially at the neighborhood and household level in informal settlements, have been infrequent. To begin to address this deficiency, we analyzed urban environmental data and the burden of cholera in Dar es Salaam, Tanzania. METHODOLOGY/PRINCIPAL FINDINGS Cholera incidence was examined in relation to the percentage of a ward's residents who were informal, the percentage of a ward's informal residents without an improved water source, the percentage of a ward's informal residents without improved sanitation, distance to the nearest cholera treatment facility, population density, median asset index score in informal areas, and presence or absence of major roads. We found that cholera incidence was most closely associated with informal housing, population density, and the income level of informal residents. Using data available in this study, our model would suggest nearly a one percent increase in cholera incidence for every percentage point increase in informal residents, approximately a two percent increase in cholera incidence for every increase in population density of 1000 people per km(2) in Dar es Salaam in 2006, and close to a fifty percent decrease in cholera incidence in wards where informal residents had minimally improved income levels, as measured by ownership of a radio or CD player on average, in comparison to wards where informal residents did not own any items about which they were asked. In this study, the range of access to improved sanitation and improved water sources was quite narrow at the ward level, limiting our ability to discern relationships between these variables and cholera incidence. Analysis at the individual household level for these variables would be of interest. CONCLUSIONS/SIGNIFICANCE Our results suggest that ongoing global urbanization coupled with urban poverty will be associated with increased risks for certain infectious diseases, such as cholera, underscoring the need for improved infrastructure and planning as the world's urban population continues to expand.
Collapse
Affiliation(s)
- Katherine Penrose
- Department of Global Health and Population, Harvard School of Public Health, Boston, Massachusetts, United States of America.
| | | | | | | |
Collapse
|
68
|
Nelson EJ, Harris JB, Morris JG, Calderwood SB, Camilli A. Cholera transmission: the host, pathogen and bacteriophage dynamic. Nat Rev Microbiol 2009; 7:693-702. [PMID: 19756008 PMCID: PMC3842031 DOI: 10.1038/nrmicro2204] [Citation(s) in RCA: 343] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Zimbabwe offers the most recent example of the tragedy that befalls a country and its people when cholera strikes. The 2008-2009 outbreak rapidly spread across every province and brought rates of mortality similar to those witnessed as a consequence of cholera infections a hundred years ago. In this Review we highlight the advances that will help to unravel how interactions between the host, the bacterial pathogen and the lytic bacteriophage might propel and quench cholera outbreaks in endemic settings and in emergent epidemic regions such as Zimbabwe.
Collapse
Affiliation(s)
- Eric J Nelson
- Howard Hughes Medical Institute, Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | |
Collapse
|
69
|
Bourassa L, Camilli A. Glycogen contributes to the environmental persistence and transmission of Vibrio cholerae. Mol Microbiol 2009; 72:124-38. [PMID: 19226328 DOI: 10.1111/j.1365-2958.2009.06629.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Pathogenic Vibrio cholerae cycle between the nutrient-rich human intestinal tract and nutrient-poor aquatic environments and currently few bacterial factors are known that aid in the transition between these disparate environments. We hypothesized that the ability to store carbon as glycogen would facilitate both bacterial fitness in the aquatic environment and transmission of V. cholerae to new hosts. To investigate the role of glycogen in V. cholerae transmission, we constructed mutants that cannot store or degrade glycogen. Here, we provide the first report of glycogen metabolism in V. cholerae and demonstrate that glycogen prolongs survival in nutrient-poor environments that are known ecological niches of V. cholerae, including pond water and rice-water stool. Additionally, glycogen contributes to the pathogenesis of V. cholerae in a transmission model of cholera. A role for glycogen in the transmission of V. cholerae is further supported by the presence of glycogen granules in rice-water stool vibrios from cholera patients, indicating that glycogen is stored during human infection. Collectively, our findings indicate that glycogen metabolism is critical for V. cholerae to transition between host and aquatic environments.
Collapse
Affiliation(s)
- Lori Bourassa
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | |
Collapse
|