51
|
Elharar Y, Roth Z, Hermelin I, Moon A, Peretz G, Shenkerman Y, Vishkautzan M, Khalaila I, Gur E. Survival of mycobacteria depends on proteasome-mediated amino acid recycling under nutrient limitation. EMBO J 2014; 33:1802-14. [PMID: 24986881 DOI: 10.15252/embj.201387076] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Intracellular protein degradation is an essential process in all life domains. While in all eukaryotes regulated protein degradation involves ubiquitin tagging and the 26S-proteasome, bacterial prokaryotic ubiquitin-like protein (Pup) tagging and proteasomes are conserved only in species belonging to the phyla Actinobacteria and Nitrospira. In Mycobacterium tuberculosis, the Pup-proteasome system (PPS) is important for virulence, yet its physiological role in non-pathogenic species has remained an enigma. We now report, using Mycobacterium smegmatis as a model organism, that the PPS is essential for survival under starvation. Upon nitrogen limitation, PPS activity is induced, leading to accelerated tagging and degradation of many cytoplasmic proteins. We suggest a model in which the PPS functions to recycle amino acids under nitrogen starvation, thereby enabling the cell to maintain basal metabolic activities. We also find that the PPS auto-regulates its own activity via pupylation and degradation of its components in a manner that promotes the oscillatory expression of PPS components. As such, the destructive activity of the PPS is carefully balanced to maintain cellular functions during starvation.
Collapse
Affiliation(s)
- Yifat Elharar
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ziv Roth
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Inna Hermelin
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alexandra Moon
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Gabriella Peretz
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yael Shenkerman
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Marina Vishkautzan
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Isam Khalaila
- The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Eyal Gur
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
52
|
Abstract
Prokaryotes form ubiquitin (Ub)-like isopeptide bonds on the lysine residues of proteins by at least two distinct pathways that are reversible and regulated. In mycobacteria, the C-terminal Gln of Pup (prokaryotic ubiquitin-like protein) is deamidated and isopeptide linked to proteins by a mechanism distinct from ubiquitylation in enzymology yet analogous to ubiquitylation in targeting proteins for destruction by proteasomes. Ub-fold proteins of archaea (SAMPs, small archaeal modifier proteins) and Thermus (TtuB, tRNA-two-thiouridine B) that differ from Ub in amino acid sequence, yet share a common β-grasp fold, also form isopeptide bonds by a mechanism that appears streamlined compared with ubiquitylation. SAMPs and TtuB are found to be members of a small group of Ub-fold proteins that function not only in protein modification but also in sulfur-transfer pathways associated with tRNA thiolation and molybdopterin biosynthesis. These multifunctional Ub-fold proteins are thought to be some of the most ancient of Ub-like protein modifiers.
Collapse
Affiliation(s)
- Julie A Maupin-Furlow
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611;
| |
Collapse
|
53
|
Forer N, Korman M, Elharar Y, Vishkautzan M, Gur E. Bacterial proteasome and PafA, the pup ligase, interact to form a modular protein tagging and degradation machine. Biochemistry 2013; 52:9029-35. [PMID: 24228735 DOI: 10.1021/bi401017b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proteasome-containing bacteria possess a tagging system that directs proteins to proteasomal degradation by conjugating them to a prokaryotic ubiquitin-like protein (Pup). A single ligating enzyme, PafA, is responsible for Pup conjugation to lysine side chains of protein substrates. As Pup is recognized by the regulatory subunit of the proteasome, Pup functions as a degradation tag. Pup presents overlapping regions for binding of the proteasome and PafA. It was, therefore, unclear whether Pup binding by the proteasome regulatory subunit, Mpa, and by PafA are mutually exclusive events. The work presented here provides evidence for the simultaneous interaction of Pup with both Mpa and PafA. Surprisingly, we found that PafA and Mpa can form a complex both in vitro and in vivo. Our results thus suggest that PafA and the proteasome can function as a modular machine for the tagging and degradation of cytoplasmic proteins.
Collapse
Affiliation(s)
- Nadav Forer
- Department of Life Sciences and ‡The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev , Beer-Sheva 84105, Israel
| | | | | | | | | |
Collapse
|
54
|
Roberts DM, Personne Y, Ollinger J, Parish T. Proteases in Mycobacterium tuberculosis pathogenesis: potential as drug targets. Future Microbiol 2013; 8:621-31. [PMID: 23642117 DOI: 10.2217/fmb.13.25] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
TB is still a major global health problem causing over 1 million deaths per year. An increasing problem of drug resistance in the causative agent, Mycobacterium tuberculosis, as well as problems with the current lengthy and complex treatment regimens, lends urgency to the need to develop new antitubercular agents. Proteases have been targeted for therapy in other infections, most notably these have been successful as antiviral agents in the treatment of HIV infection. M. tuberculosis has a number of proteases with good potential as novel drug targets and developing drugs against these should result in agents that are effective against drug-resistant and drug-sensitive strains. In this review, the authors summarize the current status of proteases with potential as drug targets in this pathogen, particularly focusing on proteases involved in protein secretion (signal peptidases LepB and LspA), protein degradation and turnover (ClpP and the proteasome) and virulence (mycosins and HtrA).
Collapse
Affiliation(s)
- David M Roberts
- TB Discovery Research, Infectious Disease Research Institute, Seattle, WA, USA
| | | | | | | |
Collapse
|
55
|
Lin G, Chidawanyika T, Tsu C, Warrier T, Vaubourgeix J, Blackburn C, Gigstad K, Sintchak M, Dick L, Nathan C. N,C-Capped dipeptides with selectivity for mycobacterial proteasome over human proteasomes: role of S3 and S1 binding pockets. J Am Chem Soc 2013; 135:9968-71. [PMID: 23782398 DOI: 10.1021/ja400021x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We identified N,C-capped dipeptides that are selective for the Mycobacterium tuberculosis proteasome over human constitutive and immunoproteasomes. Differences in the S3 and S1 binding pockets appeared to account for the species selectivity. The inhibitors can penetrate mycobacteria and kill nonreplicating M. tuberculosis under nitrosative stress.
Collapse
Affiliation(s)
- Gang Lin
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10065, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Polyphosphate deficiency in Mycobacterium tuberculosis is associated with enhanced drug susceptibility and impaired growth in guinea pigs. J Bacteriol 2013; 195:2839-51. [PMID: 23585537 DOI: 10.1128/jb.00038-13] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Inorganic polyphosphate (polyP), a linear polymer of hundreds of phosphate residues linked by ATP-like phosphoanhydride bonds, is found in all organisms and performs a wide variety of functions. This study shows that polyP accumulation occurs in Mycobacterium tuberculosis upon exposure to various stress conditions. M. tuberculosis possesses a single homolog of ppk-1, and we have disrupted ppk-1 in the M. tuberculosis genome by allelic replacement. The mutant strain exhibited negligible levels of intracellular polyP, decreased expression of sigF and phoP, and reduced growth in the stationary phase and displayed a survival defect in response to nitrosative stress and in THP-1 macrophages compared to the wild-type strain. We report that reduction in polyP levels is associated with increased susceptibility of M. tuberculosis to certain TB drugs and impairs its ability to cause disease in guinea pigs. These results suggest that polyP contributes to persistence of M. tuberculosis in vitro and plays an important role in the physiology of bacteria residing within guinea pigs.
Collapse
|
57
|
Striebel F, Imkamp F, Özcelik D, Weber-Ban E. Pupylation as a signal for proteasomal degradation in bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:103-13. [PMID: 23557784 DOI: 10.1016/j.bbamcr.2013.03.022] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 02/21/2013] [Accepted: 03/12/2013] [Indexed: 12/23/2022]
Abstract
Posttranslational modifications in the form of covalently attached proteins like ubiquitin (Ub), were long considered an exclusive feature of eukaryotic organisms. The discovery of pupylation, the modification of lysine residues with a prokaryotic, ubiquitin-like protein (Pup), demonstrated that certain bacteria use a tagging pathway functionally related to ubiquitination in order to target proteins for proteasomal degradation. However, functional analogies do not translate into structural or mechanistic relatedness. Bacterial Pup, unlike eukaryotic Ub, does not adopt a β-grasp fold, but is intrinsically disordered. Furthermore, isopeptide bond formation in the pupylation process is carried out by enzymes evolutionary descendent from glutamine synthetases. While in eukaryotes, the proteasome is the main energy-dependent protein degradation machine, bacterial proteasomes exist in addition to other architecturally related degradation complexes, and their specific role along with the role of pupylation is still poorly understood. In Mycobacterium tuberculosis (Mtb), the Pup-proteasome system contributes to pathogenicity by supporting the bacterium's persistence within host macrophages. Here, we describe the mechanism and structural framework of pupylation and the targeting of pupylated proteins to the proteasome complex. Particular attention is given to the comparison of the bacterial Pup-proteasome system and the eukaryotic ubiquitin-proteasome system. Furthermore, the involvement of pupylation and proteasomal degradation in Mtb pathogenesis is discussed together with efforts to establish the Pup-proteasome system as a drug target. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.
Collapse
Affiliation(s)
- Frank Striebel
- Max Planck Institute of Biochemistry, Department of Molecular Cell Biology, D-82152 Martinsried, Germany
| | | | | | | |
Collapse
|
58
|
Smirnov D, Dhall A, Sivanesam K, Sharar RJ, Chatterjee C. Fluorescent probes reveal a minimal ligase recognition motif in the prokaryotic ubiquitin-like protein from Mycobacterium tuberculosis. J Am Chem Soc 2013; 135:2887-90. [PMID: 23402667 DOI: 10.1021/ja311376h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The prokaryotic ubiquitin-like protein (Pup)-based proteasomal system in the pathogen Mycobacterium tuberculosis (Mtb) is essential for its survival in a mammalian host. The Pup ligase enzyme, PafA, conjugates Pup to a suite of proteins targeted for proteasomal degradation and is necessary for persistent infection by Mtb. We report the design and application of fluorescent probes for use in elucidating the mechanisms of Pup and substrate recognition by PafA. Our studies revealed that the C-terminal 26 amino acid sequence of Pup is the minimal ligase recognition motif in Mtb. Specific hydrophobic residues within this sequence that are known to be important for the interactions of Pup with proteasomes are also critical for the activation of Pup by PafA.
Collapse
Affiliation(s)
- Denis Smirnov
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | |
Collapse
|
59
|
Abstract
Proteasomes are ATP-dependent protein degradation machines present in all archaea and eukaryotes, and found in several bacterial species of the order Actinomycetales. Mycobacterium tuberculosis (Mtb), an Actinomycete pathogenic to humans, requires proteasome function to cause disease. In this chapter, we describe what is currently understood about the biochemistry of the Mtb proteasome and its role in virulence. The characterization of the Mtb proteasome has led to the discovery that proteins can be targeted for degradation by a small protein modifier in bacteria as they are in eukaryotes. Furthermore, the understanding of proteasome function in Mtb has helped reveal new insight into how the host battles infections.
Collapse
Affiliation(s)
- Marie I Samanovic
- Department of Microbiology, New York University School of Medicine, 550 First Avenue, MSB 236, New York, NY, 10016, USA
| | | | | |
Collapse
|
60
|
Abstract
If discovery of new antibiotics continues to falter while resistance to drugs in clinical use continues to spread, society's medicine chest will soon lack effective treatments for many infections. Heritable antibiotic resistance emerges in bacteria from nonheritable resistance, also called phenotypic tolerance. This widespread phenomenon is closely linked to nonproliferative states in ways that scientists are just beginning to understand. A deeper understanding of the mechanisms of phenotypic tolerance may reveal new drug targets in the infecting organisms. At the same time, researchers must investigate ways to target the host in order to influence host-pathogen relationships. Government must reform the regulatory process for approval of new antibiotics. The private sector, government, and academia must undertake multiple, organized, multidisciplinary, parallel efforts to improve the ways in which antibiotics are discovered, tested, approved, and conserved, or it will be difficult to sustain the modern practice of medicine.
Collapse
Affiliation(s)
- Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
61
|
Merkx R, Burns KE, Slobbe P, El Oualid F, El Atmioui D, Darwin KH, Ovaa H. Synthesis and evaluation of a selective fluorogenic Pup derived assay reagent for Dop, a potential drug target in Mycobacterium tuberculosis. Chembiochem 2012; 13:2056-60. [PMID: 22927162 PMCID: PMC3474595 DOI: 10.1002/cbic.201200460] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Indexed: 01/04/2023]
Affiliation(s)
- Remco Merkx
- Division of Cell Biology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
62
|
Abstract
Mycobacterial persisters, the survivors from antibiotic exposure, necessitate the lengthy treatment of tuberculosis (TB) and pose a significant challenge for our control of the disease. We suggest that persisters in TB are heterogeneous in nature and comprise various proportions of the population depending on the circumstances; the mechanisms of their formation are complex and may be related to those required for persistence in chronic infection. Results from recent studies implicate multiple pathways for persister formation, including energy production, the stringent response, global regulators, the trans-translation pathway, proteasomal protein degradation, toxin-antitoxin modules, and transporter or efflux mechanisms. A combination of specifically persister-targeted approaches, such as catching them when active and susceptible either by stimulating them to "wake up" or by intermittent drug dosing, the development of new drugs, the use of appropriate drug combinations, and combined chemotherapy and immunotherapy, may be needed for more effective elimination of persisters and better treatment of TB. Variations in levels of persister formation and in host genetics can play a role in the outcome of clinical treatment, and thus, these may entail personalized treatment regimens.
Collapse
|
63
|
WANG CJ, LIN J, ZHANG JJ. Progress in The Study of Prokaryotic Ubiquitin-like Protein (Pup)-Proteasome System*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2011.00110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
64
|
Ehrt S, Rhee K. Mycobacterium tuberculosis metabolism and host interaction: mysteries and paradoxes. Curr Top Microbiol Immunol 2012; 374:163-88. [PMID: 23242856 DOI: 10.1007/82_2012_299] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metabolism is a widely recognized facet of all host-pathogen interactions. Knowledge of its roles in pathogenesis, however, remains comparatively incomplete. Existing studies have emphasized metabolism as a cell autonomous property of pathogens used to fuel replication in a quantitative, rather than qualitatively specific, manner. For Mycobacterium tuberculosis, however, matters could not be more different. M. tuberculosis is a chronic facultative intracellular pathogen that resides in humans as its only known host. Within humans, M. tuberculosis resides chiefly within the macrophage phagosome, the cell type, and compartment most committed to its eradication. M. tuberculosis has thus evolved its metabolic network to both maintain and propagate its survival as a species within a single host. The specific ways in which its metabolic network serves these distinct, through interdependent, functions, however, remain incompletely defined. Here, we review existing knowledge of the M. tuberculosis-host interaction, highlighting the distinct phases of its natural life cycle and the diverse microenvironments encountered therein.
Collapse
Affiliation(s)
- Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA,
| | | |
Collapse
|
65
|
Harding JS, Schreiber HA, Sandor M. Granuloma transplantation: an approach to study mycobacterium-host interactions. Front Microbiol 2011; 2:245. [PMID: 22180751 PMCID: PMC3235768 DOI: 10.3389/fmicb.2011.00245] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 11/23/2011] [Indexed: 11/13/2022] Open
Abstract
The host-pathogen biology during infection with Mycobacterium tuberculosis is incredibly complex and despite accelerating progress in research, remains poorly understood. Our limited understanding hinders the development of new drugs, next generation vaccines, and novel therapies. The granuloma is the site where mycobacteria are both controlled and allowed to persist, but it remains one of the least studied aspects of the host-pathogen relationship. Here, we review the development, application, potential uses, and limitations of a novel model of granuloma transplantation as a tool to study specific host-pathogen interactions that have been difficult to probe. Application of this new model has already contributed to our understanding of granuloma cell traffic, repopulation, and the relationship between systemic immunity and mycobacteria-containing granulomas. The data collected highlight the dynamic interaction between systemic and local immune processes and support a paradigm that defines the granuloma as a highly dynamic structure. Granuloma transplantation also has special potential as a novel latency model that can contribute to our understanding of host protection factors and bacterial mutants, and serve as a platform for drug testing.
Collapse
Affiliation(s)
- Jeffrey S Harding
- Laboratory Medicine, Department of Pathology, School of Medicine and Public Health, University of Wisconsin Madison, WI, USA
| | | | | |
Collapse
|
66
|
Bhosale M, Kadthur JC, Nandi D. Roles of Salmonella enterica serovar Typhimurium encoded Peptidase N during systemic infection of Ifnγ-/- mice. Immunobiology 2011; 217:354-62. [PMID: 21813203 DOI: 10.1016/j.imbio.2011.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 07/05/2011] [Indexed: 11/19/2022]
Abstract
Pathogen encoded peptidases are known to be important during infection; however, their roles in modulating host responses in immunocompromised individuals are not well studied. The roles of S. typhimurium (WT) encoded Peptidase N (PepN), a major aminopeptidase and sole M1 family member, was studied in mice lacking Interferon-γ (IFNγ), a cytokine important for immunity. S. typhimurium lacking pepN (ΔpepN) displays enhanced colony forming units (CFU) compared to WT in peripheral organs during systemic infection in C57BL/6 mice. However, Ifnγ(-/-) mice show higher CFU compared to C57BL/6 mice, resulting in lower fold differences between WT and ΔpepN. Concomitantly, reintroduction of pepN in ΔpepN (ΔpepN/pepN) reduces CFU, demonstrating pepN-dependence. Interestingly, expression of a catalytically inactive PepN (ΔpepN/E298A) also lowers CFU, demonstrating that the decrease in CFU is independent of the catalytic activity of PepN. In addition, three distinct differences are observed between infection of C57BL/6 and Ifnγ(-/-) mice: First, serum amounts of TNFα and IL1β post infection are significantly lower in Ifnγ(-/-) mice. Second, histological analysis of C57BL/6 mice reveals that damage in spleen and liver upon infection with WT or ΔpepN is greater compared to ΔpepN/pepN or ΔpepN/E298A. On the other hand, Ifnγ(-/-) mice are highly susceptible to organ damage by all strains of S. typhimurium used in this study. Finally, greater survival of C57BL/6, but not Ifnγ(-/-) mice, is observed upon infection with ΔpepN/pepN or ΔpepN/E298A. Overall, the roles of the host encoded IFNγ during infection with S. typhimurium strains with varying degrees of virulence are highlighted.
Collapse
Affiliation(s)
- Manoj Bhosale
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|
67
|
Blumenthal A, Trujillo C, Ehrt S, Schnappinger D. Simultaneous analysis of multiple Mycobacterium tuberculosis knockdown mutants in vitro and in vivo. PLoS One 2010; 5:e15667. [PMID: 21203517 PMCID: PMC3008731 DOI: 10.1371/journal.pone.0015667] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 11/19/2010] [Indexed: 01/23/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) represents one of the most persistent bacterial threats to human health and new drugs are needed to limit its impact. Conditional knockdown mutants can help validate new drug targets, but the analysis of individual mutants is laborious and time consuming. Here, we describe quantitative DNA tags (qTags) and their use to simultaneously analyze conditional Mtb knockdown mutants that allowed silencing the glyoxylate and methylcitrate cycles (via depletion of isocitrate lyase, ICL), the serine protease Rv3671c, and the core subunits of the mycobacterial proteasome, PrcB and PrcA. The impact of gene silencing in multi-strain cultures was determined by measuring the relative abundance of mutant-specific qTags with real-time PCR. This achieved accurate quantification over a broad range of qTag abundances and depletion of ICL, Rv3671c, or PrcBA resulted in the expected impairment of growth of Mtb with butyrate as the primary carbon source, survival during oxidative stress, acid stress and starvation. The impact of depleting ICL, Rv3671c, or PrcBA in multi-strain mouse infections was analyzed with two approaches. We first measured the relative abundance of mutant-specific qTags in total chromosomal DNA isolated from bacteria that were recovered from infected lungs on agar plates. We then developed a two-step amplification procedure, which allowed us to measure the abundances of individual mutants directly in infected lung tissue. Both strategies confirmed that inactivation of Rv3671c and PrcBA severely reduced persistence of Mtb in mice. The multi-strain infections furthermore suggested that silencing ICL not only prevented growth of Mtb during acute infections but also prevented survival of Mtb during chronic infections. Analyses of the ICL knockdown mutant in single-strain infections confirmed this and demonstrated that silencing of ICL during chronic infections impaired persistence of Mtb to the extent that the pathogen was cleared from the lungs of most mice.
Collapse
Affiliation(s)
- Antje Blumenthal
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Carolina Trujillo
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
68
|
Guth E, Thommen M, Weber-Ban E. Mycobacterial ubiquitin-like protein ligase PafA follows a two-step reaction pathway with a phosphorylated pup intermediate. J Biol Chem 2010; 286:4412-9. [PMID: 21081505 DOI: 10.1074/jbc.m110.189282] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Mycobacterium tuberculosis, the enzyme PafA is responsible for the activation and conjugation of the proteasome-targeting molecule Pup to protein substrates. As the proteasomal pathway has been shown to be vital to the persistence of M. tuberculosis, understanding the reaction mechanism of PafA is critical to the design of antituberculous agents. In this study, we have developed novel techniques to study the activity of PafA and have characterized fundamental features of the reaction mechanism. We show that PafA catalyzes a two-step reaction mechanism proceeding through a γ-glutamyl phosphate-mixed anhydride intermediate that is formed on the C-terminal glutamate of Pup before transfer of Pup to the substrate acceptor lysine. SDS-PAGE analysis of formation of the phosphorylated intermediate revealed that the rate of Pup activation matched the maximal steady-state rate of product formation in the overall reaction and suggested that Pup activation was rate-limiting when all substrates were present at saturating concentrations. Following activation, both ADP and the phosphorylated intermediate remained associated with the enzyme awaiting nucleophilic attack by a lysine residue of the target protein. The PafA reaction mechanism appeared to be noticeably biased toward the stable activation of Pup in the absence of additional substrate and required very low concentrations of ATP and Pup relative to other carboxylate-amine/ammonia ligase family members. The bona fide nucleophilic substrate PanB showed a 3 orders of magnitude stronger affinity than free lysine, promoting Pup conjugation to occur close to the rate limit of activation with physiologically relevant concentrations of substrate.
Collapse
Affiliation(s)
- Ethan Guth
- Institute of Molecular Biology & Biophysics, ETH Zurich, CH-8093 Zurich, Switzerland
| | | | | |
Collapse
|