51
|
Using the PfEMP1 head structure binding motif to deal a blow at severe malaria. PLoS One 2014; 9:e88420. [PMID: 24516657 PMCID: PMC3917906 DOI: 10.1371/journal.pone.0088420] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 11/12/2013] [Indexed: 01/13/2023] Open
Abstract
Plasmodium falciparum (Pf) malaria causes 200 million cases worldwide, 8 million being severe and complicated leading to ∼1 million deaths and ∼100,000 abortions annually. Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) has been implicated in cytoadherence and infected erythrocyte rosette formation, associated with cerebral malaria; chondroitin sulphate-A attachment and infected erythrocyte sequestration related to pregnancy-associated malaria and other severe forms of disease. An endothelial cell high activity binding peptide is described in several of this ∼300 kDa hypervariable protein's domains displaying a conserved motif (GACxPxRRxxLC); it established H-bonds with other binding peptides to mediate red blood cell group A and chondroitin sulphate attachment. This motif (when properly modified) induced PfEMP1-specific strain-transcending, fully-protective immunity for the first time in experimental challenge in Aotus monkeys, opening the way forward for a long sought-after vaccine against severe malaria.
Collapse
|
52
|
Rosetting Plasmodium falciparum-infected erythrocytes bind to human brain microvascular endothelial cells in vitro, demonstrating a dual adhesion phenotype mediated by distinct P. falciparum erythrocyte membrane protein 1 domains. Infect Immun 2013; 82:949-59. [PMID: 24343658 PMCID: PMC3958005 DOI: 10.1128/iai.01233-13] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adhesion interactions between Plasmodium falciparum-infected erythrocytes (IE) and human cells underlie the pathology of severe malaria. IE cytoadhere to microvascular endothelium or form rosettes with uninfected erythrocytes to survive in vivo by sequestering IE in the microvasculature and avoiding splenic clearance mechanisms. Both rosetting and cytoadherence are mediated by the parasite-derived IE surface protein family Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1). Rosetting and cytoadherence have been widely studied as separate entities; however, the ability of rosetting P. falciparum strains to cytoadhere has received little attention. Here, we show that IE of the IT/R29 strain expressing a rosette-mediating PfEMP1 variant (IT4var09) cytoadhere in vitro to a human brain microvascular endothelial cell line (HBEC-5i). Cytoadherence was inhibited by heparin and by treatment of HBEC-5i with heparinase III, suggesting that the endothelial receptors for IE binding are heparan sulfate proteoglycans. Antibodies to the N-terminal regions of the IT4var09 PfEMP1 variant (NTS-DBL1α and DBL2γ domains) specifically inhibited and reversed cytoadherence down to low concentrations (<10 μg/ml of total IgG). Surface plasmon resonance experiments showed that the NTS-DBLα and DBL2γ domains bind strongly to heparin, with half-maximal binding at a concentration of ∼0.5 μM in both cases. Therefore, cytoadherence of IT/R29 IE is distinct from rosetting, which is primarily mediated by NTS-DBL1α interactions with complement receptor 1. These data show that IT4var09-expressing parasites are capable of dual interactions with both endothelial cells and uninfected erythrocytes via distinct receptor-ligand interactions.
Collapse
|
53
|
Smith JD, Rowe JA, Higgins MK, Lavstsen T. Malaria's deadly grip: cytoadhesion of Plasmodium falciparum-infected erythrocytes. Cell Microbiol 2013; 15:1976-83. [PMID: 23957661 PMCID: PMC3836831 DOI: 10.1111/cmi.12183] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 08/07/2013] [Accepted: 08/12/2013] [Indexed: 12/17/2022]
Abstract
Cytoadhesion of Plasmodium falciparum-infected erythrocytes to host microvasculature is a key virulence determinant. Parasite binding is mediated by a large family of clonally variant adhesion proteins, termed P. falciparum erythrocyte membrane protein 1 (PfEMP1), encoded by var genes and expressed at the infected erythrocyte surface. Although PfEMP1 proteins have extensively diverged under opposing selection pressure to maintain ligand binding while avoiding antibody-mediated detection, recent work has revealed they can be classified into different groups based on chromosome location and domain composition. This grouping reflects functional specialization of PfEMP1 proteins for different human host and microvascular binding niches and appears to be maintained by gene recombination hierarchies. Inone extreme, a specific PfEMP1 variant is associated with placental binding and malaria during pregnancy, while other PfEMP1 subtypes appear to be specialized for infection of malaria naïve hosts. Here, we discuss recent findings on the origins and evolution of the var gene family, the structure-function of PfEMP1 proteins, and a distinct subset of PfEMP1 variants that have been associated with severe childhood malaria.
Collapse
Affiliation(s)
- Joseph D. Smith
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America, 98109
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - J. Alexandra Rowe
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom
| | - Matthew K. Higgins
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Thomas Lavstsen
- Centre for Medical Parasitology, Department of International Health, Immunology & Microbiology, University of Copenhagen and Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
54
|
The effect of anti-rosetting agents against malaria parasites under physiological flow conditions. PLoS One 2013; 8:e73999. [PMID: 24066091 PMCID: PMC3774797 DOI: 10.1371/journal.pone.0073999] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 07/29/2013] [Indexed: 12/17/2022] Open
Abstract
Rosetting remains the dominant malaria parasite adhesion phenotype associated with severe disease and pathogenicity in Africa. The formation of rosettes, whereby a Plasmodium falciparum infected erythrocyte (IE) adheres to two or more non-IEs, is thought to facilitate the occlusion of microvascular blood vessels by adhering to host endothelial cells and other bound IEs. Current methods of determining the rosette-disrupting capabilities of antibodies/drugs have focused on static assays. As IEs in vivo are exposed to shear stresses within the microvasculature, the effect of flow conditions on rosetting requires further examination. This study establishes a new rosetting flow assay using a closed perfusion system together with inverted fluorescence microscopy and image analysis, and confirms previous reports that rosettes exist under shear stresses equivalent to those present in the microvasculature (0.5–1.0 dyn/cm2). Furthermore, we tested the effectiveness of rosette-disrupting PfEMP1 antibodies, heparin and fucoidan over a range of concentrations on two P. falciparum strains, and found no statistically significant differences between the results of static and flow assays. The new flow assay is a valuable addition to the tools available to study rosetting. However, the static assay has good predictive value and remains useful as the standard screening test for rosette-disrupting interventions.
Collapse
|
55
|
Travassos MA, Niangaly A, Bailey JA, Ouattara A, Coulibaly D, Laurens MB, Pablo J, Jasinskas A, Nakajima-Sasaki R, Berry AA, Takala-Harrison S, Kouriba B, Rowe JA, Lyke KE, Doumbo OK, Thera MA, Felgner PL, Plowe CV. Seroreactivity to Plasmodium falciparum erythrocyte membrane protein 1 intracellular domain in malaria-exposed children and adults. J Infect Dis 2013; 208:1514-9. [PMID: 23901079 DOI: 10.1093/infdis/jit339] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) antigens mediate parasite sequestration and host immune evasion. Reactivity to 21 PfEMP1 fragments on a protein microarray was measured in serum samples from Malian children aged 1-6 years and adults. Seroreactivity to PfEMP1 fragments was higher in adults than in children; intracellular conserved fragments were more widely recognized than were extracellular hypervariable fragments. Over a malaria season, children maintained this differential seroreactivity and recognized additional intracellular PfEMP1 fragments. This approach has the potential to identify conserved, seroreactive extracellular PfEMP1 domains critical for protective immunity to malaria.
Collapse
Affiliation(s)
- Mark A Travassos
- Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, Baltimore
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Berger SS, Turner L, Wang CW, Petersen JEV, Kraft M, Lusingu JPA, Mmbando B, Marquard AM, Bengtsson DBAC, Hviid L, Nielsen MA, Theander TG, Lavstsen T. Plasmodium falciparum expressing domain cassette 5 type PfEMP1 (DC5-PfEMP1) bind PECAM1. PLoS One 2013; 8:e69117. [PMID: 23874884 PMCID: PMC3706608 DOI: 10.1371/journal.pone.0069117] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 06/07/2013] [Indexed: 11/18/2022] Open
Abstract
Members of the Plasmodium falciparum Erythrocyte Membrane protein 1 (PfEMP1) family expressed on the surface of malaria-infected erythrocytes mediate binding of the parasite to different receptors on the vascular lining. This process drives pathologies, and severe childhood malaria has been associated with the expression of particular subsets of PfEMP1 molecules. PfEMP1 are grouped into subtypes based on upstream sequences and the presence of semi-conserved PfEMP1 domain compositions named domain cassettes (DCs). Earlier studies have indicated that DC5-containing PfEMP1 (DC5-PfEMP1) are more likely to be expressed in children with severe malaria disease than in children with uncomplicated malaria, but these PfEMP1 subtypes only dominate in a relatively small proportion of the children with severe disease. In this study, we have characterised the genomic sequence characteristic for DC5, and show that two genetically different parasite lines expressing DC5-PfEMP1 bind PECAM1, and that anti-DC5-specific antibodies inhibit binding of DC5-PfEMP1-expressing parasites to transformed human bone marrow endothelial cells (TrHBMEC). We also show that antibodies against each of the four domains characteristic for DC5 react with native PfEMP1 expressed on the surface of infected erythrocytes, and that some of these antibodies are cross-reactive between the two DC5-containing PfEMP1 molecules tested. Finally, we confirm that anti-DC5 antibodies are acquired early in life by individuals living in malaria endemic areas, that individuals having high levels of these antibodies are less likely to develop febrile malaria episodes and that the antibody levels correlate positively with hemoglobin levels.
Collapse
Affiliation(s)
- Sanne S. Berger
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), University of Copenhagen, Copenhagen, Denmark
- * E-mail: (SB); (TL)
| | - Louise Turner
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), University of Copenhagen, Copenhagen, Denmark
| | - Christian W. Wang
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), University of Copenhagen, Copenhagen, Denmark
| | - Jens E. V. Petersen
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), University of Copenhagen, Copenhagen, Denmark
| | - Maria Kraft
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), University of Copenhagen, Copenhagen, Denmark
| | - John P. A. Lusingu
- National Institute for Medical Research (NIMR), Tanga Medical Research Centre, Tanga, Tanzania
| | - Bruno Mmbando
- National Institute for Medical Research (NIMR), Tanga Medical Research Centre, Tanga, Tanzania
| | - Andrea M. Marquard
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), University of Copenhagen, Copenhagen, Denmark
| | - Dominique B. A. C. Bengtsson
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), University of Copenhagen, Copenhagen, Denmark
| | - Lars Hviid
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), University of Copenhagen, Copenhagen, Denmark
| | - Morten A. Nielsen
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), University of Copenhagen, Copenhagen, Denmark
| | - Thor G. Theander
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), University of Copenhagen, Copenhagen, Denmark
| | - Thomas Lavstsen
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), University of Copenhagen, Copenhagen, Denmark
- * E-mail: (SB); (TL)
| |
Collapse
|
57
|
Avril M, Brazier AJ, Melcher M, Sampath S, Smith JD. DC8 and DC13 var genes associated with severe malaria bind avidly to diverse endothelial cells. PLoS Pathog 2013; 9:e1003430. [PMID: 23825944 PMCID: PMC3694856 DOI: 10.1371/journal.ppat.1003430] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 04/30/2013] [Indexed: 11/25/2022] Open
Abstract
During blood stage infection, Plasmodium falciparum infected erythrocytes (IE) bind to host blood vessels. This virulence determinant enables parasites to evade spleen-dependent killing mechanisms, but paradoxically in some cases may reduce parasite fitness by killing the host. Adhesion of infected erythrocytes is mediated by P. falciparum erythrocyte membrane protein 1 (PfEMP1), a family of polymorphic adhesion proteins encoded by var genes. Whereas cerebral binding and severe malaria are associated with parasites expressing DC8 and DC13 var genes, relatively little is known about the non-brain endothelial selection on severe malaria adhesive types. In this study, we selected P. falciparum-IEs on diverse endothelial cell types and demonstrate that DC8 and DC13 var genes were consistently among the major var transcripts selected on non-brain endothelial cells (lung, heart, bone marrow). To investigate the molecular basis for this avid endothelial binding activity, recombinant proteins were expressed from the predominant upregulated DC8 transcript, IT4var19. In-depth binding comparisons revealed that multiple extracellular domains from this protein bound brain and non-brain endothelial cells, and individual domains largely did not discriminate between different endothelial cell types. Additionally, we found that recombinant DC8 and DC13 CIDR1 domains exhibited a widespread endothelial binding activity and could compete for DC8-IE binding to brain endothelial cells, suggesting they may bind the same host receptor. Our findings provide new insights into the interaction of severe malaria adhesive types and host blood vessels and support the hypothesis that parasites causing severe malaria express PfEMP1 variants with a superior ability to adhere to diverse endothelial cell types, and may therefore endow these parasites with a growth and transmission advantage.
Collapse
Affiliation(s)
- Marion Avril
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Andrew J. Brazier
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Martin Melcher
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Sowmya Sampath
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Joseph D. Smith
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
58
|
Sheehy SH, Douglas AD, Draper SJ. Challenges of assessing the clinical efficacy of asexual blood-stage Plasmodium falciparum malaria vaccines. Hum Vaccin Immunother 2013; 9:1831-40. [PMID: 23778312 PMCID: PMC3906345 DOI: 10.4161/hv.25383] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In the absence of any highly effective vaccine candidate against Plasmodium falciparum malaria, it remains imperative for the field to pursue all avenues that may lead to the successful development of such a formulation. The development of a subunit vaccine targeting the asexual blood-stage of Plasmodium falciparum malaria infection has proven particularly challenging with only limited success to date in clinical trials. However, only a fraction of potential blood-stage vaccine antigens have been evaluated as targets, and a number of new promising candidate antigen formulations and delivery platforms are approaching clinical development. It is therefore essential that reliable and sensitive methods of detecting, or ruling out, even modest efficacy of blood-stage vaccines in small clinical trials be established. In this article we evaluate the challenges facing blood-stage vaccine developers, assess the appropriateness and limitations of various in vivo approaches for efficacy assessment and suggest future directions for the field.
Collapse
|
59
|
Severe malaria is associated with parasite binding to endothelial protein C receptor. Nature 2013; 498:502-5. [PMID: 23739325 PMCID: PMC3870021 DOI: 10.1038/nature12216] [Citation(s) in RCA: 424] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 04/24/2013] [Indexed: 01/01/2023]
Abstract
Sequestration of Plasmodium falciparum-infected erythrocytes in host blood vessels is a key triggering event in the pathogenesis of severe childhood malaria, which is responsible for about one million deaths every year. Sequestration is mediated by specific interactions between members of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family and receptors on the endothelial lining. Severe childhood malaria is associated with expression of specific PfEMP1 subtypes containing domain cassettes (DCs) 8 and 13 (ref. 3), but the endothelial receptor for parasites expressing these proteins was unknown. Here we identify endothelial protein C receptor (EPCR), which mediates the cytoprotective effects of activated protein C, as the endothelial receptor for DC8 and DC13 PfEMP1. We show that EPCR binding is mediated through the amino-terminal cysteine-rich interdomain region (CIDRα1) of DC8 and group A PfEMP1 subfamilies, and that CIDRα1 interferes with protein C binding to EPCR. This PfEMP1 adhesive property links P. falciparum cytoadhesion to a host receptor involved in anticoagulation and endothelial cytoprotective pathways, and has implications for understanding malaria pathology and the development of new malaria interventions.
Collapse
|
60
|
Analysis of antibody induction upon immunization with distinct NTS-DBL1α-domains of PfEMP1 from rosetting Plasmodium falciparum parasites. Malar J 2013; 12:32. [PMID: 23347690 PMCID: PMC3599323 DOI: 10.1186/1475-2875-12-32] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 01/22/2013] [Indexed: 11/15/2022] Open
Abstract
Background Rosette-formation of Plasmodium falciparum parasitized erythrocytes is of importance in the development of severe malaria. The parasite-derived molecule PfEMP1 (Plasmodium falciparum erythrocyte membrane protein 1), central to rosetting, is suggested to be included in a multimeric vaccine targeting severe disease. Methods Three recombinant NTS-DBL1α-domains of PfEMP1 were generated in Escherichia coli, purified and used for immunization of rats and goats. Antibody titres were determined in ELISA assays and responses were compared in-between different individual animals and species. Reactivity with the parasites was tested in live pRBC using FACS. B-cell epitopes prediction was carried out in silico and compared to the results obtained by peptide microarray. Screening for serological cross-reactivity with heterologous NTS-DBL1α variants was carried out by ELISA, peptide array and FACS on pRBC of different laboratory strains and patient isolates. Results All three NTS-DBL1α-domains induced high titres of antibodies that were biologically active with no apparent difference between constructs covering slightly different parts of the DBL1α-sequence. The different animal species showed comparable titres of antibodies, while variations within individuals of the species could be observed. Mapping of the recognized epitopes revealed that most parts of the molecule were able to induce an antibody response with a tendency for the N and C terminal parts of the molecule for slightly higher recognition. Important differences to the epitopes predicted were found as some of the most conserved parts of the DBL1α-domain contained the main epitopes for antibody reactivity. ELISA assays and peptide microarray demonstrated substantial cross-reactivity to heterologous variants, while binding to native PfEMP1 was observed only in few combinations on the pRBC surface, underlining that mainly internal, conserved and not surface exposed parts of the DBL1α-domain are responsible for this observation. Conclusion Biologically active antibodies can be induced consistently, with high titres, in different animal species and the antibodies elicited by different constructs react with similar epitopes. Induced antibodies recognize epitopes localized in all subdomains of the DBL1α-sequence. Cross-reactivity between NTS-DBL1α-variants is common in ELISA, but rare with live pRBC emphasizing that also internal, conserved areas of PfEMP1 carry important highly immunogenic epitopes of the molecule.
Collapse
|
61
|
Blomqvist K, Albrecht L, Quintana MDP, Angeletti D, Joannin N, Chêne A, Moll K, Wahlgren M. A sequence in subdomain 2 of DBL1α of Plasmodium falciparum erythrocyte membrane protein 1 induces strain transcending antibodies. PLoS One 2013; 8:e52679. [PMID: 23335956 PMCID: PMC3546040 DOI: 10.1371/journal.pone.0052679] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Accepted: 11/19/2012] [Indexed: 11/18/2022] Open
Abstract
Immunity to severe malaria is the first level of immunity acquired to Plasmodium falciparum. Antibodies to the variant antigen PfEMP1 (P. falciparum erythrocyte membrane protein 1) present at the surface of the parasitized red blood cell (pRBC) confer protection by blocking microvascular sequestration. Here we have generated antibodies to peptide sequences of subdomain 2 of PfEMP1-DBL1α previously identified to be associated with severe or mild malaria. A set of sera generated to the amino acid sequence KLQTLTLHQVREYWWALNRKEVWKA, containing the motif ALNRKE, stained the live pRBC. 50% of parasites tested (7/14) were positive both in flow cytometry and immunofluorescence assays with live pRBCs including both laboratory strains and in vitro adapted clinical isolates. Antibodies that reacted selectively with the sequence REYWWALNRKEVWKA in a 15-mer peptide array of DBL1α-domains were also found to react with the pRBC surface. By utilizing a peptide array to map the binding properties of the elicited anti-DBL1α antibodies, the amino acids WxxNRx were found essential for antibody binding. Complementary experiments using 135 degenerate RDSM peptide sequences obtained from 93 Ugandan patient-isolates showed that antibody binding occurred when the amino acids WxLNRKE/D were present in the peptide. The data suggests that the ALNRKE sequence motif, associated with severe malaria, induces strain-transcending antibodies that react with the pRBC surface.
Collapse
Affiliation(s)
- Karin Blomqvist
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Letusa Albrecht
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Maria del Pilar Quintana
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
- Escuela de Medicina y Ciencias de la Salud, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
| | - Davide Angeletti
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Nicolas Joannin
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Kyoto, Japan
| | - Arnaud Chêne
- Biologie des interactions Hôte-Parasite, Institut Pasteur, Paris, France
| | - Kirsten Moll
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Mats Wahlgren
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
62
|
Angeletti D, Albrecht L, Blomqvist K, Quintana MDP, Akhter T, Bächle SM, Sawyer A, Sandalova T, Achour A, Wahlgren M, Moll K. Plasmodium falciparum rosetting epitopes converge in the SD3-loop of PfEMP1-DBL1α. PLoS One 2012; 7:e50758. [PMID: 23227205 PMCID: PMC3515580 DOI: 10.1371/journal.pone.0050758] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 10/25/2012] [Indexed: 11/26/2022] Open
Abstract
The ability of Plasmodium falciparum parasitized RBC (pRBC) to form rosettes with normal RBC is linked to the virulence of the parasite and RBC polymorphisms that weaken rosetting confer protection against severe malaria. The adhesin PfEMP1 mediates the binding and specific antibodies prevent sequestration in the micro-vasculature, as seen in animal models. Here we demonstrate that epitopes targeted by rosette disrupting antibodies converge in the loop of subdomain 3 (SD3) which connects the h6 and h7 α-helices of PfEMP1-DBL1α. Both monoclonal antibodies and polyclonal IgG, that bound to epitopes in the SD3-loop, stained the surface of pRBC, disrupted rosettes and blocked direct binding of recombinant NTS-DBL1α to RBC. Depletion of polyclonal IgG raised to NTS-DBL1α on a SD3 loop-peptide removed the anti-rosetting activity. Immunizations with recombinant subdomain 1 (SD1), subdomain 2 (SD2) or SD3 all generated antibodies reacting with the pRBC-surface but only the sera of animals immunized with SD3 disrupted rosettes. SD3-sequences were found to segregate phylogenetically into two groups (A/B). Group A included rosetting sequences that were associated with two cysteine-residues present in the SD2-domain while group B included those with three or more cysteines. Our results suggest that the SD3 loop of PfEMP1-DBL1α is an important target of anti-rosetting activity, clarifying the molecular basis of the development of variant-specific rosette disrupting antibodies.
Collapse
Affiliation(s)
- Davide Angeletti
- Department of Microbiology, Tumor- and Cellbiology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Letusa Albrecht
- Department of Microbiology, Tumor- and Cellbiology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Karin Blomqvist
- Department of Microbiology, Tumor- and Cellbiology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - María del Pilar Quintana
- Department of Microbiology, Tumor- and Cellbiology (MTC), Karolinska Institutet, Stockholm, Sweden
- Escuela de Medicina y Ciencias de la Salud, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
| | - Tahmina Akhter
- Department of Microbiology, Tumor- and Cellbiology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Susanna M. Bächle
- Center for Infectious Medicine, Department of Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Alan Sawyer
- EMBL Monoclonal Antibodies Core Facility, Monterotondo-Scalo (RM), Italy
| | - Tatyana Sandalova
- Center for Infectious Medicine, Department of Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Adnane Achour
- Center for Infectious Medicine, Department of Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Mats Wahlgren
- Department of Microbiology, Tumor- and Cellbiology (MTC), Karolinska Institutet, Stockholm, Sweden
- * E-mail: (MW); (KM)
| | - Kirsten Moll
- Department of Microbiology, Tumor- and Cellbiology (MTC), Karolinska Institutet, Stockholm, Sweden
- * E-mail: (MW); (KM)
| |
Collapse
|
63
|
A subset of group A-like var genes encodes the malaria parasite ligands for binding to human brain endothelial cells. Proc Natl Acad Sci U S A 2012; 109:E1772-81. [PMID: 22619330 DOI: 10.1073/pnas.1120461109] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cerebral malaria is the most deadly manifestation of infection with Plasmodium falciparum. The pathology of cerebral malaria is characterized by the accumulation of infected erythrocytes (IEs) in the microvasculature of the brain caused by parasite adhesins on the surface of IEs binding to human receptors on microvascular endothelial cells. The parasite and host molecules involved in this interaction are unknown. We selected three P. falciparum strains (HB3, 3D7, and IT/FCR3) for binding to a human brain endothelial cell line (HBEC-5i). The whole transcriptome of isogenic pairs of selected and unselected parasites was analyzed using a variant surface antigen-supplemented microarray chip. After selection, the most highly and consistently up-regulated genes were a subset of group A-like var genes (HB3var3, 3D7_PFD0020c, ITvar7, and ITvar19) that showed 11- to >100-fold increased transcription levels. These var genes encode P. falciparum erythrocyte membrane protein (PfEMP)1 variants with distinct N-terminal domain types (domain cassette 8 or domain cassette 13). Antibodies to HB3var3 and PFD0020c recognized the surface of live IEs and blocked binding to HBEC-5i, thereby confirming the adhesive function of these variants. The clinical in vivo relevance of the HBEC-selected parasites was supported by significantly higher surface recognition of HBEC-selected parasites compared with unselected parasites by antibodies from young African children suffering cerebral malaria (Mann-Whitney test, P = 0.029) but not by antibodies from controls with uncomplicated malaria (Mann-Whitney test, P = 0.58). This work describes a binding phenotype for virulence-associated group A P. falciparum erythrocyte membrane protein 1 variants and identifies targets for interventions to treat or prevent cerebral malaria.
Collapse
|