51
|
Genotypes of Staphylococcus aureus Clinical Isolates Are Associated with Phenol-Soluble Modulin (PSM) Production. Toxins (Basel) 2022; 14:toxins14080556. [PMID: 36006218 PMCID: PMC9412541 DOI: 10.3390/toxins14080556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/06/2022] [Accepted: 08/12/2022] [Indexed: 12/01/2022] Open
Abstract
Phenol-soluble modulins (PSMs) are important S. aureus virulence factors that cause cytolysis, mast cell degranulation, and stimulate inflammatory responses. In this study, PSM production by S. aureus clinical isolates was measured by liquid chromatography/mass spectrometry (LC-MS) and correlated with staphylococcal protein A (spa) type and staphylococcal cassette chromosome mec (SCCmec) type. Of 106 S. aureus clinical isolates, 50 (47.2%) corresponded to methicillin-susceptible S. aureus (MSSA) and 56 (52.8%) to methicillin-resistant S. aureus (MRSA). LC-MS analysis revealed no significant difference in average PSMα3, PSMα4, PSMβ2, and δ-toxin production between MSSA and MRSA isolates, but PSMα1, PSMα2, and PSMβ1 production were higher in MSSA than MRSA. This study demonstrated that average PSMα1–α4, PSMβ1–β2, and δ-toxin production by SCCmec type II strains was significantly lower than the IV, IVA, and V strains. Most of the SCCmec type II strains (n = 17/25; 68.0%) did not produce δ-toxin, suggesting a dysfunctional Agr system. The spa type t111 (except one strain) and t2460 (except one strain producing PSM α1–α4) did not produce PSMα1–α4 and δ-toxin, while average PSM production was higher among the t126 and t1784 strains. This study showed that the genotype of S. aureus, specifically the spa and SCCmec types, is important in characterizing the production of PSMs.
Collapse
|
52
|
Meisl G, Xu CK, Taylor JD, Michaels TCT, Levin A, Otzen D, Klenerman D, Matthews S, Linse S, Andreasen M, Knowles TPJ. Uncovering the universality of self-replication in protein aggregation and its link to disease. SCIENCE ADVANCES 2022; 8:eabn6831. [PMID: 35960802 PMCID: PMC9374340 DOI: 10.1126/sciadv.abn6831] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Fibrillar protein aggregates are a hallmark of a range of human disorders, from prion diseases to dementias, but are also encountered in several functional contexts. Yet, the fundamental links between protein assembly mechanisms and their functional or pathological roles have remained elusive. Here, we analyze the aggregation kinetics of a large set of proteins that self-assemble by a nucleated-growth mechanism, from those associated with disease, over those whose aggregates fulfill functional roles in biology, to those that aggregate only under artificial conditions. We find that, essentially, all such systems, regardless of their biological role, are capable of self-replication. However, for aggregates that have evolved to fulfill a structural role, the rate of self-replication is too low to be significant on the biologically relevant time scale. By contrast, all disease-related proteins are able to self-replicate quickly compared to the time scale of the associated disease. Our findings establish the ubiquity of self-replication and point to its potential importance across aggregation-related disorders.
Collapse
Affiliation(s)
- Georg Meisl
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Catherine K. Xu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Jonathan D. Taylor
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Thomas C. T. Michaels
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Aviad Levin
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Daniel Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus DK-8000, Denmark
| | - David Klenerman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
- U.K. Dementia Research Institute, University of Cambridge, Cambridge CB2 0XY, UK
| | - Steve Matthews
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Sara Linse
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
- Corresponding author. (S.L.); (M.A.); (T.P.J.K.)
| | - Maria Andreasen
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, Aarhus DK-8000, Denmark
- Corresponding author. (S.L.); (M.A.); (T.P.J.K.)
| | - Tuomas P. J. Knowles
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
- Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, UK
- Corresponding author. (S.L.); (M.A.); (T.P.J.K.)
| |
Collapse
|
53
|
Wang Y, Li J, Li X, Shi J, Jiang Z, Zhang CY. Graphene-based nanomaterials for cancer therapy and anti-infections. Bioact Mater 2022; 14:335-349. [PMID: 35386816 PMCID: PMC8964986 DOI: 10.1016/j.bioactmat.2022.01.045] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 12/11/2022] Open
Abstract
Graphene-based nanomaterials (GBNMs) has been thoroughly investigated and extensively used in many biomedical fields, especially cancer therapy and bacteria-induced infectious diseases treatment, which have attracted more and more attentions due to the improved therapeutic efficacy and reduced reverse effect. GBNMs, as classic two-dimensional (2D) nanomaterials, have unique structure and excellent physicochemical properties, exhibiting tremendous potential in cancer therapy and bacteria-induced infectious diseases treatment. In this review, we first introduced the recent advances in development of GBNMs and GBNMs-based treatment strategies for cancer, including photothermal therapy (PTT), photodynamic therapy (PDT) and multiple combination therapies. Then, we surveyed the research progress of applications of GBNMs in anti-infection such as antimicrobial resistance, wound healing and removal of biofilm. The mechanism of GBNMs was also expounded. Finally, we concluded and discussed the advantages, challenges/limitations and perspective about the development of GBNMs and GBNMs-based therapies. Collectively, we think that GBNMs could be potential in clinic to promote the improvement of cancer therapy and infections treatment.
Collapse
Affiliation(s)
- Yan Wang
- School of Physics, Beijing Institute of Technology, Beijing, 100081, China
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Juan Li
- Advanced Research Institute for Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaobin Li
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Jinping Shi
- School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhaotan Jiang
- School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Can Yang Zhang
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
54
|
Xuan Q, Zhou J, Jiang F, Zhang W, Wei A, Zhang W, Zhang Q, Shen H, Li H, Chen C, Wang P. Sappanwood-derived polyphenolic antidote of amyloidal toxins achieved detoxification via inhibition/reversion of amyloidal fibrillation. Int J Biol Macromol 2022; 214:446-458. [PMID: 35752334 DOI: 10.1016/j.ijbiomac.2022.06.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/12/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023]
Abstract
The formidable virulence of methicillin-resistant staphylococcus aureus (MRSA) have thrown great challenges to biomedicine, which mainly derives from their autocrine phenol-soluble modulins (PSMs) toxins, especially the most toxic member termed phenol-soluble modulins α3 (PSMα3). PSMα3 cytotoxicity is attributed to its amyloidal fibrillation and subsequent formation of cross-α sheet fibrils. Inspired by the multiple biological activity of Sappanwood, herein, we adopted brazilin, a natural polyphenolic compound originated from Caesalpinia sappan, as a potential antidote of PSMα3 toxins, and attempted to prove that the regulation of PSMα3 fibrillation was an effective alexipharmic way for MRSA infections. In vitro results revealed that brazilin suppressed PSMα3 fibrillation and disassembled preformed amyloidal fibrils in a dose-dependent manner, in which molar ratio (brazilin: PSMα3) of efficient inhibition and disassembly were both 1:1. These desired regulations dominated by brazilin benefited from its bonding to core fibrils-forming residues of PSMα3 monomers urged by hydrogen bonding and pi-pi stacking, and such binding modes facilitated brazilin-mediated inhibition or disruption of interactions between neighboring PSMα3 monomers. In this context, these inhibited and disassembled PSMα3 assemblies could not easily insert into cell membrane and subsequent penetration, and thus alleviating the membrane disruption, cytoplasmic leakage, and reactive oxygen species (ROS) generation in normal cells. As such, brazilin dramatically decreased the cytotoxicity borne by toxic PSMα3 fibrils. In addition, in vivo experiments affirmed that brazilin relieved the toxicity of PSMα3 toxins and thus promoted the skin wound healing of mice. This study provides a new antidote of PSMα3 toxins, and also confirms the feasibility of the assembly-regulation strategy in development of antidotes against supramolecular fibrillation-dependent toxins.
Collapse
Affiliation(s)
- Qize Xuan
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - JinFeng Zhou
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Feng Jiang
- Department of Orthopaedics, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Wei Zhang
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Anqi Wei
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Wenxue Zhang
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Qi Zhang
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Hao Shen
- Department of Orthopaedics, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Hui Li
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Chao Chen
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China; Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Ping Wang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St Paul, MN 55108, USA
| |
Collapse
|
55
|
Pant N, Miranda-Hernandez S, Rush C, Warner J, Eisen DP. Non-Antimicrobial Adjuvant Therapy Using Ticagrelor Reduced Biofilm-Related Staphylococcus aureus Prosthetic Joint Infection. Front Pharmacol 2022; 13:927783. [PMID: 35846990 PMCID: PMC9284533 DOI: 10.3389/fphar.2022.927783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Prosthetic joint infection (PJI), frequently caused by Staphylococcus aureus, leads to a significant arthroplasty failure rate. Biofilm is a crucial virulence factor of S. aureus that is intrinsic to the pathogenesis of PJI. Biofilm-related infections are recalcitrant to antibiotic treatment. Surgical and antibiotic therapy could be combined with non-antibacterial adjuvants to improve overall treatment success. Ticagrelor, a P2Y12 receptor inhibitor antiplatelet drug, is known to have anti-staphylococcal antibacterial and antibiofilm activity. However, the molecular mechanism for ticagrelor’s antibiofilm activity and its efficacy in the treatment of S. aureus PJI are unknown.Methods: To study the in vitro antibacterial and antibiofilm activity of ticagrelor, broth microdilution and crystal violet staining method were used. Ticagrelor’s effect on the expression of S. aureus biofilm genes (icaA, icaD, ebps, fib, eno, and agr) was studied using the relative quantification method. To test ticagrelor’s in vivo efficacy to treat S. aureus PJI, mice were randomized into five groups (n = 8/group): infected femoral implants treated with ticagrelor alone; infected implants treated with cefazolin alone; infected implants treated with ticagrelor and cefazolin; infected implants treated with phosphate buffer solution (PBS)-positive controls, and sterile implants-negative controls. Ticagrelor was administered orally from day 4 to day 7 post-surgery, while cefazolin was injected intravenously on day 7.Results: Ticagrelor, alone and with selected antibiotics, showed in vitro antibacterial and antibiofilm activity against S. aureus. Strain-specific downregulation of biofilm-related genes, fib, icaD, ebps, and eno, was shown. In an animal model of biofilm-related S. aureus PJI, ticagrelor alone and combined with cefazolin significantly reduced bacterial concentrations on the implants compared with the positive control group. Ticagrelor significantly reduced bacterial dissemination to periprosthetic tissue compared with the positive controls.Conclusion: Ticagrelor adjuvant therapy reduced S. aureus PJI in an animal model. However, this study is very preliminary to make a conclusion on the clinical implication of the findings. Based on the current results, more studies are recommended to better understand its implication.
Collapse
Affiliation(s)
- Narayan Pant
- College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, Townsville, QLD, Australia
- *Correspondence: Narayan Pant,
| | | | - Catherine Rush
- Australian Institute of Tropical Health and Medicine, Townsville, QLD, Australia
| | - Jeffrey Warner
- Australian Institute of Tropical Health and Medicine, Townsville, QLD, Australia
| | - Damon P. Eisen
- College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
56
|
Sønderby TV, Najarzadeh Z, Otzen DE. Functional Bacterial Amyloids: Understanding Fibrillation, Regulating Biofilm Fibril Formation and Organizing Surface Assemblies. Molecules 2022; 27:4080. [PMID: 35807329 PMCID: PMC9268375 DOI: 10.3390/molecules27134080] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023] Open
Abstract
Functional amyloid is produced by many organisms but is particularly well understood in bacteria, where proteins such as CsgA (E. coli) and FapC (Pseudomonas) are assembled as functional bacterial amyloid (FuBA) on the cell surface in a carefully optimized process. Besides a host of helper proteins, FuBA formation is aided by multiple imperfect repeats which stabilize amyloid and streamline the aggregation mechanism to a fast-track assembly dominated by primary nucleation. These repeats, which are found in variable numbers in Pseudomonas, are most likely the structural core of the fibrils, though we still lack experimental data to determine whether the repeats give rise to β-helix structures via stacked β-hairpins (highly likely for CsgA) or more complicated arrangements (possibly the case for FapC). The response of FuBA fibrillation to denaturants suggests that nucleation and elongation involve equal amounts of folding, but protein chaperones preferentially target nucleation for effective inhibition. Smart peptides can be designed based on these imperfect repeats and modified with various flanking sequences to divert aggregation to less stable structures, leading to a reduction in biofilm formation. Small molecules such as EGCG can also divert FuBA to less organized structures, such as partially-folded oligomeric species, with the same detrimental effect on biofilm. Finally, the strong tendency of FuBA to self-assemble can lead to the formation of very regular two-dimensional amyloid films on structured surfaces such as graphite, which strongly implies future use in biosensors or other nanobiomaterials. In summary, the properties of functional amyloid are a much-needed corrective to the unfortunate association of amyloid with neurodegenerative disease and a testimony to nature's ability to get the best out of a protein fold.
Collapse
Affiliation(s)
- Thorbjørn Vincent Sønderby
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark; (T.V.S.); (Z.N.)
- Sino-Danish Center (SDC), Eastern Yanqihu Campus, University of Chinese Academy of Sciences, 380 Huaibeizhuang, Huairou District, Beijing 101400, China
| | - Zahra Najarzadeh
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark; (T.V.S.); (Z.N.)
| | - Daniel Erik Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark; (T.V.S.); (Z.N.)
| |
Collapse
|
57
|
Golan N, Engelberg Y, Landau M. Structural Mimicry in Microbial and Antimicrobial Amyloids. Annu Rev Biochem 2022; 91:403-422. [PMID: 35729071 DOI: 10.1146/annurev-biochem-032620-105157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The remarkable variety of microbial species of human pathogens and microbiomes generates significant quantities of secreted amyloids, which are structured protein fibrils that serve diverse functions related to virulence and interactions with the host. Human amyloids are associated largely with fatal neurodegenerative and systemic aggregation diseases, and current research has put forward the hypothesis that the interspecies amyloid interactome has physiological and pathological significance. Moreover, functional and molecular-level connections between antimicrobial activity and amyloid structures suggest a neuroimmune role for amyloids that are otherwise known to be pathological. Compared to the extensive structural information that has been accumulated for human amyloids, high-resolution structures of microbial and antimicrobial amyloids are only emerging. These recent structures reveal both similarities and surprising departures from the typical amyloid motif, in accordance with their diverse activities, and advance the discovery of novel antivirulence and antimicrobial agents. In addition, the structural information has led researchers to postulate that amyloidogenic sequences are natural targets for structural mimicry, for instance in host-microbe interactions. Microbial amyloid research could ultimately be used to fight aggressive infections and possibly processes leading to autoimmune and neurodegenerative diseases.
Collapse
Affiliation(s)
- Nimrod Golan
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel;
| | - Yizhaq Engelberg
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel;
| | - Meytal Landau
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel; .,European Molecular Biology Laboratory (EMBL) and Center for Structural Systems Biology (CSSB), Hamburg, Germany
| |
Collapse
|
58
|
Pohl C, Effantin G, Kandiah E, Meier S, Zeng G, Streicher W, Segura DR, Mygind PH, Sandvang D, Nielsen LA, Peters GHJ, Schoehn G, Mueller-Dieckmann C, Noergaard A, Harris P. pH- and concentration-dependent supramolecular assembly of a fungal defensin plectasin variant into helical non-amyloid fibrils. Nat Commun 2022; 13:3162. [PMID: 35672293 PMCID: PMC9174238 DOI: 10.1038/s41467-022-30462-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Self-assembly and fibril formation play important roles in protein behaviour. Amyloid fibril formation is well-studied due to its role in neurodegenerative diseases and characterized by refolding of the protein into predominantly β-sheet form. However, much less is known about the assembly of proteins into other types of supramolecular structures. Using cryo-electron microscopy at a resolution of 1.97 Å, we show that a triple-mutant of the anti-microbial peptide plectasin, PPI42, assembles into helical non-amyloid fibrils. The in vitro anti-microbial activity was determined and shown to be enhanced compared to the wildtype. Plectasin contains a cysteine-stabilised α-helix-β-sheet structure, which remains intact upon fibril formation. Two protofilaments form a right-handed protein fibril. The fibril formation is reversible and follows sigmoidal kinetics with a pH- and concentration dependent equilibrium between soluble monomer and protein fibril. This high-resolution structure reveals that α/β proteins can natively assemble into fibrils. Here the authors report the cryo-EM structure of a triple-mutant of the anti-microbial peptide plectasin, PPI42, assembling in a pH- and concentration dependent manner into helical non-amyloid fibrils. The fibrils formation is reversible, and follows a sigmoidal kinetics. The fibrils adopt a right-handed helical superstructure composed by two protofilaments, stabilized by an outer hydrophobic ring and an inner hydrophobic centre. These findings reveal that α/β proteins can natively assemble into fibrils.
Collapse
|
59
|
Akbey Ü, Andreasen M. Functional amyloids from bacterial biofilms - structural properties and interaction partners. Chem Sci 2022; 13:6457-6477. [PMID: 35756505 PMCID: PMC9172111 DOI: 10.1039/d2sc00645f] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/05/2022] [Indexed: 12/26/2022] Open
Abstract
Protein aggregation and amyloid formation have historically been linked with various diseases such as Alzheimer's and Parkinson's disease, but recently functional amyloids have gained a great deal of interest in not causing a disease and having a distinct function in vivo. Functional bacterial amyloids form the structural scaffold in bacterial biofilms and provide a survival strategy for the bacteria along with antibiotic resistance. The formation of functional amyloids happens extracellularly which differs from most disease related amyloids. Studies of functional amyloids have revealed several distinctions compared to disease related amyloids including primary structures designed to optimize amyloid formation while still retaining a controlled assembly of the individual subunits into classical cross-β-sheet structures, along with a unique cross-α-sheet amyloid fold. Studies have revealed that functional amyloids interact with components found in the extracellular matrix space such as lipids from membranes and polymers from the biofilm. Intriguingly, a level of complexity is added as functional amyloids also interact with several disease related amyloids and a causative link has even been established between functional amyloids and neurodegenerative diseases. It is hence becoming increasingly clear that functional amyloids are not inert protein structures found in bacterial biofilms but interact with many different components including human proteins related to pathology. Gaining a clear understanding of the factors governing the interactions will lead to improved strategies to combat biofilm associated infections and the correlated antibiotic resistance. In the current review we summarize the current state of the art knowledge on this exciting and fast growing research field of biofilm forming bacterial functional amyloids, their structural features and interaction partners.
Collapse
Affiliation(s)
- Ümit Akbey
- Department of Structural Biology, School of Medicine, University of Pittsburgh Pittsburgh PA 15261 USA
| | - Maria Andreasen
- Department of Biomedicine, Aarhus University Wilhelm Meyers Allé 3 8000 Aarhus Denmark
| |
Collapse
|
60
|
Colonization and Infection of Indwelling Medical Devices by Staphylococcus aureus with an Emphasis on Orthopedic Implants. Int J Mol Sci 2022; 23:ijms23115958. [PMID: 35682632 PMCID: PMC9180976 DOI: 10.3390/ijms23115958] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/08/2023] Open
Abstract
The use of indwelling medical devices has constantly increased in recent years and has revolutionized the quality of life of patients affected by different diseases. However, despite the improvement of hygiene conditions in hospitals, implant-associated infections remain a common and serious complication in prosthetic surgery, mainly in the orthopedic field, where infection often leads to implant failure. Staphylococcus aureus is the most common cause of biomaterial-centered infection. Upon binding to the medical devices, these bacteria proliferate and develop dense communities encased in a protective matrix called biofilm. Biofilm formation has been proposed as occurring in several stages-(1) attachment; (2) proliferation; (3) dispersal-and involves a variety of host and staphylococcal proteinaceous and non-proteinaceous factors. Moreover, biofilm formation is strictly regulated by several control systems. Biofilms enable staphylococci to avoid antimicrobial activity and host immune response and are a source of persistent bacteremia as well as of localized tissue destruction. While considerable information is available on staphylococcal biofilm formation on medical implants and important results have been achieved on the treatment of biofilms, preclinical and clinical applications need to be further investigated. Thus, the purpose of this review is to gather current studies about the mechanism of infection of indwelling medical devices by S. aureus with a special focus on the biochemical factors involved in biofilm formation and regulation. We also provide a summary of the current therapeutic strategies to combat biomaterial-associated infections and highlight the need to further explore biofilm physiology and conduct research for innovative anti-biofilm approaches.
Collapse
|
61
|
Thymol Reduces agr-Mediated Virulence Factor Phenol-Soluble Modulin Production in Staphylococcus aureus. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8221622. [PMID: 35586806 PMCID: PMC9110180 DOI: 10.1155/2022/8221622] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/08/2022] [Accepted: 04/23/2022] [Indexed: 12/12/2022]
Abstract
Staphylococcus aureus is a major human bacterial pathogen that carries a large number of virulence factors. Many virulence factors of S. aureus are regulated by the accessory gene regulator (agr) quorum-sensing system. Phenol-soluble modulins (PSMs) are one of the agr-mediated virulence determinants known to play a significant role in S. aureus pathogenesis. In the present study, the efficacy of thymol to inhibit PSM production including δ-toxin in S. aureus was explored. We employed liquid chromatography-mass spectrometry (LC-MS) to quantify the PSMsα1-PSMα4, PSMβ1 and PSMβ2, and δ-toxin production from culture supernatants. We found that thymol at 0.5 MIC (128 μg/mL) significantly reduced the PSMα and δ-toxin production in S. aureus WKZ-1, WKZ-2, LAC USA300, and ATCC29213. Downregulation in transcription by quantitative real-time (qRT) PCR analysis of response regulator agrA and receptor histidine kinase agrC upon 0.5 MIC thymol treatment affirmed the results of LC-MS quantification of PSMs. In silico molecular docking analysis demonstrated the binding affinity of thymol with receptors AgrA and AgrC. Transmission electron microscopy images revealed no ultrastructural alterations (cell wall and membrane) in thymol-treated WKZ-1 and WKZ-2 S. aureus strains. Here, we demonstrated that thymol reduces various PSM production in S. aureus clinical isolates and reference strains with mass spectrometry.
Collapse
|
62
|
Kreutzberger MAB, Wang S, Beltran LC, Tuachi A, Zuo X, Egelman EH, Conticello VP. Phenol-soluble modulins PSMα3 and PSMβ2 form nanotubes that are cross-α amyloids. Proc Natl Acad Sci U S A 2022; 119:e2121586119. [PMID: 35533283 PMCID: PMC9171771 DOI: 10.1073/pnas.2121586119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 04/08/2022] [Indexed: 12/20/2022] Open
Abstract
Phenol-soluble modulins (PSMs) are peptide-based virulence factors that play significant roles in the pathogenesis of staphylococcal strains in community-associated and hospital-associated infections. In addition to cytotoxicity, PSMs display the propensity to self-assemble into fibrillar species, which may be mediated through the formation of amphipathic conformations. Here, we analyze the self-assembly behavior of two PSMs, PSMα3 and PSMβ2, which are derived from peptides expressed by methicillin-resistant Staphylococcus aureus (MRSA), a significant human pathogen. In both cases, we observed the formation of a mixture of self-assembled species including twisted filaments, helical ribbons, and nanotubes, which can reversibly interconvert in vitro. Cryo–electron microscopy structural analysis of three PSM nanotubes, two derived from PSMα3 and one from PSMβ2, revealed that the assemblies displayed remarkably similar structures based on lateral association of cross-α amyloid protofilaments. The amphipathic helical conformations of PSMα3 and PSMβ2 enforced a bilayer arrangement within the protofilaments that defined the structures of the respective PSMα3 and PSMβ2 nanotubes. We demonstrate that, similar to amyloids based on cross-β protofilaments, cross-α amyloids derived from these PSMs display polymorphism, not only in terms of the global morphology (e.g., twisted filament, helical ribbon, and nanotube) but also with respect to the number of protofilaments within a given peptide assembly. These results suggest that the folding landscape of PSM derivatives may be more complex than originally anticipated and that the assemblies are able to sample a wide range of supramolecular structural space.
Collapse
Affiliation(s)
- Mark A. B. Kreutzberger
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908
| | - Shengyuan Wang
- Department of Chemistry, Emory University, Atlanta, GA 30322
| | - Leticia C. Beltran
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908
| | - Abraham Tuachi
- Department of Chemistry, Emory University, Atlanta, GA 30322
| | - Xiaobing Zuo
- X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439
| | - Edward H. Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908
| | - Vincent P. Conticello
- Department of Chemistry, Emory University, Atlanta, GA 30322
- The Robert P. Apkarian Integrated Electron Microscopy Core, Emory University, Atlanta, GA 30322
| |
Collapse
|
63
|
Grando K, Nicastro LK, Tursi SA, De Anda J, Lee EY, Wong GCL, Tükel Ç. Phenol-Soluble Modulins From Staphylococcus aureus Biofilms Form Complexes With DNA to Drive Autoimmunity. Front Cell Infect Microbiol 2022; 12:884065. [PMID: 35646719 PMCID: PMC9131096 DOI: 10.3389/fcimb.2022.884065] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/04/2022] [Indexed: 12/15/2022] Open
Abstract
The bacterial amyloid curli, produced by Enterobacteriales including Salmonella species and Escherichia coli, is implicated in the pathogenesis of several complex autoimmune diseases. Curli binds to extracellular DNA, and these complexes drive autoimmunity via production of anti-double-stranded DNA autoantibodies. Here, we investigated immune activation by phenol-soluble modulins (PSMs), the amyloid proteins expressed by Staphylococcus species. We confirmed the amyloid nature of PSMs expressed by S. aureus using a novel specific amyloid stain, (E,E)-1-fluoro-2,5-bis(3-hydroxycarbonyl-4-hydroxy) styrylbenzene (FSB). Direct interaction of one of the S. aureus PSMs, PSMα3, with oligonucleotides promotes fibrillization of PSM amyloids and complex formation with bacterial DNA. Finally, utilizing a mouse model with an implanted mesh-associated S. aureus biofilm, we demonstrated that exposure to S. aureus biofilms for six weeks caused anti-double-stranded DNA autoantibody production in a PSM-dependent manner. Taken together, these results highlight how the presence of PSM-DNA complexes in S. aureus biofilms can induce autoimmune responses, and suggest an explanation for how bacterial infections trigger autoimmunity.
Collapse
Affiliation(s)
- Kaitlyn Grando
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Lauren K. Nicastro
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Sarah A. Tursi
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Jaime De Anda
- Department of Bioengineering, Department of Chemistry and Biochemistry, California Nano Systems Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Ernest Y. Lee
- Department of Bioengineering, Department of Chemistry and Biochemistry, California Nano Systems Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Gerard C. L. Wong
- Department of Bioengineering, Department of Chemistry and Biochemistry, California Nano Systems Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Çağla Tükel
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- *Correspondence: Çağla Tükel,
| |
Collapse
|
64
|
Chiba A, Seki M, Suzuki Y, Kinjo Y, Mizunoe Y, Sugimoto S. Staphylococcus aureus utilizes environmental RNA as a building material in specific polysaccharide-dependent biofilms. NPJ Biofilms Microbiomes 2022; 8:17. [PMID: 35379830 PMCID: PMC8980062 DOI: 10.1038/s41522-022-00278-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 02/21/2022] [Indexed: 11/24/2022] Open
Abstract
Biofilms are surface-bound microbial communities that are typically embedded in a matrix of self-produced extracellular polymeric substances and can cause chronic infections. Extracellular DNA is known to play a crucial role in biofilm development in diverse bacteria; however, the existence and function of RNA are poorly understood. Here, we show that RNA contributes to the structural integrity of biofilms formed by the human pathogen Staphylococcus aureus. RNase A dispersed both fresh and mature biofilms, indicating the importance of RNA at various stages. RNA-sequencing analysis demonstrated that the primary source of RNA in the biofilm matrix was the Brain Heart Infusion medium (>99.32%). RNA purified from the medium promoted biofilm formation. Microscopic and molecular interaction analyses demonstrated that polysaccharides were critical for capturing and stabilizing external RNA in biofilms, which contributes to biofilm organization. These findings provide a basis for exploring the role of externally derived substances in bacterial biofilm organization.
Collapse
|
65
|
Sionov RV, Steinberg D. Anti-Microbial Activity of Phytocannabinoids and Endocannabinoids in the Light of Their Physiological and Pathophysiological Roles. Biomedicines 2022; 10:biomedicines10030631. [PMID: 35327432 PMCID: PMC8945038 DOI: 10.3390/biomedicines10030631] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
Antibiotic resistance has become an increasing challenge in the treatment of various infectious diseases, especially those associated with biofilm formation on biotic and abiotic materials. There is an urgent need for new treatment protocols that can also target biofilm-embedded bacteria. Many secondary metabolites of plants possess anti-bacterial activities, and especially the phytocannabinoids of the Cannabis sativa L. varieties have reached a renaissance and attracted much attention for their anti-microbial and anti-biofilm activities at concentrations below the cytotoxic threshold on normal mammalian cells. Accordingly, many synthetic cannabinoids have been designed with the intention to increase the specificity and selectivity of the compounds. The structurally unrelated endocannabinoids have also been found to have anti-microbial and anti-biofilm activities. Recent data suggest for a mutual communication between the endocannabinoid system and the gut microbiota. The present review focuses on the anti-microbial activities of phytocannabinoids and endocannabinoids integrated with some selected issues of their many physiological and pharmacological activities.
Collapse
|
66
|
Abstract
Phenol soluble modulins (PSMs) are an important class of peptides secreted by Staphylococcus aureus bacteria. The toxicity to human cells and unique ability of one such peptide, PSMα3, to aggregate into an α-helical amyloid-like structure may hold a key to a better understanding of the virulence of dangerous pathogens such as methicillin resistant S. aureus. In reporting a detailed two-dimensional infrared (2DIR) analysis of PSMα3, we found direct evidence of multiple aggregate architectures existing in equilibrium with one another. We also discovered a unique and characteristic 2DIR spectroscopic signature that unambiguously reports on the presence of the unusual and highly cytotoxic cross-α amyloid structure. The formation of ordered cross-β amyloid protein aggregates is associated with a variety of human disorders. While conventional infrared methods serve as sensitive reporters of the presence of these amyloids, the recently discovered amyloid secondary structure of cross-α fibrils presents new questions and challenges. Herein, we report results using Fourier transform infrared spectroscopy and two-dimensional infrared spectroscopy to monitor the aggregation of one such cross-α–forming peptide, phenol soluble modulin alpha 3 (PSMα3). Phenol soluble modulins (PSMs) are involved in the formation and stabilization of Staphylococcus aureus biofilms, making sensitive methods of detecting and characterizing these fibrils a pressing need. Our experimental data coupled with spectroscopic simulations reveals the simultaneous presence of cross-α and cross-β polymorphs within samples of PSMα3 fibrils. We also report a new spectroscopic feature indicative of cross-α fibrils.
Collapse
|
67
|
Chen F, Zhang J, Ji HJ, Kim MK, Kim KW, Choi JI, Han SH, Lim S, Seo HS, Ahn KB. Deinococcus radiodurans Exopolysaccharide Inhibits Staphylococcus aureus Biofilm Formation. Front Microbiol 2022; 12:712086. [PMID: 35002990 PMCID: PMC8739996 DOI: 10.3389/fmicb.2021.712086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
Deinococcus radiodurans is an extremely resistant bacterium against extracellular stress owing to on its unique physiological functions and the structure of its cellular constituents. Interestingly, it has been reported that the pattern of alteration in Deinococcus proportion on the skin is negatively correlated with skin inflammatory diseases, whereas the proportion of Staphylococcus aureus was increased in patients with chronic skin inflammatory diseases. However, the biological mechanisms of deinococcal interactions with other skin commensal bacteria have not been studied. In this study, we hypothesized that deinococcal cellular constituents play a pivotal role in preventing S. aureus colonization by inhibiting biofilm formation. To prove this, we first isolated cellular constituents, such as exopolysaccharide (DeinoPol), cell wall (DeinoWall), and cell membrane (DeinoMem), from D. radiodurans and investigated their inhibitory effects on S. aureus colonization and biofilm formation in vitro and in vivo. Among them, only DeinoPol exhibited an anti-biofilm effect without affecting bacterial growth and inhibiting staphylococcal colonization and inflammation in a mouse skin infection model. Moreover, the inhibitory effect was impaired in the Δdra0033 strain, a mutant that cannot produce DeinoPol. Remarkably, DeinoPol not only interfered with S. aureus biofilm formation at early and late stages but also disrupted a preexisting biofilm by inhibiting the production of poly-N-acetylglucosamine (PNAG), a key molecule required for S. aureus biofilm formation. Taken together, the present study suggests that DeinoPol is a key molecule in the negative regulation of S. aureus biofilm formation by D. radiodurans. Therefore, DeinoPol could be applied to prevent and/or treat infections or inflammatory diseases associated with S. aureus biofilms.
Collapse
Affiliation(s)
- Fengjia Chen
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea.,Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, South Korea
| | - Jing Zhang
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Hyun Jung Ji
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea.,Department of Oral Microbiology and Immunology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Min-Kyu Kim
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Kyoung Whun Kim
- Department of Oral Microbiology and Immunology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Jong-Il Choi
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, South Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Sangyong Lim
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea.,Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology, Daejeon, South Korea
| | - Ho Seong Seo
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea.,Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology, Daejeon, South Korea
| | - Ki Bum Ahn
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| |
Collapse
|
68
|
Abstract
Revisiting underutilized classes of antibiotics is a pragmatic approach to the identification of alternative therapies for antimicrobial-resistant pathogens. To this end, we designed and screened a set of seven staphylococcal δ-toxin-inspired peptides (STIPs) for antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). Furthermore, a pathogen-specific protease was leveraged to generate shorter peptides from these δ-toxin derivatives to expand the screen of putative antimicrobial peptides (AMPs) and to counterscreen against AMP inactivation. Remarkably, a 17-amino acid peptide based on the atypical δ-toxin sequence of Staphylococcus auricularis was discovered to possess an ability to kill MRSA and related pathogens. An alanine scan and series of rational substitutions improved AMP activity, and phenotypic assays characterized the STIPs’ ability to rapidly interact with and permeabilize the staphylococcal membrane without causing lysis on a commensurate timescale. Instead of rapid lysis, both l- and d-enantiomers of STIP3-29, an AMP with low micromolar activity, were observed to penetrate and accumulate within cells. Finally, we observed that STIP3-29 was capable of controlling MRSA infection in a three-dimensional skin infection model. Overall, the results suggest that this unconventional source of AMPs can provide promising candidates for further development as therapeutic agents. IMPORTANCE The continued emergence and global distribution of infections caused by antimicrobial-resistant pathogens fuel our perpetual need for new or alternative therapies. Here, we present the discovery and initial characterization of bacterial cell-penetrating AMPs that were based on a family of virulence factors. In contrast to the multitude of AMPs that are sourced from animals, these potential therapeutic molecules have not undergone extensive selection for their antimicrobial properties and have proven to be amenable to activity-optimizing modifications. The staphylococcal toxin-inspired peptides described here represent a source of AMPs that can kill common opportunistic pathogens, such as MRSA, and have the potential to be improved for application in medicine.
Collapse
|
69
|
Chen Y, Cui G, Cui Y, Chen D, Lin H. Small molecule targeting amyloid fibrils inhibits Streptococcus mutans biofilm formation. AMB Express 2021; 11:171. [PMID: 34919191 PMCID: PMC8683520 DOI: 10.1186/s13568-021-01333-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 12/11/2021] [Indexed: 11/10/2022] Open
Abstract
Amyloid fibrils are important scaffold in bacterial biofilms. Streptococcus mutans is an established cariogenic bacteria dwelling within biofilms, and C123 segment of P1 protein is known to form amyloid fibrils in S. mutans biofilms, among which C3 segment could serve as a promising anti-amyloid target due to its critical role in C123-P1 interactions. Recently, small molecules have been found to successfully inhibit biofilms by targeting amyloid fibrils. Thus, our study aimed to screen small molecules targeting C3 segment with the capacity to influence amyloid fibrils and S. mutans biofilms. In silico screening was utilized to discover promising small molecules, which were evaluated for their effects on bacterial cells and amyloid fibrils. We selected 99 small molecules and enrolled 55 small molecules named D1-D55 for crystal violet staining. Notably, D25 selectively inhibit S. mutans biofilms but had no significant influence on biofilms formed by Streptococcus gordonii and Streptococcus sanguinis, and D25 showed no bactericidal effects and low cytotoxicity. In addition, amyloid fibrils in free-floating bacteria, biofilms and purified C123 were quantified with ThT assays, and the differences were not statistically significant in the presence or absence of D25. Morphological changes of amyloid fibrils were visualized with TEM images, where amorphous aggregates were obvious coupled with long and atypical amyloid fibrils. Moreover, amyloid-related genes were upregulated in response to D25. In conclusion, D25 is a promising antimicrobial agent with the capacity to influence amyloid fibrils and inhibit S. mutans biofilms.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Department of Preventive Dentistry, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong China
| | - Guxin Cui
- Department of Preventive Dentistry, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong China
| | - Yuqi Cui
- Department of Preventive Dentistry, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong China
| | - Dongru Chen
- Department of Orthodontics, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong China
| | - Huancai Lin
- Department of Preventive Dentistry, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong China
| |
Collapse
|
70
|
Elderly Patients with Mild Cognitive Impairment Exhibit Altered Gut Microbiota Profiles. J Immunol Res 2021; 2021:5578958. [PMID: 34869782 PMCID: PMC8635943 DOI: 10.1155/2021/5578958] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/27/2021] [Accepted: 08/16/2021] [Indexed: 11/20/2022] Open
Abstract
Background As a transitional state between normal aging and Alzheimer's disease (AD), mild cognitive impairment (MCI) is characterized by a worse cognitive decline than that of natural aging. The association between AD and gut microbiota has been reported in a number of studies; however, microbial research regarding MCI remains limited. Methods This study examined 48 participants, of whom 22 were MCI cases and 26 were normal control cases. Fecal samples were collected for 16S ribosomal RNA (rRNA) quantitative arrays and bioinformatics analysis. Results A principal coordinates analysis (PCoA) and nonmetric multidimensional scaling (NMDS) both demonstrated that the microbial composition of participants with MCI deviated from that of healthy control participants. Multiple bacterial species were significantly increased (e.g., Staphylococcus intermedius) or decreased (e.g., Bacteroides salyersiae) in samples from the MCI group. Conclusion The composition of gut microbiota differed between normal control and MCI cases. This is the first study to identify a signature series of species in the gut microbiota of individuals with MCI. The results provide a new direction for the future development of an early diagnosis and probiotic regimen.
Collapse
|
71
|
Peptides derived from gp43, the most antigenic protein from Paracoccidioides brasiliensis, form amyloid fibrils in vitro: implications for vaccine development. Sci Rep 2021; 11:23440. [PMID: 34873233 PMCID: PMC8648789 DOI: 10.1038/s41598-021-02898-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/16/2021] [Indexed: 12/30/2022] Open
Abstract
Fungal infection is an important health problem in Latin America, and in Brazil in particular. Paracoccidioides (mainly P. brasiliensis and P. lutzii) is responsible for paracoccidioidomycosis, a disease that affects mainly the lungs. The glycoprotein gp43 is involved in fungi adhesion to epithelial cells, which makes this protein an interesting target of study. A specific stretch of 15 amino acids that spans the region 181–195 (named P10) of gp43 is an important epitope of gp43 that is being envisioned as a vaccine candidate. Here we show that synthetic P10 forms typical amyloid aggregates in solution in very short times, a property that could hamper vaccine development. Seeds obtained by fragmentation of P10 fibrils were able to induce the aggregation of P4, but not P23, two other peptides derived from gp43. In silico analysis revealed several regions within the P10 sequence that can form amyloid with steric zipper architecture. Besides, in-silico proteolysis studies with gp43 revealed that aggregation-prone, P10-like peptides could be generated by several proteases, which suggests that P10 could be formed under physiological conditions. Considering our data in the context of a potential vaccine development, we redesigned the sequence of P10, maintaining the antigenic region (HTLAIR), but drastically reducing its aggregation propensity.
Collapse
|
72
|
Zhou X, Zheng Y, Lv Q, Kong D, Ji B, Han X, Zhou D, Sun Z, Zhu L, Liu P, Jiang H, Jiang Y. Staphylococcus aureus N-terminus formylated δ-toxin tends to form amyloid fibrils, while the deformylated δ-toxin tends to form functional oligomer complexes. Virulence 2021; 12:1418-1437. [PMID: 34028320 PMCID: PMC8158037 DOI: 10.1080/21505594.2021.1928395] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 11/29/2022] Open
Abstract
The community-associated Methicillin-resistant Staphylococcus aureus strain (CA-MRSA) is highly virulent and has become a major focus of public health professionals. Phenol-soluble modulins (PSM) are key factors in its increased virulence. δ-Toxin belongs to PSM family and has copious secretion in many S. aureus strains. In addition, δ-toxin exists in the S. aureus culture supernatant as both N-terminus formylated δ-toxin (fδ-toxin) and deformylated δ-toxin (dfδ-toxin) groups. Although δ-toxin has been studied for more than 70 years, its functions remain unclear. We isolated and purified PSMs from the supernatant of S. aureus MW2, and found fibrils and oligomers aggregates by Size Exclusion Chromatography. After analyzing PSM aggregates and using peptide simulations, we found that the difference in the monomer structure of fδ-toxin and dfδ-toxin might ultimately lead to differences in the aggregation ability: fδ-toxin and dfδ-toxin tend to form fibrils and oligomers respectively. Of note, we found that fδ-toxin fibrils enhanced the stability of biofilms, while dfδ-toxin oligomers promoted their dispersal. Additionally, oligomeric dfδ-toxin combined with PSMα to form a complex with enhanced functionality. Due to the different aggregation capabilities and functions of fδ-toxin and dfδ-toxin, we speculate that they may be involved in the regulation of physiological activities of S. aureus. Moreover, the dfδ-toxin oligomer not only provides a new form of complex in the study of PSMα, but also has significance as a reference in oligomer research pertaining to some human amyloid diseases.
Collapse
Affiliation(s)
- Xinyu Zhou
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Yuling Zheng
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Qingyu Lv
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Decong Kong
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Bin Ji
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xuelian Han
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Zeyu Sun
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Li Zhu
- Beijing Institute of Biotechnology, Beijing, China
| | - Peng Liu
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Hua Jiang
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Yongqiang Jiang
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
73
|
Amyloid Aggregation of Streptococcus mutans Cnm Influences Its Collagen-Binding Activity. Appl Environ Microbiol 2021; 87:e0114921. [PMID: 34406827 PMCID: PMC8516039 DOI: 10.1128/aem.01149-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The cnm gene, coding for the glycosylated collagen- and laminin-binding surface adhesin Cnm, is found in the genomes of approximately 20% of Streptococcus mutans clinical isolates and is associated with systemic infections and increased caries risk. Other surface-associated collagen-binding proteins of S. mutans, such as P1 and WapA, have been demonstrated to form an amyloid quaternary structure with functional implications within biofilms. In silico analysis predicted that the β-sheet-rich N-terminal collagen-binding domain (CBD) of Cnm has a propensity for amyloid aggregation, whereas the threonine-rich C-terminal domain was predicted to be disorganized. In this study, thioflavin-T fluorescence and electron microscopy were used to show that Cnm forms amyloids in either its native glycosylated or recombinant nonglycosylated form and that the CBD of Cnm is the main amyloidogenic unit of Cnm. We then performed a series of in vitro, ex vivo, and in vivo assays to characterize the amylogenic properties of Cnm. In addition, Congo red birefringence indicated that Cnm is a major amyloidogenic protein of S. mutans biofilms. Competitive binding assays using collagen-coated microtiter plates and dental roots, a substrate rich in collagen, revealed that Cnm monomers inhibit S. mutans binding to collagenous substrates, whereas Cnm amyloid aggregates lose this property. Thus, while Cnm contributes to recognition and initial binding of S. mutans to collagen-rich surfaces, amyloid formation by Cnm might act as a negative regulatory mechanism to modulate collagen-binding activity within S. mutans biofilms and warrants further investigation. IMPORTANCE Streptococcus mutans is a keystone pathogen that promotes caries by acidifying the dental biofilm milieu. The collagen- and laminin-binding glycoprotein Cnm is a virulence factor of S. mutans. Expression of Cnm by S. mutans is hypothesized to contribute to niche expansion, allowing colonization of multiple sites in the body, including collagen-rich surfaces such as dentin and heart valves. Here, we suggest that Cnm function might be modulated by its aggregation status. As a monomer, its primary function is to promote attachment to collagenous substrates via its collagen-binding domain (CBD). However, in later stages of biofilm maturation, the same CBD of Cnm could self-assemble into amyloid fibrils, losing the ability to bind to collagen and likely becoming a component of the biofilm matrix. Our findings shed light on the role of functional amyloids in S. mutans pathobiology and ecology.
Collapse
|
74
|
Amyloids as Building Blocks for Macroscopic Functional Materials: Designs, Applications and Challenges. Int J Mol Sci 2021; 22:ijms221910698. [PMID: 34639037 PMCID: PMC8508955 DOI: 10.3390/ijms221910698] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 12/25/2022] Open
Abstract
Amyloids are self-assembled protein aggregates that take cross-β fibrillar morphology. Although some amyloid proteins are best known for their association with Alzheimer’s and Parkinson’s disease, many other amyloids are found across diverse organisms, from bacteria to humans, and they play vital functional roles. The rigidity, chemical stability, high aspect ratio, and sequence programmability of amyloid fibrils have made them attractive candidates for functional materials with applications in environmental sciences, material engineering, and translational medicines. This review focuses on recent advances in fabricating various types of macroscopic functional amyloid materials. We discuss different design strategies for the fabrication of amyloid hydrogels, high-strength materials, composite materials, responsive materials, extracellular matrix mimics, conductive materials, and catalytic materials.
Collapse
|
75
|
Rumpret M, von Richthofen HJ, van der Linden M, Westerlaken GHA, Talavera Ormeño C, van Strijp JAG, Landau M, Ovaa H, van Sorge NM, Meyaard L. Signal inhibitory receptor on leukocytes-1 recognizes bacterial and endogenous amphipathic α-helical peptides. FASEB J 2021; 35:e21875. [PMID: 34533845 DOI: 10.1096/fj.202100812r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/21/2021] [Accepted: 08/09/2021] [Indexed: 01/31/2023]
Abstract
Signal inhibitory receptor on leukocytes-1 (SIRL-1) is a negative regulator of myeloid cell function and dampens antimicrobial responses. We here show that different species of the genus Staphylococcus secrete SIRL-1-engaging factors. By screening a library of single-gene transposon mutants in Staphylococcus aureus, we identified these factors as phenol-soluble modulins (PSMs). PSMs are amphipathic α-helical peptides involved in multiple aspects of staphylococcal virulence and physiology. They are cytotoxic and activate the chemotactic formyl peptide receptor 2 (FPR2) on immune cells. Human cathelicidin LL-37 is also an amphipathic α-helical peptide with antimicrobial and chemotactic activities, structurally and functionally similar to α-type PSMs. We demonstrate that α-type PSMs from multiple staphylococcal species as well as human cathelicidin LL-37 activate SIRL-1, suggesting that SIRL-1 recognizes α-helical peptides with an amphipathic arrangement of hydrophobicity, although we were not able to show direct binding to SIRL-1. Upon rational peptide design, we identified artificial peptides in which the capacity to ligate SIRL-1 is segregated from cytotoxic and FPR2-activating properties, allowing specific engagement of SIRL-1. In conclusion, we propose staphylococcal PSMs and human LL-37 as a potential new class of natural ligands for SIRL-1.
Collapse
Affiliation(s)
- Matevž Rumpret
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Helen J von Richthofen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Maarten van der Linden
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Geertje H A Westerlaken
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Cami Talavera Ormeño
- Oncode Institute, Utrecht, The Netherlands.,Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jos A G van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Meytal Landau
- Department of Biology, Technion Israel Institute of Technology, Haifa, Israel
| | - Huib Ovaa
- Oncode Institute, Utrecht, The Netherlands.,Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Nina M van Sorge
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Linde Meyaard
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| |
Collapse
|
76
|
Pant N, Eisen DP. Non-Antimicrobial Adjuvant Strategies to Tackle Biofilm-Related Staphylococcus aureus Prosthetic Joint Infections. Antibiotics (Basel) 2021; 10:antibiotics10091060. [PMID: 34572641 PMCID: PMC8465242 DOI: 10.3390/antibiotics10091060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus frequently causes community- and hospital-acquired infections. S. aureus attachment followed by biofilm formation on tissues and medical devices plays a significant role in the establishment of chronic infections. Staphylococcal biofilms encase bacteria in a matrix and protect the cells from antimicrobials and the immune system, resulting in infections that are highly resistant to treatment. The biology of biofilms is complex and varies between organisms. In this review, we focus our discussion on S. aureus biofilms and describe the stages of their formation. We particularly emphasize genetic and biochemical processes that may be vulnerable to novel treatment approaches. Against this background, we discuss treatment strategies that have been successful in animal models of S. aureus biofilm-related infection and consider their possible use for the prevention and eradication of biofilm-related S. aureus prosthetic joint infection.
Collapse
|
77
|
Najarzadeh Z, Nielsen J, Farzadfard A, Sereikaite V, Strømgaard K, Meyer RL, Otzen DE. Human Fibrinogen Inhibits Amyloid Assembly of Most Phenol-Soluble Modulins from Staphylococcus aureus. ACS OMEGA 2021; 6:21960-21970. [PMID: 34497891 PMCID: PMC8412925 DOI: 10.1021/acsomega.1c02333] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Functional amyloids are highly organized protein/peptide structures that inter alia promote biofilm formation in different bacteria. One such example is provided by a family of 20-45 residue-long peptides called phenol-soluble modulins (PSMs) from Staphylococcus aureus. External components such as eukaryotic host proteins, which alter self-assembly of bacterial amyloids, can affect the biofilm matrix. Here, we studied the effect of the highly prevalent human plasma protein fibrinogen (Fg) on fibrillation of PSMs. Fg inhibits or suppresses fibrillation of most PSMs tested (PSMα1, PSMβ1, and PSMβ2) except for PSMα3, whose already rapid aggregation is accelerated even further by Fg but leads to amorphous β-rich aggregates rather than fibrils. Fg also induces PSMβ2 to form amorphous aggregates and diverts PSMα1 into off-pathway oligomers which consist of both Fg and PSMα1 and cannot seed fibrillation. Peptide arrays showed that Fg bound to the N-terminus of PSMα1, while it bound to the entire length of PSMα3 (except the C terminus) and to the C-termini of PSMβ1 and PSMβ2. The latter peptides are all positively charged, while Fg is negatively charged at physiological pH. The positive charges complement Fg's net negative charge of -7.6 at pH 7.4. Fg's ability to inhibit PSM fibrillation reveals a potential host-defense mechanism to prevent bacterial biofilm growth and infections in the human body.
Collapse
Affiliation(s)
- Zahra Najarzadeh
- Interdisciplinary
Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Janni Nielsen
- Interdisciplinary
Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Azad Farzadfard
- Interdisciplinary
Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Vita Sereikaite
- Department
of Drug Design and Pharmacology, University
of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Kristian Strømgaard
- Department
of Drug Design and Pharmacology, University
of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Rikke Louise Meyer
- Interdisciplinary
Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Daniel Erik Otzen
- Interdisciplinary
Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| |
Collapse
|
78
|
Pusparajah P, Letchumanan V, Law JWF, Ab Mutalib NS, Ong YS, Goh BH, Tan LTH, Lee LH. Streptomyces sp.-A Treasure Trove of Weapons to Combat Methicillin-Resistant Staphylococcus aureus Biofilm Associated with Biomedical Devices. Int J Mol Sci 2021; 22:ijms22179360. [PMID: 34502269 PMCID: PMC8431294 DOI: 10.3390/ijms22179360] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022] Open
Abstract
Biofilms formed by methicillin-resistant S. aureus (MRSA) are among the most frequent causes of biomedical device-related infection, which are difficult to treat and are often persistent and recurrent. Thus, new and effective antibiofilm agents are urgently needed. In this article, we review the most relevant literature of the recent years reporting on promising anti-MRSA biofilm agents derived from the genus Streptomyces bacteria, and discuss the potential contribution of these newly reported antibiofilm compounds to the current strategies in preventing biofilm formation and eradicating pre-existing biofilms of the clinically important pathogen MRSA. Many efforts are evidenced to address biofilm-related infections, and some novel strategies have been developed and demonstrated encouraging results in preclinical studies. Nevertheless, more in vivo studies with appropriate biofilm models and well-designed multicenter clinical trials are needed to assess the prospects of these strategies.
Collapse
Affiliation(s)
- Priyia Pusparajah
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbes and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (P.P.); (V.L.); (J.W.-F.L.); (N.-S.A.M.)
| | - Vengadesh Letchumanan
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbes and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (P.P.); (V.L.); (J.W.-F.L.); (N.-S.A.M.)
| | - Jodi Woan-Fei Law
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbes and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (P.P.); (V.L.); (J.W.-F.L.); (N.-S.A.M.)
| | - Nurul-Syakima Ab Mutalib
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbes and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (P.P.); (V.L.); (J.W.-F.L.); (N.-S.A.M.)
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Yong Sze Ong
- Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
| | - Bey-Hing Goh
- Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Correspondence: (B.-H.G.); (L.T.-H.T.); (L.-H.L.)
| | - Loh Teng-Hern Tan
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbes and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (P.P.); (V.L.); (J.W.-F.L.); (N.-S.A.M.)
- Clinical School Johor Bahru, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Johor Bahru 80100, Malaysia
- Correspondence: (B.-H.G.); (L.T.-H.T.); (L.-H.L.)
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbes and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (P.P.); (V.L.); (J.W.-F.L.); (N.-S.A.M.)
- Correspondence: (B.-H.G.); (L.T.-H.T.); (L.-H.L.)
| |
Collapse
|
79
|
Van Belkum A, Gros MF, Ferry T, Lustig S, Laurent F, Durand G, Jay C, Rochas O, Ginocchio CC. Novel strategies to diagnose prosthetic or native bone and joint infections. Expert Rev Anti Infect Ther 2021; 20:391-405. [PMID: 34384319 DOI: 10.1080/14787210.2021.1967745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Bone and Joint Infections (BJI) are medically important, costly and occur in native and prosthetic joints. Arthroplasties will increase significantly in absolute numbers over time as well as the incidence of Prosthetic Joint Infections (PJI). Diagnosis of BJI and PJI is sub-optimal. The available diagnostic tests have variable effectiveness, are often below standard in sensitivity and/or specificity, and carry significant contamination risks during the collection of clinical samples. Improvement of diagnostics is urgently needed. AREAS COVERED We provide a narrative review on current and future diagnostic microbiology technologies. Pathogen identification, antibiotic resistance detection, and assessment of the epidemiology of infections via bacterial typing are considered useful for improved patient management. We confirm the continuing importance of culture methods and successful introduction of molecular, mass spectrometry-mediated and next-generation genome sequencing technologies. The diagnostic algorithms for BJI must be better defined, especially in the context of diversity of both disease phenotypes and clinical specimens rendered available. EXPERT OPINION Whether interventions in BJI or PJI are surgical or chemo-therapeutic (antibiotics and bacteriophages included), prior sensitive and specific pathogen detection remains a therapy-substantiating necessity. Innovative tests for earlier and more sensitive and specific detection of bacterial pathogens in BJI are urgently needed.
Collapse
Affiliation(s)
- Alex Van Belkum
- bioMérieux, Open Innovation and Partnerships, 3 Route De Port Michaud, La Balme Les Grottes, France
| | | | - Tristan Ferry
- Service Des Maladies Infectieuses Et Tropicales, Hospices Civils De Lyon, Hôpital De La Croix-Rousse, Lyon, France.,Maladies Infectieuses, Université Claude Bernard Lyon 1, Villeurbanne, France.,Centre Interrégional De Référence Pour La Prise En Charge Des Infections Ostéo-articulaires Complexes (Crioac Lyon), Hôpital De La Croix-Rousse, Lyon, France.,Ciri - Centre International De Recherche En Infectiologie, Inserm, U1111, Université́ Claude Bernard Lyon 1CNRS, UMR5308, Ecole Normale Supérieure De Lyon, Univ Lyon, Lyon, France
| | - Sebastien Lustig
- Maladies Infectieuses, Université Claude Bernard Lyon 1, Villeurbanne, France.,Service De Chirurgie Orthopédique, Hôpital De La Croix-Rousse, Lyon, France
| | - Frédéric Laurent
- Service Des Maladies Infectieuses Et Tropicales, Hospices Civils De Lyon, Hôpital De La Croix-Rousse, Lyon, France.,Ciri - Centre International De Recherche En Infectiologie, Inserm, U1111, Université́ Claude Bernard Lyon 1CNRS, UMR5308, Ecole Normale Supérieure De Lyon, Univ Lyon, Lyon, France
| | | | - Corinne Jay
- bioMérieux, BioFire Development Emea, Grenoble, France
| | - Olivier Rochas
- Corporate Business Development, bioMérieux, Marcy-l'Étoile, France
| | | |
Collapse
|
80
|
Extracellular DNA (eDNA). A Major Ubiquitous Element of the Bacterial Biofilm Architecture. Int J Mol Sci 2021; 22:ijms22169100. [PMID: 34445806 PMCID: PMC8396552 DOI: 10.3390/ijms22169100] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/22/2022] Open
Abstract
After the first ancient studies on microbial slime (the name by which the biofilm matrix was initially indicated), multitudes of studies on the morphology, composition and physiology of biofilms have arisen. The emergence of the role that biofilms play in the pathogenesis of recalcitrant and persistent clinical infections, such as periprosthetic orthopedic infections, has reinforced scientific interest. Extracellular DNA (eDNA) is a recently uncovered component that is proving to be almost omnipresent in the extracellular polymeric substance (EPS) of biofilm. This macromolecule is eliciting unprecedented consideration for the critical impact on the pathogenesis of chronic clinical infections. After a systematic review of the literature, an updated description of eDNA in biofilms is presented, with a special focus on the latest findings regarding its fundamental structural role and the contribution it makes to the complex architecture of bacterial biofilms through interactions with a variety of other molecular components of the biofilm matrix.
Collapse
|
81
|
Najarzadeh Z, Zaman M, Sereikaite V, Strømgaard K, Andreasen M, Otzen DE. Heparin promotes fibrillation of most phenol-soluble modulin virulence peptides from Staphylococcus aureus. J Biol Chem 2021; 297:100953. [PMID: 34270957 PMCID: PMC8363829 DOI: 10.1016/j.jbc.2021.100953] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/29/2021] [Accepted: 07/08/2021] [Indexed: 10/26/2022] Open
Abstract
Phenol-soluble modulins (PSMs), such as α-PSMs, β-PSMs, and δ-toxin, are virulence peptides secreted by different Staphylococcus aureus strains. PSMs are able to form amyloid fibrils, which may strengthen the biofilm matrix that promotes bacterial colonization of and extended growth on surfaces (e.g., cell tissue) and increases antibiotic resistance. Many components contribute to biofilm formation, including the human-produced highly sulfated glycosaminoglycan heparin. Although heparin promotes S. aureus infection, the molecular basis for this is unclear. Given that heparin is known to induce fibrillation of a wide range of proteins, we hypothesized that heparin aids bacterial colonization by promoting PSM fibrillation. Here, we address this hypothesis using a combination of thioflavin T-fluorescence kinetic studies, CD, FTIR, electron microscopy, and peptide microarrays to investigate the mechanism of aggregation, the structure of the fibrils, and identify possible binding regions. We found that heparin accelerates fibrillation of all α-PSMs (except PSMα2) and δ-toxin but inhibits β-PSM fibrillation by blocking nucleation or reducing fibrillation levels. Given that S. aureus secretes higher levels of α-PSM than β-PSM peptides, heparin is therefore likely to promote fibrillation overall. Heparin binding is driven by multiple positively charged lysine residues in α-PSMs and δ-toxins, the removal of which strongly reduced binding affinity. Binding of heparin did not affect the structure of the resulting fibrils, that is, the outcome of the aggregation process. Rather, heparin provided a scaffold to catalyze or inhibit fibrillation. Based on our findings, we speculate that heparin may strengthen the bacterial biofilm and therefore enhance colonization via increased PSM fibrillation.
Collapse
Affiliation(s)
- Zahra Najarzadeh
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus C, Denmark
| | - Masihuz Zaman
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Vita Sereikaite
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen Ø, Denmark
| | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen Ø, Denmark
| | - Maria Andreasen
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark.
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus C, Denmark.
| |
Collapse
|
82
|
Matilla-Cuenca L, Toledo-Arana A, Valle J. Anti-Biofilm Molecules Targeting Functional Amyloids. Antibiotics (Basel) 2021; 10:antibiotics10070795. [PMID: 34210036 PMCID: PMC8300730 DOI: 10.3390/antibiotics10070795] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/18/2022] Open
Abstract
The choice of an effective therapeutic strategy in the treatment of biofilm-related infections is a significant issue. Amyloids, which have been historically related to human diseases, are now considered to be prevailing structural components of the biofilm matrix in a wide range of bacteria. This assumption creates the potential for an exciting research area, in which functional amyloids are considered to be attractive targets for drug development to dissemble biofilm structures. The present review describes the best-characterized bacterial functional amyloids and focuses on anti-biofilm agents that target intrinsic and facultative amyloids. This study provides a better understanding of the different modes of actions of the anti-amyloid molecules to inhibit biofilm formation. This information can be further exploited to improve the therapeutic strategies to combat biofilm-related infections.
Collapse
|
83
|
Tu W, Xue K, Lou S, Zhu C, Yu Z. Self-assembly of virulent amyloid-derived peptides into nanoantibacterials. NANOSCALE 2021; 13:9864-9872. [PMID: 34037034 DOI: 10.1039/d1nr01622a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Current strategies for the design of antibacterial peptides show limitations in the development of assembled antibacterial peptides due to the challenges in simultaneously balancing the antibacterial activity and assembling behavior. Herein, we report on one strategy for the design of antibacterial peptides derived from virulent amyloids and investigate their self-assembly into nanostructures with remarkable antibacterial activity. The peptides were either directly truncated from virulent amyloid peptide PSM α3 or mutated from the original sequence by replacing the lysine and phenylalanine residues with arginine or tryptophan, leading to three undecapeptides. Conformational and morphological results indicated the formation of nanotubes and twisted nanoribbons by the truncated peptide and the mutated peptide, respectively, predominately driven by anti-parallel β-sheets. Bacterial culturing experiments revealed that the two mutated peptides possessed remarkable antibacterial activity against both Gram-positive and Gram-negative bacteria by disrupting the bacterial membrane at a concentration above their critical aggregation concentrations, thus leading to two nanoantibacterials. Our findings demonstrate that biomimetic peptides originated from virulent amyloids exhibit great potential in the development of assembled antibacterial peptides, thus providing a new strategy for simultaneously addressing the antibacterial activity and pharmacokinetics of natural antibacterial peptides in the future.
Collapse
Affiliation(s)
- Wenlu Tu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, China.
| | | | | | | | | |
Collapse
|
84
|
The amphibian antimicrobial peptide uperin 3.5 is a cross-α/cross-β chameleon functional amyloid. Proc Natl Acad Sci U S A 2021; 118:2014442118. [PMID: 33431675 DOI: 10.1073/pnas.2014442118] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Antimicrobial activity is being increasingly linked to amyloid fibril formation, suggesting physiological roles for some human amyloids, which have historically been viewed as strictly pathological agents. This work reports on formation of functional cross-α amyloid fibrils of the amphibian antimicrobial peptide uperin 3.5 at atomic resolution, an architecture initially discovered in the bacterial PSMα3 cytotoxin. The fibrils of uperin 3.5 and PSMα3 comprised antiparallel and parallel helical sheets, respectively, recapitulating properties of β-sheets. Uperin 3.5 demonstrated chameleon properties of a secondary structure switch, forming mostly cross-β fibrils in the absence of lipids. Uperin 3.5 helical fibril formation was largely induced by, and formed on, bacterial cells or membrane mimetics, and led to membrane damage and cell death. These findings suggest a regulation mechanism, which includes storage of inactive peptides as well as environmentally induced activation of uperin 3.5, via chameleon cross-α/β amyloid fibrils.
Collapse
|
85
|
Khambhati K, Patel J, Saxena V, A P, Jain N. Gene Regulation of Biofilm-Associated Functional Amyloids. Pathogens 2021; 10:490. [PMID: 33921583 PMCID: PMC8072697 DOI: 10.3390/pathogens10040490] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 01/01/2023] Open
Abstract
Biofilms are bacterial communities encased in a rigid yet dynamic extracellular matrix. The sociobiology of bacterial communities within a biofilm is astonishing, with environmental factors playing a crucial role in determining the switch from planktonic to a sessile form of life. The mechanism of biofilm biogenesis is an intriguingly complex phenomenon governed by the tight regulation of expression of various biofilm-matrix components. One of the major constituents of the biofilm matrix is proteinaceous polymers called amyloids. Since the discovery, the significance of biofilm-associated amyloids in adhesion, aggregation, protection, and infection development has been much appreciated. The amyloid expression and assembly is regulated spatio-temporarily within the bacterial cells to perform a diverse function. This review provides a comprehensive account of the genetic regulation associated with the expression of amyloids in bacteria. The stringent control ensures optimal utilization of amyloid scaffold during biofilm biogenesis. We conclude the review by summarizing environmental factors influencing the expression and regulation of amyloids.
Collapse
Affiliation(s)
- Khushal Khambhati
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur NH 65, Nagaur Road, Karwar, Rajasthan 342037, India
| | - Jaykumar Patel
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur NH 65, Nagaur Road, Karwar, Rajasthan 342037, India
| | - Vijaylaxmi Saxena
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur NH 65, Nagaur Road, Karwar, Rajasthan 342037, India
| | - Parvathy A
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur NH 65, Nagaur Road, Karwar, Rajasthan 342037, India
| | - Neha Jain
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur NH 65, Nagaur Road, Karwar, Rajasthan 342037, India
| |
Collapse
|
86
|
Malishev R, Salinas N, Gibson J, Eden AB, Mieres-Perez J, Ruiz-Blanco YB, Malka O, Kolusheva S, Klärner FG, Schrader T, Sanchez-Garcia E, Wang C, Landau M, Bitan G, Jelinek R. Inhibition of Staphylococcus aureus biofilm-forming functional amyloid by molecular tweezers. Cell Chem Biol 2021; 28:1310-1320.e5. [PMID: 33852903 DOI: 10.1016/j.chembiol.2021.03.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/19/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023]
Abstract
Biofilms are rigid and largely impenetrable three-dimensional matrices constituting virulence determinants of various pathogenic bacteria. Here, we demonstrate that molecular tweezers, unique supramolecular artificial receptors, modulate biofilm formation of Staphylococcus aureus. In particular, the tweezers affect the structural and assembly properties of phenol-soluble modulin α1 (PSMα1), a biofilm-scaffolding functional amyloid peptide secreted by S. aureus. The data reveal that CLR01, a diphosphate tweezer, exhibits significant S. aureus biofilm inhibition and disrupts PSMα1 self-assembly and fibrillation, likely through inclusion of lysine side chains of the peptide. In comparison, different peptide binding occurs in the case of CLR05, a tweezer containing methylenecarboxylate units, which exhibits lower affinity for the lysine residues yet disrupts S. aureus biofilm more strongly than CLR01. Our study points to a possible role for molecular tweezers as potent biofilm inhibitors and antibacterial agents, particularly against untreatable biofilm-forming and PSM-producing bacteria, such as methicillin-resistant S. aureus.
Collapse
Affiliation(s)
- Ravit Malishev
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Nir Salinas
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - James Gibson
- Center for Biotechnology and Interdisciplinary Studies, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Angela Bailey Eden
- Center for Biotechnology and Interdisciplinary Studies, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Joel Mieres-Perez
- Department of Computational Biochemistry, University of Duisburg-Essen, Universitätsstrasse 2, 45141 Essen, Germany
| | - Yasser B Ruiz-Blanco
- Department of Computational Biochemistry, University of Duisburg-Essen, Universitätsstrasse 2, 45141 Essen, Germany
| | - Orit Malka
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Sofiya Kolusheva
- Ilse Katz Institute for Nanotechnology, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | | | - Thomas Schrader
- Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Elsa Sanchez-Garcia
- Department of Computational Biochemistry, University of Duisburg-Essen, Universitätsstrasse 2, 45141 Essen, Germany
| | - Chunyu Wang
- Center for Biotechnology and Interdisciplinary Studies, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Meytal Landau
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel; European Molecular Biology Laboratory (EMBL), 22607 Hamburg, Germany
| | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine, Brain Research Institute, and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Raz Jelinek
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 84105, Israel; Ilse Katz Institute for Nanotechnology, Ben Gurion University of the Negev, Beer Sheva 84105, Israel.
| |
Collapse
|
87
|
Panlilio H, Rice CV. The role of extracellular DNA in the formation, architecture, stability, and treatment of bacterial biofilms. Biotechnol Bioeng 2021; 118:2129-2141. [PMID: 33748946 DOI: 10.1002/bit.27760] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/01/2020] [Accepted: 03/04/2021] [Indexed: 12/16/2022]
Abstract
Advances in biotechnology to treat and cure human disease have markedly improved human health and the development of modern societies. However, substantial challenges remain to overcome innate biological factors that thwart the activity and efficacy of pharmaceutical therapeutics. Until recently, the importance of extracellular DNA (eDNA) in biofilms was overlooked. New data reveal its extensive role in biofilm formation, adhesion, and structural integrity. Different approaches to target eDNA as anti-biofilm therapies have been proposed, but eDNA and the corresponding biofilm barriers are still difficult to disrupt. Therefore, more creative approaches to eradicate biofilms are needed. The production of eDNA often originates with the genetic material of bacterial cells through cell lysis. However, genomic DNA and eDNA are not necessarily structurally or compositionally identical. Variations are noteworthy because they dictate important interactions within the biofilm. Interactions between eDNA and biofilm components may as well be exploited as alternative anti-biofilm strategies. In this review, we discuss recent developments in eDNA research, emphasizing potential ways to disrupt biofilms. This review also highlights proteins, exopolysaccharides, and other molecules interacting with eDNA that can serve as anti-biofilm therapeutic targets. Overall, the array of diverse interactions with eDNA is important in biofilm structure, architecture, and stability.
Collapse
Affiliation(s)
- Hannah Panlilio
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Charles V Rice
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
88
|
Fibrilar Polymorphism of the Bacterial Extracellular Matrix Protein TasA. Microorganisms 2021; 9:microorganisms9030529. [PMID: 33806534 PMCID: PMC8000256 DOI: 10.3390/microorganisms9030529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 12/25/2022] Open
Abstract
Functional amyloid proteins often appear as fibers in extracellular matrices of microbial soft colonies. In contrast to disease-related amyloid structures, they serve a functional goal that benefits the organism that secretes them, which is the reason for the title “functional”. Biofilms are a specific example of a microbial community in which functional amyloid fibers play a role. Functional amyloid proteins contribute to the mechanical stability of biofilms and mediate the adhesion of the cells to themselves as well as to surfaces. Recently, it has been shown that functional amyloid proteins also play a regulatory role in biofilm development. TasA is the major proteinaceous fibrilar component of the extracellular matrix of biofilms made of the soil bacterium and Gram-positive Bacillus subtilis. We have previously shown, as later corroborated by others, that in acidic solutions, TasA forms compact aggregates that are composed of tangled fibers. Here, we show that in a neutral pH and above a certain TasA concentration, the fibers of TasA are elongated and straight and that they bundle up in highly concentrated salt solutions. TasA fibers resemble the canonic amyloid morphology; however, these fibers also bear an interesting nm-scale periodicity along the fiber axis. At the molecular level, TasA fibers contain a twisted β-sheet structure, as indicated by circular dichroism measurements. Our study shows that the morphology of TasA fibers depends on the environmental conditions. Different fibrilar morphologies may be related with different functional roles in biofilms, ranging from granting biofilms with a mechanical support to acting as antibiotic agents.
Collapse
|
89
|
Antibiofilm activity of Fmoc-phenylalanine against Gram-positive and Gram-negative bacterial biofilms. J Antibiot (Tokyo) 2021; 74:407-416. [PMID: 33637856 DOI: 10.1038/s41429-021-00409-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 11/08/2022]
Abstract
Biofilm associated infections are the major contributor of mortality, morbidity and financial burden in patients with a bacterial infection. About 65% of all bacterial infections are associated with the information of bacterial biofilms. Bacterial biofilms not only reduce the efficacy of antibacterial treatment but also increases the threat of developing antibacterial resistance. Recently, our group has discovered the antibacterial activity of Fmoc-phenylalanine (Fmoc-F) and other Fmoc-amino acids (Fmoc-AA). Fmoc-F and other Fmoc-AA showed antibacterial activity due to their surfactant properties. Surfactants are known to eradicate biofilm and enhance antimicrobial activity in biofilm. Thus, in the present study, we evaluated the anti-biofilm activity of Fmoc-F against clinically relevant bacteria. We found that Fmoc-F not only inhibits the biofilm formation in Staphylococcus aureus and Pseudomonas aeruginosa, but also eradicates the already formed biofilms over the surface. Further, Fmoc-F coated glass surface resists S. aureus and P. aeruginosa biofilm formation and attachment, when biofilm is grown over the surface. The mechanistic investigation suggests that Fmoc-F reduces the extracellular matrix (ECM) components such as proteins, carbohydrates and eDNA in the biofilm and affect its stability via direct interactions with ECM components and/ or indirectly through reducing bacterial cell population. Finally, we showed that Fmoc-F treatment in combination with vancomycin and ampicillin synergistically inhibit biofilm formation. Overall, the study demonstrates the potential application of Fmoc-F and other Fmoc-AA molecules individually as well as in combination as anti-biofilm coating material for treating biofilm associated infections.
Collapse
|
90
|
Miller AL, Bessho S, Grando K, Tükel Ç. Microbiome or Infections: Amyloid-Containing Biofilms as a Trigger for Complex Human Diseases. Front Immunol 2021; 12:638867. [PMID: 33717189 PMCID: PMC7952436 DOI: 10.3389/fimmu.2021.638867] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/09/2021] [Indexed: 12/14/2022] Open
Abstract
The human microbiota is the community of microorganisms that live upon or within their human host. The microbiota consists of various microorganisms including bacteria, fungi, viruses, and archaea; the gut microbiota is comprised mostly of bacteria. Many bacterial species within the gut microbiome grow as biofilms, which are multicellular communities embedded in an extracellular matrix. Studies have shown that the relative abundances of bacterial species, and therefore biofilms and bacterial byproducts, change during progression of a variety of human diseases including gastrointestinal, autoimmune, neurodegenerative, and cancer. Studies have shown the location and proximity of the biofilms within the gastrointestinal tract might impact disease outcome. Gram-negative enteric bacteria secrete the amyloid curli, which makes up as much as 85% of the extracellular matrix of enteric biofilms. Curli mediates cell-cell attachment and attachment to various surfaces including extracellular matrix components such as fibronectin and laminin. Structurally, curli is strikingly similar to pathological and immunomodulatory human amyloids such as amyloid-β, which has been implicated in Alzheimer's disease, α-synuclein, which is involved in Parkinson's disease, and serum amyloid A, which is secreted during the acute phase of inflammation. The immune system recognizes both bacterial amyloid curli and human amyloids utilizing the same receptors, so curli also induces inflammation. Moreover, recent work indicates that curli can participate in the self-assembly process of pathological human amyloids. Curli is found within biofilms of commensal enteric bacteria as well as invasive pathogens; therefore, evidence suggests that curli contributes to complex human diseases. In this review, we summarize the recent findings on how bacterial biofilms containing curli participate in the pathological and immunological processes in gastrointestinal diseases, systemic autoimmune diseases, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Amanda L Miller
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Shingo Bessho
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Kaitlyn Grando
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Çagla Tükel
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
91
|
Saeed K, Sendi P, Arnold WV, Bauer TW, Coraça-Huber DC, Chen AF, Choe H, Daiss JL, Ghert M, Hickok NJ, Nishitani K, Springer BD, Stoodley P, Sculco TP, Brause BD, Parvizi J, McLaren AC, Schwarz EM. Bacterial toxins in musculoskeletal infections. J Orthop Res 2021; 39:240-250. [PMID: 32255540 PMCID: PMC7541548 DOI: 10.1002/jor.24683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/27/2020] [Accepted: 04/01/2020] [Indexed: 02/04/2023]
Abstract
Musculoskeletal infections (MSKIs) remain a major health burden in orthopaedics. Bacterial toxins are foundational to pathogenesis in MSKI, but poorly understood by the community of providers that care for patients with MSKI, inducing an international group of microbiologists, infectious diseases specialists, orthopaedic surgeons and biofilm scientists to review the literature in this field to identify key topics and compile the current knowledge on the role of toxins in MSKI, with the goal of illuminating potential impact on biofilm formation and dispersal as well as therapeutic strategies. The group concluded that further research is needed to maximize our understanding of the effect of toxins on MSKIs, including: (i) further research to identify the roles of bacterial toxins in MSKIs, (ii) establish the understanding of the importance of environmental and host factors and in vivo expression of toxins throughout the course of an infection, (iii) establish the principles of drug-ability of antitoxins as antimicrobial agents in MSKIs, (iv) have well-defined metrics of success for antitoxins as antiinfective drugs, (v) design a cocktail of antitoxins against specific pathogens to (a) inhibit biofilm formation and (b) inhibit toxin release. The applicability of antitoxins as potential antimicrobials in the era of rising antibiotic resistance could meet the needs of day-to-day clinicians.
Collapse
Affiliation(s)
- Kordo Saeed
- University Hospital Southampton NHS Foundation Trust, Department of Microbiology, Microbiology Innovation and Research Unit (MIRU), Southampton, UK; and University of Southampton, School of Medicine, Southampton UK
| | - Parham Sendi
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology/ Department of Orthopaedics and Traumatology, University Hospital Basel, University Basel, Basel, Switzerland
| | - William V. Arnold
- Department of Orthopaedic Surgery, Rothman Institute at Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Thomas W. Bauer
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Hospital for Special Surgery, New York, NY, USA
| | - Débora C. Coraça-Huber
- Research Laboratory for Implant Associated Infections (Biofilm Lab), Experimental Orthopaedics, Department of Orthopaedic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Antonia F. Chen
- Department of Orthopaedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Hyonmin Choe
- Department of Orthopaedic Surgery, Yokohama City University, Yokohama, Kanagawa, Japan
| | - John L. Daiss
- Center for Musculoskeletal Research, School of Medicine and Dentistry University of Rochester, Rochester, NY, USA
| | - Michelle Ghert
- Department of Surgery, Division of Orthopaedic Surgery, McMaster University, Hamilton, ON, Canada
| | - Noreen J. Hickok
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, USA
| | - Kohei Nishitani
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | - Bryan D. Springer
- OrthoCarolina Hip and Knee Center, Atrium Musculoskeletal Institute, Charlotte, NC, USA
| | - Paul Stoodley
- Departments of Microbial Infection and Immunity and OrthopedicsInfectious Diseases Institute, The Ohio State University, 716 Biomedical Research Tower, 460 West 12th Avenue, Columbus OH, Canada
- National Centre for Microbial Tribology at Southampton (nCATS), National Biofilm Innovation Centre (NBIC), Mechanical Engineering, University of Southampton, Southampton, UK.
| | - Thomas P. Sculco
- Department of Orthopaedic Surgery, Weill Cornell Medicine, Hospital for Special Surgery, New York, NY, USA
| | - Barry D. Brause
- Department of Infectious Diseases, Weill Cornell Medicine, Hospital for Special Surgery, New York, NY, USA
| | - Javad Parvizi
- Department of Orthopaedics, Rothman Institute at Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Alex C. McLaren
- Department of Orthopaedic Surgery, University of Arizona, College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Edward M. Schwarz
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester, Rochester, NY, USA
| |
Collapse
|
92
|
Zaman M, Andreasen M. Modulating Kinetics of the Amyloid-Like Aggregation of S. aureus Phenol-Soluble Modulins by Changes in pH. Microorganisms 2021; 9:microorganisms9010117. [PMID: 33430169 PMCID: PMC7825627 DOI: 10.3390/microorganisms9010117] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 11/26/2022] Open
Abstract
The pathogen Staphylococcus aureus is recognized as one of the most frequent causes of biofilm-associated infections. The recently identified phenol-soluble modulin (PSM) peptides act as the key molecular effectors of staphylococcal biofilm maturation and promote the formation of an aggregated fibril structure. The aim of this study was to evaluate the effect of various pH values on the formation of functional amyloids of individual PSM peptides. Here, we combined a range of biophysical, chemical kinetics and microscopic techniques to address the structure and aggregation mechanism of individual PSMs under different conditions. We established that there is a pH-induced switch in PSM aggregation kinetics. Different lag times and growth of fibrils were observed, which indicates that there was no clear correlation between the rates of fibril elongation among different PSMs. This finding confirms that pH can modulate the aggregation properties of these peptides and suggest a deeper understanding of the formation of aggregates, which represents an important basis for strategies to interfere and might help in reducing the risk of biofilm-related infections.
Collapse
|
93
|
Kamble E, Pardesi K. Antibiotic Tolerance in Biofilm and Stationary-Phase Planktonic Cells of Staphylococcus aureus. Microb Drug Resist 2021; 27:3-12. [DOI: 10.1089/mdr.2019.0425] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ekta Kamble
- Department of Microbiology, Savitribai Phule Pune University, Pune, India
| | - Karishma Pardesi
- Department of Microbiology, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
94
|
Multifunctional Amyloids in the Biology of Gram-Positive Bacteria. Microorganisms 2020; 8:microorganisms8122020. [PMID: 33348645 PMCID: PMC7766987 DOI: 10.3390/microorganisms8122020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 01/18/2023] Open
Abstract
Since they were discovered, amyloids have proven to be versatile proteins able to participate in a variety of cellular functions across all kingdoms of life. This multitask trait seems to reside in their ability to coexist as monomers, aggregates or fibrillar entities, with morphological and biochemical peculiarities. It is precisely this common molecular behaviour that allows amyloids to cross react with one another, triggering heterologous aggregation. In bacteria, many of these functional amyloids are devoted to the assembly of biofilms by organizing the matrix scaffold that keeps cells together. However, consistent with their notion of multifunctional proteins, functional amyloids participate in other biological roles within the same organisms, and emerging unprecedented functions are being discovered. In this review, we focus on functional amyloids reported in gram-positive bacteria, which are diverse in their assembly mechanisms and remarkably specific in their biological functions that they perform. Finally, we consider cross-seeding between functional amyloids as an emerging theme in interspecies interactions that contributes to the diversification of bacterial biology.
Collapse
|
95
|
Functional Amyloids Are the Rule Rather Than the Exception in Cellular Biology. Microorganisms 2020; 8:microorganisms8121951. [PMID: 33316961 PMCID: PMC7764130 DOI: 10.3390/microorganisms8121951] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 11/28/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022] Open
Abstract
Amyloids are a class of protein aggregates that have been historically characterized by their relationship with human disease. Indeed, amyloids can be the result of misfolded proteins that self-associate to form insoluble, extracellular plaques in diseased tissue. For the first 150 years of their study, the pathogen-first definition of amyloids was sufficient. However, new observations of amyloids foster an appreciation for non-pathological roles for amyloids in cellular systems. There is now evidence from all domains of life that amyloids can be non-pathogenic and functional, and that their formation can be the result of purposeful and controlled cellular processes. So-called functional amyloids fulfill an assortment of biological functions including acting as structural scaffolds, regulatory mechanisms, and storage mechanisms. The conceptual convergence of amyloids serving a functional role has been repeatedly confirmed by discoveries of additional functional amyloids. With dozens already known, and with the vigorous rate of discovery, the biology of amyloids is robustly represented by non-pathogenic amyloids.
Collapse
|
96
|
Zaman M, Andreasen M. Cross-talk between individual phenol-soluble modulins in Staphylococcus aureus biofilm enables rapid and efficient amyloid formation. eLife 2020; 9:59776. [PMID: 33259287 PMCID: PMC7732344 DOI: 10.7554/elife.59776] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
The infective ability of the opportunistic pathogen Staphylococcus aureus, recognized as the most frequent cause of biofilm-associated infections, is associated with biofilm-mediated resistance to host immune response. Phenol-soluble modulins (PSM) comprise the structural scaffold of S. aureus biofilms through self-assembly into functional amyloids, but the role of individual PSMs during biofilm formation remains poorly understood and the molecular pathways of PSM self-assembly are yet to be identified. Here we demonstrate high degree of cooperation between individual PSMs during functional amyloid formation. PSMα3 initiates the aggregation, forming unstable aggregates capable of seeding other PSMs resulting in stable amyloid structures. Using chemical kinetics we dissect the molecular mechanism of aggregation of individual PSMs showing that PSMα1, PSMα3 and PSMβ1 display secondary nucleation whereas PSMβ2 aggregates through primary nucleation and elongation. Our findings suggest that various PSMs have evolved to ensure fast and efficient biofilm formation through cooperation between individual peptides.
Collapse
Affiliation(s)
- Masihuz Zaman
- Aarhus University, Department of Biomedicine, Aarhus, Denmark
| | - Maria Andreasen
- Aarhus University, Department of Biomedicine, Aarhus, Denmark
| |
Collapse
|
97
|
Chen D, Li J, Pan T, Wu R, Tao Y, Lin H. The broad-spectrum antibiofilm activity of amyloid-forming hexapeptides. Microb Biotechnol 2020; 14:656-667. [PMID: 33248016 PMCID: PMC7936291 DOI: 10.1111/1751-7915.13721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/12/2020] [Indexed: 01/25/2023] Open
Abstract
Evidence suggests that short amyloid-forming peptides derived from bacterial proteomes have functional roles; however, the reported activities are diverse and the underlying mechanisms remain unclear. In this study, we simulated short amyloid-forming peptides from the amyloid-forming truncated protein C123 of Streptococcus mutans (S. mutans), studied their biological functions in microbial proliferation and biofilm formation, and further investigated the underlying mechanism. Fourteen hexapeptides were simulated, 13 of which were successfully synthesized. We found that the amyloid-forming hexapeptides (AFhPs) displayed efficient broad-spectrum antibiofilm activity against the Gram-positive bacteria S. mutans, Streptococcus sanguis and Staphylococcus aureus, Gram-negative bacteria Escherichia coli and fungus Candida albicans, by aggregating into rigid amyloid fibres agglutinating microbes, whereas the non-amyloid-forming hexapeptides (non-AFhPs) did not. The AFhPs did not kill microbes and showed little or no cytotoxicity. Furthermore, a set of AFhPs displayed broad-spectrum antibiofilm activity, regardless of its source. The microbial cell wall carbohydrates, peptidoglycan (PGN), lipoteichoic acid (LTA), glucan and zymosan A, mediated AFhP binding and triggered significant AFhP fibrillation. Although amyloid fibres agglutinated lipid membrane model - large unilamellar vesicles (LUVs) - and LUVs facilitated AFhP fibrillation, the roles of lipid membranes in AFhP antibiofilm activities remain to be elucidated. We highlight the potential use of AFhPs as novel antibiofilm agents.
Collapse
Affiliation(s)
- Dongru Chen
- Guangdong Provincial Key Laboratory of Stomatology, Department of Orthodontics, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jing Li
- Guangdong Provincial Key Laboratory of Stomatology, Department of Preventive Dentistry, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ting Pan
- Guangdong Provincial Key Laboratory of Stomatology, Department of Preventive Dentistry, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ruixue Wu
- Guangdong Provincial Key Laboratory of Stomatology, Department of Preventive Dentistry, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ye Tao
- Guangdong Provincial Key Laboratory of Stomatology, Department of Preventive Dentistry, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huancai Lin
- Guangdong Provincial Key Laboratory of Stomatology, Department of Preventive Dentistry, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
98
|
Abstract
Self-assembly of proteins and peptides into the amyloid fold is a widespread phenomenon in the natural world. The structural hallmark of self-assembly into amyloid fibrillar assemblies is the cross-beta motif, which conveys distinct morphological and mechanical properties. The amyloid fibril formation has contrasting results depending on the organism, in the sense that it can bestow an organism with the advantages of mechanical strength and improved functionality or, on the contrary, could give rise to pathological states. In this chapter we review the existing information on amyloid-like peptide aggregates, which could either be derived from protein sequences, but also could be rationally or de novo designed in order to self-assemble into amyloid fibrils under physiological conditions. Moreover, the development of self-assembled fibrillar biomaterials that are tailored for the desired properties towards applications in biomedical or environmental areas is extensively analyzed. We also review computational studies predicting the amyloid propensity of the natural amino acid sequences and the structure of amyloids, as well as designing novel functional amyloid materials.
Collapse
Affiliation(s)
- C. Kokotidou
- University of Crete, Department of Materials Science and Technology Voutes Campus GR-70013 Heraklion Crete Greece
- FORTH, Institute for Electronic Structure and Laser N. Plastira 100 GR 70013 Heraklion Greece
| | - P. Tamamis
- Texas A&M University, Artie McFerrin Department of Chemical Engineering College Station Texas 77843-3122 USA
| | - A. Mitraki
- University of Crete, Department of Materials Science and Technology Voutes Campus GR-70013 Heraklion Crete Greece
- FORTH, Institute for Electronic Structure and Laser N. Plastira 100 GR 70013 Heraklion Greece
| |
Collapse
|
99
|
Emerging Roles of Functional Bacterial Amyloids in Gene Regulation, Toxicity, and Immunomodulation. Microbiol Mol Biol Rev 2020; 85:85/1/e00062-20. [PMID: 33239434 DOI: 10.1128/mmbr.00062-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bacteria often reside in multicellular communities, called biofilms, held together by an extracellular matrix. In many bacteria, the major proteinaceous component of the biofilm are amyloid fibers. Amyloids are highly stable and structured protein aggregates which were known mostly to be associated with neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Huntington's diseases. In recent years, microbial amyloids were identified also in other species and shown to play major roles in microbial physiology and virulence. For example, amyloid fibers assemble on the bacterial cell surface as a part of the extracellular matrix and are extremely important to the scaffolding and structural integrity of biofilms, which contribute to microbial resilience and resistance. Furthermore, microbial amyloids play fundamental nonscaffold roles that contribute to the development of biofilms underlying numerous persistent infections. Here, we review several nonscaffold roles of bacterial amyloid proteins, including bridging cells during collective migration, acting as regulators of cell fate, as toxins against other bacteria or against host immune cells, and as modulators of the hosts' immune system. These overall points on the complexity of the amyloid fold in encoding numerous activities, which offer approaches for the development of a novel repertoire of antivirulence therapeutics.
Collapse
|
100
|
Huang Q, Xie Y, Yang Z, Cheng D, He L, Wang H, Liu Q, Li M. The cytoplasmic loops of AgrC contribute to the quorum-sensing activity of Staphylococcus aureus. J Microbiol 2020; 59:92-100. [PMID: 33201435 DOI: 10.1007/s12275-021-0274-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 11/29/2022]
Abstract
In Staphylococcus aureus, the accessory gene regulator (agr) quorum-sensing system is thought to play an important role in biofilm formation. The histidine kinase AgrC is one of the agr system components and activated by the self-generated auto-inducing peptide (AIP), which is released continuously into the extracellular environment during bacterial growth. The extracellular loops (Extra-loops) of AgrC are crucial for AIP binding. Here, we reported that the cytoplasmic loops (Cyto-loops) of AgrC are also involved in Agr activity. We identified S. aureus ST398 clinical isolates containing a naturally occurring single amino acid substitution (lysine to isoleucine) at position 73 of an AgrC Cyto-loop that exhibited significantly stronger biofilm formation and decreased Agr activity compared to the wild-type strain. A constructed strain containing the K73I point mutation in AgrC Cyto-loop continued to show a growth dependent induction of the agr system, although the growth dependent induction was delayed by about 6 h compared to the wild-type. In addition, a series of strains containing deletion mutants of the AgrC Cyto- and Extra-loops were constructed and revealed that the removal of the two Cyto-loops and Extra-loops 2 and 3 totally abolished the Agr activity and the growth-dependence on the agr system induction. Remarkably, the Extra-loop 1 deletion did not affect the Agr activity. In conclusion, the AgrC Cyto-loops play a crucial role in the S. aureus quorum-sensing activity.
Collapse
Affiliation(s)
- Qian Huang
- Department of Laboratory Medicine, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Yihui Xie
- Department of Laboratory Medicine, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Ziyu Yang
- Department of Laboratory Medicine, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Danhong Cheng
- Department of Laboratory Medicine, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Lei He
- Department of Laboratory Medicine, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Hua Wang
- Department of Laboratory Medicine, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Qian Liu
- Department of Laboratory Medicine, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China.
| | - Min Li
- Department of Laboratory Medicine, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China.
| |
Collapse
|