51
|
Basler CF. Innate immune evasion by filoviruses. Virology 2015; 479-480:122-30. [DOI: 10.1016/j.virol.2015.03.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 03/17/2015] [Indexed: 01/07/2023]
|
52
|
Coccia EM, Battistini A. Early IFN type I response: Learning from microbial evasion strategies. Semin Immunol 2015; 27:85-101. [PMID: 25869307 PMCID: PMC7129383 DOI: 10.1016/j.smim.2015.03.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/10/2015] [Indexed: 12/12/2022]
Abstract
Type I interferon (IFN) comprises a class of cytokines first discovered more than 50 years ago and initially characterized for their ability to interfere with viral replication and restrict locally viral propagation. As such, their induction downstream of germ-line encoded pattern recognition receptors (PRRs) upon recognition of pathogen-associated molecular patterns (PAMPs) is a hallmark of the host antiviral response. The acknowledgment that several PAMPs, not just of viral origin, may induce IFN, pinpoints at these molecules as a first line of host defense against a number of invading pathogens. Acting in both autocrine and paracrine manner, IFN interferes with viral replication by inducing hundreds of different IFN-stimulated genes with both direct anti-pathogenic as well as immunomodulatory activities, therefore functioning as a bridge between innate and adaptive immunity. On the other hand an inverse interference to escape the IFN system is largely exploited by pathogens through a number of tactics and tricks aimed at evading, inhibiting or manipulating the IFN pathway, that result in progression of infection or establishment of chronic disease. In this review we discuss the interplay between the IFN system and some selected clinically important and challenging viruses and bacteria, highlighting the wide array of pathogen-triggered molecular mechanisms involved in evasion strategies.
Collapse
Affiliation(s)
- Eliana M Coccia
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, Rome 00161, Italy
| | - Angela Battistini
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, Rome 00161, Italy.
| |
Collapse
|
53
|
Albariño CG, Wiggleton Guerrero L, Spengler JR, Uebelhoer LS, Chakrabarti AK, Nichol ST, Towner JS. Recombinant Marburg viruses containing mutations in the IID region of VP35 prevent inhibition of Host immune responses. Virology 2014; 476:85-91. [PMID: 25531184 PMCID: PMC6461211 DOI: 10.1016/j.virol.2014.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/22/2014] [Accepted: 12/02/2014] [Indexed: 12/02/2022]
Abstract
Previous in vitro studies have demonstrated that Ebola and Marburg virus (EBOV and MARV) VP35 antagonize the host cell immune response. Moreover, specific mutations in the IFN inhibitory domain (IID) of EBOV and MARV VP35 that abrogate their interaction with virus-derived dsRNA, lack the ability to inhibit the host immune response. To investigate the role of MARV VP35 in the context of infectious virus, we used our reverse genetics system to generate two recombinant MARVs carrying specific mutations in the IID region of VP35. Our data show that wild-type and mutant viruses grow to similar titers in interferon deficient cells, but exhibit attenuated growth in interferon-competent cells. Furthermore, in contrast to wild-type virus, both MARV mutants were unable to inhibit expression of various antiviral genes. The MARV VP35 mutants exhibit similar phenotypes to those previously described for EBOV, suggesting the existence of a shared immune-modulatory strategy between filoviruses.
Collapse
|
54
|
Yen B, Mulder LCF, Martinez O, Basler CF. Molecular basis for ebolavirus VP35 suppression of human dendritic cell maturation. J Virol 2014; 88:12500-10. [PMID: 25142601 PMCID: PMC4248944 DOI: 10.1128/jvi.02163-14] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 08/10/2014] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Zaire ebolavirus (EBOV) VP35 is a double-stranded RNA (dsRNA)-binding protein that inhibits RIG-I signaling and alpha/beta interferon (IFN-α/β) responses by both dsRNA-binding-dependent and -independent mechanisms. VP35 also suppresses dendritic cell (DC) maturation. Here, we define the pathways and mechanisms through which VP35 impairs DC maturation. Wild-type VP35 (VP35-WT) and two well-characterized VP35 mutants (F239A and R322A) that independently ablate dsRNA binding and RIG-I inhibition were delivered to primary human monocyte-derived DCs (MDDCs) using a lentivirus-based expression system. VP35-WT suppressed not only IFN-α/β but also proinflammatory responses following stimulation of MDDCs with activators of RIG-I-like receptor (RLR) signaling, including RIG-I activators such as Sendai virus (SeV) or 5'-triphosphate RNA, or MDA5 activators such as encephalomyocarditis virus (EMCV) or poly(I · C). The F239A and R322A mutants exhibited greatly reduced suppression of IFN-α/β and proinflammatory cytokine production following treatment of DCs with RLR agonists. VP35-WT also blocked the upregulation of DC maturation markers and the stimulation of allogeneic T cell responses upon SeV infection, whereas the mutants did not. In contrast to the RLR activators, VP35-WT and the VP35 mutants impaired IFN-β production induced by Toll-like receptor 3 (TLR3) or TLR4 agonists but failed to inhibit proinflammatory cytokine production induced by TLR2, TLR3, or TLR4 agonists. Furthermore, VP35 did not prevent lipopolysaccharide (LPS)-induced upregulation of surface markers of MDDC maturation and did not prevent LPS-triggered allogeneic T cell stimulation. Therefore, VP35 is a general antagonist of DC responses to RLR activation. However, TLR agonists can circumvent many of the inhibitory effects of VP35. Therefore, it may be possible to counteract EBOV immune evasion by using treatments that bypass the VP35-imposed block to DC maturation. IMPORTANCE The VP35 protein, which is an inhibitor of RIG-I signaling and alpha/beta interferon (IFN-α/β) responses, has been implicated as an EBOV-encoded factor that contributes to suppression of dendritic cell (DC) function. We used wild-type VP35 and previously characterized VP35 mutants to clarify VP35-DC interactions. Our data demonstrate that VP35 is a general inhibitor of RIG-I-like receptor (RLR) signaling that blocks not only RIG-I- but also MDA5-mediated induction of IFN-α/β responses. Furthermore, in DCs, VP35 also impairs the RLR-mediated induction of proinflammatory cytokine production, upregulation of costimulatory markers, and activation of T cells. These inhibitory activities require VP35 dsRNA-binding activity, an activity previously correlated to VP35 RIG-I inhibitory function. In contrast, while VP35 can inhibit IFN-α/β production induced by TLR3 or TLR4 agonists, this occurs in a dsRNA-independent fashion, and VP35 does not inhibit TLR-mediated expression of proinflammatory cytokines. These data suggest strategies to overcome VP35 inhibition of DC function.
Collapse
Affiliation(s)
- Benjamin Yen
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lubbertus C F Mulder
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Osvaldo Martinez
- Department of Biology, Winona State University, Winona, Minnesota, USA
| | - Christopher F Basler
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
55
|
Establishment and characterization of a lethal mouse model for the Angola strain of Marburg virus. J Virol 2014; 88:12703-14. [PMID: 25142608 DOI: 10.1128/jvi.01643-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Infections with Marburg virus (MARV) and Ebola virus (EBOV) cause severe hemorrhagic fever in humans and nonhuman primates (NHPs) with fatality rates up to 90%. A number of experimental vaccine and treatment platforms have previously been shown to be protective against EBOV infection. However, the rate of development for prophylactics and therapeutics against MARV has been lower in comparison, possibly because a small-animal model is not widely available. Here we report the development of a mouse model for studying the pathogenesis of MARV Angola (MARV/Ang), the most virulent strain of MARV. Infection with the wild-type virus does not cause disease in mice, but the adapted virus (MARV/Ang-MA) recovered from liver homogenates after 24 serial passages in severe combined immunodeficient (SCID) mice caused severe disease when administered intranasally (i.n.) or intraperitoneally (i.p.). The median lethal dose (LD50) was determined to be 0.015 50% TCID50 (tissue culture infective dose) of MARV/Ang-MA in SCID mice, and i.p. infection at a dose of 1,000× LD50 resulted in death between 6 and 8 days postinfection in SCID mice. Similar results were obtained with immunocompetent BALB/c and C57BL/6 mice challenged i.p. with 2,000× LD50 of MARV/Ang-MA. Virological and pathological analyses of MARV/Ang-MA-infected BALB/c mice revealed that the associated pathology was reminiscent of observations made in NHPs with MARV/Ang. MARV/Ang-MA-infected mice showed most of the clinical hallmarks observed with Marburg hemorrhagic fever, including lymphopenia, thrombocytopenia, marked liver damage, and uncontrolled viremia. Virus titers reached 10(8) TCID50/ml in the blood and between 10(6) and 10(10) TCID50/g tissue in the intestines, kidney, lungs, brain, spleen, and liver. This model provides an important tool to screen candidate vaccines and therapeutics against MARV infections. IMPORTANCE The Angola strain of Marburg virus (MARV/Ang) was responsible for the largest outbreak ever documented for Marburg viruses. With a 90% fatality rate, it is similar to Ebola virus, which makes it one of the most lethal viruses known to humans. There are currently no approved interventions for Marburg virus, in part because a small-animal model that is vulnerable to MARV/Ang infection is not available to screen and test potential vaccines and therapeutics in a quick and economical manner. To address this need, we have adapted MARV/Ang so that it causes illness in mice resulting in death. The signs of disease in these mice are reminiscent of wild-type MARV/Ang infections in humans and nonhuman primates. We believe that this will be of help in accelerating the development of life-saving measures against Marburg virus infections.
Collapse
|
56
|
Fitzgerald ME, Rawling DC, Vela A, Pyle AM. An evolving arsenal: viral RNA detection by RIG-I-like receptors. Curr Opin Microbiol 2014; 20:76-81. [PMID: 24912143 PMCID: PMC7108371 DOI: 10.1016/j.mib.2014.05.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/02/2014] [Accepted: 05/11/2014] [Indexed: 12/22/2022]
Abstract
RIG-I-like receptors (RLRs) utilize a specialized, multi-domain architecture to detect and respond to invasion by a diverse set of viruses. Structural similarities among these receptors provide a general mechanism for double strand RNA recognition and signal transduction. However, each RLR has developed unique strategies for sensing the specific molecular determinants on subgroups of viral RNAs. As a means to circumvent the antiviral response, viruses escape RLR detection by degrading, or sequestering or modifying their RNA. Patterns of variation in RLR sequence reveal a continuous evolution of the protein domains that contribute to RNA recognition and signaling.
Collapse
Affiliation(s)
- Megan E Fitzgerald
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, United States; Howard Hughes Medical Institute, Chevy Chase, MD 20815, United States
| | - David C Rawling
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, United States
| | - Adriana Vela
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, United States
| | - Anna Marie Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, United States; Howard Hughes Medical Institute, Chevy Chase, MD 20815, United States.
| |
Collapse
|
57
|
To sense or not to sense viral RNA--essentials of coronavirus innate immune evasion. Curr Opin Microbiol 2014; 20:69-75. [PMID: 24908561 PMCID: PMC7108419 DOI: 10.1016/j.mib.2014.05.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 05/06/2014] [Accepted: 05/11/2014] [Indexed: 11/20/2022]
Abstract
Coronaviruses employ versatile mechanisms to evade sensing of viral RNA. Cap-methylation of viral RNA facilitates innate immune evasion. There is increasing evidence that virus-encoded ribonucleases impact innate immune responses.
An essential function of innate immunity is to distinguish self from non-self and receptors have evolved to specifically recognize viral components and initiate the expression of antiviral proteins to restrict viral replication. Coronaviruses are RNA viruses that replicate in the host cytoplasm and evade innate immune sensing in most cell types, either passively by hiding their viral signatures and limiting exposure to sensors or actively, by encoding viral antagonists to counteract the effects of interferons. Since many cytoplasmic viruses exploit similar mechanisms of innate immune evasion, mechanistic insight into the direct interplay between viral RNA, viral RNA-processing enzymes, cellular sensors and antiviral proteins will be highly relevant to develop novel antiviral targets and to restrict important animal and human infections.
Collapse
|
58
|
Brown CS, Lee MS, Leung DW, Wang T, Xu W, Luthra P, Anantpadma M, Shabman RS, Melito LM, MacMillan KS, Borek DM, Otwinowski Z, Ramanan P, Stubbs AJ, Peterson DS, Binning JM, Tonelli M, Olson MA, Davey RA, Ready JM, Basler CF, Amarasinghe GK. In silico derived small molecules bind the filovirus VP35 protein and inhibit its polymerase cofactor activity. J Mol Biol 2014; 426:2045-58. [PMID: 24495995 PMCID: PMC4163021 DOI: 10.1016/j.jmb.2014.01.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 01/25/2014] [Accepted: 01/28/2014] [Indexed: 01/13/2023]
Abstract
The Ebola virus (EBOV) genome only encodes a single viral polypeptide with enzymatic activity, the viral large (L) RNA-dependent RNA polymerase protein. However, currently, there is limited information about the L protein, which has hampered the development of antivirals. Therefore, antifiloviral therapeutic efforts must include additional targets such as protein-protein interfaces. Viral protein 35 (VP35) is multifunctional and plays important roles in viral pathogenesis, including viral mRNA synthesis and replication of the negative-sense RNA viral genome. Previous studies revealed that mutation of key basic residues within the VP35 interferon inhibitory domain (IID) results in significant EBOV attenuation, both in vitro and in vivo. In the current study, we use an experimental pipeline that includes structure-based in silico screening and biochemical and structural characterization, along with medicinal chemistry, to identify and characterize small molecules that target a binding pocket within VP35. NMR mapping experiments and high-resolution x-ray crystal structures show that select small molecules bind to a region of VP35 IID that is important for replication complex formation through interactions with the viral nucleoprotein (NP). We also tested select compounds for their ability to inhibit VP35 IID-NP interactions in vitro as well as VP35 function in a minigenome assay and EBOV replication. These results confirm the ability of compounds identified in this study to inhibit VP35-NP interactions in vitro and to impair viral replication in cell-based assays. These studies provide an initial framework to guide development of antifiloviral compounds against filoviral VP35 proteins.
Collapse
Affiliation(s)
- Craig S Brown
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA; Biochemistry Undergraduate Program, Iowa State University, Ames, IA 50011, USA
| | - Michael S Lee
- Simulation Sciences Branch, US Army Research Laboratory, Aberdeen, MD 21005, USA; Department of Cell Biology and Biochemistry, USAMRIID, 1425 Porter St., Fort Detrick, MD 21702, USA
| | - Daisy W Leung
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tianjiao Wang
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Wei Xu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Priya Luthra
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Manu Anantpadma
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Reed S Shabman
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lisa M Melito
- Department of Biochemistry, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Karen S MacMillan
- Department of Biochemistry, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Dominika M Borek
- Department of Biochemistry, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, USA; Department of Biophysics, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, USA; Center for Structural Genomics of Infectious Diseases (CSGID), Chicago, IL, USA
| | - Zbyszek Otwinowski
- Department of Biochemistry, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, USA; Department of Biophysics, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, USA; Center for Structural Genomics of Infectious Diseases (CSGID), Chicago, IL, USA
| | - Parameshwaran Ramanan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Biochemistry Graduate Program, Iowa State University, Ames, IA 50011, USA
| | - Alisha J Stubbs
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA; Biochemistry Undergraduate Program, Iowa State University, Ames, IA 50011, USA
| | - Dayna S Peterson
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA; Biochemistry Undergraduate Program, Iowa State University, Ames, IA 50011, USA
| | - Jennifer M Binning
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Biochemistry Graduate Program, Iowa State University, Ames, IA 50011, USA
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison, University of Wisconsin, Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Mark A Olson
- Department of Cell Biology and Biochemistry, USAMRIID, 1425 Porter St., Fort Detrick, MD 21702, USA
| | - Robert A Davey
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Joseph M Ready
- Department of Biochemistry, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Christopher F Basler
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
59
|
Zinzula L, Tramontano E. Strategies of highly pathogenic RNA viruses to block dsRNA detection by RIG-I-like receptors: hide, mask, hit. Antiviral Res 2013; 100:615-35. [PMID: 24129118 PMCID: PMC7113674 DOI: 10.1016/j.antiviral.2013.10.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/24/2013] [Accepted: 10/04/2013] [Indexed: 12/24/2022]
Abstract
dsRNA species are byproducts of RNA virus replication and/or transcription. Prompt detection of dsRNA by RIG-I like receptors (RLRs) is a hallmark of the innate immune response. RLRs activation triggers production of the type I interferon (IFN)-based antiviral response. Highly pathogenic RNA viruses encode proteins that block the RLRs pathway. Hide, mask and hit are 3 strategies of RNA viruses to avoid immune system activation.
Double-stranded RNA (dsRNA) is synthesized during the course of infection by RNA viruses as a byproduct of replication and transcription and acts as a potent trigger of the host innate antiviral response. In the cytoplasm of the infected cell, recognition of the presence of viral dsRNA as a signature of “non-self” nucleic acid is carried out by RIG-I-like receptors (RLRs), a set of dedicated helicases whose activation leads to the production of type I interferon α/β (IFN-α/β). To overcome the innate antiviral response, RNA viruses encode suppressors of IFN-α/β induction, which block RLRs recognition of dsRNA by means of different mechanisms that can be categorized into: (i) dsRNA binding and/or shielding (“hide”), (ii) dsRNA termini processing (“mask”) and (iii) direct interaction with components of the RLRs pathway (“hit”). In light of recent functional, biochemical and structural findings, we review the inhibition mechanisms of RLRs recognition of dsRNA displayed by a number of highly pathogenic RNA viruses with different disease phenotypes such as haemorrhagic fever (Ebola, Marburg, Lassa fever, Lujo, Machupo, Junin, Guanarito, Crimean-Congo, Rift Valley fever, dengue), severe respiratory disease (influenza, SARS, Hendra, Hantaan, Sin Nombre, Andes) and encephalitis (Nipah, West Nile).
Collapse
Affiliation(s)
- Luca Zinzula
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella di Monserrato, SS554, 09042 Monserrato (Cagliari), Italy.
| | | |
Collapse
|
60
|
Luthra P, Ramanan P, Mire CE, Weisend C, Tsuda Y, Yen B, Liu G, Leung DW, Geisbert TW, Ebihara H, Amarasinghe GK, Basler CF. Mutual antagonism between the Ebola virus VP35 protein and the RIG-I activator PACT determines infection outcome. Cell Host Microbe 2013; 14:74-84. [PMID: 23870315 PMCID: PMC3875338 DOI: 10.1016/j.chom.2013.06.010] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 05/04/2013] [Accepted: 06/24/2013] [Indexed: 11/21/2022]
Abstract
The cytoplasmic pattern recognition receptor RIG-I is activated by viral RNA and induces type I IFN responses to control viral replication. The cellular dsRNA binding protein PACT can also activate RIG-I. To counteract innate antiviral responses, some viruses, including Ebola virus (EBOV), encode proteins that antagonize RIG-I signaling. Here, we show that EBOV VP35 inhibits PACT-induced RIG-I ATPase activity in a dose-dependent manner. The interaction of PACT with RIG-I is disrupted by wild-type VP35, but not by VP35 mutants that are unable to bind PACT. In addition, PACT-VP35 interaction impairs the association between VP35 and the viral polymerase, thereby diminishing viral RNA synthesis and modulating EBOV replication. PACT-deficient cells are defective in IFN induction and are insensitive to VP35 function. These data support a model in which the VP35-PACT interaction is mutually antagonistic and plays a fundamental role in determining the outcome of EBOV infection.
Collapse
Affiliation(s)
- Priya Luthra
- Department of Microbiology, Icahn School of Medicine at Mount Sinai School, New York, NY 10029, USA
| | - Parameshwaran Ramanan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Biochemistry Graduate Program, Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Chad E. Mire
- Department of Microbiology and Immunology, Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Carla Weisend
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MO 59840, USA
| | - Yoshimi Tsuda
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MO 59840, USA
| | - Benjamin Yen
- Department of Microbiology, Icahn School of Medicine at Mount Sinai School, New York, NY 10029, USA
| | - Gai Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daisy W. Leung
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Thomas W. Geisbert
- Department of Microbiology and Immunology, Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Hideki Ebihara
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MO 59840, USA
| | - Gaya K. Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christopher F. Basler
- Department of Microbiology, Icahn School of Medicine at Mount Sinai School, New York, NY 10029, USA
| |
Collapse
|
61
|
Ebolavirus VP35 coats the backbone of double-stranded RNA for interferon antagonism. J Virol 2013; 87:10385-8. [PMID: 23824825 DOI: 10.1128/jvi.01452-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recognition of viral double-stranded RNA (dsRNA) activates interferon production and immune signaling in host cells. Crystal structures of ebolavirus VP35 show that it caps dsRNA ends to prevent sensing by pattern recognition receptors such as RIG-I. In contrast, structures of marburgvirus VP35 show that it primarily coats the dsRNA backbone. Here, we demonstrate that ebolavirus VP35 also coats the dsRNA backbone in solution, although binding to the dsRNA ends probably constitutes the initial binding event.
Collapse
|
62
|
Synergistic effect of the PDZ and p85β-binding domains of the NS1 protein on virulence of an avian H5N1 influenza A virus. J Virol 2013; 87:4861-71. [PMID: 23408626 DOI: 10.1128/jvi.02608-12] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The influenza A virus NS1 protein affects virulence through several mechanisms, including the host's innate immune response and various signaling pathways. Highly pathogenic avian influenza (HPAI) viruses of the H5N1 subtype continue to evolve through reassortment and mutations. Our recent phylogenetic analysis identified a group of HPAI H5N1 viruses with two characteristic mutations in NS1: the avian virus-type PDZ domain-binding motif ESEV (which affects virulence) was replaced with ESKV, and NS1-138F (which is highly conserved among all influenza A viruses and may affect the activation of the phosphatidylinositol 3-kinase [PI3K]/Akt signaling pathway) was replaced with NS1-138Y. Here, we show that an HPAI H5N1 virus (A/duck/Hunan/69/2004) encoding NS1-ESKV and NS1-138Y was confined to the respiratory tract of infected mice, whereas a mutant encoding NS1-ESEV and NS1-138F caused systemic infection and killed mice more efficiently. Mutation of either one of these sites had small effects on virulence. In addition, we found that the amino acid at NS1-138 affected not only the induction of the PI3K/Akt pathway but also the interaction of NS1 with cellular PDZ domain proteins. Similarly, the mutation in the PDZ domain-binding motif of NS1 altered its binding to cellular PDZ domain proteins and affected Akt phosphorylation. These findings suggest a functional interplay between the mutations at NS1-138 and NS1-229 that results in a synergistic effect on influenza virulence.
Collapse
|
63
|
BiotecVisions 2012, November. Biotechnol J 2012. [DOI: 10.1002/biot.201200058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|