51
|
Myllymäki H, Niskanen M, Luukinen H, Parikka M, Rämet M. Identification of protective postexposure mycobacterial vaccine antigens using an immunosuppression-based reactivation model in the zebrafish. Dis Model Mech 2018; 11:11/3/dmm033175. [PMID: 29590635 PMCID: PMC5897733 DOI: 10.1242/dmm.033175] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/14/2018] [Indexed: 12/28/2022] Open
Abstract
Roughly one third of the human population carries a latent Mycobacterium tuberculosis infection, with a 5-10% lifetime risk of reactivation to active tuberculosis and further spreading the disease. The mechanisms leading to the reactivation of a latent Mycobacterium tuberculosis infection are insufficiently understood. Here, we used a natural fish pathogen, Mycobacterium marinum, to model the reactivation of a mycobacterial infection in the adult zebrafish (Danio rerio). A low-dose intraperitoneal injection (∼40 colony-forming units) led to a latent infection, with mycobacteria found in well-organized granulomas surrounded by a thick layer of fibrous tissue. A latent infection could be reactivated by oral dexamethasone treatment, which led to disruption of the granuloma structures and dissemination of bacteria. This was associated with the depletion of lymphocytes, especially CD4+ T cells. Using this model, we verified that ethambutol is effective against an active disease but not a latent infection. In addition, we screened 15 mycobacterial antigens as postexposure DNA vaccines, of which RpfB and MMAR_4207 reduced bacterial burdens upon reactivation, as did the Ag85-ESAT-6 combination. In conclusion, the adult zebrafish-M. marinum infection model provides a feasible tool for examining the mechanisms of reactivation in mycobacterial infections, and for screening vaccine and drug candidates.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Henna Myllymäki
- BioMediTech Institute and Faculty of Medical and Life Sciences, University of Tampere, Tampere FI-33014, Finland
| | - Mirja Niskanen
- BioMediTech Institute and Faculty of Medical and Life Sciences, University of Tampere, Tampere FI-33014, Finland
| | - Hanna Luukinen
- BioMediTech Institute and Faculty of Medical and Life Sciences, University of Tampere, Tampere FI-33014, Finland
| | - Mataleena Parikka
- BioMediTech Institute and Faculty of Medical and Life Sciences, University of Tampere, Tampere FI-33014, Finland.,Oral and Maxillofacial Unit, Tampere University Hospital, Tampere FI-33521, Finland
| | - Mika Rämet
- BioMediTech Institute and Faculty of Medical and Life Sciences, University of Tampere, Tampere FI-33014, Finland.,Department of Pediatrics, Tampere University Hospital, Tampere FI-33521, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu FI-90220, Finland.,PEDEGO Research Unit, and, Medical Research Center, University of Oulu, Oulu FI-90014, Finland
| |
Collapse
|
52
|
Luukinen H, Hammarén MM, Vanha-Aho LM, Svorjova A, Kantanen L, Järvinen S, Luukinen BV, Dufour E, Rämet M, Hytönen VP, Parikka M. Priming of innate antimycobacterial immunity by heat-killed Listeria monocytogenes induces sterilizing response in the adult zebrafish tuberculosis model. Dis Model Mech 2018; 11:dmm.031658. [PMID: 29208761 PMCID: PMC5818079 DOI: 10.1242/dmm.031658] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/21/2017] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium tuberculosis remains one of the most problematic infectious agents, owing to its highly developed mechanisms to evade host immune responses combined with the increasing emergence of antibiotic resistance. Host-directed therapies aiming to optimize immune responses to improve bacterial eradication or to limit excessive inflammation are a new strategy for the treatment of tuberculosis. In this study, we have established a zebrafish-Mycobacterium marinum natural host-pathogen model system to study induced protective immune responses in mycobacterial infection. We show that priming adult zebrafish with heat-killed Listeria monocytogenes (HKLm) at 1 day prior to M. marinum infection leads to significantly decreased mycobacterial loads in the infected zebrafish. Using rag1−/− fish, we show that the protective immunity conferred by HKLm priming can be induced through innate immunity alone. At 24 h post-infection, HKLm priming leads to a significant increase in the expression levels of macrophage-expressed gene 1 (mpeg1), tumor necrosis factor α (tnfa) and nitric oxide synthase 2b (nos2b), whereas superoxide dismutase 2 (sod2) expression is downregulated, implying that HKLm priming increases the number of macrophages and boosts intracellular killing mechanisms. The protective effects of HKLm are abolished when the injected material is pretreated with nucleases or proteinase K. Importantly, HKLm priming significantly increases the frequency of clearance of M. marinum infection by evoking sterilizing immunity (25 vs 3.7%, P=0.0021). In this study, immune priming is successfully used to induce sterilizing immunity against mycobacterial infection. This model provides a promising new platform for elucidating the mechanisms underlying sterilizing immunity and to develop host-directed treatment or prevention strategies against tuberculosis. This article has an associated First Person interview with the first author of the paper. Summary: Heat-killed Listeria monocytogenes induces immune responses that lead to increased clearance of mycobacterial infection in the adult zebrafish tuberculosis model via innate immune mechanisms.
Collapse
Affiliation(s)
- Hanna Luukinen
- Faculty of Medicine and Life Sciences, FI-33014 University of Tampere, Tampere, Finland
| | - Milka Marjut Hammarén
- Faculty of Medicine and Life Sciences, FI-33014 University of Tampere, Tampere, Finland
| | - Leena-Maija Vanha-Aho
- Faculty of Medicine and Life Sciences, FI-33014 University of Tampere, Tampere, Finland
| | - Aleksandra Svorjova
- Faculty of Medicine and Life Sciences, FI-33014 University of Tampere, Tampere, Finland
| | - Laura Kantanen
- Faculty of Medicine and Life Sciences, FI-33014 University of Tampere, Tampere, Finland
| | - Sampsa Järvinen
- Faculty of Medicine and Life Sciences, FI-33014 University of Tampere, Tampere, Finland
| | | | - Eric Dufour
- Faculty of Medicine and Life Sciences, FI-33014 University of Tampere, Tampere, Finland.,BioMediTech Institute, FI-33014 University of Tampere, Tampere, Finland
| | - Mika Rämet
- Faculty of Medicine and Life Sciences, FI-33014 University of Tampere, Tampere, Finland.,BioMediTech Institute, FI-33014 University of Tampere, Tampere, Finland.,PEDEGO Research Unit, and Medical Research Center Oulu, FI-90014 University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, FI-90220 Oulu, Finland
| | - Vesa Pekka Hytönen
- Faculty of Medicine and Life Sciences, FI-33014 University of Tampere, Tampere, Finland.,BioMediTech Institute, FI-33014 University of Tampere, Tampere, Finland.,Fimlab Laboratories, Pirkanmaa Hospital District, FI-33520 Tampere, Finland
| | - Mataleena Parikka
- Faculty of Medicine and Life Sciences, FI-33014 University of Tampere, Tampere, Finland.,Oral and Maxillofacial Unit, Tampere University Hospital, FI-33521 Tampere, Finland
| |
Collapse
|
53
|
Cardenal-Muñoz E, Barisch C, Lefrançois LH, López-Jiménez AT, Soldati T. When Dicty Met Myco, a (Not So) Romantic Story about One Amoeba and Its Intracellular Pathogen. Front Cell Infect Microbiol 2018; 7:529. [PMID: 29376033 PMCID: PMC5767268 DOI: 10.3389/fcimb.2017.00529] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/18/2017] [Indexed: 01/06/2023] Open
Abstract
In recent years, Dictyostelium discoideum has become an important model organism to study the cell biology of professional phagocytes. This amoeba not only shares many molecular features with mammalian macrophages, but most of its fundamental signal transduction pathways are conserved in humans. The broad range of existing genetic and biochemical tools, together with its suitability for cell culture and live microscopy, make D. discoideum an ideal and versatile laboratory organism. In this review, we focus on the use of D. discoideum as a phagocyte model for the study of mycobacterial infections, in particular Mycobacterium marinum. We look in detail at the intracellular cycle of M. marinum, from its uptake by D. discoideum to its active or passive egress into the extracellular medium. In addition, we describe the molecular mechanisms that both the mycobacterial invader and the amoeboid host have developed to fight against each other, and compare and contrast with those developed by mammalian phagocytes. Finally, we introduce the methods and specific tools that have been used so far to monitor the D. discoideum-M. marinum interaction.
Collapse
Affiliation(s)
- Elena Cardenal-Muñoz
- Department of Biochemistry, Sciences II, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
54
|
Fontes I, Hartikainen H, Williams C, Okamura B. Persistence, impacts and environmental drivers of covert infections in invertebrate hosts. Parasit Vectors 2017; 10:542. [PMID: 29096700 PMCID: PMC5668978 DOI: 10.1186/s13071-017-2495-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/23/2017] [Indexed: 11/10/2022] Open
Abstract
Background Persistent covert infections of the myxozoan, Tetracapsuloides bryosalmonae, in primary invertebrate hosts (the freshwater bryozoan, Fredericella sultana) have been proposed to represent a reservoir for proliferative kidney disease in secondary fish hosts. However, we have limited understanding of how covert infections persist and vary in bryozoan populations over time and space and how they may impact these populations. In addition, previous studies have likely underestimated covert infection prevalence. To improve our understanding of the dynamics, impacts and implications of covert infections we employed a highly sensitive polymerase chain reaction (PCR) assay and undertook the first investigation of covert infections in the field over an annual period by sampling bryozoans every 45 days from three populations within each of three rivers. Results Covert infections persisted throughout the year and prevalence varied within and between rivers, but were often > 50%. Variation in temperature and water chemistry were linked with changes in prevalence in a manner consistent with the maintenance of covert infections during periods of low productivity and thus poor growth conditions for both bryozoans and T. bryosalmonae. The presence and increased severity of covert infections reduced host growth but only when bryozoans were also investing in the production of overwintering propagules (statoblasts). However, because statoblast production is transitory, this effect is unlikely to greatly impact the capacity of bryozoan populations to act as persistent sources of infections and hence potential disease outbreaks in farmed and wild fish populations. Conclusions We demonstrate that covert infections are widespread and persist over space and time in bryozoan populations. To our knowledge, this is the first long-term study of covert infections in a field setting. Review of the results of this and previous studies enables us to identify key questions related to the ecology and evolution of covert infection strategies and associated host-parasite interactions. Electronic supplementary material The online version of this article (10.1186/s13071-017-2495-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Inês Fontes
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK.,Scottish Fish Immunology Research Centre, Aberdeen University, Aberdeen, AB24 2TZ, UK
| | - Hanna Hartikainen
- EAWAG, Department of Aquatic Ecology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland.,ETH Zürich, Institute of Integrative Biology (IBZ), Zürich, Switzerland
| | - Chris Williams
- Environment Agency, National Fisheries Laboratory, Brampton, Cambridgeshire, PE28 4NE, UK
| | - Beth Okamura
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK.
| |
Collapse
|
55
|
Aspatwar A, Hammarén M, Koskinen S, Luukinen B, Barker H, Carta F, Supuran CT, Parikka M, Parkkila S. β-CA-specific inhibitor dithiocarbamate Fc14-584B: a novel antimycobacterial agent with potential to treat drug-resistant tuberculosis. J Enzyme Inhib Med Chem 2017. [PMID: 28629306 PMCID: PMC6445161 DOI: 10.1080/14756366.2017.1332056] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Inhibition of novel biological pathways in Mycobacterium tuberculosis (Mtb) creates the potential for alternative approaches for treating drug-resistant tuberculosis. In vitro studies have shown that dithiocarbamate-derived β-carbonic anhydrase (β-CA) inhibitors Fc14–594 A and Fc14–584B effectively inhibit the activity of Mtb β-CA enzymes. We screened the dithiocarbamates for toxicity, and studied the in vivo inhibitory effect of the least toxic inhibitor on M. marinum in a zebrafish model. In our toxicity screening, Fc14–584B emerged as the least toxic and showed minimal toxicity in 5-day-old larvae at 300 µM concentration. In vitro inhibition of M. marinum showed that both compounds inhibited growth at a concentration of 75 µM. In vivo inhibition studies using 300 µM Fc14–584B showed significant (p > .05) impairment of bacterial growth in zebrafish larvae at 6 days post infection. Our studies highlight the therapeutic potential of Fc14–584B as a β-CA inhibitor against Mtb, and that dithiocarbamate compounds may be developed into potent anti-tuberculosis drugs.
Collapse
Affiliation(s)
- Ashok Aspatwar
- a Faculty of Medicine and Life Sciences , University of Tampere , Tampere , Finland
| | - Milka Hammarén
- a Faculty of Medicine and Life Sciences , University of Tampere , Tampere , Finland
| | - Sanni Koskinen
- a Faculty of Medicine and Life Sciences , University of Tampere , Tampere , Finland
| | - Bruno Luukinen
- a Faculty of Medicine and Life Sciences , University of Tampere , Tampere , Finland
| | - Harlan Barker
- a Faculty of Medicine and Life Sciences , University of Tampere , Tampere , Finland
| | - Fabrizio Carta
- b Neurofarba Department , Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze , Sesto Fiorentino (Firenze) , Italy
| | - Claudiu T Supuran
- b Neurofarba Department , Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze , Sesto Fiorentino (Firenze) , Italy
| | - Mataleena Parikka
- a Faculty of Medicine and Life Sciences , University of Tampere , Tampere , Finland
| | - Seppo Parkkila
- a Faculty of Medicine and Life Sciences , University of Tampere , Tampere , Finland.,c Fimlab Ltd. and Tampere University Hospital , Tampere , Finland
| |
Collapse
|
56
|
Myllymäki H, Niskanen M, Oksanen KE, Sherwood E, Ahava M, Parikka M, Rämet M. Identification of novel antigen candidates for a tuberculosis vaccine in the adult zebrafish (Danio rerio). PLoS One 2017; 12:e0181942. [PMID: 28742838 PMCID: PMC5526617 DOI: 10.1371/journal.pone.0181942] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 07/10/2017] [Indexed: 12/31/2022] Open
Abstract
Tuberculosis (TB) remains a major global health challenge and the development of a better vaccine takes center stage in fighting the disease. For this purpose, animal models that are capable of replicating the course of the disease and are suitable for the early-stage screening of vaccine candidates are needed. A Mycobacterium marinum infection in adult zebrafish resembles human TB. Here, we present a pre-clinical screen for a DNA-based tuberculosis vaccine in the adult zebrafish using an M. marinum infection model. We tested 15 antigens representing different types of mycobacterial proteins, including the Resuscitation Promoting factors (Rpf), PE/PPE protein family members, other membrane proteins and metabolic enzymes. The antigens were expressed as GFP fusion proteins, facilitating the validation of their expression in vivo. The efficiency of the antigens was tested against a low-dose intraperitoneal M. marinum infection (≈ 40 colony forming units), which mimics a primary M. tuberculosis infection. While none of the antigens was able to completely prevent a mycobacterial infection, four of them, namely RpfE, PE5_1, PE31 and cdh, led to significantly reduced bacterial burdens at four weeks post infection. Immunization with RpfE also improved the survival of the fish against a high-dose intraperitoneal injection with M. marinum (≈ 10.000 colony forming units), resembling the disseminated form of the disease. This study shows that the M. marinum infection model in adult zebrafish is suitable for the pre-clinical screening of tuberculosis vaccines and presents RpfE as a potential antigen candidate for further studies.
Collapse
Affiliation(s)
- Henna Myllymäki
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- * E-mail:
| | - Mirja Niskanen
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Kaisa Ester Oksanen
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Eleanor Sherwood
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Maarit Ahava
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Mataleena Parikka
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- Oral and Maxillofacial Unit, Tampere University Hospital, Tampere, Finland
| | - Mika Rämet
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, Oulu, Finland, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
57
|
Zhan L, Tang J, Sun M, Qin C. Animal Models for Tuberculosis in Translational and Precision Medicine. Front Microbiol 2017; 8:717. [PMID: 28522990 PMCID: PMC5415616 DOI: 10.3389/fmicb.2017.00717] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/06/2017] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) is a health threat to the global population. Anti-TB drugs and vaccines are key approaches for TB prevention and control. TB animal models are basic tools for developing biomarkers of diagnosis, drugs for therapy, vaccines for prevention and researching pathogenic mechanisms for identification of targets; thus, they serve as the cornerstone of comparative medicine, translational medicine, and precision medicine. In this review, we discuss the current use of TB animal models and their problems, as well as offering perspectives on the future of these models.
Collapse
Affiliation(s)
- Lingjun Zhan
- Key Laboratory of Human Disease Comparative Medicine, Ministry of HealthBeijing, China.,Institution of Laboratory Animal Sciences, Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China.,Beijing Key Laboratory for Animal Models of Emerging and Reemerging InfectiousBeijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijing, China.,Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese MedicineBeijing, China
| | - Jun Tang
- Key Laboratory of Human Disease Comparative Medicine, Ministry of HealthBeijing, China.,Institution of Laboratory Animal Sciences, Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China.,Beijing Key Laboratory for Animal Models of Emerging and Reemerging InfectiousBeijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijing, China.,Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese MedicineBeijing, China
| | - Mengmeng Sun
- Key Laboratory of Human Disease Comparative Medicine, Ministry of HealthBeijing, China.,Institution of Laboratory Animal Sciences, Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China.,Beijing Key Laboratory for Animal Models of Emerging and Reemerging InfectiousBeijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijing, China.,Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese MedicineBeijing, China
| | - Chuan Qin
- Key Laboratory of Human Disease Comparative Medicine, Ministry of HealthBeijing, China.,Institution of Laboratory Animal Sciences, Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China.,Beijing Key Laboratory for Animal Models of Emerging and Reemerging InfectiousBeijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijing, China.,Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese MedicineBeijing, China
| |
Collapse
|
58
|
Barisch C, Soldati T. Mycobacterium marinum Degrades Both Triacylglycerols and Phospholipids from Its Dictyostelium Host to Synthesise Its Own Triacylglycerols and Generate Lipid Inclusions. PLoS Pathog 2017; 13:e1006095. [PMID: 28103313 PMCID: PMC5245797 DOI: 10.1371/journal.ppat.1006095] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/28/2016] [Indexed: 12/21/2022] Open
Abstract
During a tuberculosis infection and inside lipid-laden foamy macrophages, fatty acids (FAs) and sterols are the major energy and carbon source for Mycobacterium tuberculosis. Mycobacteria can be found both inside a vacuole and the cytosol, but how this impacts their access to lipids is not well appreciated. Lipid droplets (LDs) store FAs in form of triacylglycerols (TAGs) and are energy reservoirs of prokaryotes and eukaryotes. Using the Dictyostelium discoideum/Mycobacterium marinum infection model we showed that M. marinum accesses host LDs to build up its own intracytosolic lipid inclusions (ILIs). Here, we show that host LDs aggregate at regions of the bacteria that become exposed to the cytosol, and appear to coalesce on their hydrophobic surface leading to a transfer of diacylglycerol O-acyltransferase 2 (Dgat2)-GFP onto the bacteria. Dictyostelium knockout mutants for both Dgat enzymes are unable to generate LDs. Instead, the excess of exogenous FAs is esterified predominantly into phospholipids, inducing uncontrolled proliferation of the endoplasmic reticulum (ER). Strikingly, in absence of host LDs, M. marinum alternatively exploits these phospholipids, resulting in rapid reversal of ER-proliferation. In addition, the bacteria are unable to restrict their acquisition of lipids from the dgat1&2 double knockout leading to vast accumulation of ILIs. Recent data indicate that the presence of ILIs is one of the characteristics of dormant mycobacteria. During Dictyostelium infection, ILI formation in M. marinum is not accompanied by a significant change in intracellular growth and a reduction in metabolic activity, thus providing evidence that storage of neutral lipids does not necessarily induce dormancy.
Collapse
Affiliation(s)
- Caroline Barisch
- Department of Biochemistry, Science II, University of Geneva, 30 quai Ernest-Ansermet, Geneva, Switzerland
- * E-mail:
| | - Thierry Soldati
- Department of Biochemistry, Science II, University of Geneva, 30 quai Ernest-Ansermet, Geneva, Switzerland
| |
Collapse
|
59
|
Cronan MR, Beerman RW, Rosenberg AF, Saelens JW, Johnson MG, Oehlers SH, Sisk DM, Jurcic Smith KL, Medvitz NA, Miller SE, Trinh LA, Fraser SE, Madden JF, Turner J, Stout JE, Lee S, Tobin DM. Macrophage Epithelial Reprogramming Underlies Mycobacterial Granuloma Formation and Promotes Infection. Immunity 2016; 45:861-876. [PMID: 27760340 PMCID: PMC5268069 DOI: 10.1016/j.immuni.2016.09.014] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 07/21/2016] [Accepted: 07/29/2016] [Indexed: 01/23/2023]
Abstract
Mycobacterium tuberculosis infection in humans triggers formation of granulomas, which are tightly organized immune cell aggregates that are the central structure of tuberculosis. Infected and uninfected macrophages interdigitate, assuming an altered, flattened appearance. Although pathologists have described these changes for over a century, the molecular and cellular programs underlying this transition are unclear. Here, using the zebrafish-Mycobacterium marinum model, we found that mycobacterial granuloma formation is accompanied by macrophage induction of canonical epithelial molecules and structures. We identified fundamental macrophage reprogramming events that parallel E-cadherin-dependent mesenchymal-epithelial transitions. Macrophage-specific disruption of E-cadherin function resulted in disordered granuloma formation, enhanced immune cell access, decreased bacterial burden, and increased host survival, suggesting that the granuloma can also serve a bacteria-protective role. Granuloma macrophages in humans with tuberculosis were similarly transformed. Thus, during mycobacterial infection, granuloma macrophages are broadly reprogrammed by epithelial modules, and this reprogramming alters the trajectory of infection and the associated immune response.
Collapse
Affiliation(s)
- Mark R Cronan
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Rebecca W Beerman
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Allison F Rosenberg
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Joseph W Saelens
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Matthew G Johnson
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Stefan H Oehlers
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Dana M Sisk
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kristen L Jurcic Smith
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Neil A Medvitz
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sara E Miller
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Le A Trinh
- Molecular and Computational Biology and Translational Imaging Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Scott E Fraser
- Molecular and Computational Biology and Translational Imaging Center, University of Southern California, Los Angeles, CA 90089, USA
| | - John F Madden
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Joanne Turner
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA; Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Jason E Stout
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sunhee Lee
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - David M Tobin
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
60
|
Chen Z, Hu Y, Cumming BM, Lu P, Feng L, Deng J, Steyn AJC, Chen S. Mycobacterial WhiB6 Differentially Regulates ESX-1 and the Dos Regulon to Modulate Granuloma Formation and Virulence in Zebrafish. Cell Rep 2016; 16:2512-24. [PMID: 27545883 DOI: 10.1016/j.celrep.2016.07.080] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/06/2016] [Accepted: 07/27/2016] [Indexed: 01/21/2023] Open
Abstract
During the course of infection, Mycobacterium tuberculosis (Mtb) is exposed to diverse redox stresses that trigger metabolic and physiological changes. How these stressors are sensed and relayed to the Mtb transcriptional apparatus remains unclear. Here, we provide evidence that WhiB6 differentially regulates the ESX-1 and DosR regulons through its Fe-S cluster. When challenged with NO, WhiB6 continually activates expression of the DosR regulons but regulates ESX-1 expression through initial activation followed by gradual inhibition. Comparative transcriptomic analysis of the holo- and reduced apo-WhiB6 complemented strains confirms these results and also reveals that WhiB6 controls aerobic and anaerobic metabolism, cell division, and virulence. Using the Mycobacterium marinum zebrafish infection model, we find that holo- and apo-WhiB6 modulate levels of mycobacterial infection, granuloma formation, and dissemination. These findings provide fresh insight into the role of WhiB6 in mycobacterial infection, dissemination, and disease development.
Collapse
Affiliation(s)
- Zhenkang Chen
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 10086, China
| | - Yangbo Hu
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Bridgette M Cumming
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, Durban 4001, South Africa
| | - Pei Lu
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Lipeng Feng
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jiaoyu Deng
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Adrie J C Steyn
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, Durban 4001, South Africa; Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Shiyun Chen
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
61
|
Collymore C, Crim MJ, Lieggi C. Recommendations for Health Monitoring and Reporting for Zebrafish Research Facilities. Zebrafish 2016; 13 Suppl 1:S138-48. [PMID: 26991393 PMCID: PMC4932782 DOI: 10.1089/zeb.2015.1210] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The presence of subclinical infection or clinical disease in laboratory zebrafish may have a significant impact on research results, animal health and welfare, and transfer of animals between institutions. As use of zebrafish as a model of disease increases, a harmonized method for monitoring and reporting the health status of animals will facilitate the transfer of animals, allow institutions to exclude diseases that may negatively impact their research programs, and improve animal health and welfare. All zebrafish facilities should implement a health monitoring program. In this study, we review important aspects of a health monitoring program, including choice of agents, samples for testing, available testing methodologies, housing and husbandry, cost, test subjects, and a harmonized method for reporting results. Facilities may use these recommendations to implement their own health monitoring program.
Collapse
Affiliation(s)
- Chereen Collymore
- Division of Comparative Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Christine Lieggi
- Center for Comparative Medicine and Pathology, Weill Cornell Medical College and Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
62
|
Benard EL, Rougeot J, Racz PI, Spaink HP, Meijer AH. Transcriptomic Approaches in the Zebrafish Model for Tuberculosis-Insights Into Host- and Pathogen-specific Determinants of the Innate Immune Response. ADVANCES IN GENETICS 2016; 95:217-51. [PMID: 27503359 DOI: 10.1016/bs.adgen.2016.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mycobacterium marinum infection in zebrafish has become a well-established model of tuberculosis. Both embryonic and adult zebrafish infection studies have contributed to our knowledge of the development and function of tuberculous granulomas, which are typical of mycobacterial pathogenesis. In this review we discuss how transcriptome profiling studies have helped to characterize this infection process. We illustrate this using new RNA sequencing (RNA-Seq) data that reveals three main phases in the host response to M. marinum during the early stages of granuloma development in zebrafish embryos and larvae. The early phase shows induction of complement and transcription factors, followed by a relatively minor induction of pro-inflammatory cytokines within hours following phagocytosis of M. marinum. A minimal response is observed in the mid-phase, between 6 hours and 1day post infection, when the tissue dissemination of M. marinum begins. During subsequent larval development the granulomas expand and a late-phase response is apparent, which is characterized by progressively increasing induction of complement, transcription factors, pro-inflammatory cytokines, matrix metalloproteinases, and other defense and inflammation-related gene groups. This late-phase response shares common components with the strong and acute host transcriptome response that has previously been reported for Salmonella typhimurium infection in zebrafish embryos. In contrast, the early/mid-phase response to M. marinum infection, characterized by suppressed pro-inflammatory signaling, is strikingly different from the acute response to S. typhimurium infection. Furthermore, M. marinum infection shows a collective and strongly fluctuating regulation of lipoproteins, while S. typhimurium infection has pronounced effects on amino acid metabolism and glycolysis.
Collapse
Affiliation(s)
- E L Benard
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - J Rougeot
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - P I Racz
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - H P Spaink
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - A H Meijer
- Institute of Biology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
63
|
Huang X, Wang H, Meng L, Wang Q, Yu J, Gao Q, Wang D. Role of eosinophils and apoptosis in PDIMs/PGLs deficient mycobacterium elimination in adult zebrafish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 59:199-206. [PMID: 26855012 DOI: 10.1016/j.dci.2016.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/03/2016] [Accepted: 02/03/2016] [Indexed: 06/05/2023]
Abstract
The cell wall lipids phthiocerol dimycocerosates (PDIMs) and its structurally-related compound, phenolic glycolipids (PGLs) are major virulence factors of mycobacterium, as shown by the reduced growth of PDIMs/PGLs deficient mutants in various animal models. PDIMs/PGLs play active roles in modulating host immune responses. However, the cellular and molecular mechanisms of how PDIMs/PGLs deficient mutant was eliminated in vivo are still elusive. Our aim was to investigate what host immune responses have effect on mycobacterium elimination in vivo. Using microarray, we find PDIMs/PGLs modulate divergent host responses, including chemotaxis and focal adhesion's downstream pathway and apoptosis. We examine these two host responses by Diff-Quik stain, coupled with transmission electron microscopy and TUNEL stain respectively. The ultrastructure observation showed that eosinophils appeared in WT-infected zebrafish at day 1, however eosinophils arrived was delayed to day 7 in PDIMs/PGLs-deficient mutant-infected animals. More intriguingly, apoptosis was markedly increased in PDIMs/PGLs-mutant infected zebrafish at day 1 after infection, compared to WT-infected fishes at this time. However, apoptosis trend was fully reversed by day 7, with increased apoptosis were detected in WT-infected zebrafish compared with the PDIMs/PGLs-deficient mutant, especially more apoptosis within the granuloma. This study shows that the anti-apoptotic effects of PDIMs/PGLs and the recruitment of eosinophils in tissue during the early infection in zebrafish might promote bacterium growth in vivo.
Collapse
Affiliation(s)
- Xinhua Huang
- Key Laboratory of Medical Molecular Virology, Institutes of Biomedical Sciences and Institute of Medical Microbiology, Shanghai Medical College, Fudan University, Shanghai, 200032 PR China
| | - Hui Wang
- Key Laboratory of Medical Molecular Virology, Institutes of Biomedical Sciences and Institute of Medical Microbiology, Shanghai Medical College, Fudan University, Shanghai, 200032 PR China
| | - Lu Meng
- Key Laboratory of Medical Molecular Virology, Institutes of Biomedical Sciences and Institute of Medical Microbiology, Shanghai Medical College, Fudan University, Shanghai, 200032 PR China
| | - Qinglan Wang
- Key Laboratory of Medical Molecular Virology, Institutes of Biomedical Sciences and Institute of Medical Microbiology, Shanghai Medical College, Fudan University, Shanghai, 200032 PR China
| | - Jia Yu
- Key Laboratory of Medical Molecular Virology, Institutes of Biomedical Sciences and Institute of Medical Microbiology, Shanghai Medical College, Fudan University, Shanghai, 200032 PR China
| | - Qian Gao
- Key Laboratory of Medical Molecular Virology, Institutes of Biomedical Sciences and Institute of Medical Microbiology, Shanghai Medical College, Fudan University, Shanghai, 200032 PR China
| | - Decheng Wang
- Key Laboratory of Medical Molecular Virology, Institutes of Biomedical Sciences and Institute of Medical Microbiology, Shanghai Medical College, Fudan University, Shanghai, 200032 PR China; Medical College of China Three Gorges University, Hubei, 443002 PR China.
| |
Collapse
|
64
|
Myllymäki H, Bäuerlein CA, Rämet M. The Zebrafish Breathes New Life into the Study of Tuberculosis. Front Immunol 2016; 7:196. [PMID: 27242801 PMCID: PMC4871865 DOI: 10.3389/fimmu.2016.00196] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/06/2016] [Indexed: 12/19/2022] Open
Abstract
Tuberculosis (TB) is a global health emergency. Up to one-third of the world’s population is infected with Mycobacterium tuberculosis, and the pathogen continues to kill 1.5 million people annually. Currently, the means for preventing, diagnosing, and treating TB are unsatisfactory. One of the main reasons for the poor progress in TB research has been a lack of good animal models to study the latency, dormancy, and reactivation of the disease. Although sophisticated in vitro and in silico methods suitable for TB research are constantly being developed, they cannot reproduce the complete vertebrate immune system and its interplay with pathogens and vaccines. However, the zebrafish has recently emerged as a useful alternative to more traditional models, such as mice, rabbits, guinea pigs, and non-human primates, for studying the complex pathophysiology of a mycobacterial infection. The model is based on the similarity between Mycobacterium marinum – a natural fish pathogen – and M. tuberculosis. In both zebrafish larvae and adult fish, an infection with M. marinum leads to the formation of macrophage aggregates and granulomas, which resemble the M. tuberculosis infections in humans. In this review, we will summarize the current status of the zebrafish model in TB research and highlight the advantages of using zebrafish to dissect mycobacterial virulence strategies as well as the host immune responses elicited against them. In addition, we will discuss the possibilities of using the adult zebrafish model for studying latency, dormancy, and reactivation in a mycobacterial infection.
Collapse
Affiliation(s)
| | | | - Mika Rämet
- BioMediTech, University of Tampere, Tampere, Finland; Department of Pediatrics, Tampere University Hospital, Tampere, Finland; Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland; PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
65
|
Spagnoli ST, Sanders JL, Watral V, Kent ML. Pseudoloma neurophilia Infection Combined with Gamma Irradiation Causes Increased Mortality in Adult Zebrafish (Danio rerio) Compared to Infection or Irradiation Alone: New Implications for Studies Involving Immunosuppression. Zebrafish 2016; 13 Suppl 1:S107-14. [PMID: 27123755 DOI: 10.1089/zeb.2015.1223] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Gamma irradiation is commonly used as a bone marrow suppressant in studies of the immune system and hematopoiesis, most commonly in mammals. With the rising utility and popularity of the zebrafish (Danio rerio), gamma irradiation is being used for similar studies in this species. Pseudoloma neurophilia, a microparasite and common contaminant of zebrafish facilities, generally produces subclinical disease. However, like other microsporidia, P. neurophilia is a disease of opportunity and can produce florid infections with high morbidity and mortality, secondary to stress or immune suppression. In this study, we exposed zebrafish to combinations of P. neurophilia infection and gamma irradiation to explore the interaction between this immunosuppressive experimental modality and a normally subclinical infection. Zebrafish infected with P. neurophilia and exposed to gamma irradiation exhibited higher mortality, increased parasite loads, and increased incidences of myositis and extraneural parasite infections than fish exposed either to P. neurophilia or gamma irradiation alone. This experiment highlights the devastating effects of opportunistic diseases on immunosuppressed individuals and should caution researchers utilizing immunosuppressive modalities to carefully monitor their stocks to ensure that their experimental animals are not infected.
Collapse
Affiliation(s)
- Sean T Spagnoli
- 1 Department of Biomedical Sciences, Oregon State University , Corvallis, Oregon
| | - Justin L Sanders
- 2 Department of Microbiology, Oregon State University , Corvallis, Oregon
| | - Virginia Watral
- 2 Department of Microbiology, Oregon State University , Corvallis, Oregon
| | - Michael L Kent
- 1 Department of Biomedical Sciences, Oregon State University , Corvallis, Oregon.,2 Department of Microbiology, Oregon State University , Corvallis, Oregon
| |
Collapse
|
66
|
Sood S, Yadav A, Shrivastava R. Mycobacterium aurum is Unable to Survive Mycobacterium tuberculosis Latency Associated Stress Conditions: Implications as Non-suitable Model Organism. Indian J Microbiol 2016; 56:198-204. [PMID: 27570312 DOI: 10.1007/s12088-016-0564-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/02/2016] [Indexed: 12/28/2022] Open
Abstract
Mycobacterium tuberculosis manages to remain latent in the human body regardless of extensive chemotherapy. Complete eradication of tuberculosis (TB) requires treatment strategies targeted against latent form of infection, in addition to the current regimen of antimycobacterials. Many in vitro and in vivo models have been proposed to imitate latent TB infection, yet none of them is able to completely mimic latent infection state of M. tuberculosis. Highly infectious nature of the pathogen requiring BSL3 facilities and its long generation time further add to complications. M. aurum has been proposed as an important model organism for high throughput screening of drugs and exhibits high genomic similarity with that of M. tuberculosis. Thus, the present study was undertaken to explore if M. aurum could be used as a surrogate organism for studies related to M. tuberculosis latent infection. M. aurum was subjected to in vitro conditions of oxygen depletion, lack of nutrients and acidic stress encountered by latent M. tuberculosis bacteria. CFU count of M. aurum cells along with any change in cell shape and size was recorded at regular intervals during the stress conditions. M. aurum cells were unable to survive for extended periods under all three conditions used in the study. Thus, our studies suggest that M. aurum is not a suitable organism to mimic M. tuberculosis persistent infection under in vitro conditions, and further studies are required on different species for the establishment of a fast growing species as a suitable model for M. tuberculosis persistent infection.
Collapse
Affiliation(s)
- Shivani Sood
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh 173234 India
| | - Anant Yadav
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh 173234 India
| | - Rahul Shrivastava
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh 173234 India
| |
Collapse
|
67
|
Oksanen KE, Myllymäki H, Ahava MJ, Mäkinen L, Parikka M, Rämet M. DNA vaccination boosts Bacillus Calmette-Guérin protection against mycobacterial infection in zebrafish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 54:89-96. [PMID: 26363085 DOI: 10.1016/j.dci.2015.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 08/31/2015] [Accepted: 09/03/2015] [Indexed: 06/05/2023]
Abstract
Despite the widespread use of the current Bacillus Calmette-Guérin (BCG) vaccine, tuberculosis is still a major cause of morbidity and mortality worldwide. Vaccination with BCG does not prevent a Mycobacterium tuberculosis infection, nor does it inhibit the reactivation of latent tuberculosis. Here, we show that adult zebrafish are modestly and variably protected from a mycobacterial infection by BCG vaccination. An intraperitoneal (i.p.) BCG vaccination was associated with enhanced survival upon a high-dose (20,000 bacteria) Mycobacterium marinum infection. In addition, BCG-vaccinated fish were more able to restrict a low-dose (30 bacteria) intraperitoneal infection with M. marinum, as indicated by lower bacterial loads at six weeks post infection (wpi). However, the vaccination could not completely prevent an infection. A qRT-PCR analysis comparing BCG-vaccinated and unvaccinated fish upon a mycobacterial infection indicated that the induction of Tumor necrosis factor (TNF) was more modest in vaccinated fish. The partial protection gained by BCG could be boosted by a DNA vaccine combining Ag85B, ESAT6 and a resuscitation-related gene RpfE, suggesting that this combination of antigens could be useful for a future BCG booster vaccine. We conclude that zebrafish is a useful early-phase preclinical model for studying subunit vaccines designed for boosting the effects of BCG.
Collapse
Affiliation(s)
- Kaisa E Oksanen
- BioMediTech, University of Tampere, FIN 33014, Tampere, Finland
| | - Henna Myllymäki
- BioMediTech, University of Tampere, FIN 33014, Tampere, Finland
| | - Maarit J Ahava
- BioMediTech, University of Tampere, FIN 33014, Tampere, Finland
| | - Leena Mäkinen
- BioMediTech, University of Tampere, FIN 33014, Tampere, Finland
| | | | - Mika Rämet
- BioMediTech, University of Tampere, FIN 33014, Tampere, Finland; Department of Pediatrics, Tampere University Hospital, FIN 33521, Tampere, Finland; Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland; PEDEGO Research Unit, and Medical Research Center Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
68
|
Saralahti A, Rämet M. Zebrafish and Streptococcal Infections. Scand J Immunol 2015; 82:174-83. [PMID: 26095827 DOI: 10.1111/sji.12320] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 04/28/2015] [Indexed: 12/11/2022]
Abstract
Streptococcal bacteria are a versatile group of gram-positive bacteria capable of infecting several host organisms, including humans and fish. Streptococcal species are common colonizers of the human respiratory and gastrointestinal tract, but they also cause some of the most common life-threatening, invasive infections in humans and aquaculture. With its unique characteristics and efficient tools for genetic and imaging applications, the zebrafish (Danio rerio) has emerged as a powerful vertebrate model for infectious diseases. Several zebrafish models introduced so far have shown that zebrafish are suitable models for both zoonotic and human-specific infections. Recently, several zebrafish models mimicking human streptococcal infections have also been developed. These models show great potential in providing novel information about the pathogenic mechanisms and host responses associated with human streptococcal infections. Here, we review the zebrafish infection models for the most relevant streptococcal species: the human-specific Streptococcus pneumoniae and Streptococcus pyogenes, and the zoonotic Streptococcus iniae and Streptococcus agalactiae. The recent success and the future potential of these models for the study of host-pathogen interactions in streptococcal infections are also discussed.
Collapse
Affiliation(s)
- A Saralahti
- BioMediTech, University of Tampere, Tampere, Finland
| | - M Rämet
- BioMediTech, University of Tampere, Tampere, Finland.,Department of Pediatrics, Tampere University Hospital, Tampere, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland.,PEDEGO Research Center, Medical Research Center Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
69
|
Harvie EA, Huttenlocher A. Neutrophils in host defense: new insights from zebrafish. J Leukoc Biol 2015; 98:523-37. [PMID: 25717145 PMCID: PMC4569048 DOI: 10.1189/jlb.4mr1114-524r] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/15/2015] [Accepted: 01/19/2015] [Indexed: 12/11/2022] Open
Abstract
Neutrophils are highly motile phagocytic cells that play a critical role in the immune response to infection. Zebrafish (Danio rerio) are increasingly used to study neutrophil function and host-pathogen interactions. The generation of transgenic zebrafish lines with fluorescently labeled leukocytes has made it possible to visualize the neutrophil response to infection in real time by use of optically transparent zebrafish larvae. In addition, the genetic tractability of zebrafish has allowed for the generation of models of inherited neutrophil disorders. In this review, we discuss several zebrafish models of infectious disease, both in the context of immunocompetent, as well as neutrophil-deficient hosts and how these models have shed light on neutrophil behavior during infection.
Collapse
Affiliation(s)
- Elizabeth A Harvie
- *Microbiology Doctoral Training Program, Departments of Medical Microbiology and Immunology and Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Anna Huttenlocher
- *Microbiology Doctoral Training Program, Departments of Medical Microbiology and Immunology and Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
70
|
Protection and pathology in TB: learning from the zebrafish model. Semin Immunopathol 2015; 38:261-73. [PMID: 26324465 PMCID: PMC4779130 DOI: 10.1007/s00281-015-0522-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/11/2015] [Indexed: 12/14/2022]
Abstract
Zebrafish has earned its place among animal models of tuberculosis. Its natural pathogen, Mycobacterium marinum, shares major virulence factors with the human pathogen Mycobacterium tuberculosis. In adult zebrafish, which possess recombination-activated adaptive immunity, it can cause acute infection or a chronic progressive disease with containment of mycobacteria in well-structured, caseating granulomas. In addition, a low-dose model that closely mimics human latent infection has recently been developed. These models are used alongside infection of optically transparent zebrafish embryos and larvae that rely on innate immunity and permit non-invasive visualization of the early stages of developing granulomas that are inaccessible in other animal models. By microinjecting mycobacteria intravenously or into different tissues, systemic and localized infections can be induced, each useful for studying particular aspects of early pathogenesis, such as phagocyte recruitment, granuloma expansion and maintenance, vascularization of granulomas, and the phagocyte-mediated dissemination of mycobacteria. This has contributed to new insights into the mycobacteria-driven mechanisms that promote granuloma formation, the double-edged role of inflammation, the mechanisms of macrophage cell death that favor disease progression, and the host-protective role of autophagy. As a result, zebrafish models are now increasingly used to explore strategies for adjunctive therapy of tuberculosis with host-directed drugs.
Collapse
|
71
|
Vanhoecke BWA, De Ryck TRG, De boel K, Wiles S, Boterberg T, Van de Wiele T, Swift S. Low-dose irradiation affects the functional behavior of oral microbiota in the context of mucositis. Exp Biol Med (Maywood) 2015. [PMID: 26202372 DOI: 10.1177/1535370215595467] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The role of host-microbe interactions in the pathobiology of oral mucositis is still unclear; therefore, this study aimed to unravel the effect of irradiation on behavioral characteristics of oral microbial species in the context of mucositis. Using various experimental in vitro setups, the effects of irradiation on growth and biofilm formation of two Candida spp., Streptococcus salivarius and Klebsiella oxytoca in different culture conditions were evaluated. Irradiation did not affect growth of planktonic cells, but reduced the number of K. oxytoca cells in newly formed biofilms cultured in static conditions. Biofilm formation of K. oxytoca and Candida glabrata was affected by irradiation and depended on the culturing conditions. In the presence of mucins, these effects were lost, indicating the protective nature of mucins. Furthermore, the Galleria melonella model was used to study effects on microbial virulence. Irradiated K. oxytoca microbes were more virulent in G. melonella larvae compared to the nonirradiated ones. Our data indicate that low-dose irradiation can have an impact on functional characteristics of microbial species. Screening for pathogens like K. oxytoca in the context of mucosits could be useful to allow early detection and immediate intervention.
Collapse
Affiliation(s)
- Barbara W A Vanhoecke
- Laboratory of Microbial Ecology and Technology, Department of Biochemical and Microbial Technology, Ghent University, 9000 Ghent, Belgium
| | - Tine R G De Ryck
- Laboratory of Experimental Cancer Research, Department of Radiation oncology and Experimental Cancer Research, Ghent University, 9000 Ghent, Belgium
| | - Kevin De boel
- Laboratory of Microbial Ecology and Technology, Department of Biochemical and Microbial Technology, Ghent University, 9000 Ghent, Belgium Laboratory of Experimental Cancer Research, Department of Radiation oncology and Experimental Cancer Research, Ghent University, 9000 Ghent, Belgium
| | - Siouxsie Wiles
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1010, New Zealand
| | - Tom Boterberg
- Laboratory of Experimental Cancer Research, Department of Radiation oncology and Experimental Cancer Research, Ghent University, 9000 Ghent, Belgium
| | - Tom Van de Wiele
- Laboratory of Microbial Ecology and Technology, Department of Biochemical and Microbial Technology, Ghent University, 9000 Ghent, Belgium
| | - Simon Swift
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
72
|
Myllymäki H, Niskanen M, Oksanen KE, Rämet M. Animal models in tuberculosis research - where is the beef? Expert Opin Drug Discov 2015; 10:871-83. [PMID: 26073097 DOI: 10.1517/17460441.2015.1049529] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
INTRODUCTION Tuberculosis (TB) is a major global health problem, and new drugs and vaccines are urgently needed. As clinical trials in humans require tremendous resources, preclinical drug and vaccine development largely relies on valid animal models that recapitulate the pathology of human disease and the immune responses of the host as closely as possible. AREAS COVERED This review describes the animal models used in TB research, the most widely used being mice, guinea pigs and nonhuman primates. In addition, rabbits and cattle provide models with a disease pathology resembling that of humans. Invertebrate models, including the fruit fly and the Dictyostelium amoeba, have also been used to study mycobacterial infections. Recently, the zebrafish has emerged as a promising model for studying mycobacterial infections. The zebrafish model also facilitates the large-scale screening of drug and vaccine candidates. EXPERT OPINION Animal models are needed for TB research and provide valuable information on the mechanisms of the disease and on ways of preventing it. However, the data obtained in animal studies need to be carefully interpreted and evaluated before making assumptions concerning humans. With an increasing understanding of disease mechanisms, animal models can be further improved to best serve research goals.
Collapse
Affiliation(s)
- Henna Myllymäki
- BioMediTech, University of Tampere , FIN 33014 Tampere , Finland
| | | | | | | |
Collapse
|
73
|
Vanha-aho LM, Anderl I, Vesala L, Hultmark D, Valanne S, Rämet M. Edin Expression in the Fat Body Is Required in the Defense Against Parasitic Wasps in Drosophila melanogaster. PLoS Pathog 2015; 11:e1004895. [PMID: 25965263 PMCID: PMC4429011 DOI: 10.1371/journal.ppat.1004895] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 04/19/2015] [Indexed: 12/17/2022] Open
Abstract
The cellular immune response against parasitoid wasps in Drosophila involves the activation, mobilization, proliferation and differentiation of different blood cell types. Here, we have assessed the role of Edin (elevated during infection) in the immune response against the parasitoid wasp Leptopilina boulardi in Drosophila melanogaster larvae. The expression of edin was induced within hours after a wasp infection in larval fat bodies. Using tissue-specific RNAi, we show that Edin is an important determinant of the encapsulation response. Although edin expression in the fat body was required for the larvae to mount a normal encapsulation response, it was dispensable in hemocytes. Edin expression in the fat body was not required for lamellocyte differentiation, but it was needed for the increase in plasmatocyte numbers and for the release of sessile hemocytes into the hemolymph. We conclude that edin expression in the fat body affects the outcome of a wasp infection by regulating the increase of plasmatocyte numbers and the mobilization of sessile hemocytes in Drosophila larvae. The events leading to a successful encapsulation of parasitoid wasp eggs in the larvae of the fruit fly Drosophila melanogaster are insufficiently understood. The formation of a capsule seals off the wasp egg, and this process is often functionally compared to the formation of granulomas in vertebrates. Like granuloma formation in humans, the encapsulation process in fruit flies requires the activation, mobilization, proliferation and differentiation of different blood cell types. Here, we have studied the role of Edin (elevated during infection) in the immune defense against the parasitoid wasp Leptopilina boulardi in Drosophila larvae. We demonstrate that edin expression in the fat body (an immune-responsive organ in Drosophila functionally resembling the mammalian liver) is required for a normal defense against wasp eggs. Edin is required for the release of blood cells from larval tissues and for the subsequent increase in circulating blood cell numbers. Our results provide new knowledge of how the encapsulation process is regulated in Drosophila, and how blood cells are activated upon wasp parasitism. Understanding of the encapsulation process in invertebrates may eventually lead to a better knowledge of the pathophysiology of granuloma formation in human diseases, such as tuberculosis.
Collapse
Affiliation(s)
- Leena-Maija Vanha-aho
- Laboratory of Experimental Immunology, BioMediTech, University of Tampere, Tampere, Finland
| | - Ines Anderl
- Laboratory of Genetic Immunology, BioMediTech, University of Tampere, Tampere, Finland
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Laura Vesala
- Laboratory of Genetic Immunology, BioMediTech, University of Tampere, Tampere, Finland
| | - Dan Hultmark
- Laboratory of Genetic Immunology, BioMediTech, University of Tampere, Tampere, Finland
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Susanna Valanne
- Laboratory of Experimental Immunology, BioMediTech, University of Tampere, Tampere, Finland
| | - Mika Rämet
- Laboratory of Experimental Immunology, BioMediTech, University of Tampere, Tampere, Finland
- Department of Pediatrics, Tampere University Hospital, Tampere, Finland
- PEDEGO Research Center, and Medical Research Center Oulu, University of Oulu and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
- * E-mail:
| |
Collapse
|
74
|
Torraca V, Masud S, Spaink HP, Meijer AH. Macrophage-pathogen interactions in infectious diseases: new therapeutic insights from the zebrafish host model. Dis Model Mech 2015; 7:785-97. [PMID: 24973749 PMCID: PMC4073269 DOI: 10.1242/dmm.015594] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Studying macrophage biology in the context of a whole living organism provides unique possibilities to understand the contribution of this extremely dynamic cell subset in the reaction to infections, and has revealed the relevance of cellular and molecular processes that are fundamental to the cell-mediated innate immune response. In particular, various recently established zebrafish infectious disease models are contributing substantially to our understanding of the mechanisms by which different pathogens interact with macrophages and evade host innate immunity. Transgenic zebrafish lines with fluorescently labeled macrophages and other leukocyte populations enable non-invasive imaging at the optically transparent early life stages. Furthermore, there is a continuously expanding availability of vital reporters for subcellular compartments and for probing activation of immune defense mechanisms. These are powerful tools to visualize the activity of phagocytic cells in real time and shed light on the intriguing paradoxical roles of these cells in both limiting infection and supporting the dissemination of intracellular pathogens. This Review will discuss how several bacterial and fungal infection models in zebrafish embryos have led to new insights into the dynamic molecular and cellular mechanisms at play when pathogens encounter host macrophages. We also describe how these insights are inspiring novel therapeutic strategies for infectious disease treatment.
Collapse
Affiliation(s)
- Vincenzo Torraca
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Samrah Masud
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Herman P Spaink
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Annemarie H Meijer
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
75
|
Abstract
Despite efforts to generate new vaccines and antibiotics for tuberculosis, the disease remains a public health problem worldwide. The zebrafish Danio rerio has emerged as a useful model to investigate mycobacterial pathogenesis and treatment. Infection of zebrafish with Mycobacterium marinum, the closest relative of the Mycobacterium tuberculosis complex, recapitulates many aspects of human tuberculosis. The zebrafish model affords optical transparency, abundant genetic tools and in vivo imaging of the progression of infection. Here, we review how the zebrafish–M. marinum system has been deployed to make novel observations about the role of innate immunity, the tuberculous granuloma, and crucial host and bacterial genes. Finally, we assess how these findings relate to human disease and provide a framework for novel strategies to treat tuberculosis.
Collapse
Affiliation(s)
- Mark R Cronan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - David M Tobin
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA. Center for Microbial Pathogenesis, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
76
|
López Hernández Y, Yero D, Pinos-Rodríguez JM, Gibert I. Animals devoid of pulmonary system as infection models in the study of lung bacterial pathogens. Front Microbiol 2015; 6:38. [PMID: 25699030 PMCID: PMC4316775 DOI: 10.3389/fmicb.2015.00038] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/12/2015] [Indexed: 01/15/2023] Open
Abstract
Biological disease models can be difficult and costly to develop and use on a routine basis. Particularly, in vivo lung infection models performed to study lung pathologies use to be laborious, demand a great time and commonly are associated with ethical issues. When infections in experimental animals are used, they need to be refined, defined, and validated for their intended purpose. Therefore, alternative and easy to handle models of experimental infections are still needed to test the virulence of bacterial lung pathogens. Because non-mammalian models have less ethical and cost constraints as a subjects for experimentation, in some cases would be appropriated to include these models as valuable tools to explore host-pathogen interactions. Numerous scientific data have been argued to the more extensive use of several kinds of alternative models, such as, the vertebrate zebrafish (Danio rerio), and non-vertebrate insects and nematodes (e.g., Caenorhabditis elegans) in the study of diverse infectious agents that affect humans. Here, we review the use of these vertebrate and non-vertebrate models in the study of bacterial agents, which are considered the principal causes of lung injury. Curiously none of these animals have a respiratory system as in air-breathing vertebrates, where respiration takes place in lungs. Despite this fact, with the present review we sought to provide elements in favor of the use of these alternative animal models of infection to reveal the molecular signatures of host-pathogen interactions.
Collapse
Affiliation(s)
- Yamilé López Hernández
- Centro de Biociencias, Universidad Autónoma de San Luis Potosí San Luis de Potosí, Mexico
| | - Daniel Yero
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona Barcelona, Spain ; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Juan M Pinos-Rodríguez
- Centro de Biociencias, Universidad Autónoma de San Luis Potosí San Luis de Potosí, Mexico
| | - Isidre Gibert
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona Barcelona, Spain ; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona Barcelona, Spain
| |
Collapse
|
77
|
The proprotein convertase subtilisin/kexin furinA regulates zebrafish host response against Mycobacterium marinum. Infect Immun 2015; 83:1431-42. [PMID: 25624351 DOI: 10.1128/iai.03135-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tuberculosis is a chronic bacterial disease with a complex pathogenesis. An effective immunity against Mycobacterium tuberculosis requires both the innate and adaptive immune responses, including proper T helper (Th) type 1 cell function. FURIN is a proprotein convertase subtilisin/kexin (PCSK) enzyme, which is highly expressed in Th1 type cells. FURIN expression in T cells is essential for maintaining peripheral immune tolerance, but its role in the innate immunity and infections has remained elusive. Here, we utilized Mycobacterium marinum infection models in zebrafish (Danio rerio) to investigate how furin regulates host responses against mycobacteria. In steady-state furinAtd204e/+ fish reduced furinA mRNA levels associated with low granulocyte counts and elevated Th cell transcription factor expressions. Silencing furin genes reduced the survival of M. marinum-infected zebrafish embryos. A mycobacterial infection upregulated furinA in adult zebrafish, and infected furinAtd204e/+ mutants exhibited a proinflammatory phenotype characterized by elevated tumor necrosis factor a (tnfa), lymphotoxin alpha (lta) and interleukin 17a/f3 (il17a/f3) expression levels. The enhanced innate immune response in the furinAtd204e/+ mutants correlated with a significantly decreased bacterial burden in a chronic M. marinum infection model. Our data show that upregulated furinA expression can serve as a marker for mycobacterial disease, since it inhibits early host responses and consequently promotes bacterial growth in a chronic infection.
Collapse
|
78
|
Benard EL, Roobol SJ, Spaink HP, Meijer AH. Phagocytosis of mycobacteria by zebrafish macrophages is dependent on the scavenger receptor Marco, a key control factor of pro-inflammatory signalling. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 47:223-233. [PMID: 25086293 DOI: 10.1016/j.dci.2014.07.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 06/03/2023]
Abstract
Scavenger receptors on the cell surface of macrophages play an important role in host defence through their ability to bind microbial ligands and induce phagocytosis. Concurrently, signal transduction pathways are initiated that aid in defence mechanisms against the invading microbe. Here we report on the function of scavenger receptor Marco (Macrophage receptor with collagenous structure) during infection of zebrafish embryos with Mycobacterium marinum, a close relative of M. tuberculosis. Morpholino knockdown demonstrates that Marco is required for the rapid phagocytosis of M. marinum following intravenous infection. Furthermore, gene expression analysis shows that Marco controls the initial transient pro-inflammatory response to M. marinum and remains a determining factor for the immune response signature at later stages of infection. Increased bacterial burden following marco knockdown indicates that this scavenger receptor is important for control of M. marinum growth, likely due to delayed phagocytosis and reduced pro-inflammatory signalling observed under conditions of Marco deficiency.
Collapse
Affiliation(s)
- Erica L Benard
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Stefan J Roobol
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Herman P Spaink
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Annemarie H Meijer
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
79
|
van Leeuwen LM, van der Sar AM, Bitter W. Animal models of tuberculosis: zebrafish. Cold Spring Harb Perspect Med 2014; 5:a018580. [PMID: 25414379 DOI: 10.1101/cshperspect.a018580] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over the past decade the zebrafish (Danio rerio) has become an attractive new vertebrate model organism for studying mycobacterial pathogenesis. The combination of medium-throughput screening and real-time in vivo visualization has allowed new ways to dissect host pathogenic interaction in a vertebrate host. Furthermore, genetic screens on the host and bacterial sides have elucidated new mechanisms involved in the initiation of granuloma formation and the importance of a balanced immune response for control of mycobacterial pathogens. This article will highlight the unique features of the zebrafish-Mycobacterium marinum infection model and its added value for tuberculosis research.
Collapse
Affiliation(s)
- Lisanne M van Leeuwen
- Department of Pediatric Infectious Diseases and Immunology, VU University Medical Center, 1081 HV Amsterdam, The Netherlands Department of Medical Microbiology and Infection control, VU University Medical Center, 1081 BT Amsterdam, The Netherlands
| | - Astrid M van der Sar
- Department of Pediatric Infectious Diseases and Immunology, VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Wilbert Bitter
- Department of Pediatric Infectious Diseases and Immunology, VU University Medical Center, 1081 HV Amsterdam, The Netherlands Department of Molecular Microbiology, VU University, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
80
|
Xie J, He JB, Shi JW, Xiao Q, Li L, Woo PC. An adult zebrafish model for Laribacter hongkongensis infection: Koch's postulates fulfilled. Emerg Microbes Infect 2014; 3:e73. [PMID: 26038498 PMCID: PMC4217094 DOI: 10.1038/emi.2014.73] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 12/15/2022]
Abstract
Laribacter hongkongensis is a gram-negative emerging bacterium associated with invasive bacteremic infections in patients with liver disease and fish-borne community-acquired gastroenteritis and traveler's diarrhea. Although the complete genome of L. hongkongensis has been sequenced, no animal model is available for further study of its pathogenicity mechanisms. In this study, we showed that adult zebrafish infected with L. hongkongensis by immersion following dermal abrasion or intraperitoneal injection suffered mortality in a dose-dependent manner, with lethal dose 50 (LD50) of 2.1×10(4) and 1.9×10(4) colony-forming units (CFU)/mL, respectively. All mortalities occurred in the first four days post-infection. Zebrafish that died showed characteristic clinicopathological features: swimming near water surface, marked lethargy and sidestroke; abdominal hemorrhage, ulcers and marked swelling with ascites; and hydropic degeneration and necrosis of hepatocytes around central vein and inflammatory cells infiltration. L. hongkongensis was recovered from the ascitic fluid and tissues of zebrafish that died. Of the 30 zebrafish infected with 2.1×10(4) CFU/mL (LD50) L. hongkongensis isolated from dead zebrafish using the immersion following dermal abrasion method, 18 (60%) died. All zebrafish that died also showed the characteristic clinical and pathological features. Histopathological studies also showed dilation of hepatic central vein and hydropic degeneration. L. hongkongensis was isolated from the zebrafish that died. The Koch's postulates for L. hongkongensis as an infectious agent have been fulfilled. This highly reproducible and effective zebrafish model is of crucial importance for future studies on virulence factors for L. hongkongensis infection.
Collapse
Affiliation(s)
- Jun Xie
- The Second Clinical Medical College, Southern Medical University , Guangzhou 510515, Guangdong Province, China
| | - Jia-Bei He
- The Second Clinical Medical College, Southern Medical University , Guangzhou 510515, Guangdong Province, China
| | - Jia-Wei Shi
- The First Clinical Medical College, Southern Medical University , Guangzhou 510515, Guangdong Province, China
| | - Qiang Xiao
- Biosafety Level-3 Laboratory, School of Public Health and Tropical Medicine, Southern Medical University , Guangzhou 510515, Guangdong Province, China
| | - Ling Li
- Biosafety Level-3 Laboratory, School of Public Health and Tropical Medicine, Southern Medical University , Guangzhou 510515, Guangdong Province, China
| | - Patrick Cy Woo
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong , Hong Kong, China
| |
Collapse
|
81
|
Kanwal Z, Wiegertjes GF, Veneman WJ, Meijer AH, Spaink HP. Comparative studies of Toll-like receptor signalling using zebrafish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:35-52. [PMID: 24560981 DOI: 10.1016/j.dci.2014.02.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/04/2014] [Accepted: 02/06/2014] [Indexed: 06/03/2023]
Abstract
Zebrafish model systems for infectious disease are increasingly used for the functional analysis of molecular pattern recognition processes. These studies benefit from the high conservation level of all innate immune factors in vertebrates. Zebrafish studies are strategically well positioned for this because of the ease of comparisons with studies in other fish species of which the immune system also has been intensively studied, but that are currently still less amendable to detailed genetic or microscopic studies. In this paper we focus on Toll-like receptor (TLR) signalling factors, which currently are the best characterized in mammalian systems. We review the knowledge on TLR signalling in the context of recent advances in zebrafish studies and discuss possibilities for future approaches that can complement studies in cell cultures and rodent models. A focus in these comparisons is the role of negative control mechanisms in immune responses that appear very important in a whole organism to keep adverse systemic responses in check. We also pay much attention to comparisons with studies in common carp that is highly related to zebrafish and that because of its large body mass can complement immune studies in zebrafish.
Collapse
Affiliation(s)
- Zakia Kanwal
- Department of Animal Sciences and Health, Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Geert F Wiegertjes
- Cell Biology and Immunology Group, Wageningen Institute of Animal Sciences, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands
| | - Wouter J Veneman
- Department of Animal Sciences and Health, Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Annemarie H Meijer
- Department of Animal Sciences and Health, Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Herman P Spaink
- Department of Animal Sciences and Health, Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| |
Collapse
|
82
|
Controlling strategy of dormant Mycobacterium tuberculosis. Chin Med J (Engl) 2014. [DOI: 10.1097/00029330-201409200-00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
83
|
Harris MP, Henke K, Hawkins MB, Witten PE. Fish is Fish: the use of experimental model species to reveal causes of skeletal diversity in evolution and disease. ZEITSCHRIFT FUR ANGEWANDTE ICHTHYOLOGIE = JOURNAL OF APPLIED ICHTHYOLOGY 2014; 30:616-629. [PMID: 25221374 PMCID: PMC4159207 DOI: 10.1111/jai.12533] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Fishes are wonderfully diverse. This variety is a result of the ability of ray-finned fishes to adapt to a wide range of environments, and has made them more specious than the rest of vertebrates combined. With such diversity it is easy to dismiss comparisons between distantly related fishes in efforts to understand the biology of a particular fish species. However, shared ancestry and the conservation of developmental mechanisms, morphological features and physiology provide the ability to use comparative analyses between different organisms to understand mechanisms of development and physiology. The use of species that are amenable to experimental investigation provides tools to approach questions that would not be feasible in other 'non-model' organisms. For example, the use of small teleost fishes such as zebrafish and medaka has been powerful for analysis of gene function and mechanisms of disease in humans, including skeletal diseases. However, use of these fish to aid in understanding variation and disease in other fishes has been largely unexplored. This is especially evident in aquaculture research. Here we highlight the utility of these small laboratory fishes to study genetic and developmental factors that underlie skeletal malformations that occur under farming conditions. We highlight several areas in which model species can serve as a resource for identifying the causes of variation in economically important fish species as well as to assess strategies to alleviate the expression of the variant phenotypes in farmed fish. We focus on genetic causes of skeletal deformities in the zebrafish and medaka that closely resemble phenotypes observed both in farmed as well as natural populations of fishes.
Collapse
Affiliation(s)
- M P Harris
- Department of Genetics, Harvard Medical School, Boston, MA, USA ; Department of Orthopaedic Research, Boston Children's Hospital, Boston, MA, USA
| | - K Henke
- Department of Genetics, Harvard Medical School, Boston, MA, USA ; Department of Orthopaedic Research, Boston Children's Hospital, Boston, MA, USA
| | - M B Hawkins
- Department of Genetics, Harvard Medical School, Boston, MA, USA ; Department of Orthopaedic Research, Boston Children's Hospital, Boston, MA, USA ; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - P E Witten
- Department of Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
84
|
Adequate Th2-type response associates with restricted bacterial growth in latent mycobacterial infection of zebrafish. PLoS Pathog 2014; 10:e1004190. [PMID: 24968056 PMCID: PMC4072801 DOI: 10.1371/journal.ppat.1004190] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 05/02/2014] [Indexed: 12/03/2022] Open
Abstract
Tuberculosis is still a major health problem worldwide. Currently it is not known what kind of immune responses lead to successful control and clearance of Mycobacterium tuberculosis. This gap in knowledge is reflected by the inability to develop sufficient diagnostic and therapeutic tools to fight tuberculosis. We have used the Mycobacterium marinum infection model in the adult zebrafish and taken advantage of heterogeneity of zebrafish population to dissect the characteristics of adaptive immune responses, some of which are associated with well-controlled latency or bacterial clearance while others with progressive infection. Differences in T cell responses between subpopulations were measured at the transcriptional level. It was discovered that a high total T cell level was usually associated with lower bacterial loads alongside with a T helper 2 (Th2)-type gene expression signature. At late time points, spontaneous reactivation with apparent symptoms was characterized by a low Th2/Th1 marker ratio and a substantial induction of foxp3 reflecting the level of regulatory T cells. Characteristic gata3/tbx21 has potential as a biomarker for the status of mycobacterial disease. Tuberculosis is a common and potentially lethal lung disease spread worldwide. One third of the world's population is estimated to be infected with Mycobacterium tuberculosis, yet most individuals develop a latent disease which has the potential to reactivate. Some are thought to be able to clear the infection. The current vaccine does not give adequate protection against the disease, and due to incorrect use of antibiotics, resistance to treatment has substantially increased. There is an urgent need for novel treatment approaches, such as modulation of the host's immune response. However, the ideal immune response against tuberculosis is unknown. In addition, more accurate diagnostic tools are needed for distinguishing the high risk individuals among latent patients so that treatment could be given to those that are most likely to benefit from it. In this study, we used the Mycobacterium marinum-zebrafish model to study the T cell responses in mycobacterial infection. Utilizing the natural heterogeneity of the zebrafish population, we found associations between the disease severity (bacterial load) and the type and magnitude of T cell responses. Our results on typical T cell signatures are useful as diagnostic biomarkers as well as provide new understanding needed for therapeutic approaches based on immunomodulation.
Collapse
|
85
|
Elks PM, van der Vaart M, van Hensbergen V, Schutz E, Redd MJ, Murayama E, Spaink HP, Meijer AH. Mycobacteria counteract a TLR-mediated nitrosative defense mechanism in a zebrafish infection model. PLoS One 2014; 9:e100928. [PMID: 24967596 PMCID: PMC4072692 DOI: 10.1371/journal.pone.0100928] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 06/02/2014] [Indexed: 11/19/2022] Open
Abstract
Pulmonary tuberculosis (TB), caused by the intracellular bacterial pathogen Mycobacterium tuberculosis (Mtb), is a major world health problem. The production of reactive nitrogen species (RNS) is a potent cytostatic and cytotoxic defense mechanism against intracellular pathogens. Nevertheless, the protective role of RNS during Mtb infection remains controversial. Here we use an anti-nitrotyrosine antibody as a readout to study nitration output by the zebrafish host during early mycobacterial pathogenesis. We found that recognition of Mycobacterium marinum, a close relative of Mtb, was sufficient to induce a nitrosative defense mechanism in a manner dependent on MyD88, the central adaptor protein in Toll like receptor (TLR) mediated pathogen recognition. However, this host response was attenuated by mycobacteria via a virulence mechanism independent of the well-characterized RD1 virulence locus. Our results indicate a mechanism of pathogenic mycobacteria to circumvent host defense in vivo. Shifting the balance of host-pathogen interactions in favor of the host by targeting this virulence mechanism may help to alleviate the problem of infection with Mtb strains that are resistant to multiple drug treatments.
Collapse
Affiliation(s)
- Philip M. Elks
- Institute of Biology, Leiden University, Leiden, South Holland, The Netherlands
- The Bateson Centre, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
- Department of Infection and Immunity, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
| | | | | | - Esther Schutz
- Institute of Biology, Leiden University, Leiden, South Holland, The Netherlands
| | - Michael J. Redd
- Department of Oncological Sciences, University Of Utah, Salt Lake City, Utah, United States of America
| | - Emi Murayama
- Unité Macrophages et Développement de l’Immunité, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique-Unité de Recherche Associée 2578, Institut Pasteur, Paris, France
| | - Herman P. Spaink
- Institute of Biology, Leiden University, Leiden, South Holland, The Netherlands
| | - Annemarie H. Meijer
- Institute of Biology, Leiden University, Leiden, South Holland, The Netherlands
- * E-mail:
| |
Collapse
|
86
|
Grayfer L, Hodgkinson JW, Belosevic M. Antimicrobial responses of teleost phagocytes and innate immune evasion strategies of intracellular bacteria. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 43:223-42. [PMID: 23954721 DOI: 10.1016/j.dci.2013.08.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 08/02/2013] [Accepted: 08/03/2013] [Indexed: 05/22/2023]
Abstract
During infection, macrophage lineage cells eliminate infiltrating pathogens through a battery of antimicrobial responses, where the efficacy of these innate immune responses is pivotal to immunological outcomes. Not surprisingly, many intracellular pathogens have evolved mechanisms to overcome macrophage defenses, using these immune cells as residences and dissemination strategies. With pathogenic infections causing increasing detriments to both aquacultural and wild fish populations, it is imperative to garner greater understanding of fish phagocyte antimicrobial responses and the mechanisms by which aquatic pathogens are able to overcome these teleost macrophage barriers. Insights into the regulation of macrophage immunity of bony fish species will lend to the development of more effective aquacultural prophylaxis as well as broadening our understanding of the evolution of these immune processes. Accordingly, this review focuses on recent advances in the understanding of teleost macrophage antimicrobial responses and the strategies by which intracellular fish pathogens are able to avoid being killed by phagocytes, with a focus on Mycobacterium marinum.
Collapse
Affiliation(s)
- Leon Grayfer
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | | | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, Canada; School of Public Health, University of Alberta, Edmonton, Canada.
| |
Collapse
|
87
|
Liu B, Zhang X, Huang H, Zhang Y, Zhou F, Wang G. A novel molecular typing method of Mycobacteria based on DNA barcoding visualization. J Clin Bioinforma 2014; 4:4. [PMID: 24555538 PMCID: PMC3931916 DOI: 10.1186/2043-9113-4-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 02/10/2014] [Indexed: 11/10/2022] Open
Abstract
Different subtypes of Mycobacterium tuberculosis (MTB) may induce diverse severe human infections, and some of their symptoms are similar to other pathogenes, e.g. Nontuberculosis mycobacteria (NTM). So determination of mycobacterium subtypes facilitates the effective control of MTB infection and proliferation. This study exploits a novel DNA barcoding visualization method for molecular typing of 17 mycobacteria genomes published in the NCBI prokaryotic genome database. Three mycobacterium genes (Rv0279c, Rv3508 and Rv3514) from the PE/PPE family of MT Band were detected to best represent the inter-strain pathogenetic variations. An accurate and fast MTB substrain typing method was proposed based on the combination of the aforementioned three biomarker genes and the 16S rRNA gene. The protocol of establishing a bacterial substrain typing system used in this study may also be applied to the other pathogenes.
Collapse
Affiliation(s)
| | | | | | | | - Fengfeng Zhou
- Department of Pathogenobiology, Basic Medical College of Jilin University, Changchun, Jilin, China.
| | | |
Collapse
|
88
|
Saralahti A, Piippo H, Parikka M, Henriques-Normark B, Rämet M, Rounioja S. Adult zebrafish model for pneumococcal pathogenesis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 42:345-353. [PMID: 24076065 DOI: 10.1016/j.dci.2013.09.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 09/16/2013] [Accepted: 09/17/2013] [Indexed: 06/02/2023]
Abstract
Streptococcus pneumoniae (pneumococcus) is a leading cause of community acquired pneumonia, septicemia, and meningitis. Due to incomplete understanding of the host and bacterial factors contributing to these diseases optimal treatment and prevention methods are lacking. In the present study we examined whether the adult zebrafish (Danio rerio) can be used to investigate the pathophysiology of pneumococcal diseases. Here we show that both intraperitoneal and intramuscular injections of the pneumococcal strain TIGR4 cause a fulminant, dose-dependent infection in adult zebrafish, while isogenic mutant bacteria lacking the polysaccharide capsule, autolysin, or pneumolysin are attenuated in the model. Infection through the intraperitoneal route is characterized by rapid expansion of pneumococci in the bloodstream, followed by penetration of the blood-brain barrier and progression to meningitis. Using Rag1 mutant zebrafish, which are devoid of somatic recombination and thus lack adaptive immune responses, we show that clearance of pneumococci in adult zebrafish depends mainly on innate immune responses. In conclusion, this study provides evidence that the adult zebrafish can be used as a model for a pneumococcal infection, and that it can be used to study both host and bacterial factors involved in the pathogenesis. However, our results do not support the use of the zebrafish in studies on the role of adaptive immunity in pneumococcal disease or in the development of new pneumococcal vaccines.
Collapse
Affiliation(s)
- Anni Saralahti
- Institute of Biomedical Technology, BioMediTech, University of Tampere, FI-33014 Tampere, Finland
| | | | | | | | | | | |
Collapse
|
89
|
Hypoxia inducible factor signaling modulates susceptibility to mycobacterial infection via a nitric oxide dependent mechanism. PLoS Pathog 2013; 9:e1003789. [PMID: 24367256 PMCID: PMC3868520 DOI: 10.1371/journal.ppat.1003789] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 10/11/2013] [Indexed: 02/07/2023] Open
Abstract
Tuberculosis is a current major world-health problem, exacerbated by the causative pathogen, Mycobacterium tuberculosis (Mtb), becoming increasingly resistant to conventional antibiotic treatment. Mtb is able to counteract the bactericidal mechanisms of leukocytes to survive intracellularly and develop a niche permissive for proliferation and dissemination. Understanding of the pathogenesis of mycobacterial infections such as tuberculosis (TB) remains limited, especially for early infection and for reactivation of latent infection. Signaling via hypoxia inducible factor α (HIF-α) transcription factors has previously been implicated in leukocyte activation and host defence. We have previously shown that hypoxic signaling via stabilization of Hif-1α prolongs the functionality of leukocytes in the innate immune response to injury. We sought to manipulate Hif-α signaling in a well-established Mycobacterium marinum (Mm) zebrafish model of TB to investigate effects on the host's ability to combat mycobacterial infection. Stabilization of host Hif-1α, both pharmacologically and genetically, at early stages of Mm infection was able to reduce the bacterial burden of infected larvae. Increasing Hif-1α signaling enhanced levels of reactive nitrogen species (RNS) in neutrophils prior to infection and was able to reduce larval mycobacterial burden. Conversely, decreasing Hif-2α signaling enhanced RNS levels and reduced bacterial burden, demonstrating that Hif-1α and Hif-2α have opposing effects on host susceptibility to mycobacterial infection. The antimicrobial effect of Hif-1α stabilization, and Hif-2α reduction, were demonstrated to be dependent on inducible nitric oxide synthase (iNOS) signaling at early stages of infection. Our findings indicate that induction of leukocyte iNOS by stabilizing Hif-1α, or reducing Hif-2α, aids the host during early stages of Mm infection. Stabilization of Hif-1α therefore represents a potential target for therapeutic intervention against tuberculosis. Tuberculosis is a mycobacterial disease that was a major cause of death until the discovery of antibiotics in the mid-twentieth century. However, TB is once again on the rise, with the emergence of strains that are multi-drug resistant. Mycobacteria are specialists in evading immune cell killing and use host immune cells as a niche in which they can proliferate and survive latently, until subsequent re-activation and spreading causing life-threatening disease. Pharmaceutical reprogramming of the immune system to kill intracellular mycobacteria would represent a therapeutic strategy, effective against currently untreatable strains and less susceptible to drug resistance. Here we use an in vivo zebrafish model of TB to show that manipulation of the host genetic pathway responsible for detecting low oxygen levels (hypoxia) causes a decrease in mycobacterial infection. This antimicrobial effect was due to a priming of immune cells with increased levels of nitric oxide, a molecule that is used by immune cells to kill bacteria. Here we show in vivo manipulation of a host-signaling pathway aids the host in combatting mycobacteria infection, identifying hypoxic signaling as a potential target for future therapeutics against TB.
Collapse
|
90
|
Meijer AH, van der Vaart M, Spaink HP. Real-time imaging and genetic dissection of host-microbe interactions in zebrafish. Cell Microbiol 2013; 16:39-49. [DOI: 10.1111/cmi.12236] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 10/15/2013] [Accepted: 10/16/2013] [Indexed: 12/29/2022]
Affiliation(s)
- Annemarie H. Meijer
- Institute of Biology; Leiden University; Einsteinweg 55, 2333 CC Leiden The Netherlands
| | - Michiel van der Vaart
- Institute of Biology; Leiden University; Einsteinweg 55, 2333 CC Leiden The Netherlands
| | - Herman P. Spaink
- Institute of Biology; Leiden University; Einsteinweg 55, 2333 CC Leiden The Netherlands
| |
Collapse
|
91
|
Taskinen B, Zmurko J, Ojanen M, Kukkurainen S, Parthiban M, Määttä JAE, Leppiniemi J, Jänis J, Parikka M, Turpeinen H, Rämet M, Pesu M, Johnson MS, Kulomaa MS, Airenne TT, Hytönen VP. Zebavidin--an avidin-like protein from zebrafish. PLoS One 2013; 8:e77207. [PMID: 24204770 PMCID: PMC3811995 DOI: 10.1371/journal.pone.0077207] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 09/06/2013] [Indexed: 01/27/2023] Open
Abstract
The avidin protein family members are well known for their high affinity towards D-biotin and high structural stability. These properties make avidins valuable tools for a wide range of biotechnology applications. We have identified a new member of the avidin family in the zebrafish (Danio rerio) genome, hereafter called zebavidin. The protein is highly expressed in the gonads of both male and female zebrafish and in the gills of male fish, but our data suggest that zebavidin is not crucial for the developing embryo. Biophysical and structural characterisation of zebavidin revealed distinct properties not found in any previously characterised avidins. Gel filtration chromatography and native mass spectrometry suggest that the protein forms dimers in the absence of biotin at low ionic strength, but assembles into tetramers upon binding biotin. Ligand binding was analysed using radioactive and fluorescently labelled biotin and isothermal titration calorimetry. Moreover, the crystal structure of zebavidin in complex with biotin was solved at 2.4 Å resolution and unveiled unique ligand binding and subunit interface architectures; the atomic-level details support our physicochemical observations.
Collapse
Affiliation(s)
- Barbara Taskinen
- Institute of Biomedical Technology, University of Tampere, BioMediTech, Tampere, Finland
- Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | - Joanna Zmurko
- Institute of Biomedical Technology, University of Tampere, BioMediTech, Tampere, Finland
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Markus Ojanen
- Institute of Biomedical Technology, University of Tampere, BioMediTech, Tampere, Finland
| | - Sampo Kukkurainen
- Institute of Biomedical Technology, University of Tampere, BioMediTech, Tampere, Finland
- Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | - Marimuthu Parthiban
- Department of Biosciences, Biochemistry, Åbo Akademi University, Turku, Finland
| | - Juha A. E. Määttä
- Institute of Biomedical Technology, University of Tampere, BioMediTech, Tampere, Finland
- Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | - Jenni Leppiniemi
- Institute of Biomedical Technology, University of Tampere, BioMediTech, Tampere, Finland
- Tampere University Hospital, Tampere, Finland
| | - Janne Jänis
- Department of Chemistry, University of Eastern Finland, Joensuu, Finland
| | - Mataleena Parikka
- Institute of Biomedical Technology, University of Tampere, BioMediTech, Tampere, Finland
| | - Hannu Turpeinen
- Institute of Biomedical Technology, University of Tampere, BioMediTech, Tampere, Finland
| | - Mika Rämet
- Institute of Biomedical Technology, University of Tampere, BioMediTech, Tampere, Finland
- Tampere University Hospital, Tampere, Finland
| | - Marko Pesu
- Institute of Biomedical Technology, University of Tampere, BioMediTech, Tampere, Finland
- Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | - Mark S. Johnson
- Department of Biosciences, Biochemistry, Åbo Akademi University, Turku, Finland
| | - Markku S. Kulomaa
- Institute of Biomedical Technology, University of Tampere, BioMediTech, Tampere, Finland
- Tampere University Hospital, Tampere, Finland
| | - Tomi T. Airenne
- Department of Biosciences, Biochemistry, Åbo Akademi University, Turku, Finland
| | - Vesa P. Hytönen
- Institute of Biomedical Technology, University of Tampere, BioMediTech, Tampere, Finland
- Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
- * E-mail:
| |
Collapse
|
92
|
Rapid detection and identification of nontuberculous mycobacterial pathogens in fish by using high-resolution melting analysis. Appl Environ Microbiol 2013; 79:7837-45. [PMID: 24123734 DOI: 10.1128/aem.00822-13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterial infections in fish are commonly referred to as piscine mycobacteriosis, irrespectively of the specific identity of the causal organism. They usually cause a chronic disease and sometimes may result in high mortalities and severe economic losses. Nearly 20 species of Mycobacterium have been reported to infect fish. Among them, Mycobacterium marinum, M. fortuitum, and M. chelonae are generally considered the major agents responsible for fish mycobacteriosis. As no quick and inexpensive diagnostic test exists, we tested the potential of high-resolution melting analysis (HRMA) to rapidly identify and differentiate several Mycobacterium species involved in fish infections. By analyzing both the melting temperature and melting profile of the 16S-23S rRNA internal transcribed spacer (ITS), we were able to discriminate 12 different species simultaneously. Sensitivity tests conducted on purified M. marinum and M. fortuitum DNA revealed a limit of detection of 10 genome equivalents per reaction. The primers used in this procedure did not lead to any amplification signal with 16 control non-Mycobacterium species, thereby demonstrating their specificity for the genus Mycobacterium.
Collapse
|
93
|
Oksanen KE, Halfpenny NJ, Sherwood E, Harjula SKE, Hammarén MM, Ahava MJ, Pajula ET, Lahtinen MJ, Parikka M, Rämet M. An adult zebrafish model for preclinical tuberculosis vaccine development. Vaccine 2013; 31:5202-9. [DOI: 10.1016/j.vaccine.2013.08.093] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 08/16/2013] [Accepted: 08/28/2013] [Indexed: 10/26/2022]
|
94
|
Nielsen SS, Toft N, Okura H. Dynamics of specific anti-Mycobacterium avium subsp. paratuberculosis antibody response through age. PLoS One 2013; 8:e63009. [PMID: 23658660 PMCID: PMC3639166 DOI: 10.1371/journal.pone.0063009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Accepted: 03/27/2013] [Indexed: 11/17/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) causes a chronic infection in cattle. MAP infected cattle with humoral immune (HI) reactions with IgG antibodies are usually those where latency of infection has ceased and their infection is progressing towards reduced milk yield, weight loss and significant bacterial excretion in feces. The proportion of detectable infections among all infected animals that will develop disease is often referred to as 'the tip of the iceberg'. The purpose of this study was to estimate this proportion. Test-records from 18,972 Danish dairy cows with MAP specific IgG antibodies on their final test-record were used to estimate age-specific sensitivities (Se). These cows were the infected ones considered to develop disease in a population with a representative age-distribution and were defined as cases. The specificity (Sp) of the test was estimated based on test-results from 166,905 cows, which had no MAP IgG antibodies in their final four test-records. The Sp, age-specific Se and maximum Se were used to estimate the probability of having HI at a given age resulting in the proportion of infected cows with HI at a given age. For cows 2 years of age, the proportion of detectable cases was 0.33, while it was 0.94 for cows 5 years of age. Thus, there was a significant shift in the tip of the iceberg with aging. This study provided a model for estimating the proportion of latent chronic infections that would progress to disease, and the results can be used to model infection dynamics.
Collapse
Affiliation(s)
- Søren Saxmose Nielsen
- Department of Large Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| | | | | |
Collapse
|
95
|
Heterozygosity at the A625C polymorphic site of the MyD88 gene is associated with Mycobacterium bovis infection in cattle. Infect Immun 2013; 81:2139-44. [PMID: 23545302 DOI: 10.1128/iai.01398-12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The study demonstrates that in cattle, animals heterozygous at the MyD88 A625C polymorphic marker have a 5-fold reduced risk for active pulmonary tuberculosis (odds ratio [OR] = 0.19; P = 6 × 10(-12)). The reduced risk, however, does not extend to animals with latent pulmonary tuberculosis (OR = 0.83; P = 0.40). Heterozygosity at the A625C single nucleotide polymorphism is associated with intermediate levels of tumor necrosis factor alpha, gamma interferon, and nitric oxide synthase (NOS). Accordingly, deficiency as well as overexpression of proinflammatory cytokines or NOS favor tuberculosis, while heterozygosity provides the animals with the optimal level of inflammation.
Collapse
|