51
|
Paparidis NFDS, Durvale MC, Canduri F. The emerging picture of CDK9/P-TEFb: more than 20 years of advances since PITALRE. MOLECULAR BIOSYSTEMS 2017; 13:246-276. [PMID: 27833949 DOI: 10.1039/c6mb00387g] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CDK9 is a prominent member of the transcriptional CDKs subfamily, a group of kinases whose function is to control the primary steps of mRNA synthesis and processing by eukaryotic RNA polymerase II. As a cyclin-dependent kinase, CDK9 activation in vivo depends upon its association with T-type cyclins to assemble the positive transcription elongation factor (P-TEFb). Although CDK9/P-TEFb phosphorylates the C-terminal domain of RNAP II in the same positions targeted by CDK7 (TFIIH) and CDK8 (Mediator), the former does not participate in the transcription initiation, but rather plays a unique role by driving the polymerase to productive elongation. In addition to RNAP II CTD, the negative transcription elongation factors DSIF and NELF also represent major CDK9 substrates, whose phosphorylation is required to overcome the proximal pause of the polymerase. CDK9 is recruited to specific genes through proteins that interact with both P-TEFb and distinct elements in DNA, RNA or chromatin, where it modulates the activity of individual RNAP II transcription complexes. The regulation of CDK9 function is an intricate network that includes post-translational modifications (phosphorylation/dephosphorylation and acetylation/deacetylation of key residues) as well as the association of P-TEFb with various proteins that can stimulate or inhibit its kinase activity. Several cases of CDK9 deregulation have been linked to important human diseases, including various types of cancer and also AIDS (due to its essential role in HIV replication). Not only HIV, but also many other human viruses have been shown to depend strongly on CDK9 activity to be transcribed within host cells. This review summarizes the main advances made on CDK9/P-TEFb field in more than 20 years, introducing the structural, functional and genetic aspects that have been elucidated ever since.
Collapse
Affiliation(s)
- Nikolas Ferreira Dos Santos Paparidis
- Department of Chemistry and Molecular Physics, Institute of Chemistry of Sao Carlos, Sao Paulo University, Av. Trabalhador Sãocarlense, 400, Zip Code 780, 13560-970, São Carlos-SP, Brazil.
| | - Maxwell Castro Durvale
- Department of Biochemistry, Institute of Chemistry, Sao Paulo University, Av. Prof. Lineu Prestes, 748, 05508-000, Butantã - São Paulo - SP, Brazil
| | - Fernanda Canduri
- Department of Chemistry and Molecular Physics, Institute of Chemistry of Sao Carlos, Sao Paulo University, Av. Trabalhador Sãocarlense, 400, Zip Code 780, 13560-970, São Carlos-SP, Brazil.
| |
Collapse
|
52
|
Imaging HIV-1 Genomic DNA from Entry through Productive Infection. J Virol 2017; 91:JVI.00034-17. [PMID: 28250118 DOI: 10.1128/jvi.00034-17] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/17/2017] [Indexed: 02/07/2023] Open
Abstract
In order to track the fate of HIV-1 particles from early entry events through productive infection, we developed a method to visualize HIV-1 DNA reverse transcription complexes by the incorporation and fluorescent labeling of the thymidine analog 5-ethynyl-2'-deoxyuridine (EdU) into nascent viral DNA during cellular entry. Monocyte-derived macrophages were chosen as natural targets of HIV-1, as they do not divide and therefore do not incorporate EdU into chromosomal DNA, which would obscure the detection of intranuclear HIV-1 genomes. Using this approach, we observed distinct EdU puncta in the cytoplasm of infected cells within 12 h postinfection and subsequent accumulation of puncta in the nucleus, which remained stable through 5 days. The depletion of the restriction factor SAMHD1 resulted in a markedly increased number of EdU puncta, allowing efficient quantification of HIV-1 reverse transcription events. Analysis of HIV-1 isolates bearing defined mutations in the capsid protein revealed differences in their cytoplasmic and nuclear accumulation, and data from quantitative PCR analysis closely recapitulated the EdU results. RNA fluorescence in situ hybridization identified actively transcribing, EdU-labeled HIV-1 genomes in productively infected cells, and immunofluorescence analysis confirmed that CDK9, phosphorylated at serine 175, was recruited to RNA-positive HIV-1 DNA, providing a means to directly observe transcriptionally active HIV-1 genomes in productively infected cells. Overall, this system allows stable labeling and monitoring of HIV genomic DNA within infected cells during cytoplasmic transit, nuclear import, and mRNA synthesis.IMPORTANCE The fates of HIV-1 reverse transcription products within infected cells are not well understood. Although previous imaging approaches identified HIV-1 intermediates during early stages of infection, few have connected these events with the later stages that ultimately lead to proviral transcription and the production of progeny virus. Here we developed a technique to label HIV-1 genomes using modified nucleosides, allowing subsequent imaging of cytoplasmic and nuclear HIV-1 DNA in infected monocyte-derived macrophages. We used this technique to track the efficiency of nuclear entry as well as the fates of HIV-1 genomes in productively and nonproductively infected macrophages. We visualized transcriptionally active HIV-1 DNA, revealing that transcription occurs in a subset of HIV-1 genomes in productively infected cells. Collectively, this approach provides new insights into the nature of transcribing HIV-1 genomes and allows us to track the entire course of infection in macrophages, a key target of HIV-1 in infected individuals.
Collapse
|
53
|
Multiple Histone Lysine Methyltransferases Are Required for the Establishment and Maintenance of HIV-1 Latency. mBio 2017; 8:mBio.00133-17. [PMID: 28246360 PMCID: PMC5347344 DOI: 10.1128/mbio.00133-17] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We showed previously that the histone lysine methyltransferase (HKMT) H3K27me3 (EZH2) is the catalytic subunit of Polycomb repressive complex 2 (PRC2) and is required for the maintenance of HIV-1 latency in Jurkat T cells. Here we show, by using chromatin immunoprecipitation experiments, that both PRC2 and euchromatic histone-lysine N-methyltransferase 2 (EHMT2), the G9a H3K9me2-3 methyltransferase, are highly enriched at the proviral 5′ long terminal repeat (LTR) and rapidly displaced upon proviral reactivation. Clustered regularly interspaced short palindromic repeat(s) (CRISPR)-mediated knockout of EZH2 caused depletion of both EZH2 and EHMT2, but CRISPR-mediated knockout of EHMT2 was selective for EHMT2, consistent with the failure of EHMT2 knockouts to induce latent proviruses in this system. Either (i) knockout of methyltransferase by short hairpin RNA in Jurkat T cells prior to HIV-1 infection or (ii) inhibition of the enzymes with drugs significantly reduced the levels of the resulting silenced viruses, demonstrating that both enzymes are required to establish latency. To our surprise, inhibition of EZH2 (by GSK-343 or EPZ-6438) or inhibition of EHMT2 (by UNC-0638) in the Th17 primary cell model of HIV latency or resting memory T cells isolated from HIV-1-infected patients receiving highly active antiretroviral therapy, was sufficient to induce the reactivation of latent proviruses. The methyltransferase inhibitors showed synergy with interleukin-15 and suberanilohydroxamic acid. We conclude that both PRC2 and EHMT2 are required for the establishment and maintenance of HIV-1 proviral silencing in primary cells. Furthermore, EZH2 inhibitors such as GSK-343 and EPZ-6438 and the EHMT2 inhibitor UNC-0638 are strong candidates for use as latency-reversing agents in clinical studies. Highly active antiretroviral therapy (HAART) reduces the circulating virus to undetectable levels. Although patients adhering to the HAART regimen have minimal viremia, HIV persists because of the existence of latent but replication-competent proviruses in a very small population of resting memory CD4+ T cells (~1 in 106 cells). Latency remains the major obstacle to a functional cure for HIV infection, since the persistent reservoir almost invariably rebounds within 2 to 8 weeks when HAART is interrupted. In latently infected cells, the HIV genome is stably integrated into the host chromosome but transcriptionally repressed because of epigenetic silencing mechanisms. We demonstrate here that multiple histone lysine methyltransferases play a critical role in both the establishment and maintenance of proviral silencing in cells obtained from well-suppressed patients. Drugs that inhibit these enzymes are available from oncology applications and may find a use in reversing latency as part of a reservoir reduction strategy.
Collapse
|
54
|
Asamitsu K, Hirokawa T, Okamoto T. MD simulation of the Tat/Cyclin T1/CDK9 complex revealing the hidden catalytic cavity within the CDK9 molecule upon Tat binding. PLoS One 2017; 12:e0171727. [PMID: 28178316 PMCID: PMC5298246 DOI: 10.1371/journal.pone.0171727] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/24/2017] [Indexed: 02/02/2023] Open
Abstract
In this study, we applied molecular dynamics (MD) simulation to analyze the dynamic behavior of the Tat/CycT1/CDK9 tri-molecular complex and revealed the structural changes of P-TEFb upon Tat binding. We found that Tat could deliberately change the local flexibility of CycT1. Although the structural coordinates of the H1 and H2 helices did not substantially change, H1', H2', and H3' exhibited significant changes en masse. Consequently, the CycT1 residues involved in Tat binding, namely Tat-recognition residues (TRRs), lost their flexibility with the addition of Tat to P-TEFb. In addition, we clarified the structural variation of CDK9 in complex with CycT1 in the presence or absence of Tat. Interestingly, Tat addition significantly reduced the structural variability of the T-loop, thus consolidating the structural integrity of P-TEFb. Finally, we deciphered the formation of the hidden catalytic cavity of CDK9 upon Tat binding. MD simulation revealed that the PITALRE signature sequence of CDK9 flips the inactive kinase cavity of CDK9 into the active form by connecting with Thr186, which is crucial for its activity, thus presumably recruiting the substrate peptide such as the C-terminal domain of RNA pol II. These findings provide vital information for the development of effective novel anti-HIV drugs with CDK9 catalytic activity as the target.
Collapse
Grants
- Ministry of Education, Culture, Sports, Science, and Technology "The Platform Project for Supporting Drug Discovery and Life Science Research (Platform for Drug Discovery, Informatics, and Structural Life Science)"
- Ministry of Education, Culture, Sports, Science, and Technology
- Asahi Grass Foundation
- Japan Agency for Medical Research and Development
- Junwakai Foundation
Collapse
Affiliation(s)
- Kaori Asamitsu
- Department of Molecular and Cellular Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Takatsugu Hirokawa
- Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
- Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- * E-mail: (TH); (TO)
| | - Takashi Okamoto
- Department of Molecular and Cellular Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
- * E-mail: (TH); (TO)
| |
Collapse
|
55
|
Alvarez-Carbonell D, Garcia-Mesa Y, Milne S, Das B, Dobrowolski C, Rojas R, Karn J. Toll-like receptor 3 activation selectively reverses HIV latency in microglial cells. Retrovirology 2017; 14:9. [PMID: 28166799 PMCID: PMC5294768 DOI: 10.1186/s12977-017-0335-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/19/2017] [Indexed: 01/27/2023] Open
Abstract
Background Multiple toll-like receptors (TLRs) are expressed in cells of the monocytic lineage, including microglia, which constitute the major reservoir for human immunodeficiency virus (HIV) infection in the brain. We hypothesized that TLR receptor mediated responses to inflammatory conditions by microglial cells in the central nervous system (CNS) are able to induce latent HIV proviruses, and contribute to the etiology of HIV-associated neurocognitive disorders. Results Newly developed human microglial cell lines (hµglia), obtained by immortalizing human primary microglia with simian virus-40 (SV40) large T antigen and the human telomerase reverse transcriptase, were used to generate latently infected cells using a single-round HIV virus carrying a green fluorescence protein reporter (hµglia/HIV, clones HC01 and HC69). Treatment of these cells with a panel of TLR ligands showed surprisingly that two potent TLR3 agonists, poly (I:C) and bacterial ribosomal RNA potently reactivated HIV in hμglia/HIV cells. LPS (TLR4 agonist), flagellin (TLR5 agonist), and FSL-1 (TLR6 agonist) reactivated HIV to a lesser extent, while Pam3CSK4 (TLR2/1 agonist) and HKLM (TLR2 agonist) only weakly reversed HIV latency in these cells. While agonists for TLR2/1, 4, 5 and 6 reactivated HIV through transient NF-κB induction, poly (I:C), the TLR3 agonist, did not activate NF-κB, and instead induced the virus by a previously unreported mechanism mediated by IRF3. The selective induction of IRF3 by poly (I:C) was confirmed by chromatin immunoprecipitation (ChIP) analysis. In comparison, in latently infected rat-derived microglial cells (hT-CHME-5/HIV, clone HC14), poly (I:C), LPS and flagellin were only partially active. The TLR response profile in human microglial cells is also distinct from that shown by latently infected monocyte cell lines (THP-1/HIV, clone HA3, U937/HIV, clone HUC5, and SC/HIV, clone HSCC4), where TLR2/1, 4, 5, 6 or 8, but not for TLR3, 7 or 9, reactivated HIV. Conclusions TLR signaling, in particular TLR3 activation, can efficiently reactivate HIV transcription in infected microglia, but not in monocytes or T cells. The unique response profile of microglial cells to TLR3 is fundamental to understanding how the virus responds to continuous microbial exposure, especially during inflammatory episodes, that characterizes HIV infection in the CNS. Electronic supplementary material The online version of this article (doi:10.1186/s12977-017-0335-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David Alvarez-Carbonell
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA
| | - Yoelvis Garcia-Mesa
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA
| | - Stephanie Milne
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA
| | - Biswajit Das
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA
| | - Curtis Dobrowolski
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA
| | - Roxana Rojas
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA.
| |
Collapse
|
56
|
Lucera MB, Fleissner Z, Tabler CO, Schlatzer DM, Troyer Z, Tilton JC. HIV signaling through CD4 and CCR5 activates Rho family GTPases that are required for optimal infection of primary CD4+ T cells. Retrovirology 2017; 14:4. [PMID: 28114951 PMCID: PMC5259950 DOI: 10.1186/s12977-017-0328-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/03/2017] [Indexed: 12/02/2022] Open
Abstract
Background HIV-1 hijacks host cell machinery to ensure successful replication, including cytoskeletal components for intracellular trafficking, nucleoproteins for pre-integration complex import, and the ESCRT pathway for assembly and budding. It is widely appreciated that cellular post-translational modifications (PTMs) regulate protein activity within cells; however, little is known about how PTMs influence HIV replication. Previously, we reported that blocking deacetylation of tubulin using histone deacetylase inhibitors promoted the kinetics and efficiency of early post-entry viral events. To uncover additional PTMs that modulate entry and early post-entry stages in HIV infection, we employed a flow cytometric approach to assess a panel of small molecule inhibitors on viral fusion and LTR promoter-driven gene expression. Results While viral fusion was not significantly affected, early post-entry viral events were modulated by drugs targeting multiple processes including histone deacetylation, methylation, and bromodomain inhibition. Most notably, we observed that inhibitors of the Rho GTPase family of cytoskeletal regulators—including RhoA, Cdc42, and Rho-associated kinase signaling pathways—significantly reduced viral infection. Using phosphoproteomics and a biochemical GTPase activation assay, we found that virion-induced signaling via CD4 and CCR5 activated Rho family GTPases including Rac1 and Cdc42 and led to widespread modification of GTPase signaling-associated factors. Conclusions Together, these data demonstrate that HIV signaling activates members of the Rho GTPase family of cytoskeletal regulators that are required for optimal HIV infection of primary CD4+ T cells. Electronic supplementary material The online version of this article (doi:10.1186/s12977-017-0328-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mark B Lucera
- Division of Infectious Diseases, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Zach Fleissner
- Department of Nutrition, Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, 10900 Euclid Ave, BRB 919, Cleveland, OH, 44106, USA
| | - Caroline O Tabler
- Department of Nutrition, Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, 10900 Euclid Ave, BRB 919, Cleveland, OH, 44106, USA
| | - Daniela M Schlatzer
- Department of Nutrition, Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, 10900 Euclid Ave, BRB 919, Cleveland, OH, 44106, USA
| | - Zach Troyer
- Department of Nutrition, Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, 10900 Euclid Ave, BRB 919, Cleveland, OH, 44106, USA
| | - John C Tilton
- Department of Nutrition, Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, 10900 Euclid Ave, BRB 919, Cleveland, OH, 44106, USA.
| |
Collapse
|
57
|
Abstract
INTRODUCTION A number of cyclin-dependent kinases (CDKs) mediate key steps in the HIV-1 replication cycle and therefore have potential to serve as therapeutic targets for HIV-1 infection, especially in HIV-1 cure strategies. Current HIV-1 cure strategies involve the development of small molecules that are able to activate HIV-1 from latent infection, thereby allowing the immune system to recognize and clear infected cells. Areas covered: The role of seven CDK family members in the HIV-1 replication cycle is reviewed, with a focus on CDK9, as the mechanism whereby the viral Tat protein utilizes CDK9 to enhance viral replication is known in considerable detail. Expert opinion: Given the essential roles of CDKs in cellular proliferation and gene expression, small molecules that inhibit CDKs are unlikely to be feasible therapeutics for HIV-1 infection. However, small molecules that activate CDK9 and other select CDKs such as CDK11 have potential to reactivate latent HIV-1 and contribute to a functional cure of infection.
Collapse
Affiliation(s)
- Andrew P Rice
- a Department of Molecular Virology and Microbiology , Baylor College of Medicine , Houston , TX USA
| |
Collapse
|
58
|
Ren K, Zhang W, Chen X, Ma Y, Dai Y, Fan Y, Hou Y, Tan RX, Li E. An Epigenetic Compound Library Screen Identifies BET Inhibitors That Promote HSV-1 and -2 Replication by Bridging P-TEFb to Viral Gene Promoters through BRD4. PLoS Pathog 2016; 12:e1005950. [PMID: 27764245 PMCID: PMC5072739 DOI: 10.1371/journal.ppat.1005950] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/22/2016] [Indexed: 12/22/2022] Open
Abstract
The human HSV-1 and -2 are common pathogens of human diseases. Both host and viral factors are involved in HSV lytic infection, although detailed mechanisms remain elusive. By screening a chemical library of epigenetic regulation, we identified bromodomain-containing protein 4 (BRD4) as a critical player in HSV infection. We show that treatment with pan BD domain inhibitor enhanced both HSV infection. Using JQ1 as a probe, we found that JQ1, a defined BD1 inhibitor, acts through BRD4 protein since knockdown of BRD4 expression ablated JQ1 effect on HSV infection. BRD4 regulates HSV replication through complex formation involving CDK9 and RNAP II; whereas, JQ1 promotes HSV-1 infection by allocating the complex to HSV gene promoters. Therefore, suppression of BRD4 expression or inhibition of CDK9 activity impeded HSV infection. Our data support a model that JQ1 enhances HSV infection by switching BRD4 to transcription regulation of viral gene expression from chromatin targeting since transient expression of BRD4 BD1 or BD1/2 domain had similar effect to that by JQ1 treatment. In addition to the identification that BRD4 is a modulator for JQ1 action on HSV infection, this study demonstrates BRD4 has an essential role in HSV infection.
Collapse
Affiliation(s)
- Ke Ren
- Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
- Jiangsu Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Wei Zhang
- Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
- Jiangsu Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Xiaoqing Chen
- The Hoffmann Institute of Immunology, Guangzhou Medical University, Guangzhou, China
| | - Yingyu Ma
- Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
- Jiangsu Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Yue Dai
- Jiangsu Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Yimei Fan
- Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Yayi Hou
- Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Ren Xiang Tan
- Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
- Jiangsu Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
- Nanjing University of Chinese Medicine, Nanjing, China
- * E-mail: ;
| | - Erguang Li
- Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
- Jiangsu Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
- * E-mail: ;
| |
Collapse
|
59
|
The Multifaceted Contributions of Chromatin to HIV-1 Integration, Transcription, and Latency. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 328:197-252. [PMID: 28069134 DOI: 10.1016/bs.ircmb.2016.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The capacity of the human immunodeficiency virus (HIV-1) to establish latent infections constitutes a major barrier to the development of a cure for HIV-1. In latent infection, replication competent HIV-1 provirus is integrated within the host genome but remains silent, masking the infected cells from the activity of the host immune response. Despite the progress in elucidating the molecular players that regulate HIV-1 gene expression, the mechanisms driving the establishment and maintenance of latency are still not fully understood. Transcription from the HIV-1 genome occurs in the context of chromatin and is subjected to the same regulatory mechanisms that drive cellular gene expression. Much like in eukaryotic genes, the nucleosomal landscape of the HIV-1 promoter and its position within genomic chromatin are determinants of its transcriptional activity. Understanding the multilayered chromatin-mediated mechanisms that underpin HIV-1 integration and expression is of utmost importance for the development of therapeutic strategies aimed at reducing the pool of latently infected cells. In this review, we discuss the impact of chromatin structure on viral integration, transcriptional regulation and latency, and the host factors that influence HIV-1 replication by regulating chromatin organization. Finally, we describe therapeutic strategies under development to target the chromatin-HIV-1 interplay.
Collapse
|
60
|
The BET inhibitor OTX015 reactivates latent HIV-1 through P-TEFb. Sci Rep 2016; 6:24100. [PMID: 27067814 PMCID: PMC4828723 DOI: 10.1038/srep24100] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/21/2016] [Indexed: 12/13/2022] Open
Abstract
None of the currently used anti-HIV-1 agents can effectively eliminate latent HIV-1 reservoirs, which is a major hurdle to a complete cure for AIDS. We report here that a novel oral BET inhibitor OTX015, a thienotriazolodiazepine compound that has entered phase Ib clinical development for advanced hematologic malignancies, can effectively reactivate HIV-1 in different latency models with an EC50 value 1.95-4.34 times lower than JQ1, a known BET inhibitor that can reactivate HIV-1 latency. We also found that OTX015 was more potent when used in combination with prostratin. More importantly, OTX015 treatment induced HIV-1 full-length transcripts and viral outgrowth in resting CD4(+) T cells from infected individuals receiving suppressive antiretroviral therapy (ART), while exerting minimal toxicity and effects on T cell activation. Finally, biochemical analysis showed that OTX015-mediated activation of HIV-1 involved an increase in CDK9 occupancy and RNAP II C-terminal domain (CTD) phosphorylation. Our results suggest that the BET inhibitor OTX015 may be a candidate for anti-HIV-1-latency therapies.
Collapse
|
61
|
Abstract
HIV seeds reservoirs of latent proviruses in the earliest phases of infection. These reservoirs are found in many sites, including circulating cells, the lymphoid system, the brain, and other tissues. The "shock and kill" strategy, where HIV transcription is reactivated so that antiretroviral therapy and the immune system clear the infection, has been proposed as one approach to curing AIDS. In addition to many defective viruses, resting hematopoietic cells harbor transcriptionally latent HIV. Understanding basic mechanisms of HIV gene expression provides a road map for this strategy, allowing for manipulation of critical cellular and viral transcription factors in such a way as to maximize HIV gene expression while avoiding global T cell activation. These transcription factors include NF-κB and the HIV transactivator of transcription (Tat) as well as the cyclin-dependent kinases CDK13 and CDK11 and positive transcription elongation factor b (P-TEFb). Possible therapies involve agents that activate these proteins or release P-TEFb from the inactive 7SK small nuclear ribonucleoprotein (snRNP). These proposed therapies include PKC and MAPK agonists as well as histone deacetylase inhibitors (HDACis) and bromodomain and extraterminal (BET) bromodomain inhibitors (BETis), which act synergistically to reactivate HIV in latently infected cells.
Collapse
|
62
|
Zhou N, Yuan S, Wang R, Zhang W, Chen JJ. Role of dual specificity tyrosine-phosphorylation-regulated kinase 1B (Dyrk1B) in S-phase entry of HPV E7 expressing cells from quiescence. Oncotarget 2015; 6:30745-61. [PMID: 26307683 PMCID: PMC4741565 DOI: 10.18632/oncotarget.5222] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 08/08/2015] [Indexed: 12/18/2022] Open
Abstract
The high-risk human papillomavirus (HPV) is the causative agent for cervical cancer. The HPV E7 oncogene promotes S-phase entry from quiescent state in the presence of elevated cell cycle inhibitor p27Kip1, a function that may contribute to carcinogenesis. However, the mechanism by which HPV E7 induces quiescent cells to entry into S-phase is not fully understood. Interestingly, we found that Dyrk1B, a dual-specificity kinase and negative regulator of cell proliferation in quiescent cells, was upregulated in E7 expressing cells. Surprisingly and in contrast to what was previously reported, Dyrk1B played a positive role in S-phase entry of quiescent HPV E7 expressing cells. Mechanistically, Dyrk1B contributed to p27 phosphorylation (at serine 10 and threonine 198), which was important for the proliferation of HPV E7 expressing cells. Moreover, Dyrk1B up-regulated HPV E7. Taken together, our studies uncovered a novel function of Dyrk1B in high-risk HPV E7-mediated cell proliferation. Dyrk1B may serve as a target for therapy in HPV-associated cancers.
Collapse
Affiliation(s)
- Na Zhou
- Cancer Research Center, Shandong University School of Medicine, Jinan, Shandong, China
| | - Shoudao Yuan
- Cancer Research Center, Shandong University School of Medicine, Jinan, Shandong, China
| | - Rongchun Wang
- Biology Institute of Shandong Academy of Sciences, Jinan, Shandong, China
| | - Weifang Zhang
- Institute of Pathogenic Biology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Jason J. Chen
- Cancer Research Center, Shandong University School of Medicine, Jinan, Shandong, China
| |
Collapse
|
63
|
Bose D, Gagnon J, Chebloune Y. Comparative Analysis of Tat-Dependent and Tat-Deficient Natural Lentiviruses. Vet Sci 2015; 2:293-348. [PMID: 29061947 PMCID: PMC5644649 DOI: 10.3390/vetsci2040293] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/24/2015] [Accepted: 08/24/2015] [Indexed: 01/10/2023] Open
Abstract
The emergence of human immunodeficiency virus (HIV) causing acquired immunodeficiency syndrome (AIDS) in infected humans has resulted in a global pandemic that has killed millions. HIV-1 and HIV-2 belong to the lentivirus genus of the Retroviridae family. This genus also includes viruses that infect other vertebrate animals, among them caprine arthritis-encephalitis virus (CAEV) and Maedi-Visna virus (MVV), the prototypes of a heterogeneous group of viruses known as small ruminant lentiviruses (SRLVs), affecting both goat and sheep worldwide. Despite their long host-SRLV natural history, SRLVs were never found to be responsible for immunodeficiency in contrast to primate lentiviruses. SRLVs only replicate productively in monocytes/macrophages in infected animals but not in CD4+ T cells. The focus of this review is to examine and compare the biological and pathological properties of SRLVs as prototypic Tat-independent lentiviruses with HIV-1 as prototypic Tat-dependent lentiviruses. Results from this analysis will help to improve the understanding of why and how these two prototypic lentiviruses evolved in opposite directions in term of virulence and pathogenicity. Results may also help develop new strategies based on the attenuation of SRLVs to control the highly pathogenic HIV-1 in humans.
Collapse
Affiliation(s)
- Deepanwita Bose
- Pathogénèse et Vaccination Lentivirales, PAVAL Lab., Université Joseph Fourier Grenoble 1, Bat. NanoBio2, 570 rue de la Chimie, BP 53, 38041, Grenoble Cedex 9, France.
| | - Jean Gagnon
- Pathogénèse et Vaccination Lentivirales, PAVAL Lab., Université Joseph Fourier Grenoble 1, Bat. NanoBio2, 570 rue de la Chimie, BP 53, 38041, Grenoble Cedex 9, France.
| | - Yahia Chebloune
- Pathogénèse et Vaccination Lentivirales, PAVAL Lab., Université Joseph Fourier Grenoble 1, Bat. NanoBio2, 570 rue de la Chimie, BP 53, 38041, Grenoble Cedex 9, France.
| |
Collapse
|
64
|
Tyagi M, Iordanskiy S, Ammosova T, Kumari N, Smith K, Breuer D, Ilatovskiy AV, Kont YS, Ivanov A, Üren A, Kovalskyy D, Petukhov M, Kashanchi F, Nekhai S. Reactivation of latent HIV-1 provirus via targeting protein phosphatase-1. Retrovirology 2015; 12:63. [PMID: 26178009 PMCID: PMC4504130 DOI: 10.1186/s12977-015-0190-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 07/09/2015] [Indexed: 11/23/2022] Open
Abstract
Background HIV-1 escapes antiretroviral drugs by integrating into the host DNA and forming a latent transcriptionally silent HIV-1 provirus. This provirus presents the major hurdle in HIV-1 eradication and cure. Transcriptional activation, which is prerequisite for reactivation and the eradication of latent proviruses, is impaired in latently infected T cells due to the lack of host transcription factors, primarily NF-κB and P-TEFb (CDK9/cyclin T1). We and others previously showed that protein phosphatase-1 (PP1) regulates HIV-1 transcription by modulating CDK9 phosphorylation. Recently we have developed a panel of small molecular compounds targeting a non-catalytic site of PP1. Results Here we generated a new class of sulfonamide-containing compounds that activated HIV-1 in acute and latently infected cells. Among the tested molecules, a small molecule activator of PP1 (SMAPP1) induced both HIV-1 replication and reactivation of latent HIV-1 in chronically infected cultured and primary cells. In vitro, SMAPP1 interacted with PP1 and increased PP1 activity toward a recombinant substrate. Treatment with SMAPP1 increased phosphorylation of CDK9’s Ser90 and Thr186 residues, but not Ser175. Proteomic analysis showed upregulation of P-TEFb and PP1 related proteins, including PP1 regulatory subunit Sds22 in SMAPP1-treated T cells. Docking analysis identified a PP1 binding site for SMAPP1 located within the C-terminal binding pocket of PP1. Conclusion We identified a novel class of PP1-targeting compounds that reactivate latent HIV-1 provirus by targeting PP1, increasing CDK9 phosphorylation and enhancing HIV transcription. This compound represents a novel candidate for anti-HIV-1 therapeutics aiming at eradication of latent HIV-1 reservoirs.
Collapse
Affiliation(s)
- Mudit Tyagi
- Department of Medicine, The George Washington University, Washington, DC, 2003, USA.
| | - Sergey Iordanskiy
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA, 20110, USA.
| | - Tatyana Ammosova
- Center for Sickle Cell Disease, Howard University, 1840 7th Street, N.W. HURB1, Suite 202, Washington, DC, 20059, USA. .,Department of Medicine, Howard University, Washington, DC, 20059, USA. .,Yakut Science Center for Complex Medical Problems, Yakutsk, 677019, Russia.
| | - Namita Kumari
- Center for Sickle Cell Disease, Howard University, 1840 7th Street, N.W. HURB1, Suite 202, Washington, DC, 20059, USA.
| | - Kahli Smith
- Center for Sickle Cell Disease, Howard University, 1840 7th Street, N.W. HURB1, Suite 202, Washington, DC, 20059, USA.
| | - Denitra Breuer
- Center for Sickle Cell Disease, Howard University, 1840 7th Street, N.W. HURB1, Suite 202, Washington, DC, 20059, USA.
| | - Andrey V Ilatovskiy
- Division of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute, Gatchina, Russia. .,Instiute of Nanobiotechnologies, St. Petersburg State Polytechnical University, St. Petersburg, Russia.
| | | | - Andrey Ivanov
- Center for Sickle Cell Disease, Howard University, 1840 7th Street, N.W. HURB1, Suite 202, Washington, DC, 20059, USA.
| | - Aykut Üren
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA.
| | - Dmytro Kovalskyy
- Department of Biochemistry and Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA.
| | - Michael Petukhov
- Division of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute, Gatchina, Russia. .,Instiute of Nanobiotechnologies, St. Petersburg State Polytechnical University, St. Petersburg, Russia.
| | - Fatah Kashanchi
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA, 20110, USA.
| | - Sergei Nekhai
- Center for Sickle Cell Disease, Howard University, 1840 7th Street, N.W. HURB1, Suite 202, Washington, DC, 20059, USA. .,Department of Medicine, Howard University, Washington, DC, 20059, USA.
| |
Collapse
|
65
|
Ammosova T, Platonov M, Ivanov A, Kont YS, Kumari N, Kehn-Hall K, Jerebtsova M, Kulkarni AA, Uren A, Kovalskyy D, Nekhai S. 1E7-03, a low MW compound targeting host protein phosphatase-1, inhibits HIV-1 transcription. Br J Pharmacol 2015; 171:5059-75. [PMID: 25073485 DOI: 10.1111/bph.12863] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 06/07/2014] [Accepted: 06/14/2014] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND AND PURPOSE HIV-1 transcription is activated by the Tat protein which recruits the cyclin-dependent kinase CDK9/cyclin T1 to TAR RNA. Tat binds to protein phosphatase-1 (PP1) through the Q(35) VCF(38) sequence and translocates PP1 to the nucleus. PP1 dephosphorylates CDK9 and activates HIV-1 transcription. We have synthesized a low MW compound 1H4, that targets PP1 and prevents HIV-1 Tat interaction with PP1 and inhibits HIV-1 gene transcription. Here, we report our further work with the 1H4-derived compounds and analysis of their mechanism of action. EXPERIMENTAL APPROACH Using the 1H4-PP1 complex as a model, we iteratively designed and synthesized follow-up libraries that were analysed for the inhibition of HIV-1 transcription and toxicity. We also confirmed the mechanism of action of the PP1-targeting molecules by determining the affinity of binding of these molecules to PP1, by analysing their effects on PP1 activity, disruption of PP1 binding to Tat and shuttling of PP1 to the nucleus. KEY RESULTS We identified a tetrahydroquinoline derivative, compound 7, which disrupted the interaction of Tat with PP1. We further optimized compound 7 and obtained compound 7c, renamed 1E7-03, which inhibited HIV-1 with low IC50 (fivefold lower than the previously reported compound, 1H4), showed no cytotoxicity and displayed a plasma half-life greater than 8 h in mice. 1E7-03 bound to PP1 in vitro and prevented shuttling of PP1 into the nucleus. CONCLUSIONS AND IMPLICATIONS Our study shows that low MW compounds that functionally mimic the PP1-binding RVxF peptide can inhibit HIV-1 transcription by deregulating PP1.
Collapse
Affiliation(s)
- Tatyana Ammosova
- Center for Sickle Cell Disease, Department of Medicine, Howard University, Washington, DC, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Smith KA, Lin X, Bolshakov O, Griffin J, Niu X, Kovalskyy D, Ivanov A, Jerebtsova M, Taylor RE, Akala E, Nekhai S. Activation of HIV-1 with Nanoparticle-Packaged Small-Molecule Protein Phosphatase-1-Targeting Compound. Sci Pharm 2015; 83:535-48. [PMID: 26839837 PMCID: PMC4727795 DOI: 10.3797/scipharm.1502-01] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 06/22/2015] [Indexed: 11/22/2022] Open
Abstract
Complete eradication of HIV-1 infection is impeded by the existence of latent HIV-1 reservoirs in which the integrated HIV-1 provirus is transcriptionally inactive. Activation of HIV-1 transcription requires the viral Tat protein and host cell factors, including protein phosphatase-1 (PP1). We previously developed a library of small compounds that targeted PP1 and identified a compound, SMAPP1, which induced HIV-1 transcription. However, this compound has a limited bioavailability in vivo and may not be able to reach HIV-1-infected cells and induce HIV-1 transcription in patients. We packaged SMAPP1 in polymeric polyethylene glycol polymethyl methacrylate nanoparticles and analyzed its release and the effect on HIV-1 transcription in a cell culture. SMAPP1 was efficiently packaged in the nanoparticles and released during a 120-hr period. Treatment of the HIV-1-infected cells with the SMAPP1-loaded nanoparticles induced HIV-1 transcription. Thus, nanoparticles loaded with HIV-1-targeting compounds might be useful for future anti-HIV-1 therapeutics.
Collapse
Affiliation(s)
- Kahli A Smith
- Center for Sickle Cell Disease, Howard University, Washington DC 20059, USA; Department of Pharmacology, Howard University, Washington DC 20059, USA
| | - Xionghao Lin
- Center for Sickle Cell Disease, Howard University, Washington DC 20059, USA
| | - Oleg Bolshakov
- Department of Pharmaceutical Sciences, Howard University, Washington DC 20059, USA
| | - James Griffin
- College of Engineering, Howard University, Washington DC 20059, USA
| | - Xiaomei Niu
- Center for Sickle Cell Disease, Howard University, Washington DC 20059, USA
| | - Dmytro Kovalskyy
- Department of Biochemistry, School of Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio TX 78229, USA; Enamine LLC, Princeton Corporate Plaza, 7 Deer Park Drive, Ste. M-3 Monmouth Jct., NJ 08852, USA
| | - Andrey Ivanov
- Center for Sickle Cell Disease, Howard University, Washington DC 20059, USA
| | - Marina Jerebtsova
- Department of Microbiology, College of Medicine, Howard University, Washington DC 20059, USA
| | - Robert E Taylor
- Department of Pharmacology, Howard University, Washington DC 20059, USA
| | - Emmanuel Akala
- Department of Pharmaceutical Sciences, Howard University, Washington DC 20059, USA
| | - Sergei Nekhai
- Center for Sickle Cell Disease, Howard University, Washington DC 20059, USA; Department of Pharmacology, Howard University, Washington DC 20059, USA; Department of Microbiology, College of Medicine, Howard University, Washington DC 20059, USA; Department of Medicine, Howard University, Washington DC 20059, USA
| |
Collapse
|
67
|
Mbonye UR, Wang B, Gokulrangan G, Chance MR, Karn J. Phosphorylation of HEXIM1 at Tyr271 and Tyr274 Promotes Release of P-TEFb from the 7SK snRNP Complex and Enhances Proviral HIV Gene Expression. Proteomics 2015; 15:2078-86. [PMID: 25900325 DOI: 10.1002/pmic.201500038] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/24/2015] [Accepted: 04/16/2015] [Indexed: 12/28/2022]
Abstract
Efficient HIV transcription requires P-TEFb, an essential co-factor for Tat. In actively replicating cells, P-TEFb is incorporated into the 7SK snRNP complex together with the repressor protein HEXIM1. Using an affinity purification-tandem mass spectrometry approach to identify modification sites on HEXIM1 that regulate the sequestration of P-TEFb by 7SK snRNP, we found that HEXIM1 can be phosphorylated on adjacent residues in a region immediately upstream of the coiled-coil dimerization domain (Ser268, Thr270, Tyr271, and Tyr274). Phosphomimetic mutations of Tyr271 and Tyr274 disrupted the assembly of P-TEFb and HEXIM1 into the 7SK snRNP complex. Although Y271E/Y274E did not adversely affect the nuclear localization pattern of HEXIM1, it induced the redistribution of the CDK9 subunit of P-TEFb into the cytoplasm. By contrast, the Y271F/Y274F HEXIM1 mutant assembled normally with P-TEFb within the 7SK snRNP complex but severely reduced proviral gene expression in T cells in response to activation signals and caused a severe growth defect of Jurkat T cells. Thus, Y271F/Y274F, which cannot be phosphorylated on these residues, appears to block the exchange of active P-TEFb from the 7SK complex, thereby limiting the level of P-TEFb below the threshold required to support transcription elongation of the HIV provirus and cellular genes.
Collapse
Affiliation(s)
- Uri R Mbonye
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Benlian Wang
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Giridharan Gokulrangan
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Mark R Chance
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
68
|
Ross CT, Roodgar M, Smith DG. Evolutionary distance of amino acid sequence orthologs across macaque subspecies: identifying candidate genes for SIV resistance in Chinese rhesus macaques. PLoS One 2015; 10:e0123624. [PMID: 25884674 PMCID: PMC4401517 DOI: 10.1371/journal.pone.0123624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 02/20/2015] [Indexed: 11/18/2022] Open
Abstract
We use the Reciprocal Smallest Distance (RSD) algorithm to identify amino acid sequence orthologs in the Chinese and Indian rhesus macaque draft sequences and estimate the evolutionary distance between such orthologs. We then use GOanna to map gene function annotations and human gene identifiers to the rhesus macaque amino acid sequences. We conclude methodologically by cross-tabulating a list of amino acid orthologs with large divergence scores with a list of genes known to be involved in SIV or HIV pathogenesis. We find that many of the amino acid sequences with large evolutionary divergence scores, as calculated by the RSD algorithm, have been shown to be related to HIV pathogenesis in previous laboratory studies. Four of the strongest candidate genes for SIVmac resistance in Chinese rhesus macaques identified in this study are CDK9, CXCL12, TRIM21, and TRIM32. Additionally, ANKRD30A, CTSZ, GORASP2, GTF2H1, IL13RA1, MUC16, NMDAR1, Notch1, NT5M, PDCD5, RAD50, and TM9SF2 were identified as possible candidates, among others. We failed to find many laboratory experiments contrasting the effects of Indian and Chinese orthologs at these sites on SIVmac pathogenesis, but future comparative studies might hold fertile ground for research into the biological mechanisms underlying innate resistance to SIVmac in Chinese rhesus macaques.
Collapse
Affiliation(s)
- Cody T. Ross
- Department of Anthropology, University of California, Davis. Davis, United States of America
- Molecular Anthropology Laboratory, University of California, Davis. Davis, United States of America
| | - Morteza Roodgar
- Molecular Anthropology Laboratory, University of California, Davis. Davis, United States of America
- California National Primate Research Center, University of California, Davis. Davis, United States of America
- Graduate Group of Comparative Pathology, University of California, Davis. Davis, United States of America
| | - David Glenn Smith
- Department of Anthropology, University of California, Davis. Davis, United States of America
- Molecular Anthropology Laboratory, University of California, Davis. Davis, United States of America
- California National Primate Research Center, University of California, Davis. Davis, United States of America
| |
Collapse
|
69
|
Molecular dynamics simulation and experimental verification of the interaction between cyclin T1 and HIV-1 Tat proteins. PLoS One 2015; 10:e0119451. [PMID: 25781978 PMCID: PMC4363469 DOI: 10.1371/journal.pone.0119451] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 01/13/2015] [Indexed: 11/19/2022] Open
Abstract
The viral encoded Tat protein is essential for the transcriptional activation of HIV proviral DNA. Interaction of Tat with a cellular transcription elongation factor P-TEFb containing CycT1 is critically required for its action. In this study, we performed MD simulation using the 3D data for wild-type and 4CycT1mutants3D data. We found that the dynamic structural change of CycT1 H2’ helix is indispensable for its activity for the Tat action. Moreover, we detected flexible structural changes of the Tat-recognition cavity in the WT CycT1 comprising of ten AAs that are in contact with Tat. These structural fluctuations in WT were lost in the CycT1 mutants. We also found the critical importance of the hydrogen bond network involving H1, H1’ and H2 helices of CycT1. Since similar AA substitutions of the Tat-CycT1 chimera retained the Tat-supporting activity, these interactions are considered primarily involved in interaction with Tat. These findings described in this paper should provide vital information for the development of effective anti-Tat compound.
Collapse
|
70
|
Liu RD, Wu J, Shao R, Xue YH. Mechanism and factors that control HIV-1 transcription and latency activation. J Zhejiang Univ Sci B 2015; 15:455-65. [PMID: 24793763 DOI: 10.1631/jzus.b1400059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
After reverse transcription, the HIV-1 proviral DNA is integrated into the host genome and thus subjected to transcription by the host RNA polymerase II (Pol II). With the identification and characterization of human P-TEFb in the late 1990 s as a specific host cofactor required for HIV-1 transcription, it is now believed that the elongation stage of Pol II transcription plays a particularly important role in regulating HIV-1 gene expression. HIV-1 uses a sophisticated scheme to recruit human P-TEFb and other cofactors to the viral long terminal repeat (LTR) to produce full-length HIV-1 transcripts. In this process, P-TEFb is regulated by the reversible association with various transcription factors/cofactors to form several multi-subunit complexes (e.g., 7SK snRNP, super elongation complexes (SECs), and the Brd4-P-TEFb complex) that collectively constitute a P-TEFb network for controlling cellular and HIV-1 transcription. Recent progresses in HIV-1 transcription were reviewed in the paper, with the emphasis on the mechanism and factors that control HIV-1 transcription and latency activation.
Collapse
Affiliation(s)
- Rong-diao Liu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | | | | | | |
Collapse
|
71
|
Chen Y, Zhang L, Estarás C, Choi SH, Moreno L, Karn J, Moresco JJ, Yates JR, Jones KA. A gene-specific role for the Ssu72 RNAPII CTD phosphatase in HIV-1 Tat transactivation. Genes Dev 2014; 28:2261-75. [PMID: 25319827 PMCID: PMC4201287 DOI: 10.1101/gad.250449.114] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
HIV-1 Tat stimulates transcription elongation by recruiting the P-TEFb (positive transcription elongation factor-b) (CycT1:CDK9) C-terminal domain (CTD) kinase to the HIV-1 promoter. Here we show that Tat transactivation also requires the Ssu72 CTD Ser5P (S5P)-specific phosphatase, which mediates transcription termination and intragenic looping at eukaryotic genes. Importantly, HIV-1 Tat interacts directly with Ssu72 and strongly stimulates its CTD phosphatase activity. We found that Ssu72 is essential for Tat:P-TEFb-mediated phosphorylation of the S5P-CTD in vitro. Interestingly, Ssu72 also stimulates nascent HIV-1 transcription in a phosphatase-dependent manner in vivo. Chromatin immunoprecipitation (ChIP) experiments reveal that Ssu72, like P-TEFb and AFF4, is recruited by Tat to the integrated HIV-1 proviral promoter in TNF-α signaling 2D10 T cells and leaves the elongation complex prior to the termination site. ChIP-seq (ChIP combined with deep sequencing) and GRO-seq (genome-wide nuclear run-on [GRO] combined with deep sequencing) analysis further reveals that Ssu72 predominantly colocalizes with S5P-RNAPII (RNA polymerase II) at promoters in human embryonic stem cells, with a minor peak in the terminator region. A few genes, like NANOG, also have high Ssu72 at the terminator. Ssu72 is not required for transcription at most cellular genes but has a modest effect on cotranscriptional termination. We conclude that Tat alters the cellular function of Ssu72 to stimulate viral gene expression and facilitate the early S5P-S2P transition at the integrated HIV-1 promoter.
Collapse
Affiliation(s)
- Yupeng Chen
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Lirong Zhang
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Conchi Estarás
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Seung H Choi
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Luis Moreno
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - James J Moresco
- Department of Chemical Physiology and Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - John R Yates
- Department of Chemical Physiology and Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Katherine A Jones
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA;
| |
Collapse
|
72
|
Malissen B, Grégoire C, Malissen M, Roncagalli R. Integrative biology of T cell activation. Nat Immunol 2014; 15:790-7. [PMID: 25137453 DOI: 10.1038/ni.2959] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 07/10/2014] [Indexed: 12/11/2022]
Abstract
The activation of T cells mediated by the T cell antigen receptor (TCR) requires the interaction of dozens of proteins, and its malfunction has pathological consequences. Our major focus is on new developments in the systems-level understanding of the TCR signal-transduction network. To make sense of the formidable complexity of this network, we argue that 'fine-grained' methods are needed to assess the relationships among a few components that interact on a nanometric scale, and those should be integrated with high-throughput '-omic' approaches that simultaneously capture large numbers of parameters. We illustrate the utility of this integrative approach with the transmembrane signaling protein Lat, which is a key signaling hub of the TCR signal-transduction network, as a connecting thread.
Collapse
Affiliation(s)
- Bernard Malissen
- 1] Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Marseille, France. [2] INSERM U1104, Marseille, France. [3] CNRS UMR7280, Marseille, France. [4] Centre d'Immunophénomique, UM2 Aix-Marseille Université, Marseille, France. [5] INSERM US012, Marseille, France. [6] CNRS UMS3367, Marseille, France
| | - Claude Grégoire
- 1] Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Marseille, France. [2] INSERM U1104, Marseille, France. [3] CNRS UMR7280, Marseille, France
| | - Marie Malissen
- 1] Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Marseille, France. [2] INSERM U1104, Marseille, France. [3] CNRS UMR7280, Marseille, France. [4] Centre d'Immunophénomique, UM2 Aix-Marseille Université, Marseille, France. [5] INSERM US012, Marseille, France. [6] CNRS UMS3367, Marseille, France
| | - Romain Roncagalli
- 1] Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Marseille, France. [2] INSERM U1104, Marseille, France. [3] CNRS UMR7280, Marseille, France
| |
Collapse
|
73
|
Li F, Cheng C, Cui F, de Oliveira MVV, Yu X, Meng X, Intorne AC, Babilonia K, Li M, Li B, Chen S, Ma X, Xiao S, Zheng Y, Fei Z, Metz RP, Johnson CD, Koiwa H, Sun W, Li Z, de Souza Filho GA, Shan L, He P. Modulation of RNA polymerase II phosphorylation downstream of pathogen perception orchestrates plant immunity. Cell Host Microbe 2014; 16:748-58. [PMID: 25464831 DOI: 10.1016/j.chom.2014.10.018] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/22/2014] [Accepted: 10/24/2014] [Indexed: 01/03/2023]
Abstract
Perception of microbe-associated molecular patterns (MAMPs) elicits host transcriptional reprogramming as part of the immune response. Although pathogen perception is well studied, the signaling networks orchestrating immune gene expression remain less clear. In a genetic screen for components involved in the early immune gene transcription reprogramming, we identified Arabidopsis RNA polymerase II C-terminal domain (CTD) phosphatase-like 3 (CPL3) as a negative regulator of immune gene expression. MAMP perception induced rapid and transient cyclin-dependent kinase C (CDKC)-mediated phosphorylation of Arabidopsis CTD. The CDKCs, which are in turn phosphorylated and activated by a canonical MAP kinase (MAPK) cascade, represent a point of signaling convergence downstream of multiple immune receptors. CPL3 directly dephosphorylated CTD to counteract MAPK-mediated CDKC regulation. Thus, modulation of the phosphorylation dynamics of eukaryotic RNA polymerase II transcription machinery by MAPKs, CTD kinases, and phosphatases constitutes an essential mechanism for rapid orchestration of host immune gene expression and defense upon pathogen attacks.
Collapse
Affiliation(s)
- Fangjun Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; Department of Plant Pathology & Microbiology, and Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Cheng Cheng
- Department of Biochemistry & Biophysics, and Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Fuhao Cui
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; Department of Plant Pathology & Microbiology, and Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Marcos V V de Oliveira
- Department of Plant Pathology & Microbiology, and Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, USA; Department of Biochemistry & Biophysics, and Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, USA; Center of Biosciences & Biotechnology, North Rio de Janeiro State University, 28013-602, Brazil
| | - Xiao Yu
- Department of Plant Pathology & Microbiology, and Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Xiangzong Meng
- Department of Biochemistry & Biophysics, and Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Aline C Intorne
- Department of Plant Pathology & Microbiology, and Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, USA; Center of Biosciences & Biotechnology, North Rio de Janeiro State University, 28013-602, Brazil
| | - Kevin Babilonia
- Department of Biochemistry & Biophysics, and Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, USA; Department of Biology, University of Puerto Rico, Mayagüez Campus, Mayagüez, PR 00680, USA
| | - Maoying Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; Department of Biochemistry & Biophysics, and Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Bo Li
- Department of Plant Pathology & Microbiology, and Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Sixue Chen
- Department of Biology, University of Florida, Gainesville, FL 32610, USA
| | - Xianfeng Ma
- Institute for Bioscience & Biotechnology Research, University of Maryland, Rockville, MD 20850; Department of Plant Science & Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Shunyuan Xiao
- Institute for Bioscience & Biotechnology Research, University of Maryland, Rockville, MD 20850; Department of Plant Science & Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Yi Zheng
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853, USA
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853, USA
| | - Richard P Metz
- Genomics and Bioinformatics Services, Texas A&M AgriLife Research, College Station, TX 77845, USA
| | - Charles D Johnson
- Genomics and Bioinformatics Services, Texas A&M AgriLife Research, College Station, TX 77845, USA
| | - Hisashi Koiwa
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Wenxian Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhaohu Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | | | - Libo Shan
- Department of Plant Pathology & Microbiology, and Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, USA.
| | - Ping He
- Department of Biochemistry & Biophysics, and Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
74
|
Das B, Dobrowolski C, Shahir AM, Feng Z, Yu X, Sha J, Bissada NF, Weinberg A, Karn J, Ye F. Short chain fatty acids potently induce latent HIV-1 in T-cells by activating P-TEFb and multiple histone modifications. Virology 2014; 474:65-81. [PMID: 25463605 DOI: 10.1016/j.virol.2014.10.033] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 10/25/2014] [Accepted: 10/27/2014] [Indexed: 12/14/2022]
Abstract
HIV patients with severe periodontitis have high levels of residual virus in their saliva and plasma despite effective therapy (HAART). Multiple short chain fatty acids (SCFAs) from periodontal pathogens reactivate HIV-1 in both Jurkat and primary T-cell models of latency. SCFAs not only activate positive transcription elongation factor b (P-TEFb), which is an essential cellular cofactor for Tat, but can also reverse chromatin blocks by inducing histone modifications. SCFAs simultaneously increase histone acetylation by inhibiting class-1/2 histone deacetylases (HDACs) and decrease repressive histone tri-methylation at the proviral LTR by downregulating expression of the class-3 HDAC sirtuin-1 (SIRT1), and the histone methyltransferases enhancer of Zeste homolog 2 (EZH2) and suppressor of variegation 3-9 homolog 1 (SUV39H1). Our findings provide a mechanistic link between periodontal disease and enhanced HIV-1 replication, and suggest that treatment of periodontal disease, or blocking the activities of SCFAs, will have a therapeutic benefit for HIV patients.
Collapse
Affiliation(s)
- Biswajit Das
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States
| | - Curtis Dobrowolski
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States
| | - Abdel-Malek Shahir
- Department of Periodontics, School of Dental Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, United States
| | - Zhimin Feng
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States
| | - Xiaolan Yu
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States
| | - Jinfeng Sha
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States
| | - Nabil F Bissada
- Department of Periodontics, School of Dental Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, United States
| | - Aaron Weinberg
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States.
| | - Fengchun Ye
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States.
| |
Collapse
|
75
|
Luo Y, Muesing MA. Mass spectrometry-based proteomic approaches for discovery of HIV-host interactions. Future Virol 2014; 9:979-992. [PMID: 25544858 DOI: 10.2217/fvl.14.86] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A molecular understanding of viral infection requires a multi-disciplinary approach. Mass spectrometry has emerged as an indispensable tool to investigate the complex and dynamic interactions between HIV-1 and its host. It has been employed to study protein associations, changes in protein abundance and post-translational modifications occurring after viral infection. Here, we review and provide examples of mass spectrometry-based proteomic approaches currently used to explore virus-host interaction. Efforts in this area are certain to accelerate the discovery of the unique molecular strategies utilized by the virus to commandeer the cell as well as mechanisms of host defense.
Collapse
Affiliation(s)
- Yang Luo
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, 455 First Avenue 7th Floor, New York, NY 10016, USA
| | - Mark A Muesing
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, 455 First Avenue 7th Floor, New York, NY 10016, USA
| |
Collapse
|
76
|
Zhang SM, Zhang H, Yang TY, Ying TY, Yang PX, Liu XD, Tang SJ, Zhou PK. Interaction between HIV-1 Tat and DNA-PKcs modulates HIV transcription and class switch recombination. Int J Biol Sci 2014; 10:1138-49. [PMID: 25332688 PMCID: PMC4202030 DOI: 10.7150/ijbs.10366] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 09/17/2014] [Indexed: 12/17/2022] Open
Abstract
HIV-1 tat targets a variety of host cell proteins to facilitate viral transcription and disrupts host cellular immunity by inducing lymphocyte apoptosis, but whether it influences humoral immunity remains unclear. Previously, our group demonstrated that tat depresses expression of DNA-PKcs, a critical component of the non-homologous end joining pathway (NHEJ) of DNA double-strand breaks repair, immunoglobulin class switch recombination (CSR) and V(D)J recombination, and sensitizes cells to ionizing radiation. In this study, we demonstrated that HIV-1 Tat down-regulates DNA-PKcs expression by directly binding to the core promoter sequence. In addition, Tat interacts with and activates the kinase activity of DNA-PKcs in a dose-dependent and DNA independent manner. Furthermore, Tat inhibits class switch recombination (CSR) at low concentrations (≤4 µg/ml) and stimulates CSR at high concentrations (≥8 µg/ml). On the other hand, low protein level and high kinase activity of DNA-PKcs promotes HIV-1 transcription, while high protein level and low kinase activity inhibit HIV-1 transcription. Co-immunoprecipitation results revealed that DNA-PKcs forms a large complex comprised of Cyclin T1, CDK9 and Tat via direct interacting with CDK9 and Tat but not Cyclin T1. Taken together, our results provide new clues that Tat regulates host humoral immunity via both transcriptional depression and kinase activation of DNA-PKcs. We also raise the possibility that inhibitors and interventions directed towards DNA-PKcs may inhibit HIV-1 transcription in AIDS patients.
Collapse
Affiliation(s)
- Shi-Meng Zhang
- 1. Department of Radiation Toxicology and Oncology; Beijing Institute of Radiation Medicine, 100850, Beijing, China
| | - He Zhang
- 1. Department of Radiation Toxicology and Oncology; Beijing Institute of Radiation Medicine, 100850, Beijing, China
| | - Tian-Yi Yang
- 1. Department of Radiation Toxicology and Oncology; Beijing Institute of Radiation Medicine, 100850, Beijing, China
| | - Tian-Yi Ying
- 2. The State Key Laboratory of NBC Protection for Civilian, 102205, Beijing, China
| | - Pei-Xiang Yang
- 3. Beijing Institute of Health Administration and Medical Information, 100850, Beijing, China
| | - Xiao-Dan Liu
- 1. Department of Radiation Toxicology and Oncology; Beijing Institute of Radiation Medicine, 100850, Beijing, China
| | - Sheng-Jian Tang
- 4. Shandong Provincial Key Laboratory of Plastic and Microscopic Repair Technology, Institute of Plastic Surgery, Weifang Medical University, 261053, Weifang, Shandong Province, China
| | - Ping-Kun Zhou
- 1. Department of Radiation Toxicology and Oncology; Beijing Institute of Radiation Medicine, 100850, Beijing, China
| |
Collapse
|
77
|
The domain landscape of virus-host interactomes. BIOMED RESEARCH INTERNATIONAL 2014; 2014:867235. [PMID: 24991570 PMCID: PMC4065681 DOI: 10.1155/2014/867235] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/19/2014] [Indexed: 12/31/2022]
Abstract
Viral infections result in millions of deaths in the world today. A thorough analysis of virus-host interactomes may reveal insights into viral infection and pathogenic strategies. In this study, we presented a landscape of virus-host interactomes based on protein domain interaction. Compared to the analysis at protein level, this domain-domain interactome provided a unique abstraction of protein-protein interactome. Through comparisons among DNA, RNA, and retrotranscribing viruses, we identified a core of human domains, that viruses used to hijack the cellular machinery and evade the immune system, which might be promising antiviral drug targets. We showed that viruses preferentially interacted with host hub and bottleneck domains, and the degree and betweenness centrality among three categories of viruses are significantly different. Further analysis at functional level highlighted that different viruses perturbed the host cellular molecular network by common and unique strategies. Most importantly, we creatively proposed a viral disease network among viral domains, human domains and the corresponding diseases, which uncovered several unknown virus-disease relationships that needed further verification. Overall, it is expected that the findings will help to deeply understand the viral infection and contribute to the development of antiviral therapy.
Collapse
|
78
|
Roncagalli R, Hauri S, Fiore F, Liang Y, Chen Z, Sansoni A, Kanduri K, Joly R, Malzac A, Lähdesmäki H, Lahesmaa R, Yamasaki S, Saito T, Malissen M, Aebersold R, Gstaiger M, Malissen B. Quantitative proteomics analysis of signalosome dynamics in primary T cells identifies the surface receptor CD6 as a Lat adaptor-independent TCR signaling hub. Nat Immunol 2014; 15:384-392. [PMID: 24584089 DOI: 10.1038/ni.2843] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 02/03/2014] [Indexed: 02/08/2023]
Abstract
T cell antigen receptor (TCR)-mediated activation of T cells requires the interaction of dozens of proteins. Here we used quantitative mass spectrometry and activated primary CD4(+) T cells from mice in which a tag for affinity purification was knocked into several genes to determine the composition and dynamics of multiprotein complexes that formed around the kinase Zap70 and the adaptors Lat and SLP-76. Most of the 112 high-confidence time-resolved protein interactions we observed were previously unknown. The surface receptor CD6 was able to initiate its own signaling pathway by recruiting SLP-76 and the guanine nucleotide-exchange factor Vav1 regardless of the presence of Lat. Our findings provide a more complete model of TCR signaling in which CD6 constitutes a signaling hub that contributes to the diversification of TCR signaling.
Collapse
Affiliation(s)
- Romain Roncagalli
- Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Marseille, France.,INSERM U1104, Marseille, France.,CNRS UMR7280, Marseille, France
| | - Simon Hauri
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.,Competence Center for Systems Physiology and Metabolic Diseases, ETH Zurich, Switzerland
| | - Fréderic Fiore
- Centre d'Immunophénomique, UM2 Aix-Marseille Université, Marseille, France.,INSERM US012, Marseille, France.,CNRS UMS3367, Marseille, France
| | - Yinming Liang
- Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Marseille, France.,INSERM U1104, Marseille, France.,CNRS UMR7280, Marseille, France
| | - Zhi Chen
- Turku Centre for Biotechnology, University of Turku and Abo Akademi University, Turku, Finland
| | - Amandine Sansoni
- Centre d'Immunophénomique, UM2 Aix-Marseille Université, Marseille, France.,INSERM US012, Marseille, France.,CNRS UMS3367, Marseille, France
| | - Kartiek Kanduri
- Turku Centre for Biotechnology, University of Turku and Abo Akademi University, Turku, Finland
| | - Rachel Joly
- Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Marseille, France.,INSERM U1104, Marseille, France.,CNRS UMR7280, Marseille, France
| | - Aurélie Malzac
- Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Marseille, France.,INSERM U1104, Marseille, France.,CNRS UMR7280, Marseille, France
| | - Harri Lähdesmäki
- Turku Centre for Biotechnology, University of Turku and Abo Akademi University, Turku, Finland.,Department of Information and Computer Science, Aalto University, Finland
| | - Riitta Lahesmaa
- Turku Centre for Biotechnology, University of Turku and Abo Akademi University, Turku, Finland
| | - Sho Yamasaki
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Takashi Saito
- RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Marie Malissen
- Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Marseille, France.,INSERM U1104, Marseille, France.,CNRS UMR7280, Marseille, France
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.,Faculty of Science, University of Zurich, Zurich, Switzerland
| | - Matthias Gstaiger
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.,Competence Center for Systems Physiology and Metabolic Diseases, ETH Zurich, Switzerland
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Marseille, France.,INSERM U1104, Marseille, France.,CNRS UMR7280, Marseille, France.,Centre d'Immunophénomique, UM2 Aix-Marseille Université, Marseille, France.,INSERM US012, Marseille, France.,CNRS UMS3367, Marseille, France
| |
Collapse
|
79
|
Mbonye U, Karn J. Transcriptional control of HIV latency: cellular signaling pathways, epigenetics, happenstance and the hope for a cure. Virology 2014; 454-455:328-39. [PMID: 24565118 DOI: 10.1016/j.virol.2014.02.008] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 01/23/2014] [Accepted: 02/07/2014] [Indexed: 02/06/2023]
Abstract
Replication-competent latent HIV-1 proviruses that persist in the genomes of a very small subset of resting memory T cells in infected individuals under life-long antiretroviral therapy present a major barrier towards viral eradication. Multiple molecular mechanisms are required to repress the viral trans-activating factor Tat and disrupt the regulatory Tat feedback circuit leading to the establishment of the latent viral reservoir. In particular, latency is due to a combination of transcriptional silencing of proviruses via host epigenetic mechanisms and restrictions on the expression of P-TEFb, an essential co-factor for Tat. Induction of latent proviruses in the presence of antiretroviral therapy is expected to enable clearance of latently infected cells by viral cytopathic effects and host antiviral immune responses. An in-depth comprehensive understanding of the molecular control of HIV-1 transcription should inform the development of optimal combinatorial reactivation strategies that are intended to purge the latent viral reservoir.
Collapse
Affiliation(s)
- Uri Mbonye
- Department of Molecular Biology and Microbiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, United States
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, United States.
| |
Collapse
|
80
|
Regulation of CDK9 activity by phosphorylation and dephosphorylation. BIOMED RESEARCH INTERNATIONAL 2014; 2014:964964. [PMID: 24524087 PMCID: PMC3913462 DOI: 10.1155/2014/964964] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 12/11/2013] [Indexed: 11/18/2022]
Abstract
HIV-1 transcription is regulated by CDK9/cyclin T1, which, unlike a typical cell cycle-dependent kinase, is regulated by associating with 7SK small nuclear ribonuclear protein complex (snRNP). While the protein components of this complex are well studied, the mechanism of the complex formation is still not fully understood. The association of CDK9/cyclin T1 with 7SK snRNP is, in part, regulated by a reversible CDK9 phosphorylation. Here, we present a comprehensive review of the kinases and phosphatases involved in CDK9 phosphorylation and discuss their role in regulation of HIV-1 replication and potential for being targeted for drug development. We propose a novel pathway of HIV-1 transcription regulation via CDK9 Ser-90 phosphorylation by CDK2 and CDK9 Ser-175 dephosphorylation by protein phosphatase-1.
Collapse
|
81
|
Latent HIV-1 can be reactivated by cellular superinfection in a Tat-dependent manner, which can lead to the emergence of multidrug-resistant recombinant viruses. J Virol 2013; 87:9620-32. [PMID: 23804632 DOI: 10.1128/jvi.01165-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The HIV-1 latent reservoir represents an important source of genetic diversity that could contribute to viral evolution and multidrug resistance following latent virus reactivation. This could occur by superinfection of a latently infected cell. We asked whether latent viruses might be reactivated when their host cells are superinfected, and if so, whether they could contribute to the generation of recombinant viruses. Using populations of latently infected Jurkat cells, we found that latent viruses were efficiently reactivated upon superinfection. Pathways leading to latent virus reactivation via superinfection might include gp120-CD4/CXCR4-induced signaling, modulation of the cellular environment by Nef, and/or the activity of Tat produced upon superinfection. Using a range of antiviral compounds and genetic approaches, we show that gp120 and Nef are not required for latent virus reactivation by superinfection, but this process depends on production of functional Tat by the superinfecting virus. In a primary cell model of latency in unstimulated CD4 T cells, superinfection also led to latent virus reactivation. Drug-resistant latent viruses were also reactivated following superinfection in Jurkat cells and were able to undergo recombination with the superinfecting virus. Under drug-selective pressure, this generated multidrug-resistant recombinants that were identified by unique restriction digestion band patterns and by population-level sequencing. During conditions of poor drug adherence, treatment interruption or treatment failure, or in drug-impermeable sanctuary sites, reactivation of latent viruses by superinfection or other means could provide for the emergence or spread of replicatively fit viruses in the face of strong selective pressures.
Collapse
|
82
|
Lu H, Li Z, Xue Y, Zhou Q. Viral-host interactions that control HIV-1 transcriptional elongation. Chem Rev 2013; 113:8567-82. [PMID: 23795863 DOI: 10.1021/cr400120z] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Huasong Lu
- School of Pharmaceutical Sciences, Xiamen University , Xiamen, Fujian 361005, China
| | | | | | | |
Collapse
|