51
|
Additive roles of two TPS genes in trehalose synthesis, conidiation, multiple stress responses and host infection of a fungal insect pathogen. Appl Microbiol Biotechnol 2017; 101:3637-3651. [DOI: 10.1007/s00253-017-8155-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/29/2016] [Accepted: 01/22/2017] [Indexed: 10/20/2022]
|
52
|
Vanaporn M, Sarkar-Tyson M, Kovacs-Simon A, Ireland PM, Pumirat P, Korbsrisate S, Titball RW, Butt A. Trehalase plays a role in macrophage colonization and virulence of Burkholderia pseudomallei in insect and mammalian hosts. Virulence 2017; 8:30-40. [PMID: 27367830 PMCID: PMC5963195 DOI: 10.1080/21505594.2016.1199316] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/01/2016] [Accepted: 06/03/2016] [Indexed: 10/21/2022] Open
Abstract
Trehalose is a disaccharide formed from two glucose molecules. This sugar molecule can be isolated from a range of organisms including bacteria, fungi, plants and invertebrates. Trehalose has a variety of functions including a role as an energy storage molecule, a structural component of glycolipids and plays a role in the virulence of some microorganisms. There are many metabolic pathways that control the biosynthesis and degradation of trehalose in different organisms. The enzyme trehalase forms part of a pathway that converts trehalose into glucose. In this study we set out to investigate whether trehalase plays a role in both stress adaptation and virulence of Burkholderia pseudomallei. We show that a trehalase deletion mutant (treA) had increased tolerance to thermal stress and produced less biofilm than the wild type B. pseudomallei K96243 strain. We also show that the ΔtreA mutant has reduced ability to survive in macrophages and that it is attenuated in both Galleria mellonella (wax moth larvae) and a mouse infection model. This is the first report that trehalase is important for bacterial virulence.
Collapse
Affiliation(s)
- Muthita Vanaporn
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Andrea Kovacs-Simon
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Philip M. Ireland
- CBR Division, Defense Science and Technology Laboratory, Salisbury, UK
| | - Pornpan Pumirat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Richard W. Titball
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Aaron Butt
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
53
|
Sundar GS, Islam E, Gera K, Le Breton Y, McIver KS. A PTS EII mutant library in Group A Streptococcus identifies a promiscuous man-family PTS transporter influencing SLS-mediated hemolysis. Mol Microbiol 2016; 103:518-533. [PMID: 27862457 DOI: 10.1111/mmi.13573] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2016] [Indexed: 01/10/2023]
Abstract
The Group A Streptococcus (GAS, Streptococcus pyogenes) is a Gram-positive human pathogen that must adapt to unique host environments in order to survive. Links between sugar metabolism and virulence have been demonstrated in GAS, where mutants in the phosphoenolpyruvate-dependent phosphotransferase system (PTS) exhibited Streptolysin S (SLS)-mediated hemolysis during exponential growth. This early onset hemolysis correlated with an increased lesion size and severity in a murine soft tissue infection model when compared with parental M1T1 MGAS5005. To identify the PTS components responsible for this phenotype, we insertionally inactivated the 14 annotated PTS EIIC-encoding genes in the GAS MGAS5005 genome and subjected this library to metabolic and hemolysis assays to functionally characterize each EIIC. It was found that a few EIIs had a very limited influence on PTS sugar metabolism, whereas others were fairly promiscuous. The mannose-specific EII locus, encoded by manLMN, was expressed as a mannose-inducible operon that exhibited the most influence on PTS sugar metabolism, including mannose. Importantly, components of the mannose-specific EII also acted to prevent the early onset of SLS-mediated hemolysis. Interestingly, these roles were not identical in two different M1T1 GAS strains, highlighting the possible versatility of the PTS to adapt to strain-specific needs.
Collapse
Affiliation(s)
- Ganesh S Sundar
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, MD, 20742, USA
| | - Emrul Islam
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, MD, 20742, USA
| | - Kanika Gera
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, MD, 20742, USA
| | - Yoann Le Breton
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, MD, 20742, USA
| | - Kevin S McIver
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
54
|
van Wyk N, Drancourt M, Henrissat B, Kremer L. Current perspectives on the families of glycoside hydrolases ofMycobacterium tuberculosis: their importance and prospects for assigning function to unknowns. Glycobiology 2016; 27:112-122. [DOI: 10.1093/glycob/cww099] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 08/28/2016] [Accepted: 09/26/2016] [Indexed: 11/14/2022] Open
|
55
|
Maicas S, Guirao-Abad JP, Argüelles JC. Yeast trehalases: Two enzymes, one catalytic mission. Biochim Biophys Acta Gen Subj 2016; 1860:2249-54. [DOI: 10.1016/j.bbagen.2016.04.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/19/2016] [Accepted: 04/27/2016] [Indexed: 01/08/2023]
|
56
|
Rundell SR, Wagar ZL, Meints LM, Olson CD, O'Neill MK, Piligian BF, Poston AW, Hood RJ, Woodruff PJ, Swarts BM. Deoxyfluoro-d-trehalose (FDTre) analogues as potential PET probes for imaging mycobacterial infection. Org Biomol Chem 2016; 14:8598-609. [PMID: 27560008 DOI: 10.1039/c6ob01734g] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mycobacterium tuberculosis, the etiological agent of human tuberculosis, requires the non-mammalian disaccharide trehalose for growth and virulence. Recently, detectable trehalose analogues have gained attention as probes for studying trehalose metabolism and as potential diagnostic imaging agents for mycobacterial infections. Of particular interest are deoxy-[(18)F]fluoro-d-trehalose ((18)F-FDTre) analogues, which have been suggested as possible positron emission tomography (PET) probes for in vivo imaging of M. tuberculosis infection. Here, we report progress toward this objective, including the synthesis and conformational analysis of four non-radioactive deoxy-[(19)F]fluoro-d-trehalose ((19)F-FDTre) analogues, as well as evaluation of their uptake by M. smegmatis. The rapid synthesis and purification of several (19)F-FDTre analogues was accomplished in high yield using a one-step chemoenzymatic method. Conformational analysis of the (19)F-FDTre analogues using NMR and molecular modeling methods showed that fluorine substitution had a negligible effect on the conformation of the native disaccharide, suggesting that fluorinated analogues may be successfully recognized and processed by trehalose metabolic machinery in mycobacteria. To test this hypothesis and to evaluate a possible route for delivery of FDTre probes specifically to mycobacteria, we showed that (19)F-FDTre analogues are actively imported into M. smegmatis via the trehalose-specific transporter SugABC-LpqY. Finally, to demonstrate the applicability of these results to the efficient preparation and use of short-lived (18)F-FDTre PET radiotracers, we carried out (19)F-FDTre synthesis, purification, and administration to M. smegmatis in 1 hour.
Collapse
Affiliation(s)
- Sarah R Rundell
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Cervantes-Chávez JA, Valdés-Santiago L, Bakkeren G, Hurtado-Santiago E, León-Ramírez CG, Esquivel-Naranjo EU, Landeros-Jaime F, Rodríguez-Aza Y, Ruiz-Herrera J. Trehalose is required for stress resistance and virulence of the Basidiomycota plant pathogen Ustilago maydis. MICROBIOLOGY-SGM 2016; 162:1009-1022. [PMID: 27027300 DOI: 10.1099/mic.0.000287] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Trehalose is an important disaccharide that can be found in bacteria, fungi, invertebrates and plants. In some Ascomycota fungal plant pathogens, the role of trehalose was recently studied and shown to be important for conferring protection against several environmental stresses and for virulence. In most of the fungi studied, two enzymes are involved in the synthesis of trehalose: trehalose-6-phosphate synthase (Tps1) and trehalose-6-phosphate phosphatase (Tps2). To study the role of trehalose in virulence and stress response in the Basidiomycota maize pathogen Ustilago maydis, Δtps2 deletion mutants were constructed. These mutants did not produce trehalose as confirmed by HPLC analysis, showing that the single gene disruption impaired its biosynthesis. The mutants displayed increased sensitivity to oxidative, heat, acid, ionic and osmotic stresses as compared to the wild-type strains. Virulence of Δtps2 mutants to maize plants was extremely reduced compared to wild-type strains, possibly due to reduced capability to deal with the hostile host environment. The phenotypic traits displayed by Δtps2 strains were fully restored to wild-type levels when complemented with the endogenous UmTPS2 gene, or a chimeric construct having the Saccharomyces cerevisiae TPS2 ORF. This report demonstrates the presence of a single biosynthetic pathway for trehalose, and its importance for virulence in this model Basidiomycota plant pathogen.
Collapse
Affiliation(s)
- José Antonio Cervantes-Chávez
- Universidad Autónoma de Querétaro, Facultad de Ciencias Naturales, Unidad de Microbiología Básica y Aplicada, Santiago de Querétaro, Qro, Mexico
| | - Laura Valdés-Santiago
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Gto, Mexico
| | - Guus Bakkeren
- Agriculture & Agri-Food Canada, Summerland Research & Development, BC, Canada
| | - Edda Hurtado-Santiago
- Universidad Autónoma de Querétaro, Facultad de Ciencias Naturales, Unidad de Microbiología Básica y Aplicada, Santiago de Querétaro, Qro, Mexico
| | | | - Edgardo Ulises Esquivel-Naranjo
- Universidad Autónoma de Querétaro, Facultad de Ciencias Naturales, Unidad de Microbiología Básica y Aplicada, Santiago de Querétaro, Qro, Mexico
| | - Fidel Landeros-Jaime
- Universidad Autónoma de Querétaro, Facultad de Ciencias Naturales, Unidad de Microbiología Básica y Aplicada, Santiago de Querétaro, Qro, Mexico
| | - Yolanda Rodríguez-Aza
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Gto, Mexico
| | - José Ruiz-Herrera
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Gto, Mexico
| |
Collapse
|
58
|
Sędzielewska Toro K, Brachmann A. The effector candidate repertoire of the arbuscular mycorrhizal fungus Rhizophagus clarus. BMC Genomics 2016; 17:101. [PMID: 26861502 PMCID: PMC4746824 DOI: 10.1186/s12864-016-2422-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/01/2016] [Indexed: 12/27/2022] Open
Abstract
Background Arbuscular mycorrhizal fungi (AMF) form an ecologically important symbiosis with more than two thirds of studied land plants. Recent studies of plant-pathogen interactions showed that effector proteins play a key role in host colonization by controlling the plant immune system. We hypothesise that also for symbiotic-plant interactions the secreted effectome of the fungus is a major component of communication and the conservation level of effector proteins between AMF species may be indicative whether they play a fundamental role. Results In this study, we used a bioinformatics pipeline to predict and compare the effector candidate repertoire of the two AMF species, Rhizophagus irregularis and Rhizophagus clarus. Our in silico pipeline revealed a list of 220 R. irregularis candidate effector genes that create a valuable information source to elucidate the mechanism of plant infection and colonization by fungi during AMF symbiotic interaction. While most of the candidate effectors show no homologies to known domains or proteins, the candidates with homologies point to potential roles in signal transduction, cell wall modification or transcription regulation. A remarkable aspect of our work is presence of a large portion of the effector proteins involved in symbiosis, which are not unique to each fungi or plant species, but shared along the Glomeromycota phylum. For 95 % of R. irregularis candidates we found homologs in a R. clarus genome draft generated by Illumina high-throughput sequencing. Interestingly, 9 % of the predicted effectors are at least as conserved between the two Rhizophagus species as proteins with housekeeping functions (similarity > 90 %). Therefore, we state that this group of highly conserved effector proteins between AMF species may play a fundamental role during fungus-plant interaction. Conclusions We hypothesise that in symbiotic interactions the secreted effectome of the fungus might be an important component of communication. Identification and functional characterization of the primary AMF effectors that regulate symbiotic development will help in understanding the mechanisms of fungus-plant interaction. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2422-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kinga Sędzielewska Toro
- Genetics, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Straße 2-4, 82152, Planegg-Martinsried, Germany.
| | - Andreas Brachmann
- Genetics, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Straße 2-4, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
59
|
Thanna S, Sucheck SJ. Targeting the trehalose utilization pathways of Mycobacterium tuberculosis. MEDCHEMCOMM 2015; 7:69-85. [PMID: 26941930 PMCID: PMC4770839 DOI: 10.1039/c5md00376h] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tuberculosis (TB) is an epidemic disease and the growing burden of multidrug-resistant (MDR) TB world wide underlines the need to discover new drugs to treat the disease. Mycobacterium tuberculosis (Mtb) is the etiological agent of most cases of TB. Mtb is difficult to treat, in part, due to the presence of a sturdy hydrophobic barrier that prevents penetration of drugs through the cell wall. Mtb can also survive in a non-replicative state for long periods of time avoiding the action of common antibiotics. Trehalose is an essential metabolite in mycobacteria since it plays key roles in cell wall synthesis, transport of cell wall glycolipids, and energy storage. It is also known for its stress protective roles such as: protection from desiccation, freezing, starvation and osmotic stress in bacteria. In this review we discuss the drug discovery efforts against enzymes involved in the trehalose utilization pathways (TUPs) and their likelihood of becoming drug targets.
Collapse
Affiliation(s)
- Sandeep Thanna
- Department of Chemistry and Biochemistry, The University of Toledo, 2801 W. Bancroft Street, MS602, Toledo, OH, USA 43606
| | - Steven J. Sucheck
- Department of Chemistry and Biochemistry, The University of Toledo, 2801 W. Bancroft Street, MS602, Toledo, OH, USA 43606
| |
Collapse
|
60
|
Zilli DMW, Lopes RG, Alves SL, Barros LM, Miletti LC, Stambuk BU. Secretion of the acid trehalase encoded by the CgATH1 gene allows trehalose fermentation by Candida glabrata. Microbiol Res 2015; 179:12-9. [PMID: 26411890 DOI: 10.1016/j.micres.2015.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 06/26/2015] [Accepted: 06/27/2015] [Indexed: 01/10/2023]
Abstract
The emergent pathogen Candida glabrata differs from other yeasts because it assimilates only two sugars, glucose and the disaccharide trehalose. Since rapid identification tests are based on the ability of this yeast to rapidly hydrolyze trehalose, in this work a biochemical and molecular characterization of trehalose catabolism by this yeast was performed. Our results show that C. glabrata consumes and ferments trehalose, with parameters similar to those observed during glucose fermentation. The presence of glucose in the medium during exponential growth on trehalose revealed extracellular hydrolysis of the sugar by a cell surface acid trehalase with a pH optimum of 4.4. Approximately ∼30% of the total enzymatic activity is secreted into the medium during growth on trehalose or glycerol. The secreted enzyme shows an apparent molecular mass of 275 kDa in its native form, but denaturant gel electrophoresis revealed a protein with ∼130 kDa, which due to its migration pattern and strong binding to concanavalin A, indicates that it is probably a dimeric glycoprotein. The secreted acid trehalase shows high affinity and activity for trehalose, with Km and Vmax values of 3.4 mM and 80 U (mg protein)(-1), respectively. Cloning of the CgATH1 gene (CAGLOK05137g) from de C. glabrata genome, a gene showing high homology to fungal acid trehalases, allowed trehalose fermentation after heterologous expression in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- D M W Zilli
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Trindade, Florianópolis, SC 88040-900, Brazil
| | - R G Lopes
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Trindade, Florianópolis, SC 88040-900, Brazil
| | - S L Alves
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Trindade, Florianópolis, SC 88040-900, Brazil
| | - L M Barros
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Trindade, Florianópolis, SC 88040-900, Brazil
| | - L C Miletti
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Trindade, Florianópolis, SC 88040-900, Brazil
| | - B U Stambuk
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Trindade, Florianópolis, SC 88040-900, Brazil.
| |
Collapse
|
61
|
Walmagh M, Zhao R, Desmet T. Trehalose Analogues: Latest Insights in Properties and Biocatalytic Production. Int J Mol Sci 2015; 16:13729-45. [PMID: 26084050 PMCID: PMC4490520 DOI: 10.3390/ijms160613729] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 06/09/2015] [Indexed: 12/23/2022] Open
Abstract
Trehalose (α-D-glucopyranosyl α-D-glucopyranoside) is a non-reducing sugar with unique stabilizing properties due to its symmetrical, low energy structure consisting of two 1,1-anomerically bound glucose moieties. Many applications of this beneficial sugar have been reported in the novel food (nutricals), medical, pharmaceutical and cosmetic industries. Trehalose analogues, like lactotrehalose (α-D-glucopyranosyl α-D-galactopyranoside) or galactotrehalose (α-D-galactopyranosyl α-D-galactopyranoside), offer similar benefits as trehalose, but show additional features such as prebiotic or low-calorie sweetener due to their resistance against hydrolysis during digestion. Unfortunately, large-scale chemical production processes for trehalose analogues are not readily available at the moment due to the lack of efficient synthesis methods. Most of the procedures reported in literature suffer from low yields, elevated costs and are far from environmentally friendly. "Greener" alternatives found in the biocatalysis field, including galactosidases, trehalose phosphorylases and TreT-type trehalose synthases are suggested as primary candidates for trehalose analogue production instead. Significant progress has been made in the last decade to turn these into highly efficient biocatalysts and to broaden the variety of useful donor and acceptor sugars. In this review, we aim to provide an overview of the latest insights and future perspectives in trehalose analogue chemistry, applications and production pathways with emphasis on biocatalysis.
Collapse
Affiliation(s)
- Maarten Walmagh
- Center for Industrial Biotechnology and Biocatalysis, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent 9000, Belgium.
| | - Renfei Zhao
- Center for Industrial Biotechnology and Biocatalysis, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent 9000, Belgium.
| | - Tom Desmet
- Center for Industrial Biotechnology and Biocatalysis, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent 9000, Belgium.
| |
Collapse
|
62
|
Kemen AC, Agler MT, Kemen E. Host-microbe and microbe-microbe interactions in the evolution of obligate plant parasitism. THE NEW PHYTOLOGIST 2015; 206:1207-28. [PMID: 25622918 DOI: 10.1111/nph.13284] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 12/12/2014] [Indexed: 05/03/2023]
Abstract
Research on obligate biotrophic plant parasites, which reproduce only on living hosts, has revealed a broad diversity of filamentous microbes that have independently acquired complex morphological structures, such as haustoria. Genome studies have also demonstrated a concerted loss of genes for metabolism and lytic enzymes, and gain of diversity of genes coding for effectors involved in host defense suppression. So far, these traits converge in all known obligate biotrophic parasites, but unexpected genome plasticity remains. This plasticity is manifested as transposable element (TE)-driven increases in genome size, observed to be associated with the diversification of virulence genes under selection pressure. Genome expansion could result from the governing of the pathogen response to ecological selection pressures, such as host or nutrient availability, or to microbial interactions, such as competition, hyperparasitism and beneficial cooperations. Expansion is balanced by alternating sexual and asexual cycles, as well as selfing and outcrossing, which operate to control transposon activity in populations. In turn, the prevalence of these balancing mechanisms seems to be correlated with external biotic factors, suggesting a complex, interconnected evolutionary network in host-pathogen-microbe interactions. Therefore, the next phase of obligate biotrophic pathogen research will need to uncover how this network, including multitrophic interactions, shapes the evolution and diversity of pathogens.
Collapse
Affiliation(s)
- Ariane C Kemen
- Max Planck Research Group Fungal Biodiversity, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829, Cologne, Germany
| | - Matthew T Agler
- Max Planck Research Group Fungal Biodiversity, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829, Cologne, Germany
| | - Eric Kemen
- Max Planck Research Group Fungal Biodiversity, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829, Cologne, Germany
| |
Collapse
|
63
|
Liu C, Mariano PS. An improved method for the large scale preparation of α,α′-trehalose-6-phosphate. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2014.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
64
|
Gibney PA, Schieler A, Chen JC, Rabinowitz JD, Botstein D. Characterizing the in vivo role of trehalose in Saccharomyces cerevisiae using the AGT1 transporter. Proc Natl Acad Sci U S A 2015; 112:6116-21. [PMID: 25918382 PMCID: PMC4434743 DOI: 10.1073/pnas.1506289112] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Trehalose is a highly stable, nonreducing disaccharide of glucose. A large body of research exists implicating trehalose in a variety of cellular phenomena, notably response to stresses of various kinds. However, in very few cases has the role of trehalose been examined directly in vivo. Here, we describe the development and characterization of a system in Saccharomyces cerevisiae that allows us to manipulate intracellular trehalose concentrations independently of the biosynthetic enzymes and independently of any applied stress. We found that many physiological roles heretofore ascribed to intracellular trehalose, including heat resistance, are not due to the presence of trehalose per se. We also found that many of the metabolic and growth defects associated with mutations in the trehalose biosynthesis pathway are not abolished by providing abundant intracellular trehalose. Instead, we made the observation that intracellular accumulation of trehalose or maltose (another disaccharide of glucose) is growth-inhibitory in a carbon source-specific manner. We conclude that the physiological role of the trehalose pathway is fundamentally metabolic: i.e., more complex than simply the consequence of increased concentrations of the sugar and its attendant physical properties (with the exception of the companion paper where Tapia et al. [Tapia H, et al. (2015) Proc Natl Acad Sci USA, 10.1073/pnas.1506415112] demonstrate a direct role for trehalose in protecting cells against desiccation).
Collapse
Affiliation(s)
- Patrick A Gibney
- Lewis-Sigler Institute for Integrative Genomics and Departments of Molecular Biology and
| | | | - Jonathan C Chen
- Lewis-Sigler Institute for Integrative Genomics and Chemistry, Princeton University, Princeton, NJ 08544
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics and Chemistry, Princeton University, Princeton, NJ 08544
| | - David Botstein
- Lewis-Sigler Institute for Integrative Genomics and Departments of Molecular Biology and
| |
Collapse
|
65
|
Escobar-Tovar L, Guzmán-Quesada M, Sandoval-Fernández JA, Gómez-Lim MA. Comparative analysis of the in vitro and in planta secretomes from Mycosphaerella fijiensis isolates. Fungal Biol 2015; 119:447-70. [PMID: 25986542 DOI: 10.1016/j.funbio.2015.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 01/09/2023]
Abstract
Black Sigatoka, a devastating disease of bananas and plantains worldwide, is caused by the fungus Mycosphaerella fijiensis. Several banana cultivars such as 'Yangambi Km 5' and Calcutta IV, have been known to be resistant to the fungus, but the resistance has been broken in 'Yangambi Km 5' in Costa Rica. Since the resistance of this variety still persists in Mexico, the aim of this study was to compare the in vitro and in planta secretomes from two avirulent and virulent M. fijiensis isolates using proteomics and bioinformatics approaches. We aimed to identify differentially expressed proteins in fungal isolates that differ in pathogenicity and that might be responsible for breaking the resistance in 'Yangambi Km 5'. We were able to identify 90 protein spots in the secretomes of fungal isolates encoding 42 unique proteins and 35 differential spots between them. Proteins involved in carbohydrate transport and metabolism were more prevalent. Several proteases, pathogenicity-related, ROS detoxification and unknown proteins were also highly or specifically expressed by the virulent isolate in vitro or during in planta infection. An unknown protein representing a virulence factor candidate was also identified. These results demonstrated that the secretome reflects major differences between both M. fijiensis isolates.
Collapse
Affiliation(s)
- Lina Escobar-Tovar
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, 36821, Irapuato, Guanajuato, Mexico
| | - Mauricio Guzmán-Quesada
- Dirección de Investigaciones, Sección de Fitopatología, Corporación Bananera Nacional, 390-7210, La Rita, Guápiles, Costa Rica
| | - Jorge A Sandoval-Fernández
- Dirección de Investigaciones, Sección de Fitopatología, Corporación Bananera Nacional, 390-7210, La Rita, Guápiles, Costa Rica
| | - Miguel A Gómez-Lim
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, 36821, Irapuato, Guanajuato, Mexico.
| |
Collapse
|
66
|
A Ralstonia solanacearum type III effector directs the production of the plant signal metabolite trehalose-6-phosphate. mBio 2014; 5:mBio.02065-14. [PMID: 25538193 PMCID: PMC4278537 DOI: 10.1128/mbio.02065-14] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The plant pathogen Ralstonia solanacearum possesses two genes encoding a trehalose-6-phosphate synthase (TPS), an enzyme of the trehalose biosynthetic pathway. One of these genes, named ripTPS, was found to encode a protein with an additional N-terminal domain which directs its translocation into host plant cells through the type 3 secretion system. RipTPS is a conserved effector in the R. solanacearum species complex, and homologues were also detected in other bacterial plant pathogens. Functional analysis of RipTPS demonstrated that this type 3 effector synthesizes trehalose-6-phosphate and identified residues essential for this enzymatic activity. Although trehalose-6-phosphate is a key signal molecule in plants that regulates sugar status and carbon assimilation, the disruption of ripTPS did not alter the virulence of R. solanacearum on plants. However, heterologous expression assays showed that this effector specifically elicits a hypersensitive-like response on tobacco that is independent of its enzymatic activity and is triggered by the C-terminal half of the protein. Recognition of this effector by the plant immune system is suggestive of a role during the infectious process. Ralstonia solanacearum, the causal agent of bacterial wilt disease, infects more than two hundred plant species, including economically important crops. The type III secretion system plays a major role in the pathogenicity of this bacterium, and approximately 70 effector proteins have been shown to be translocated into host plant cells. This study provides the first description of a type III effector endowed with a trehalose-6-phosphate synthase enzymatic activity and illustrates a new mechanism by which the bacteria may manipulate the plant metabolism upon infection. In recent years, trehalose-6-phosphate has emerged as an essential signal molecule in plants, connecting plant metabolism and development. The finding that a bacterial pathogen could induce the production of trehalose-6-phosphate in plant cells further highlights the importance of this metabolite in multiple aspects of the molecular physiology of plants.
Collapse
|
67
|
Why Can’t Vertebrates Synthesize Trehalose? J Mol Evol 2014; 79:111-6. [DOI: 10.1007/s00239-014-9645-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 09/10/2014] [Indexed: 01/18/2023]
|
68
|
Urbanek BL, Wing DC, Haislop KS, Hamel CJ, Kalscheuer R, Woodruff PJ, Swarts BM. Chemoenzymatic synthesis of trehalose analogues: rapid access to chemical probes for investigating mycobacteria. Chembiochem 2014; 15:2066-70. [PMID: 25139066 DOI: 10.1002/cbic.201402288] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Indexed: 11/11/2022]
Abstract
Trehalose analogues are emerging as valuable tools for investigating Mycobacterium tuberculosis, but progress in this area is slow due to the difficulty in synthesizing these compounds. Here, we report a chemoenzymatic synthesis of trehalose analogues that employs the heat-stable enzyme trehalose synthase (TreT) from the hyperthermophile Thermoproteus tenax. By using TreT, various trehalose analogues were prepared quickly (1 h) in high yield (up to >99 % by HPLC) in a single step from readily available glucose analogues. To demonstrate the utility of this method in mycobacteria research, we performed a simple "one-pot metabolic labeling" experiment that accomplished probe synthesis, metabolic labeling, and imaging of M. smegmatis in a single day with only TreT and commercially available materials.
Collapse
Affiliation(s)
- Bailey L Urbanek
- Department of Chemistry, Central Michigan University, Mount Pleasant, MI 48859 (USA)
| | | | | | | | | | | | | |
Collapse
|
69
|
Developmental cell fate and virulence are linked to trehalose homeostasis in Cryptococcus neoformans. EUKARYOTIC CELL 2014; 13:1158-68. [PMID: 25001408 DOI: 10.1128/ec.00152-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Among pathogenic environmental fungi, spores are thought to be infectious particles that germinate in the host to cause disease. The meningoencephalitis-causing yeast Cryptococcus neoformans is found ubiquitously in the environment and sporulates in response to nutrient limitation. While the yeast form has been studied extensively, relatively little is known about spore biogenesis, and spore germination has never been evaluated at the molecular level. Using genome transcript analysis of spores and molecular genetic approaches, we discovered that trehalose homeostasis plays a key role in regulating sporulation of C. neoformans, is required for full spore viability, and influences virulence. Specifically, we found that genes involved in trehalose metabolism, including a previously uncharacterized secreted trehalase (NTH2), are highly overrepresented in dormant spores. Deletion of the two predicted trehalases in the C. neoformans genome, NTH1 and NTH2, resulted in severe defects in spore production, a decrease in spore germination, and an increase in the production of alternative developmental structures. This shift in cell types suggests that trehalose levels modulate cell fate decisions during sexual development. We also discovered that deletion of the NTH2 trehalase results in hypervirulence in a murine model of infection. Taken together, these data show that the metabolic adaptations that allow this fungus to proliferate ubiquitously in the environment play unexpected roles in virulence in the mammalian host and highlight the complex interplay among the processes of metabolism, development, and pathogenesis.
Collapse
|
70
|
Kim S, Park J, Lee J, Shin D, Park DS, Lim JS, Choi IY, Seo YS. Understanding pathogenic Burkholderia glumae metabolic and signaling pathways within rice tissues through in vivo transcriptome analyses. Gene 2014; 547:77-85. [PMID: 24949534 DOI: 10.1016/j.gene.2014.06.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/10/2014] [Accepted: 06/16/2014] [Indexed: 11/15/2022]
Abstract
Burkholderia glumae is a causal agent of rice grain and sheath rot. Similar to other phytopathogens, B. glumae adapts well to the host environment and controls its biology to induce diseases in the host plant; however, its molecular mechanisms are not yet fully understood. To gain a better understating of the actual physiological changes that occur in B. glumae during infection, we analyzed B. glumae transcriptome from infected rice tissues using an RNA-seq technique. To accomplish this, we analyzed differentially expressed genes (DEGs) and identified 2653 transcripts that were significantly altered. We then performed KEGG pathway and module enrichment of the DEGs. Interestingly, most genes involved bacterial chemotaxis-mediated motility, ascorbate and trehalose metabolisms, and sugar transporters including l-arabinose and d-xylose were found to be highly enriched. The in vivo transcriptional profiling of pathogenic B. glumae will facilitate elucidation of unknown plant-pathogenic bacteria interactions, as well as the overall infection processes.
Collapse
Affiliation(s)
- Sunyoung Kim
- Department of Microbiology, Pusan National University, Busan 609-735, Republic of Korea
| | - Jungwook Park
- Department of Microbiology, Pusan National University, Busan 609-735, Republic of Korea
| | - Jongyun Lee
- Department of Microbiology, Pusan National University, Busan 609-735, Republic of Korea
| | - Dongjin Shin
- Department of Functional Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Gyeongnam, 627-803, Republic of Korea
| | - Dong-Soo Park
- Department of Functional Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Gyeongnam, 627-803, Republic of Korea
| | - Jong-Sung Lim
- NICEM, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Ik-Young Choi
- NICEM, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Young-Su Seo
- Department of Microbiology, Pusan National University, Busan 609-735, Republic of Korea.
| |
Collapse
|
71
|
Lahiri S, Banerjee S, Dutta T, Sengupta S, Dey S, Roy R, Sengupta D, Chattopadhyay K, Ghosh AK. Enzymatic and Regulatory Attributes of Trehalose-6-Phosphate Phosphatase fromCandida utilisand its Role During Thermal Stress. J Cell Physiol 2014; 229:1245-55. [DOI: 10.1002/jcp.24562] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 01/16/2014] [Indexed: 01/05/2023]
Affiliation(s)
- Sagar Lahiri
- Drug Development Diagnostics & Biotechnology Division; CSIR - Indian Institute of Chemical Biology; 4 Raja S. C. Mullick Road Kolkata 700032 India
| | - Shakri Banerjee
- Drug Development Diagnostics & Biotechnology Division; CSIR - Indian Institute of Chemical Biology; 4 Raja S. C. Mullick Road Kolkata 700032 India
| | - Trina Dutta
- Drug Development Diagnostics & Biotechnology Division; CSIR - Indian Institute of Chemical Biology; 4 Raja S. C. Mullick Road Kolkata 700032 India
| | - Shinjinee Sengupta
- Drug Development Diagnostics & Biotechnology Division; CSIR - Indian Institute of Chemical Biology; 4 Raja S. C. Mullick Road Kolkata 700032 India
| | - Sandip Dey
- Drug Development Diagnostics & Biotechnology Division; CSIR - Indian Institute of Chemical Biology; 4 Raja S. C. Mullick Road Kolkata 700032 India
| | - Rusha Roy
- Drug Development Diagnostics & Biotechnology Division; CSIR - Indian Institute of Chemical Biology; 4 Raja S. C. Mullick Road Kolkata 700032 India
| | - Devlina Sengupta
- Drug Development Diagnostics & Biotechnology Division; CSIR - Indian Institute of Chemical Biology; 4 Raja S. C. Mullick Road Kolkata 700032 India
| | - Krishnananda Chattopadhyay
- Protein Folding and Dynamics Laboratory; Structural Biology and Bioinformatics Division; CSIR - Indian Institute of Chemical Biology; 4 Raja S. C. Mullick Road Kolkata 700032 India
| | - Anil K. Ghosh
- Drug Development Diagnostics & Biotechnology Division; CSIR - Indian Institute of Chemical Biology; 4 Raja S. C. Mullick Road Kolkata 700032 India
| |
Collapse
|