51
|
Diaz-Ochoa VE, Lam D, Lee CS, Klaus S, Behnsen J, Liu JZ, Chim N, Nuccio SP, Rathi SG, Mastroianni JR, Edwards RA, Jacobo CM, Cerasi M, Battistoni A, Ouellette AJ, Goulding CW, Chazin WJ, Skaar EP, Raffatellu M. Salmonella Mitigates Oxidative Stress and Thrives in the Inflamed Gut by Evading Calprotectin-Mediated Manganese Sequestration. Cell Host Microbe 2016; 19:814-25. [PMID: 27281571 PMCID: PMC4901528 DOI: 10.1016/j.chom.2016.05.005] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 03/14/2016] [Accepted: 04/29/2016] [Indexed: 01/27/2023]
Abstract
Neutrophils hinder bacterial growth by a variety of antimicrobial mechanisms, including the production of reactive oxygen species and the secretion of proteins that sequester nutrients essential to microbes. A major player in this process is calprotectin, a host protein that exerts antimicrobial activity by chelating zinc and manganese. Here we show that the intestinal pathogen Salmonella enterica serovar Typhimurium uses specialized metal transporters to evade calprotectin sequestration of manganese, allowing the bacteria to outcompete commensals and thrive in the inflamed gut. The pathogen's ability to acquire manganese in turn promotes function of SodA and KatN, enzymes that use the metal as a cofactor to detoxify reactive oxygen species. This manganese-dependent SodA activity allows the bacteria to evade neutrophil killing mediated by calprotectin and reactive oxygen species. Thus, manganese acquisition enables S. Typhimurium to overcome host antimicrobial defenses and support its competitive growth in the intestine.
Collapse
Affiliation(s)
- Vladimir E Diaz-Ochoa
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697-4025, USA; Institute for Immunology, University of California, Irvine, Irvine, CA 92697-4120, USA
| | - Diana Lam
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697-4025, USA; Institute for Immunology, University of California, Irvine, Irvine, CA 92697-4120, USA
| | - Carlin S Lee
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697-4025, USA; Institute for Immunology, University of California, Irvine, Irvine, CA 92697-4120, USA
| | - Suzi Klaus
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697-4025, USA; Institute for Immunology, University of California, Irvine, Irvine, CA 92697-4120, USA
| | - Judith Behnsen
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697-4025, USA; Institute for Immunology, University of California, Irvine, Irvine, CA 92697-4120, USA
| | - Janet Z Liu
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697-4025, USA; Institute for Immunology, University of California, Irvine, Irvine, CA 92697-4120, USA
| | - Nicholas Chim
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697-3900, USA
| | - Sean-Paul Nuccio
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697-4025, USA; Institute for Immunology, University of California, Irvine, Irvine, CA 92697-4120, USA
| | - Subodh G Rathi
- Department of Biochemistry and Chemistry, Vanderbilt University, Nashville, TN 37232-8725, USA
| | - Jennifer R Mastroianni
- Department of Pathology and Laboratory Medicine, University of Southern California, Los Angeles, CA 90089-9092, USA
| | - Robert A Edwards
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA 92697-4800, USA
| | - Christina M Jacobo
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697-4025, USA; Institute for Immunology, University of California, Irvine, Irvine, CA 92697-4120, USA
| | - Mauro Cerasi
- Department of Biology, University of Rome, Tor Vergata, 00173 Roma, Italy
| | - Andrea Battistoni
- Department of Biology, University of Rome, Tor Vergata, 00173 Roma, Italy
| | - André J Ouellette
- Department of Pathology and Laboratory Medicine, University of Southern California, Los Angeles, CA 90089-9092, USA
| | - Celia W Goulding
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697-3900, USA; Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697-3958, USA
| | - Walter J Chazin
- Department of Biochemistry and Chemistry, Vanderbilt University, Nashville, TN 37232-8725, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232-2363, USA; Tennessee Valley Healthcare System, US Department of Veterans Affairs, Nashville, TN 37212, USA
| | - Manuela Raffatellu
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697-4025, USA; Institute for Immunology, University of California, Irvine, Irvine, CA 92697-4120, USA.
| |
Collapse
|
52
|
Abstract
Ancient bacteria originated from metal-rich environments. Billions of years of evolution directed these tiny single cell creatures to exploit the versatile properties of metals in catalyzing chemical reactions and biological responses. The result is an entire metallome of proteins that use metal co-factors to facilitate key cellular process that range from the production of energy to the replication of DNA. Two key metals in this regard are iron and zinc, both abundant on Earth but not readily accessible in a human host. Instead, pathogenic bacteria must employ clever ways to acquire these metals. In this review we describe the many elegant ways these bacteria mine, regulate, and craft the use of two key metals (iron and zinc) to build a virulence arsenal that challenges even the most sophisticated immune response.
Collapse
Affiliation(s)
- Li Ma
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77459, USA.
| | | | | |
Collapse
|
53
|
Calmettes C, Ing C, Buckwalter CM, El Bakkouri M, Chieh-Lin Lai C, Pogoutse A, Gray-Owen SD, Pomès R, Moraes TF. The molecular mechanism of Zinc acquisition by the neisserial outer-membrane transporter ZnuD. Nat Commun 2015; 6:7996. [PMID: 26282243 PMCID: PMC4557270 DOI: 10.1038/ncomms8996] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 07/03/2015] [Indexed: 11/09/2022] Open
Abstract
Invading bacteria from the Neisseriaceae, Acinetobacteriaceae, Bordetellaceae and Moraxellaceae families express the conserved outer-membrane zinc transporter zinc-uptake component D (ZnuD) to overcome nutritional restriction imposed by the host organism during infection. Here we demonstrate that ZnuD is required for efficient systemic infections by the causative agent of bacterial meningitis, Neisseria meningitidis, in a mouse model. We also combine X-ray crystallography and molecular dynamics simulations to gain insight into the mechanism of zinc recognition and transport across the bacterial outer-membrane by ZnuD. Because ZnuD is also considered a promising vaccine candidate against N. meningitidis, we use several ZnuD structural intermediates to map potential antigenic epitopes, and propose a mechanism by which ZnuD can maintain high sequence conservation yet avoid immune recognition by altering the conformation of surface-exposed loops. ZnuD is a conserved zinc transporter expressed in several bacterial pathogens with potential as a target against infection. Here the authors demonstrate a requirement for ZnuD in systemic infection by N. meningitidis and define the molecular mechanism of ZnuD-mediated Zinc transport across the bacterial outer membrane.
Collapse
Affiliation(s)
- Charles Calmettes
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Christopher Ing
- 1] Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada [2] Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Carolyn M Buckwalter
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Majida El Bakkouri
- Structural Genomic Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Christine Chieh-Lin Lai
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Anastassia Pogoutse
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Scott D Gray-Owen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Régis Pomès
- 1] Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada [2] Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Trevor F Moraes
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
54
|
Gasparini R, Panatto D, Bragazzi NL, Lai PL, Bechini A, Levi M, Durando P, Amicizia D. How the Knowledge of Interactions between Meningococcus and the Human Immune System Has Been Used to Prepare Effective Neisseria meningitidis Vaccines. J Immunol Res 2015; 2015:189153. [PMID: 26351643 PMCID: PMC4553322 DOI: 10.1155/2015/189153] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 06/09/2015] [Indexed: 01/17/2023] Open
Abstract
In the last decades, tremendous advancement in dissecting the mechanisms of pathogenicity of Neisseria meningitidis at a molecular level has been achieved, exploiting converging approaches of different disciplines, ranging from pathology to microbiology, immunology, and omics sciences (such as genomics and proteomics). Here, we review the molecular biology of the infectious agent and, in particular, its interactions with the immune system, focusing on both the innate and the adaptive responses. Meningococci exploit different mechanisms and complex machineries in order to subvert the immune system and to avoid being killed. Capsular polysaccharide and lipooligosaccharide glycan composition, in particular, play a major role in circumventing immune response. The understanding of these mechanisms has opened new horizons in the field of vaccinology. Nowadays different licensed meningococcal vaccines are available and used: conjugate meningococcal C vaccines, tetravalent conjugate vaccines, an affordable conjugate vaccine against the N. menigitidis serogroup A, and universal vaccines based on multiple antigens each one with a different and peculiar function against meningococcal group B strains.
Collapse
Affiliation(s)
- R. Gasparini
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - D. Panatto
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - N. L. Bragazzi
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - P. L. Lai
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - A. Bechini
- Department of Health Sciences, University of Florence, Viale G.B. Morgagni 48, 50134 Florence, Italy
| | - M. Levi
- Department of Health Sciences, University of Florence, Viale G.B. Morgagni 48, 50134 Florence, Italy
| | - P. Durando
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - D. Amicizia
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| |
Collapse
|
55
|
Becker KW, Skaar EP. Metal limitation and toxicity at the interface between host and pathogen. FEMS Microbiol Rev 2014; 38:1235-49. [PMID: 25211180 DOI: 10.1111/1574-6976.12087] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 08/09/2014] [Accepted: 08/31/2014] [Indexed: 12/14/2022] Open
Abstract
Metals are required cofactors for numerous fundamental processes that are essential to both pathogen and host. They are coordinated in enzymes responsible for DNA replication and transcription, relief from oxidative stress, and cellular respiration. However, excess transition metals can be toxic due to their ability to cause spontaneous, redox cycling and disrupt normal metabolic processes. Vertebrates have evolved intricate mechanisms to limit the availability of some crucial metals while concurrently flooding sites of infection with antimicrobial concentrations of other metals. To compete for limited metal within the host while simultaneously preventing metal toxicity, pathogens have developed a series of metal regulatory, acquisition, and efflux systems. This review will cover the mechanisms by which pathogenic bacteria recognize and respond to host-induced metal scarcity and toxicity.
Collapse
Affiliation(s)
- Kyle W Becker
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | |
Collapse
|
56
|
Achouiti A, Vogl T, Endeman H, Mortensen BL, Laterre PF, Wittebole X, van Zoelen MAD, Zhang Y, Hoogerwerf JJ, Florquin S, Schultz MJ, Grutters JC, Biesma DH, Roth J, Skaar EP, van 't Veer C, de Vos AF, van der Poll T. Myeloid-related protein-8/14 facilitates bacterial growth during pneumococcal pneumonia. Thorax 2014; 69:1034-42. [PMID: 25179663 DOI: 10.1136/thoraxjnl-2014-205668] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Streptococcus pneumoniae is the most commonly identified pathogen in community-acquired pneumonia (CAP). Myeloid-related protein (MRP) 8/14 is a major component of neutrophils that is released upon infection or injury. MRP8/14 is essential for protective immunity during infection by a variety of micro-organisms through its capacity to chelate manganese and zinc. Here, we aimed to determine the role of MRP8/14 in pneumococcal pneumonia. METHODS MRP8/14 was determined in bronchoalveolar lavage fluid (BALF) and serum of CAP patients, in lung tissue of patients who had succumbed to pneumococcal pneumonia, and in BALF of healthy subjects challenged with lipoteichoic acid (a component of the gram-positive bacterial cell wall) via the airways. Pneumonia was induced in MRP14 deficient and normal wildtype mice. The effect of MRP8/14 on S. pneumoniae growth was studied in vitro. RESULTS CAP patients displayed high MRP8/14 levels in BALF, lung tissue and serum. Healthy subjects challenged with lipoteichoic acid demonstrated elevated MRP8/14 in BALF. Likewise, mice with pneumococcal pneumonia had high MRP8/14 levels in lungs and the circulation. MRP14 deficiency, however, was associated with reduced bacterial growth and lethality, in the absence of notable effects on the inflammatory response. High zinc levels strongly inhibited growth of S. pneumoniae in vitro, which was partially reversed by MRP8/14. CONCLUSIONS In sharp contrast to its previously reported host-protective role in several infections, the present results reveal that in a model of CAP, MRP8/14 is misused by S. pneumoniae, facilitating bacterial growth by attenuating zinc toxicity toward the pathogen.
Collapse
Affiliation(s)
- Ahmed Achouiti
- Center for Experimental and Molecular Medicine, University of Amsterdam, Amsterdam, The Netherlands Center for Infection and Immunity, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Thomas Vogl
- Institute of Immunology, University of Muenster, Muenster, Germany
| | - Henrik Endeman
- Intensive Care Department, Onze Lieve Vrouwe Gasthuis, Amsterdam, The Netherlands
| | - Brittany L Mortensen
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Pierre-Francois Laterre
- Department of Critical Care Medicine, Saint-Luc University Hospital, Université Catholique de Louvain, Brussels, Belgium
| | - Xavier Wittebole
- Department of Critical Care Medicine, Saint-Luc University Hospital, Université Catholique de Louvain, Brussels, Belgium
| | - Marieke A D van Zoelen
- Department of Internal Medicine and Infectious Diseases, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Yaofang Zhang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jacobien J Hoogerwerf
- Center for Experimental and Molecular Medicine, University of Amsterdam, Amsterdam, The Netherlands Center for Infection and Immunity, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Sandrine Florquin
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Marcus J Schultz
- Department of Intensive Care Medicine, University of Amsterdam, Amsterdam, The Netherlands Laboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan C Grutters
- Department of Pulmonology, St. Antonius Hospital, Nieuwegein, The Netherlands Division of Heart & Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Douwe H Biesma
- Department of Internal Medicine, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Johannes Roth
- Institute of Immunology, University of Muenster, Muenster, Germany
| | - Eric P Skaar
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Cornelis van 't Veer
- Center for Experimental and Molecular Medicine, University of Amsterdam, Amsterdam, The Netherlands Center for Infection and Immunity, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Alex F de Vos
- Center for Experimental and Molecular Medicine, University of Amsterdam, Amsterdam, The Netherlands Center for Infection and Immunity, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, University of Amsterdam, Amsterdam, The Netherlands Center for Infection and Immunity, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands Division of Infectious Diseases, Academic Medical Center, University of Amsterdam, The Netherlands
| |
Collapse
|
57
|
Mazzon RR, Braz VS, da Silva Neto JF, do Valle Marques M. Analysis of the Caulobacter crescentus Zur regulon reveals novel insights in zinc acquisition by TonB-dependent outer membrane proteins. BMC Genomics 2014; 15:734. [PMID: 25168179 PMCID: PMC4176598 DOI: 10.1186/1471-2164-15-734] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 08/21/2014] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Intracellular zinc concentration needs to be maintained within strict limits due to its toxicity at high levels, and this is achieved by a finely regulated balance between uptake and efflux. Many bacteria use the Zinc Uptake Regulator Zur to orchestrate zinc homeostasis, but little is known regarding the transport of this metal across the bacterial outer membrane. RESULTS In this work we determined the Caulobacter crescentus Zur regulon by global transcriptional and in silico analyses. Among the genes directly repressed by Zur in response to zinc availability are those encoding a putative high affinity ABC uptake system (znuGHI), three TonB-dependent receptors (znuK, znuL and znuM) and one new putative transporter of a family not yet characterized (zrpW). Zur is also directly involved in the activation of a RND and a P-type ATPase efflux systems, as revealed by β-galactosidase and site-directed mutagenesis assays. Several genes belonging to the Fur regulon were also downregulated in the zur mutant, suggesting a putative cross-talk between Zur and Fur regulatory networks. Interestingly, a phenotypic analysis of the znuK and znuL mutants has shown that these genes are essential for growth under zinc starvation, suggesting that C. crescentus uses these TonB-dependent outer membrane transporters as key zinc scavenging systems. CONCLUSIONS The characterization of the C. crescentus Zur regulon showed that this regulator coordinates not only uptake, but also the extrusion of zinc. The uptake of zinc by C. crescentus in conditions of scarcity of this metal is highly dependent on TonB-dependent receptors, and the extrusion is mediated by an RND and P-type ATPase transport systems. The absence of Zur causes a disturbance in the dynamic equilibrium of zinc intracellular concentration, which in turn can interfere with other regulatory networks as seen for the Fur regulon.
Collapse
Affiliation(s)
| | | | | | - Marilis do Valle Marques
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av, Prof, Lineu Prestes 1374, 05508-900 São Paulo, Brazil.
| |
Collapse
|
58
|
Schoen C, Kischkies L, Elias J, Ampattu BJ. Metabolism and virulence in Neisseria meningitidis. Front Cell Infect Microbiol 2014; 4:114. [PMID: 25191646 PMCID: PMC4138514 DOI: 10.3389/fcimb.2014.00114] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/31/2014] [Indexed: 01/14/2023] Open
Abstract
A longstanding question in infection biology addresses the genetic basis for invasive behavior in commensal pathogens. A prime example for such a pathogen is Neisseria meningitidis. On the one hand it is a harmless commensal bacterium exquisitely adapted to humans, and on the other hand it sometimes behaves like a ferocious pathogen causing potentially lethal disease such as sepsis and acute bacterial meningitis. Despite the lack of a classical repertoire of virulence genes in N. meningitidis separating commensal from invasive strains, molecular epidemiology suggests that carriage and invasive strains belong to genetically distinct populations. In recent years, it has become increasingly clear that metabolic adaptation enables meningococci to exploit host resources, supporting the concept of nutritional virulence as a crucial determinant of invasive capability. Here, we discuss the contribution of core metabolic pathways in the context of colonization and invasion with special emphasis on results from genome-wide surveys. The metabolism of lactate, the oxidative stress response, and, in particular, glutathione metabolism as well as the denitrification pathway provide examples of how meningococcal metabolism is intimately linked to pathogenesis. We further discuss evidence from genome-wide approaches regarding potential metabolic differences between strains from hyperinvasive and carriage lineages and present new data assessing in vitro growth differences of strains from these two populations. We hypothesize that strains from carriage and hyperinvasive lineages differ in the expression of regulatory genes involved particularly in stress responses and amino acid metabolism under infection conditions.
Collapse
Affiliation(s)
- Christoph Schoen
- Institute for Hygiene and Microbiology, University of Würzburg Würzburg, Germany ; Research Center for Infectious Diseases (ZINF), University of Würzburg Würzburg, Germany
| | - Laura Kischkies
- Institute for Hygiene and Microbiology, University of Würzburg Würzburg, Germany
| | - Johannes Elias
- Institute for Hygiene and Microbiology, University of Würzburg Würzburg, Germany ; National Reference Centre for Meningococci and Haemophilus influenzae (NRZMHi), University of Würzburg Würzburg, Germany
| | - Biju Joseph Ampattu
- Institute for Hygiene and Microbiology, University of Würzburg Würzburg, Germany
| |
Collapse
|
59
|
Bobrov AG, Kirillina O, Fetherston JD, Miller MC, Burlison JA, Perry RD. The Yersinia pestis siderophore, yersiniabactin, and the ZnuABC system both contribute to zinc acquisition and the development of lethal septicaemic plague in mice. Mol Microbiol 2014; 93:759-75. [PMID: 24979062 DOI: 10.1111/mmi.12693] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2014] [Indexed: 01/06/2023]
Abstract
Bacterial pathogens must overcome host sequestration of zinc (Zn(2+) ), an essential micronutrient, during the infectious disease process. While the mechanisms to acquire chelated Zn(2+) by bacteria are largely undefined, many pathogens rely upon the ZnuABC family of ABC transporters. Here we show that in Yersinia pestis, irp2, a gene encoding the synthetase (HMWP2) for the siderophore yersiniabactin (Ybt) is required for growth under Zn(2+) -deficient conditions in a strain lacking ZnuABC. Moreover, growth stimulation with exogenous, purified apo-Ybt provides evidence that Ybt may serve as a zincophore for Zn(2+) acquisition. Studies with the Zn(2+) -dependent transcriptional reporter znuA::lacZ indicate that the ability to synthesize Ybt affects the levels of intracellular Zn(2+) . However, the outer membrane receptor Psn and TonB as well as the inner membrane (IM) ABC transporter YbtPQ, which are required for Fe(3+) acquisition by Ybt, are not needed for Ybt-dependent Zn(2+) uptake. In contrast, the predicted IM protein YbtX, a member of the Major Facilitator Superfamily, was essential for Ybt-dependent Zn(2+) uptake. Finally, we show that the ZnuABC system and the Ybt synthetase HMWP2, presumably by Ybt synthesis, both contribute to the development of a lethal infection in a septicaemic plague mouse model.
Collapse
Affiliation(s)
- Alexander G Bobrov
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, USA
| | | | | | | | | | | |
Collapse
|
60
|
Abstract
Even though zinc is essential for virtually all processes in the human body, observations during zinc deficiency indicate that the absence of this trace element most severely affects the immune response. Numerous investigations of the cellular and molecular requirements for zinc in the immune system have indicated that there is not just one single function of zinc underlying this essentiality. In fact, there is a wide range of different roles of zinc in immunity. This review summarizes the recent developments in three of the major fields: the role of zinc as a second messenger in signal transduction, the importance of zinc for immune cell function, and the competition for zinc between the host and the pathogen, a concept known as nutritional immunity.
Collapse
Affiliation(s)
- Hajo Haase
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | | |
Collapse
|
61
|
Braymer JJ, Giedroc DP. Recent developments in copper and zinc homeostasis in bacterial pathogens. Curr Opin Chem Biol 2014; 19:59-66. [PMID: 24463765 DOI: 10.1016/j.cbpa.2013.12.021] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 12/20/2013] [Accepted: 12/29/2013] [Indexed: 11/24/2022]
Abstract
Copper and zinc homeostasis systems in pathogenic bacteria are required to resist host efforts to manipulate the availability and toxicity of these metal ions. Central to this microbial adaptive response is the involvement of metal-trafficking and metal-sensing proteins that ultimately exercise control of metal speciation in the cell. Cu-specific and Zn-specific metalloregulatory proteins regulate the transcription of metal-responsive genes while metallochaperones and related proteins ensure that these metals are appropriately buffered by the intracellular milieu and delivered to correct intracellular targets. In this review, we summarize recent findings on how bacterial pathogens mount a metal-specific response to derail host efforts to win the 'fight over metals.'
Collapse
Affiliation(s)
- Joseph J Braymer
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA.
| |
Collapse
|