51
|
Fraser JE, De Bruyne JT, Iturbe-Ormaetxe I, Stepnell J, Burns RL, Flores HA, O’Neill SL. Novel Wolbachia-transinfected Aedes aegypti mosquitoes possess diverse fitness and vector competence phenotypes. PLoS Pathog 2017; 13:e1006751. [PMID: 29216317 PMCID: PMC5736235 DOI: 10.1371/journal.ppat.1006751] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/19/2017] [Accepted: 11/13/2017] [Indexed: 11/18/2022] Open
Abstract
Wolbachia pipientis from Drosophila melanogaster (wMel) is an endosymbiotic bacterium that restricts transmission of human pathogenic flaviviruses and alphaviruses, including dengue, Zika, and chikungunya viruses, when introduced into the mosquito vector Aedes aegypti. To date, wMel-infected Ae. aegypti have been released in field trials in 5 countries to evaluate the effectiveness of this strategy for disease control. Despite the success in establishing wMel-infected mosquitoes in wild populations, and the well-characterized antiviral capabilities of wMel, transinfecting different or additional Wolbachia strains into Ae. aegypti may improve disease impact, and perhaps more importantly, could provide a strategy to account for the possible evolution of resistant arboviruses. Here, we report the successful transinfection of Ae. aegypti with the Wolbachia strains wMelCS (D. melanogaster), wRi (D. simulans) and wPip (Culex quinquefasciatus) and assess the effects on Ae. aegypti fitness, cytoplasmic incompatibility, tissue tropism and pathogen blocking in a laboratory setting. The results demonstrate that wMelCS provides a similar degree of protection against dengue virus as wMel following an infectious blood meal, and significantly reduces viral RNA levels beyond that of wMel following a direct challenge with infectious virus in mosquitoes, with no additional fitness cost to the host. The protection provided by wRi is markedly weaker than that of wMelCS, consistent with previous characterisations of these lines in Drosophila, while wPip was found to substantially reduce the fitness of Ae. aegypti. Thus, we determine wMelCS as a key candidate for further testing in field-relevant fitness tests and viremic blood feeding challenges in a clinical setting to determine if it may represent an alternative Wolbachia strain with more desirable attributes than wMel for future field testing. Dengue viruses are transmitted by the Aedes aegypti mosquito, with an estimated 390 million human infections occurring per year worldwide. There is no approved antiviral therapeutic, and vaccines described so far have had limited efficacy. Recently, the endosymbiotic bacterium Wolbachia from Drosophila melanogaster (wMel) has been used to infect Ae. aegypti populations as a novel technology for reducing dengue virus transmission. Here we report the generation of three new mosquito lines infected with the Wolbachia strains wMelCS, wRi and wPip. Each line induced cytoplasmic incompatibility and was effectively maternally transmitted, as required for rapid spread through uninfected mosquito populations. Each Wolbachia strain was also found to reside in the salivary glands; a key tissue involved in viral transmission. Perhaps most importantly, wMelCS inhibited dengue virus replication and dissemination in mosquitoes following an infectious blood meal or intrathoracic injection, providing a similar level of protection as that described for wMel. wMelCS therefore warrants further investigation as a potential release strain in future field trials.
Collapse
Affiliation(s)
- Johanna E. Fraser
- Institute of Vector-Borne Disease, Monash University, Clayton, VIC, Australia
| | | | | | - Justin Stepnell
- Institute of Vector-Borne Disease, Monash University, Clayton, VIC, Australia
| | - Rhiannon L. Burns
- Institute of Vector-Borne Disease, Monash University, Clayton, VIC, Australia
| | - Heather A. Flores
- Institute of Vector-Borne Disease, Monash University, Clayton, VIC, Australia
| | - Scott L. O’Neill
- Institute of Vector-Borne Disease, Monash University, Clayton, VIC, Australia
- * E-mail:
| |
Collapse
|
52
|
Arora AK, Douglas AE. Hype or opportunity? Using microbial symbionts in novel strategies for insect pest control. JOURNAL OF INSECT PHYSIOLOGY 2017; 103:10-17. [PMID: 28974456 DOI: 10.1016/j.jinsphys.2017.09.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/28/2017] [Accepted: 09/29/2017] [Indexed: 06/07/2023]
Abstract
All insects, including pest species, are colonized by microorganisms, variously located in the gut and within insect tissues. Manipulation of these microbial partners can reduce the pest status of insects, either by modifying insect traits (e.g. altering the host range or tolerance of abiotic conditions, reducing insect competence to vector disease agents) or by reducing fitness. Strategies utilizing heterologous microorganisms (i.e. derived from different insect species) and genetically-modified microbial symbionts are under development, particularly in relation to insect vectors of human disease agents. There is also the potential to target microorganisms absolutely required by the insect, resulting in insect mortality or suppression of insect growth or fecundity. This latter approach is particularly valuable for insect pests that depend on nutrients from symbiotic microorganisms to supplement their nutritionally-inadequate diet, e.g. insects feeding through the life cycle on vertebrate blood (cimicid bugs, anopluran lice, tsetse flies), plant sap (whiteflies, aphids, psyllids, planthoppers, leafhoppers/sharpshooters) and sound wood (various xylophagous beetles and some termites). Further research will facilitate implementation of these novel insect pest control strategies, particularly to ensure specificity of control agents to the pest insect without dissemination of bio-active compounds, novel microorganisms or their genes into the wider environment.
Collapse
Affiliation(s)
- Arinder K Arora
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Angela E Douglas
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
53
|
Signor S. Population genomics of Wolbachia and mtDNA in Drosophila simulans from California. Sci Rep 2017; 7:13369. [PMID: 29042606 PMCID: PMC5645465 DOI: 10.1038/s41598-017-13901-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/02/2017] [Indexed: 12/21/2022] Open
Abstract
Wolbachia pipientis is an intracellular endosymbiont infecting many arthropods and filarial nematodes. Little is known about the short-term evolution of Wolbachia or its interaction with its host. Wolbachia is maternally inherited, resulting in co-inheritance of mitochondrial organelles such as mtDNA. Here I explore the evolution of Wolbachia, and the relationship between Wolbachia and mtDNA, using a large inbred panel of Drosophila simulans. I compare this to the only other large population genomic Wolbachia dataset from D. melanogaster. I find reduced diversity relative to expectation in both Wolbachia and mtDNA, but only mtDNA shows evidence of a recent selective sweep or population bottleneck. I estimate Wolbachia and mtDNA titre in each genotype, and I find considerable variation in both phenotypes, despite low genetic diversity in Wolbachia and mtDNA. A phylogeny of Wolbachia and of mtDNA suggest a recent origin of the infection derived from a single origin. Using Wolbachia and mtDNA titre as a phenotype, I perform the first association analysis using this phenotype with the nuclear genome and find several implicated regions, including one which contains four CAAX-box protein processing genes. CAAX-box protein processing can be an important part of host-pathogen interactions in other systems, suggesting interesting directions for future research.
Collapse
Affiliation(s)
- Sarah Signor
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
54
|
Ashby B, King KC. Friendly foes: The evolution of host protection by a parasite. Evol Lett 2017; 1:211-221. [PMID: 30283650 PMCID: PMC6121858 DOI: 10.1002/evl3.19] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/28/2017] [Accepted: 07/24/2017] [Indexed: 01/25/2023] Open
Abstract
Hosts are often infected by multiple parasite species, yet the ecological and evolutionary implications of the interactions between hosts and coinfecting parasites are largely unknown. Most theoretical models of evolution among coinfecting parasites focus on the evolution of virulence, but parasites may also evolve to protect their hosts by reducing susceptibility (i.e., conferring resistance) to other parasites or reducing the virulence of coinfecting parasites (i.e., conferring tolerance). Here, we analyze the eco-evolutionary dynamics of parasite-conferred resistance and tolerance using coinfection models. We show that both parasite-conferred resistance and tolerance can evolve for a wide range of underlying trade-offs. The shape and strength of the trade-off qualitatively affects the outcome causing shifts between the minimisation or maximization of protection, intermediate stable strategies, evolutionary branching, and bistability. Furthermore, we find that a protected dimorphism can readily evolve for parasite-conferred resistance, but find no evidence of evolutionary branching for parasite-conferred tolerance, in general agreement with previous work on host evolution. These results provide novel insights into the evolution of parasite-conferred resistance and tolerance, and suggest clues to the underlying trade-offs in recent experimental work on microbe-mediated protection. More generally, our results highlight the context dependence of host-parasite relationships in complex communities.
Collapse
Affiliation(s)
- Ben Ashby
- Department of Mathematical SciencesUniversity of BathBathBA2 7AYUnited Kingdom
- Department of Integrative BiologyUniversity of California BerkeleyBerkeley94720California
| | - Kayla C. King
- Department of ZoologyUniversity of OxfordOxfordOX1 3PSUnited Kingdom
| |
Collapse
|
55
|
King KC, Bonsall MB. The evolutionary and coevolutionary consequences of defensive microbes for host-parasite interactions. BMC Evol Biol 2017; 17:190. [PMID: 28806933 PMCID: PMC5557575 DOI: 10.1186/s12862-017-1030-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/31/2017] [Indexed: 11/10/2022] Open
Abstract
Background Animal and plant species can harbour microbes that provide them with protection against enemies. These beneficial microbes can be a significant component of host defence that complement or replaces a repertoire of immunity, but they can also be costly. Given their impact on host and parasite fitness, defensive microbes have the potential to influence host-parasite interactions on an evolutionary timescale. Results Using a phenotypic framework, we explore the evolutionary and coevolutionary dynamics of a host-parasite interaction in the presence of defensive microbes. We show that costs of host-defensive microbe systems are critical in determining whether a defensive microbe based system or an immune system provides better host protection investment. Partitioning the coevolutionary dynamics yields testable predictions. The density of defensive microbes influences the strength of selection resulting from host - defensive microbe - parasite coevolutionary interactions. We find that they lessen the negative effects of infection on hosts and reduce infectivity by directly competing with parasites. Conclusions Defensive microbes might thus play a central role in host-parasite interactions, by outright replacing host-based defences, engaging in within-host competition with parasites, and ultimately driving tripartite coevolutionary dynamics. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-1030-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kayla C King
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - Michael B Bonsall
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK.
| |
Collapse
|
56
|
Cytonuclear Epistasis Controls the Density of Symbiont Wolbachia pipientis in Nongonadal Tissues of Mosquito Culex quinquefasciatus. G3-GENES GENOMES GENETICS 2017; 7:2627-2635. [PMID: 28606944 PMCID: PMC5555468 DOI: 10.1534/g3.117.043422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Wolbachia pipientis, a bacterial symbiont infecting arthropods and nematodes, is vertically transmitted through the female germline and manipulates its host's reproduction to favor infected females. Wolbachia also infects somatic tissues where it can cause nonreproductive phenotypes in its host, including resistance to viral pathogens. Wolbachia-mediated phenotypes are strongly associated with the density of Wolbachia in host tissues. Little is known, however, about how Wolbachia density is regulated in native or heterologous hosts. Here, we measure the broad-sense heritability of Wolbachia density among families in field populations of the mosquito Culex pipiens, and show that densities in ovary and nongonadal tissues of females in the same family are not correlated, suggesting that Wolbachia density is determined by distinct mechanisms in the two tissues. Using introgression analysis between two different strains of the closely related species C. quinquefasciatus, we show that Wolbachia densities in ovary tissues are determined primarily by cytoplasmic genotype, while densities in nongonadal tissues are determined by both cytoplasmic and nuclear genotypes and their epistatic interactions. Quantitative-trait-locus mapping identified two major-effect quantitative-trait loci in the C. quinquefasciatus genome explaining a combined 23% of variance in Wolbachia density, specifically in nongonadal tissues. A better understanding of how Wolbachia density is regulated will provide insights into how Wolbachia density can vary spatiotemporally in insect populations, leading to changes in Wolbachia-mediated phenotypes such as viral pathogen resistance.
Collapse
|
57
|
Abstract
In many regions of the world, mosquito-borne viruses pose a growing threat to human health. As an alternative to traditional control measures, the bacterial symbiont Wolbachia has been transferred from Drosophila into the mosquito Aedes aegypti, where it can block the transmission of dengue and Zika viruses. A recent paper has reported large-scale releases of Wolbachia-infected Ae. aegypti in the city of Cairns, Australia. Wolbachia, which is maternally transmitted, invaded and spread through the populations due to a sperm–egg incompatibility called cytoplasmic incompatibility. Over a period of 2 years, a wave of Wolbachia infection slowly spread out from 2 release sites, demonstrating that it will be possible to deploy this strategy in large urban areas. In line with theoretical predictions, Wolbachia infection at a third, smaller release site collapsed due to the immigration of Wolbachia-free mosquitoes from surrounding areas. This remarkable field experiment has both validated theoretical models of Wolbachia population dynamics and demonstrated that this is a viable strategy to modify mosquito populations.
Collapse
|
58
|
Martinez J, Tolosana I, Ok S, Smith S, Snoeck K, Day JP, Jiggins FM. Symbiont strain is the main determinant of variation in Wolbachia-mediated protection against viruses across Drosophila species. Mol Ecol 2017; 26:4072-4084. [PMID: 28464440 PMCID: PMC5966720 DOI: 10.1111/mec.14164] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 12/19/2022]
Abstract
Wolbachia is a common heritable bacterial symbiont in insects. Its evolutionary success lies in the diverse phenotypic effects it has on its hosts coupled to its propensity to move between host species over evolutionary timescales. In a survey of natural host-symbiont associations in a range of Drosophila species, we found that 10 of 16 Wolbachia strains protected their hosts against viral infection. By moving Wolbachia strains between host species, we found that the symbiont genome had a much greater influence on the level of antiviral protection than the host genome. The reason for this was that the level of protection depended on the density of the symbiont in host tissues, and Wolbachia rather than the host-controlled density. The finding that virus resistance and symbiont density are largely under the control of symbiont genes in this system has important implications both for the evolution of these traits and for public health programmes using Wolbachia to prevent mosquitoes from transmitting disease.
Collapse
Affiliation(s)
- Julien Martinez
- Department of Genetics, University of Cambridge, Cambridge, UK
| | | | - Suzan Ok
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Sophie Smith
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Kiana Snoeck
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Jonathan P Day
- Department of Genetics, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
59
|
Parker BJ, Hrček J, McLean AHC, Godfray HCJ. Genotype specificity among hosts, pathogens, and beneficial microbes influences the strength of symbiont-mediated protection. Evolution 2017; 71:1222-1231. [PMID: 28252804 PMCID: PMC5516205 DOI: 10.1111/evo.13216] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 02/06/2017] [Accepted: 02/13/2017] [Indexed: 12/15/2022]
Abstract
The microbial symbionts of eukaryotes influence disease resistance in many host-parasite systems. Symbionts show substantial variation in both genotype and phenotype, but it is unclear how natural selection maintains this variation. It is also unknown whether variable symbiont genotypes show specificity with the genotypes of hosts or parasites in natural populations. Genotype by genotype interactions are a necessary condition for coevolution between interacting species. Uncovering the patterns of genetic specificity among hosts, symbionts, and parasites is therefore critical for determining the role that symbionts play in host-parasite coevolution. Here, we show that the strength of protection conferred against a fungal pathogen by a vertically transmitted symbiont of an aphid is influenced by both host-symbiont and symbiont-pathogen genotype by genotype interactions. Further, we show that certain symbiont phylogenetic clades have evolved to provide stronger protection against particular pathogen genotypes. However, we found no evidence of reciprocal adaptation of co-occurring host and symbiont lineages. Our results suggest that genetic variation among symbiont strains may be maintained by antagonistic coevolution with their host and/or their host's parasites.
Collapse
Affiliation(s)
- Benjamin J. Parker
- Department of ZoologyUniversity of OxfordOxfordOX1 3PSUnited Kingdom
- Current Address: Department of BiologyUniversity of RochesterRochesterNY14627USA
| | - Jan Hrček
- Department of ZoologyUniversity of OxfordOxfordOX1 3PSUnited Kingdom
- Current Address: Institute of EntomologyBiology Centre CAS, Branisovska 31Ceske Budejovice37005Czech Republic
| | | | | |
Collapse
|
60
|
Turelli M, Barton NH. Deploying dengue-suppressing Wolbachia : Robust models predict slow but effective spatial spread in Aedes aegypti. Theor Popul Biol 2017; 115:45-60. [PMID: 28411063 PMCID: PMC5476474 DOI: 10.1016/j.tpb.2017.03.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 03/12/2017] [Accepted: 03/15/2017] [Indexed: 01/27/2023]
Abstract
A novel strategy for controlling the spread of arboviral diseases such as dengue, Zika and chikungunya is to transform mosquito populations with virus-suppressing Wolbachia. In general, Wolbachia transinfected into mosquitoes induce fitness costs through lower viability or fecundity. These maternally inherited bacteria also produce a frequency-dependent advantage for infected females by inducing cytoplasmic incompatibility (CI), which kills the embryos produced by uninfected females mated to infected males. These competing effects, a frequency-dependent advantage and frequency-independent costs, produce bistable Wolbachia frequency dynamics. Above a threshold frequency, denoted p̂, CI drives fitness-decreasing Wolbachia transinfections through local populations; but below p̂, infection frequencies tend to decline to zero. If p̂ is not too high, CI also drives spatial spread once infections become established over sufficiently large areas. We illustrate how simple models provide testable predictions concerning the spatial and temporal dynamics of Wolbachia introductions, focusing on rate of spatial spread, the shape of spreading waves, and the conditions for initiating spread from local introductions. First, we consider the robustness of diffusion-based predictions to incorporating two important features of wMel-Aedes aegypti biology that may be inconsistent with the diffusion approximations, namely fast local dynamics induced by complete CI (i.e., all embryos produced from incompatible crosses die) and long-tailed, non-Gaussian dispersal. With complete CI, our numerical analyses show that long-tailed dispersal changes wave-width predictions only slightly; but it can significantly reduce wave speed relative to the diffusion prediction; it also allows smaller local introductions to initiate spatial spread. Second, we use approximations for p̂ and dispersal distances to predict the outcome of 2013 releases of wMel-infected Aedes aegypti in Cairns, Australia, Third, we describe new data from Aedes aegypti populations near Cairns, Australia that demonstrate long-distance dispersal and provide an approximate lower bound on p̂ for wMel in northeastern Australia. Finally, we apply our analyses to produce operational guidelines for efficient transformation of vector populations over large areas. We demonstrate that even very slow spatial spread, on the order of 10-20 m/month (as predicted), can produce area-wide population transformation within a few years following initial releases covering about 20-30% of the target area.
Collapse
Affiliation(s)
- Michael Turelli
- Department of Evolution and Ecology, University of California, Davis, CA, USA.
| | - Nicholas H Barton
- Institute of Science and Technology, Am Campus 1, A-3400 Klosterneuburg, Austria.
| |
Collapse
|
61
|
Novakova E, Woodhams DC, Rodríguez-Ruano SM, Brucker RM, Leff JW, Maharaj A, Amir A, Knight R, Scott J. Mosquito Microbiome Dynamics, a Background for Prevalence and Seasonality of West Nile Virus. Front Microbiol 2017; 8:526. [PMID: 28421042 PMCID: PMC5378795 DOI: 10.3389/fmicb.2017.00526] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 03/13/2017] [Indexed: 11/13/2022] Open
Abstract
Symbiotic microbial communities augment host phenotype, including defense against pathogen carriage and infection. We sampled the microbial communities in 11 adult mosquito host species from six regions in southern Ontario, Canada over 3 years. Of the factors examined, we found that mosquito species was the largest driver of the microbiota, with remarkable phylosymbiosis between host and microbiota. Seasonal shifts of the microbiome were consistently repeated over the 3-year period, while region had little impact. Both host species and seasonal shifts in microbiota were associated with patterns of West Nile virus (WNV) in these mosquitoes. The highest prevalence of WNV, with a seasonal spike each year in August, was in the Culex pipiens/restuans complex, and high WNV prevalence followed a decrease in relative abundance of Wolbachia in this species. Indeed, mean temperature, but not precipitation, was significantly correlated with Wolbachia abundance. This suggests that at higher temperatures Wolbachia abundance is reduced leading to greater susceptibility to WNV in the subsequent generation of C. pipiens/restuans hosts. Different mosquito genera harbored significantly different bacterial communities, and presence or abundance of Wolbachia was primarily associated with these differences. We identified several operational taxonomic units (OTUs) of Wolbachia that drive overall microbial community differentiation among mosquito taxa, locations and timepoints. Distinct Wolbachia OTUs were consistently found to dominate microbiomes of Cx. pipiens/restuans, and of Coquilletidia perturbans. Seasonal fluctuations of several other microbial taxa included Bacillus cereus, Enterococcus, Methylobacterium, Asaia, Pantoea, Acinetobacter johnsonii, Pseudomonas, and Mycoplasma. This suggests that microbiota may explain some of the variation in vector competence previously attributed to local environmental processes, especially because Wolbachia is known to affect carriage of viral pathogens.
Collapse
Affiliation(s)
- Eva Novakova
- Faculty of Science, University of South BohemiaCeske Budejovice, Czechia.,Biology Centre of ASCR, Institute of ParasitologyCeske Budejovice, Czechia
| | - Douglas C Woodhams
- Department of Biology, University of Massachusetts BostonBoston, MA, USA
| | | | | | - Jonathan W Leff
- Cooperative Institute for Research in Environmental Sciences, University of ColoradoBoulder, CO, USA.,Department of Ecology and Evolutionary Biology, University of ColoradoBoulder, CO, USA
| | | | - Amnon Amir
- Department of Computer Science and Engineering, Center for Microbiome Innovation, University of California San DiegoLa Jolla, CA, USA
| | - Rob Knight
- Department of Computer Science and Engineering, Center for Microbiome Innovation, University of California San DiegoLa Jolla, CA, USA.,Department of Pediatrics, University of California San DiegoLa Jolla, CA, USA
| | - James Scott
- Sporometrics IncToronto, ON, Canada.,Division of Occupational and Environmental Health, Dalla Lana School of Public Health, University of TorontoToronto, ON, Canada
| |
Collapse
|
62
|
Caragata EP, Rezende FO, Simões TC, Moreira LA. Diet-Induced Nutritional Stress and Pathogen Interference in Wolbachia-Infected Aedes aegypti. PLoS Negl Trop Dis 2016; 10:e0005158. [PMID: 27893736 PMCID: PMC5125575 DOI: 10.1371/journal.pntd.0005158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 11/03/2016] [Indexed: 11/19/2022] Open
Abstract
The pathogen interference phenotype greatly restricts infection with dengue virus (DENV) and other pathogens in Wolbachia-infected Aedes aegypti, and is a vital component of Wolbachia-based mosquito control. Critically, the phenotype's causal mechanism is complex and poorly understood, with recent evidence suggesting that the cause may be species specific. To better understand this important phenotype, we investigated the role of diet-induced nutritional stress on interference against DENV and the avian malarial parasite Plasmodium gallinaceum in Wolbachia-infected Ae. aegypti, and on physiological processes linked to the phenotype. Wolbachia-infected mosquitoes were fed one of four different concentrations of sucrose, and then challenged with either P. gallinaceum or DENV. Interference against P. gallinaceum was significantly weakened by the change in diet however there was no effect on DENV interference. Immune gene expression and H2O2 levels have previously been linked to pathogen interference. These traits were assayed for mosquitoes on each diet using RT-qPCR and the Amplex Red Hydrogen Peroxide/Peroxidase Assay Kit, and it was observed that the change in diet did not significantly affect immune expression, but low carbohydrate levels led to a loss of ROS induction in Wolbachia-infected mosquitoes. Our data suggest that host nutrition may not influence DENV interference for Wolbachia-infected mosquitoes, but Plasmodium interference may be linked to both nutrition and oxidative stress. This pathogen-specific response to nutritional change highlights the complex nature of interactions between Wolbachia and pathogens in mosquitoes.
Collapse
Affiliation(s)
- Eric Pearce Caragata
- Grupo Mosquitos Vetores: Endossimbiontes e Interação Patógeno Vetor, Centro de Pesquisas René Rachou—Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Oliveira Rezende
- Grupo Mosquitos Vetores: Endossimbiontes e Interação Patógeno Vetor, Centro de Pesquisas René Rachou—Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - Taynãna César Simões
- Serviço de Apoio a Métodos Quantitativos, Centro de Pesquisas René Rachou—Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - Luciano Andrade Moreira
- Grupo Mosquitos Vetores: Endossimbiontes e Interação Patógeno Vetor, Centro de Pesquisas René Rachou—Fiocruz, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
63
|
Hrček J, McLean AHC, Godfray HCJ. Symbionts modify interactions between insects and natural enemies in the field. J Anim Ecol 2016; 85:1605-1612. [PMID: 27561159 PMCID: PMC5082498 DOI: 10.1111/1365-2656.12586] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/17/2016] [Indexed: 11/28/2022]
Abstract
Eukaryotes commonly host communities of heritable symbiotic bacteria, many of which are not essential for their hosts' survival and reproduction. There is laboratory evidence that these facultative symbionts can provide useful adaptations, such as increased resistance to natural enemies. However, we do not know how symbionts affect host fitness when the latter are subject to attack by a natural suite of parasites and pathogens. Here, we test whether two protective symbionts, Regiella insecticola and Hamiltonella defensa, increase the fitness of their host, the pea aphid (Acyrthosiphon pisum), under natural conditions. We placed experimental populations of two pea aphid lines, each with and without symbionts, in five wet meadow sites to expose them to a natural assembly of enemy species. The aphids were then retrieved and mortality from parasitoids, fungal pathogens and other causes assessed. We found that both Regiella and Hamiltonella reduce the proportion of aphids killed by the specific natural enemies against which they have been shown to protect in laboratory and cage experiments. However, this advantage was nullified (Hamiltonella) or reversed (Regiella) by an increase in mortality from other natural enemies and by the cost of carrying the symbiont. Symbionts therefore affect community structure by altering the relative success of different natural enemies. Our results show that protective symbionts are not necessarily advantageous to their hosts, and may even behave more like parasites than mutualists. Nevertheless, bacterial symbionts may play an important role in determining food web structure and dynamics.
Collapse
Affiliation(s)
- Jan Hrček
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK.
- Institute of Entomology, Biology Centre CAS, Branisovska 31, Ceske Budejovice, 37005, Czech Republic.
| | - Ailsa H C McLean
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - H Charles J Godfray
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| |
Collapse
|
64
|
van Nouhuys S, Kohonen M, Duplouy A. Wolbachia increases the susceptibility of a parasitoid wasp to hyperparasitism. J Exp Biol 2016; 219:2984-2990. [DOI: 10.1242/jeb.140699] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/18/2016] [Indexed: 01/24/2023]
Abstract
ABSTRACT
The success of maternally transmitted endosymbiotic bacteria, such as Wolbachia, is directly linked to their host reproduction but in direct conflict with other parasites that kill the host before it reaches reproductive maturity. Therefore, symbionts that have evolved strategies to increase their host’s ability to evade lethal parasites may have high penetrance, while detrimental symbionts would be selected against, leading to lower penetrance or extinction from the host population. In a natural population of the parasitoid wasp Hyposoter horticola in the Åland Islands (Finland), the Wolbachia strain wHho persists at an intermediate prevalence (∼50%). Additionally, there is a negative correlation between the prevalence of Wolbachia and a hyperparasitoid wasp, Mesochorus cf. stigmaticus, in the landscape. Using a manipulative field experiment, we addressed the persistence of Wolbachia at this intermediate level, and tested whether the observed negative correlation could be due to Wolbachia inducing either susceptibility or resistance to parasitism. We show that infection with Wolbachia does not influence the ability of the wasp to parasitize its butterfly host, Melitaea cinxia, but that hyperparasitism of the wasp increases in the presence of wHho. Consequently, the symbiont is detrimental, and in order to persist in the host population, must also have a positive effect on fitness that outweighs the costly burden of susceptibility to widespread parasitism.
Collapse
Affiliation(s)
- Saskya van Nouhuys
- University of Helsinki, Metapopulation Research Centre, Department of Biosciences, PL 65, Viikinkaari 1, Helsinki FI-00014, Finland
| | - Minna Kohonen
- University of Helsinki, Metapopulation Research Centre, Department of Biosciences, PL 65, Viikinkaari 1, Helsinki FI-00014, Finland
| | - Anne Duplouy
- University of Helsinki, Metapopulation Research Centre, Department of Biosciences, PL 65, Viikinkaari 1, Helsinki FI-00014, Finland
| |
Collapse
|
65
|
Ulrich JN, Beier JC, Devine GJ, Hugo LE. Heat Sensitivity of wMel Wolbachia during Aedes aegypti Development. PLoS Negl Trop Dis 2016; 10:e0004873. [PMID: 27459519 PMCID: PMC4961373 DOI: 10.1371/journal.pntd.0004873] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/02/2016] [Indexed: 01/17/2023] Open
Abstract
The wMel strain of Wolbachia bacteria is known to prevent dengue and Zika virus transmission in the mosquito vector Aedes aegypti. Accordingly, the release of wMel-infected A. aegypti in endemic regions has been recommended by the World Health Organization as a potential strategy for controlling dengue and Zika outbreaks. However, the utility of this approach could be limited if high temperatures in the aquatic habitats where A. aegypti develop are detrimental to Wolbachia. We exposed wMel-infected A. aegypti eggs and larvae to fluctuating daily temperatures of 30-40°C for three, five, or seven days during their development. We found that Wolbachia levels in females emerging from heat treatments were significantly lower than in the controls that had developed at 20-30°C. Notably, seven days of high temperatures starting at the egg stage reduced Wolbachia levels in emerging females to less than 0.1% of the wMel control levels. However, after adult females returned to 20-30°C for 4-7 days, they experienced differing degrees of Wolbachia recovery. Our findings suggest that the spread of Wolbachia in wild A. aegypti populations and any consequent protection from dengue and Zika viruses might be limited in ecosystems that experience periods of extreme heat, but Wolbachia levels recover partially after temperatures return to normal.
Collapse
Affiliation(s)
- Jill N. Ulrich
- QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Brisbane, Australia
- Leonard and Jayne Abess Center for Ecosystem Science and Policy, University of Miami, Coral Gables, Florida, United States of America
| | - John C. Beier
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Gregor J. Devine
- QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Brisbane, Australia
| | - Leon E. Hugo
- QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Brisbane, Australia
| |
Collapse
|
66
|
Martinez J, Cogni R, Cao C, Smith S, Illingworth CJR, Jiggins FM. Addicted? Reduced host resistance in populations with defensive symbionts. Proc Biol Sci 2016; 283:20160778. [PMID: 27335421 PMCID: PMC4936038 DOI: 10.1098/rspb.2016.0778] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/20/2016] [Indexed: 12/28/2022] Open
Abstract
Heritable symbionts that protect their hosts from pathogens have been described in a wide range of insect species. By reducing the incidence or severity of infection, these symbionts have the potential to reduce the strength of selection on genes in the insect genome that increase resistance. Therefore, the presence of such symbionts may slow down the evolution of resistance. Here we investigated this idea by exposing Drosophila melanogaster populations to infection with the pathogenic Drosophila C virus (DCV) in the presence or absence of Wolbachia, a heritable symbiont of arthropods that confers protection against viruses. After nine generations of selection, we found that resistance to DCV had increased in all populations. However, in the presence of Wolbachia the resistant allele of pastrel-a gene that has a major effect on resistance to DCV-was at a lower frequency than in the symbiont-free populations. This finding suggests that defensive symbionts have the potential to hamper the evolution of insect resistance genes, potentially leading to a state of evolutionary addiction where the genetically susceptible insect host mostly relies on its symbiont to fight pathogens.
Collapse
Affiliation(s)
- Julien Martinez
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Rodrigo Cogni
- Department of Genetics, University of Cambridge, Cambridge, UK Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, 05508 900 São Paulo, SP, Brazil
| | - Chuan Cao
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Sophie Smith
- Department of Genetics, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
67
|
Longevity-modulating effects of symbiosis: insights from Drosophila–Wolbachia interaction. Biogerontology 2016; 17:785-803. [DOI: 10.1007/s10522-016-9653-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 05/18/2016] [Indexed: 01/30/2023]
|
68
|
Ford SA, King KC. Harnessing the Power of Defensive Microbes: Evolutionary Implications in Nature and Disease Control. PLoS Pathog 2016; 12:e1005465. [PMID: 27058881 PMCID: PMC4826280 DOI: 10.1371/journal.ppat.1005465] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Suzanne A. Ford
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- * E-mail: (SAF); (KCK)
| | - Kayla C. King
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- * E-mail: (SAF); (KCK)
| |
Collapse
|
69
|
Caragata EP, Dutra HL, Moreira LA. Exploiting Intimate Relationships: Controlling Mosquito-Transmitted Disease with Wolbachia. Trends Parasitol 2016; 32:207-218. [DOI: 10.1016/j.pt.2015.10.011] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 12/15/2022]
|
70
|
Costs of Three Wolbachia Infections on the Survival of Aedes aegypti Larvae under Starvation Conditions. PLoS Negl Trop Dis 2016; 10:e0004320. [PMID: 26745630 PMCID: PMC4706305 DOI: 10.1371/journal.pntd.0004320] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 12/02/2015] [Indexed: 11/19/2022] Open
Abstract
The mosquito Aedes aegypti, the principal vector of dengue virus, has recently been infected experimentally with Wolbachia: intracellular bacteria that possess potential as dengue biological control agents. Wolbachia depend on their hosts for nutrients they are unable to synthesize themselves. Consequently, competition between Wolbachia and their host for resources could reduce host fitness under the competitive conditions commonly experienced by larvae of Ae. aegypti in the field, hampering the invasion of Wolbachia into natural mosquito populations. We assess the survival and development of Ae. aegypti larvae under starvation conditions when infected with each of three experimentally-generated Wolbachia strains: wMel, wMelPop and wAlbB, and compare their fitness to wild-type uninfected larvae. We find that all three Wolbachia infections reduce the survival of larvae relative to those that are uninfected, and the severity of the effect is concordant with previously characterized fitness costs to other life stages. We also investigate the ability of larvae to recover from extended food deprivation and find no effect of Wolbachia on this trait. Aedes aegypti larvae of all infection types were able to resume their development after one month of no food, pupate rapidly, emerge at a large size, and exhibit complete cytoplasmic incompatibility and maternal transmission. A lowered ability of Wolbachia-infected larvae to survive under starvation conditions will increase the threshold infection frequency required for Wolbachia to establish in highly competitive natural Ae. aegypti populations and will also reduce the speed of invasion. This study also provides insights into survival strategies of larvae when developing in stressful environments.
Collapse
|
71
|
Zug R, Hammerstein P. Wolbachia and the insect immune system: what reactive oxygen species can tell us about the mechanisms of Wolbachia-host interactions. Front Microbiol 2015; 6:1201. [PMID: 26579107 PMCID: PMC4621438 DOI: 10.3389/fmicb.2015.01201] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/15/2015] [Indexed: 01/06/2023] Open
Abstract
Wolbachia are intracellular bacteria that infect a vast range of arthropod species, making them one of the most prevalent endosymbionts in the world. Wolbachia's stunning evolutionary success is mostly due to their reproductive parasitism but also to mutualistic effects such as increased host fecundity or protection against pathogens. However, the mechanisms underlying Wolbachia phenotypes, both parasitic and mutualistic, are only poorly understood. Moreover, it is unclear how the insect immune system is involved in these phenotypes and why it is not more successful in eliminating the bacteria. Here we argue that reactive oxygen species (ROS) are likely to be key in elucidating these issues. ROS are essential players in the insect immune system, and Wolbachia infection can affect ROS levels in the host. Based on recent findings, we elaborate a hypothesis that considers the different effects of Wolbachia on the oxidative environment in novel vs. native hosts. We propose that newly introduced Wolbachia trigger an immune response and cause oxidative stress, whereas in coevolved symbioses, infection is not associated with oxidative stress, but rather with restored redox homeostasis. Redox homeostasis can be restored in different ways, depending on whether Wolbachia or the host is in charge. This hypothesis offers a mechanistic explanation for several of the observed Wolbachia phenotypes.
Collapse
Affiliation(s)
- Roman Zug
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | | |
Collapse
|