51
|
Zhu M, van Grinsven IL, Kormelink R, Tao X. Paving the Way to Tospovirus Infection: Multilined Interplays with Plant Innate Immunity. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:41-62. [PMID: 30893008 DOI: 10.1146/annurev-phyto-082718-100309] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Tospoviruses are among the most important plant pathogens and cause serious crop losses worldwide. Tospoviruses have evolved to smartly utilize the host cellular machinery to accomplish their life cycle. Plants mount two layers of defense to combat their invasion. The first one involves the activation of an antiviral RNA interference (RNAi) defense response. However, tospoviruses encode an RNA silencing suppressor that enables them to counteract antiviral RNAi. To further combat viral invasion, plants also employ intracellular innate immune receptors (e.g., Sw-5b and Tsw) to recognize different viral effectors (e.g., NSm and NSs). This leads to the triggering of a much more robust defense against tospoviruses called effector-triggered immunity (ETI). Tospoviruses have further evolved their effectors and can break Sw-5b-/Tsw-mediated resistance. The arms race between tospoviruses and both layers of innate immunity drives the coevolution of host defense and viral genes involved in counter defense. In this review, a state-of-the-art overview is presented on the tospoviral life cycle and the multilined interplays between tospoviruses and the distinct layers of defense.
Collapse
Affiliation(s)
- Min Zhu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China;
| | - Irene Louise van Grinsven
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, 6708PB Wageningen, The Netherlands
| | - Richard Kormelink
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, 6708PB Wageningen, The Netherlands
| | - Xiaorong Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China;
| |
Collapse
|
52
|
Fang XD, Yan T, Gao Q, Cao Q, Gao DM, Xu WY, Zhang ZJ, Ding ZH, Wang XB. A cytorhabdovirus phosphoprotein forms mobile inclusions trafficked on the actin/ER network for viral RNA synthesis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4049-4062. [PMID: 31020313 PMCID: PMC6685698 DOI: 10.1093/jxb/erz195] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/11/2019] [Indexed: 05/07/2023]
Abstract
As obligate parasites, plant viruses usually hijack host cytoskeletons for replication and movement. Rhabdoviruses are enveloped, negative-stranded RNA viruses that infect vertebrates, invertebrates, and plants, but the mechanisms of intracellular trafficking of plant rhabdovirus proteins are largely unknown. Here, we used Barley yellow striate mosaic virus (BYSMV), a plant cytorhabdovirus, as a model to investigate the effects of the actin cytoskeleton on viral intracellular movement and viral RNA synthesis in a mini-replicon (MR) system. The BYSMV P protein forms mobile inclusion bodies that are trafficked along the actin/endoplasmic reticulum network, and recruit the N and L proteins into viroplasm-like structures. Deletion analysis showed that the N terminal region (aa 43-55) and the remaining region (aa 56-295) of BYSMV P are essential for the mobility and formation of inclusions, respectively. Overexpression of myosin XI-K tails completely abolishes the trafficking activity of P bodies, and is accompanied by a significant reduction of viral MR RNA synthesis. These results suggest that BYSMV P contributes to the formation and trafficking of viroplasm-like structures along the ER/actin network driven by myosin XI-K. Thus, rhabdovirus P appears to be a dynamic hub protein for efficient recruitment of viral proteins, thereby promoting viral RNA synthesis.
Collapse
Affiliation(s)
- Xiao-Dong Fang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Teng Yan
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qiang Gao
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qing Cao
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Dong-Min Gao
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wen-Ya Xu
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhen-Jia Zhang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhi-Hang Ding
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xian-Bing Wang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Correspondence:
| |
Collapse
|
53
|
Wei Y, Shi Y, Han X, Chen S, Li H, Chen L, Sun B, Shi Y. Identification of cucurbit chlorotic yellows virus P4.9 as a possible movement protein. Virol J 2019; 16:82. [PMID: 31221223 PMCID: PMC6587283 DOI: 10.1186/s12985-019-1192-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/14/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cucurbit chlorotic yellows virus (CCYV) is a bipartite cucurbit-infecting crinivirus within the family Closteroviridae. The crinivirus genome varies among genera. P4.9 is the first protein encoded by CCYV RNA2. P5, which is encoded by LIYV, is necessary for efficient viral infectivity in plants; however, it remains unknown whether CCYV P4.9 is involved in movement. FINDING In this study, we used green fluorescent protein (GFP) to examine the intracellular distribution of P4.9-GFP in plant cells, and observed fluorescence in the cytoplasm and nucleus. Transient expression of P4.9 was localized to the plasmodesmata. Co-infiltration of agrobacterium carrying binary plasmids of P4.9 and GFP facilitated GFP diffusion between cells. Besides P4.9 was able to spread by itself to neighboring cells, and co-localized with a marker specific to the endoplasmic reticulum, HDEL-mCherry, but not with the Golgi marker Man49-mCherry. CONCLUSIONS Together, these results demonstrate that CCYV P4.9 is involved in cell-cell movement.
Collapse
Affiliation(s)
- Ying Wei
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yajuan Shi
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xaioyu Han
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Siyu Chen
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Honglian Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Linlin Chen
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Bingjian Sun
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yan Shi
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
54
|
Ur Rehman A, Li Z, Yang Z, Waqas M, Wang G, Xu W, Li F, Hong N. The Coat Protein of Citrus Yellow Vein Clearing Virus Interacts with Viral Movement Proteins and Serves as an RNA Silencing Suppressor. Viruses 2019; 11:E329. [PMID: 30959816 PMCID: PMC6520955 DOI: 10.3390/v11040329] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/27/2019] [Accepted: 04/04/2019] [Indexed: 01/29/2023] Open
Abstract
Citrus yellow vein clearing virus is a newly accepted member of the genus Mandarivirus in the family Alphaflexiviridae. The triple gene block proteins (TGBp1, TGBp2 and TGBp3) encoded by plant viruses in this family function on facilitating virus movement. However, the protein function of citrus yellow vein clearing virus (CYVCV) have never been explored. Here, we showed in both yeast two-hybrid (Y2H) and bimolecular fluorescence (BiFC) assays that the coat protein (CP), TGBp1 and TGBp2 of CYVCV are self-interacting. Its CP also interacts with all three TGB proteins, and TGBp1 and TGBp2 interact with each other but not with TGBp3. Furthermore, the viral CP colocalizes with TGBp1 and TGBp3 at the plasmodesmata (PD) of epidermal cells of Nicotiana benthamiana leaves, and TGBp1 can translocate TGBp2 from granular-like structures embedded within ER networks to the PD. The results suggest that these proteins could coexist at the PD of epidermal cells of N. benthamiana. Using Agrobacterium infiltration-mediated RNA silencing assays, we show that CYVCV CP is a strong RNA silencing suppressor (RSS) triggered by positive-sense green fluorescent protein (GFP) RNA. The presented results provide insights for further revealing the mechanism of the viral movement and suppression of RNA silencing.
Collapse
Affiliation(s)
- Atta Ur Rehman
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan 430070, China.
- Plant Pathology Section, Central Cotton Research Institute, Sakrand, Sindh 67210, Pakistan.
| | - Zhuoran Li
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zuokun Yang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan 430070, China.
| | - Muhammad Waqas
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Guoping Wang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan 430070, China.
| | - Wenxing Xu
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan 430070, China.
| | - Feng Li
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ni Hong
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan 430070, China.
| |
Collapse
|
55
|
Movahed N, Sun J, Vali H, Laliberté JF, Zheng H. A Host ER Fusogen Is Recruited by Turnip Mosaic Virus for Maturation of Viral Replication Vesicles. PLANT PHYSIOLOGY 2019; 179:507-518. [PMID: 30538165 PMCID: PMC6426418 DOI: 10.1104/pp.18.01342] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/27/2018] [Indexed: 05/23/2023]
Abstract
Like other positive-strand RNA viruses, the Turnip mosaic virus (TuMV) infection leads to the formation of viral vesicles at the endoplasmic reticulum (ER). Once released from the ER, the viral vesicles mature intracellularly and then move intercellularly. While it is known that the membrane-associated viral protein 6K2 plays a role in the process, the contribution of host proteins has been poorly defined. In this article, we show that 6K2 interacts with RHD3, an ER fusogen required for efficient ER fusion. When RHD3 is mutated, a delay in the development of TuMV infection is observed. We found that the replication of TuMV and the cell-to-cell movement of its replication vesicles are impaired in rhd3 This defect can be tracked to a delayed maturation of the viral vesicles from the replication incompetent to the competent state. Furthermore, 6K2 can relocate RHD3 from the ER to viral vesicles. However, a Golgi-localized mutated 6K2GV is unable to interact and relocate RHD3 to viral vesicles. We conclude that the maturation of TuMV replication vesicles requires RHD3 for efficient viral replication and movement.
Collapse
Affiliation(s)
- Nooshin Movahed
- Department of Biology, McGill University, Montreal, Quebec, H3A 1B1, Canada
| | - Jiaqi Sun
- Department of Biology, McGill University, Montreal, Quebec, H3A 1B1, Canada
| | - Hojatollah Vali
- Facility for Electron Microscopy Research, McGill University, Montreal, Quebec, H3A 0C7, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, H3A 0C7, Canada
| | | | - Huanquan Zheng
- Department of Biology, McGill University, Montreal, Quebec, H3A 1B1, Canada
| |
Collapse
|
56
|
Blekemolen MC, Tark-Dame M, Takken FLW. Visualization and Quantification of Cell-to-cell Movement of Proteins in Nicotiana benthamiana. Bio Protoc 2018; 8:e3114. [PMID: 34532556 DOI: 10.21769/bioprotoc.3114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/05/2018] [Indexed: 11/02/2022] Open
Abstract
Cell-to-cell movement of proteins through plasmodesmata is a widely-established mechanism for intercellular signaling in plants. Current techniques to study intercellular protein translocation rely on single-cell transformation using particle bombardment or transgenic lines expressing photo-inducible fluorophores. The method presented here allows visualization and objective quantification of (effector) protein movement between N. benthamiana leaf cells. Agroinfiltration is performed using a single binary vector encoding a GFP-tagged protein of interest that is either mobile or non-mobile (MP; non-MP), together with an ER-anchored mCherry. Upon creation of mosaic-like transformation patterns, cell-to-cell movement of the MP can be followed by monitoring translocation of the GFP signal from mCherry labeled transformed cells into neighboring non-transformed cells. This process can be visualized using confocal microscopy and quantified following protoplast isolation and flow cytometric cell analysis. This method overcomes the limitations of existing methods as it allows rapid and objective quantification of protein translocation without the need of creating transgenic plants.
Collapse
Affiliation(s)
- Mila C Blekemolen
- Molecular Plant Pathology, Swammerdam Institute for Life Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Mariliis Tark-Dame
- Plant Development and (Epi)genetics, Swammerdam Institute for Life Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Frank L W Takken
- Molecular Plant Pathology, Swammerdam Institute for Life Science, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
57
|
Huang C, Liu Y, Yu H, Yuan C, Zeng J, Zhao L, Tong Z, Tao X. Non-Structural Protein NSm of Tomato Spotted Wilt Virus Is an Avirulence Factor Recognized by Resistance Genes of Tobacco and Tomato via Different Elicitor Active Sites. Viruses 2018; 10:E660. [PMID: 30469406 PMCID: PMC6265799 DOI: 10.3390/v10110660] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 01/23/2023] Open
Abstract
Tomato spotted wilt virus (TSWV) is one of the most destructive viral pathogens of plants. Recently, a single dominant gene conferring complete resistance to TSWV (RTSW) was identified in Nicotina alata and introgressed into cultivated tobacco (N. tabacum). However, whether the TSWV carries an avirulence (Avr) factor directed against RTSW remains obscure. In the present study, we identified the non-structural protein (NSm), the movement protein of TSWV, which is an RTSW-specific Avr factor, by using two different transient expression systems. Using amino acid (aa) substitution mutants, we demonstrated the ability to induce RTSW-mediated hypersensitive response (HR) of NSm is independent of its movement function. Moreover, key substitutions (C118Y and T120N), a 21-aa viral effector epitope, and different truncated versions of NSm, which are responsible for the recognition of the Sw-5b resistance gene of tomato, were tested for their ability to trigger HR to TSWV in tobacco. Together, our results demonstrated that RTSW-mediated resistance is triggered by NSm in the same way as by Sw-5b, however, via different elicitor active sites. Finally, an Avr gene-based diagnostic approach was established and used to determine the presence and effectiveness of resistance genes in tobacco.
Collapse
Affiliation(s)
- Changjun Huang
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming 650021, China.
| | - Yong Liu
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming 650021, China.
| | - Haiqin Yu
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming 650021, China.
| | - Cheng Yuan
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming 650021, China.
| | - Jianmin Zeng
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming 650021, China.
| | - Lu Zhao
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming 650021, China.
| | - Zhijun Tong
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming 650021, China.
| | - Xiaorong Tao
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
58
|
Qian X, Xiang Q, Yang T, Ma H, Ding XS, Tao X. Molecular Co-Chaperone SGT1 Is Critical for Cell-to-Cell Movement and Systemic Infection of Tomato Spotted Wild Virus in Nicotiana benthamiana. Viruses 2018; 10:E647. [PMID: 30453630 PMCID: PMC6267219 DOI: 10.3390/v10110647] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/06/2018] [Accepted: 11/15/2018] [Indexed: 12/20/2022] Open
Abstract
Tospovirus is a tripartite negative stranded RNA virus and is considered as one of the most devastating plant viruses. Successful virus infection in plant requires many host factors. To date, very few host factors have been identified as important in Tospovirus infection in plants. We reported earlier that NSm protein encoded by Tomato spotted wilt virus (TSWV), a type species of the genus Orthotospovirus, plays critical roles in viral cell-to-cell and long-distance movement. In this study, we determined that molecular co-chaperone NbSGT1 interacted with TSWV NSm in Nicotianabenthamiana. TSWV infection significantly upregulated the expression of NbSGT1 gene and transient overexpression of NbSGT1 in N.benthamiana leaves accelerated TSWV infection. In contrast, silencing the NbSGT1 gene expression using a virus-induced gene silencing (VIGS) approach strongly inhibited TSWV NSm cell-to-cell movement, as well as TSWV local and systemic infection in N.benthamiana plants. Furthermore, NbSGT1 was found to regulate the infection of both American and Euro/Asia type tospoviruses in N.benthamiana plant. Collectively, our findings presented in this paper and the results published previously indicated that molecular co-chaperone NbSGT1 plays important roles in modulating both positive stranded and tripartite negative stranded RNA virus infection in plants.
Collapse
Affiliation(s)
- Xin Qian
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qing Xiang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Tongqing Yang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Hongyu Ma
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xin Shun Ding
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xiaorong Tao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
59
|
Xu Y, Da Silva WL, Qian Y, Gray SM. An aromatic amino acid and associated helix in the C-terminus of the potato leafroll virus minor capsid protein regulate systemic infection and symptom expression. PLoS Pathog 2018; 14:e1007451. [PMID: 30440046 PMCID: PMC6264904 DOI: 10.1371/journal.ppat.1007451] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 11/29/2018] [Accepted: 11/01/2018] [Indexed: 12/26/2022] Open
Abstract
The C-terminal region of the minor structural protein of potato leafroll virus (PLRV), known as the readthrough protein (RTP), is involved in efficient virus movement, tissue tropism and symptom development. Analysis of numerous C-terminal deletions identified a five-amino acid motif that is required for RTP function. A PLRV mutant expressing RTP with these five amino acids deleted (Δ5aa-RTP) was compromised in systemic infection and symptom expression. Although the Δ5aa-RTP mutant was able to move long distance, limited infection foci were observed in systemically infected leaves suggesting that these five amino acids regulate virus phloem loading in the inoculated leaves and/or unloading into the systemically infected tissues. The 5aa deletion did not alter the efficiency of RTP translation, nor impair RTP self-interaction or its interaction with P17, the virus movement protein. However, the deletion did alter the subcellular localization of RTP. When co-expressed with a PLRV infectious clone, a GFP tagged wild-type RTP was localized to discontinuous punctate spots along the cell periphery and was associated with plasmodesmata, although localization was dependent upon the developmental stage of the plant tissue. In contrast, the Δ5aa-RTP-GFP aggregated in the cytoplasm. Structural modeling indicated that the 5aa deletion would be expected to perturb an α-helix motif. Two of 30 plants infected with Δ5aa-RTP developed a wild-type virus infection phenotype ten weeks post-inoculation. Analysis of the virus population in these plants by deep sequencing identified a duplication of sequences adjacent to the deletion that were predicted to restore the α-helix motif. The subcellular distribution of the RTP is regulated by the 5-aa motif which is under strong selection pressure and in turn contributes to the efficient long distance movement of the virus and the induction of systemic symptoms.
Collapse
Affiliation(s)
- Yi Xu
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrated Plant Science, Cornell University, Ithaca, NY, United States of America
| | - Washington Luis Da Silva
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrated Plant Science, Cornell University, Ithaca, NY, United States of America
| | - Yajuan Qian
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Stewart M. Gray
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrated Plant Science, Cornell University, Ithaca, NY, United States of America
- Emerging Pest and Pathogens Research Unit, USDA, ARS, Ithaca, NY, United States of America
| |
Collapse
|
60
|
Leastro MO, Kitajima EW, Silva MS, Resende RO, Freitas-Astúa J. Dissecting the Subcellular Localization, Intracellular Trafficking, Interactions, Membrane Association, and Topology of Citrus Leprosis Virus C Proteins. FRONTIERS IN PLANT SCIENCE 2018; 9:1299. [PMID: 30254655 PMCID: PMC6141925 DOI: 10.3389/fpls.2018.01299] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 08/17/2018] [Indexed: 05/17/2023]
Abstract
Citrus leprosis (CL) is a re-emergent viral disease affecting citrus crops in the Americas, and citrus leprosis virus C (CiLV-C), belonging to the genus Cilevirus, is the main pathogen responsible for the disease. Despite the economic importance of CL to the citrus industry, very little is known about the performance of viral proteins. Here, we present a robust in vivo study around functionality of p29, p15, p61, MP, and p24 CiLV-C proteins in the host cells. The intracellular sub-localization of all those viral proteins in plant cells are shown, and their co-localization with the endoplasmic reticulum (ER), Golgi complex (GC) (p15, MP, p61 and p24), actin filaments (p29, p15 and p24), nucleus (p15), and plasmodesmata (MP) are described. Several features are disclosed, including i) ER remodeling and redistribution of GC apparatus, ii) trafficking of the p29 and MP along the ER network system, iii) self-interaction of the p29, p15, and p24 and hetero-association between p29-p15, p29-MP, p29-p24, and p15-MP proteins in vivo. We also showed that all proteins are associated with biological membranes; whilst p15 is peripherally associated, p29, p24, and MP are integrally bound to cell membranes. Furthermore, while p24 exposes an N-cytoplasm-C-lumen topology, p29, and p15 are oriented toward the cytoplasmic face of the biological membrane. Based on our findings, we discuss the possible performance of each protein in the context of infection and a hypothetical model encompassing the virus spread and sites for replication and particle assembly is suggested.
Collapse
Affiliation(s)
| | - Elliot Watanabe Kitajima
- Departamento de Fitopatologia e Nematologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Marilia Santos Silva
- Laboratório de Bioimagem, Embrapa Recursos Genéticos e Biotecnologia, Brasilia, Brazil
| | | | - Juliana Freitas-Astúa
- Departamento de Bioquímica Fitopatológica, Instituto Biológico, São Paulo, Brazil
- Embrapa Mandioca e Fruticultura, Cruz das Almas, Bahia, Brazil
| |
Collapse
|
61
|
Garcia-Ruiz H. Susceptibility Genes to Plant Viruses. Viruses 2018; 10:E484. [PMID: 30201857 PMCID: PMC6164914 DOI: 10.3390/v10090484] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/28/2018] [Accepted: 09/07/2018] [Indexed: 12/26/2022] Open
Abstract
Plant viruses use cellular factors and resources to replicate and move. Plants respond to viral infection by several mechanisms, including innate immunity, autophagy, and gene silencing, that viruses must evade or suppress. Thus, the establishment of infection is genetically determined by the availability of host factors necessary for virus replication and movement and by the balance between plant defense and viral suppression of defense responses. Host factors may have antiviral or proviral activities. Proviral factors condition susceptibility to viruses by participating in processes essential to the virus. Here, we review current advances in the identification and characterization of host factors that condition susceptibility to plant viruses. Host factors with proviral activity have been identified for all parts of the virus infection cycle: viral RNA translation, viral replication complex formation, accumulation or activity of virus replication proteins, virus movement, and virion assembly. These factors could be targets of gene editing to engineer resistance to plant viruses.
Collapse
Affiliation(s)
- Hernan Garcia-Ruiz
- Nebraska Center for Virology, Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68503, USA.
| |
Collapse
|
62
|
Cao L, Blekemolen MC, Tintor N, Cornelissen BJC, Takken FLW. The Fusarium oxysporum Avr2-Six5 Effector Pair Alters Plasmodesmatal Exclusion Selectivity to Facilitate Cell-to-Cell Movement of Avr2. MOLECULAR PLANT 2018; 11:691-705. [PMID: 29481865 DOI: 10.1016/j.molp.2018.02.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 02/13/2018] [Accepted: 02/13/2018] [Indexed: 05/03/2023]
Abstract
Pathogens use effector proteins to manipulate their hosts. During infection of tomato, the fungus Fusarium oxysporum secretes the effectors Avr2 and Six5. Whereas Avr2 suffices to trigger I-2-mediated cell death in heterologous systems, both effectors are required for I-2-mediated disease resistance in tomato. How Six5 participates in triggering resistance is unknown. Using bimolecular fluorescence complementation assays we found that Avr2 and Six5 interact at plasmodesmata. Single-cell transformation revealed that a 2xRFP marker protein and Avr2-GFP only move to neighboring cells in the presence of Six5. Six5 alone does not alter plasmodesmatal transduction as 2xRFP was only translocated in the presence of both effectors. In SIX5-expressing transgenic plants, the distribution of virally expressed Avr2-GFP, and subsequent onset of I-2-mediated cell death, differed from that in wild-type tomato. Taken together, our data show that in the presence of Six5, Avr2 moves from cell to cell, which in susceptible plants contributes to virulence, but in I-2 containing plants induces resistance.
Collapse
Affiliation(s)
- Lingxue Cao
- Molecular Plant Pathology, Swammerdam Institute for Life Science, University of Amsterdam, 1098 XH Amsterdam, the Netherlands
| | - Mila C Blekemolen
- Molecular Plant Pathology, Swammerdam Institute for Life Science, University of Amsterdam, 1098 XH Amsterdam, the Netherlands
| | - Nico Tintor
- Molecular Plant Pathology, Swammerdam Institute for Life Science, University of Amsterdam, 1098 XH Amsterdam, the Netherlands
| | - Ben J C Cornelissen
- Molecular Plant Pathology, Swammerdam Institute for Life Science, University of Amsterdam, 1098 XH Amsterdam, the Netherlands
| | - Frank L W Takken
- Molecular Plant Pathology, Swammerdam Institute for Life Science, University of Amsterdam, 1098 XH Amsterdam, the Netherlands.
| |
Collapse
|
63
|
Zhang XY, Zhao TY, Li YY, Xiang HY, Dong SW, Zhang ZY, Wang Y, Li DW, Yu JL, Han CG. The Conserved Proline18 in the Polerovirus P3a Is Important for Brassica Yellows Virus Systemic Infection. Front Microbiol 2018; 9:613. [PMID: 29670592 PMCID: PMC5893644 DOI: 10.3389/fmicb.2018.00613] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/16/2018] [Indexed: 01/09/2023] Open
Abstract
ORF3a, a newly identified non-AUG-initiated ORF encoded by members of genera Polerovirus and Luteovirus, is required for long-distance movement in plants. However, the mechanism of action of P3a in viral systemic movement is still not clear. In this study, sequencing of a brassica yellows virus (BrYV) mutant defective in systemic infection revealed two-nucleotide variation at positions 3406 and 3467 in the genome. Subsequent nucleotide substitution analysis proved that only the non-synonymous substitution (C→U) at position 3406, resulting in P3aP18L, abolished the systemic infection of BrYV. Preliminary investigation showed that wild type BrYV was able to load into the petiole of the agroinfiltrated Nicotiana benthamiana leaves, whereas the mutant displayed very low efficiency. Further experiments revealed that the P3a and its mutant P3aP18L localized to the Golgi apparatus and near plasmodesmata, as well as the endoplasmic reticulum. Both P3a and P3aP18L were able to self-interact in vivo, however, the mutant P3aP18L seemed to form more stable dimer than wild type. More interestingly, we confirmed firstly that the ectopic expression of P3a of other poleroviruses and luteoviruses, as well as co-infection with Pea enation mosaic virus 2 (PEMV 2), restored the ability of systemic movement of BrYV P3a defective mutant, indicating that the P3a is functionally conserved in poleroviruses and luteoviruses and is redundant when BrYV co-infects with PEMV 2. These observations provide a novel insight into the conserved function of P3a and its underlying mechanism in the systemic infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Cheng-Gui Han
- State Key Laboratory for Agrobiotechnology–Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, China
| |
Collapse
|
64
|
Kehr J, Kragler F. Long distance RNA movement. THE NEW PHYTOLOGIST 2018; 218:29-40. [PMID: 29418002 DOI: 10.1111/nph.15025] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/28/2017] [Indexed: 05/06/2023]
Abstract
Contents Summary 29 I. Introduction 29 II. Phloem as a conduit for macromolecules 30 III. Classes of phloem transported RNAs and their function 32 IV. Mode of RNA transport 35 V. Conclusions 37 Acknowledgements 37 References 37 SUMMARY: In higher plants, small noncoding RNAs and large messenger RNA (mRNA) molecules are transported between cells and over long distances via the phloem. These large macromolecules are thought to get access to the sugar-conducting phloem vessels via specialized plasmodesmata (PD). Analyses of the phloem exudate suggest that all classes of RNA molecules, including silencing-induced RNAs (siRNAs), micro RNAs (miRNAs), transfer RNAs (tRNAs), ribosomal RNA (rRNAs) and mRNAs, are transported via the vasculature to distant tissues. Although the functions of mobile siRNAs and miRNAs as signalling molecules are well established, we lack a profound understanding of mobile mRNA function(s) in recipient cells and tissues, and how they are selected for transport. A surprisingly high number of up to thousands of mRNAs were described in diverse plant species such as cucumber, pumpkin, Arabidopsis and grapevine to move long distances over graft junctions to distinct body parts. In this review, we present an overview of the classes of mobile RNAs, the potential mechanisms facilitating RNA long-distance transport, and the roles of mobile RNAs in regulating transcription and translation. Furthermore, we address potential function(s) of mobile protein-encoding mRNAs with respect to their characteristics and evolutionary constraints.
Collapse
Affiliation(s)
- Julia Kehr
- Biocenter Klein Flottbek, Molekulare Pflanzengenetik, University Hamburg, Ohnhorststr. 18, Hamburg 22609, Germany
| | - Friedrich Kragler
- Department II, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| |
Collapse
|
65
|
Atabekova AK, Lazareva EA, Strelkova OS, Solovyev AG, Morozov SY. Mechanical stress-induced subcellular re-localization of N-terminally truncated tobacco Nt-4/1 protein. Biochimie 2018; 144:98-107. [PMID: 29097279 DOI: 10.1016/j.biochi.2017.10.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 10/25/2017] [Indexed: 01/22/2023]
Abstract
The Nicotiana tabacum 4/1 protein (Nt-4/1) of unknown function expressed in plant vasculature has been shown to localize to cytoplasmic bodies associated with endoplasmic reticulum. Here, we analyzed molecular interactions of an Nt-4/1 mutant with a deletion of 90 N-terminal amino acid residues (Nt-4/1d90) having a diffuse GFP-like localization. Upon transient co-expression with VAP27, a membrane protein known to localize to the ER, ER-plasma membrane contact sites and plasmodesmata, Nt-4/1d90 was concentrated around the cortical ER tubules, forming a network matching the shape of the cortical ER. Additionally, in response to mechanical stress, Nt-4/1d90 was re-localized to small spherical bodies, whereas the subcellular localization of VAP27 remained essentially unaffected. The Nt-4/1d90-containing bodies associated with microtubules, which underwent noticeable bundling under the conditions of mechanical stress. The Nt-4/1d90 re-localization to spherical bodies could also be induced by incubation at an elevated temperature, although under heat shock conditions the re-localization was less efficient and incomplete. An Nt-4/1d90 mutant, which had phosphorylation-mimicking mutations in a predicted cluster of four potentially phosphorylated residues, was found to both inefficiently re-localize to spherical bodies and tend to revert back to the initial diffuse localization. The presented data show that Nt-4/1 has a potential for response to stresses that is manifested by its deletion mutant Nt-4/1d90, and this response can be mediated by protein dephosphorylation.
Collapse
Affiliation(s)
- Anastasia K Atabekova
- Department of Virology, Biological Faculty, Moscow State University, Moscow 119234, Russia
| | - Ekaterina A Lazareva
- Department of Virology, Biological Faculty, Moscow State University, Moscow 119234, Russia
| | - Olga S Strelkova
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia
| | - Andrey G Solovyev
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia; Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow 119991, Russia
| | - Sergey Y Morozov
- Department of Virology, Biological Faculty, Moscow State University, Moscow 119234, Russia; Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia.
| |
Collapse
|
66
|
Park SH, Li F, Renaud J, Shen W, Li Y, Guo L, Cui H, Sumarah M, Wang A. NbEXPA1, an α-expansin, is plasmodesmata-specific and a novel host factor for potyviral infection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:846-861. [PMID: 28941316 DOI: 10.1111/tpj.13723] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/01/2017] [Accepted: 09/07/2017] [Indexed: 05/23/2023]
Abstract
Plasmodesmata (PD), unique to the plant kingdom, are structurally complex microchannels that cross the cell wall to establish symplastic communication between neighbouring cells. Viral intercellular movement occurs through PD. To better understand the involvement of PD in viral infection, we conducted a quantitative proteomic study on the PD-enriched fraction from Nicotiana benthamiana leaves in response to infection by Turnip mosaic virus (TuMV). We report the identification of a total of 1070 PD protein candidates, of which 100 (≥2-fold increase) and 48 (≥2-fold reduction) are significantly differentially accumulated in the PD-enriched fraction, when compared with protein levels in the corresponding healthy control. Among the differentially accumulated PD protein candidates, we show that an α-expansin designated NbEXPA1, a cell wall loosening protein, is PD-specific. TuMV infection downregulates NbEXPA1 mRNA expression and protein accumulation. We further demonstrate that NbEXPA1 is recruited to the viral replication complex via the interaction with NIb, the only RNA-dependent RNA polymerase of TuMV. Silencing of NbEXPA1 inhibits plant growth and TuMV infection, whereas overexpression of NbEXPA1 promotes viral replication and intercellular movement. These data suggest that NbEXPA1 is a host factor for potyviral infection. This study not only generates a PD-proteome dataset that is useful in future studies to expound PD biology and PD-mediated virus-host interactions but also characterizes NbEXPA1 as the first PD-specific cell wall loosening protein and its essential role in potyviral infection.
Collapse
Affiliation(s)
- Sang-Ho Park
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V 4T3, Canada
- Department of Biology, Western University, London, ON, N6A 5B7, Canada
| | - Fangfang Li
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V 4T3, Canada
| | - Justin Renaud
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V 4T3, Canada
| | - Wentao Shen
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V 4T3, Canada
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Yinzi Li
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V 4T3, Canada
- Department of Biology, Western University, London, ON, N6A 5B7, Canada
| | - Lihua Guo
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V 4T3, Canada
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongguang Cui
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V 4T3, Canada
| | - Mark Sumarah
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V 4T3, Canada
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V 4T3, Canada
- Department of Biology, Western University, London, ON, N6A 5B7, Canada
| |
Collapse
|
67
|
Influenza virus genome reaches the plasma membrane via a modified endoplasmic reticulum and Rab11-dependent vesicles. Nat Commun 2017; 8:1396. [PMID: 29123131 PMCID: PMC5680169 DOI: 10.1038/s41467-017-01557-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 09/27/2017] [Indexed: 12/05/2022] Open
Abstract
Transport of neo-synthesized influenza A virus (IAV) viral ribonucleoproteins (vRNPs) from the nucleus to the plasma membrane involves Rab 11 but the precise mechanism remains poorly understood. We used metal-tagging and immunolabeling to visualize viral proteins and cellular endomembrane markers by electron microscopy of IAV-infected cells. Unexpectedly, we provide evidence that the vRNP components and the Rab11 protein are present at the membrane of a modified, tubulated endoplasmic reticulum (ER) that extends all throughout the cell, and on irregularly coated vesicles (ICVs). Some ICVs are found very close to the ER and to the plasma membrane. ICV formation is observed only in infected cells and requires an active Rab11 GTPase. Against the currently accepted model in which vRNPs are carried onto Rab11-positive recycling endosomes across the cytoplasm, our findings reveal that the endomembrane organelle that is primarily involved in the transport of vRNPs is the ER. Transport of neo-synthesized influenza A virus viral ribonucleoproteins (vRNPs) from the nucleus to the plasma membrane involves Rab 11 but the mechanism is unclear. Here the authors show that vRNPs are transported through a modified Rab11-positive endoplasmic reticulum and Rab11-dependent vesicles.
Collapse
|
68
|
Zhu M, Jiang L, Bai B, Zhao W, Chen X, Li J, Liu Y, Chen Z, Wang B, Wang C, Wu Q, Shen Q, Dinesh-Kumar SP, Tao X. The Intracellular Immune Receptor Sw-5b Confers Broad-Spectrum Resistance to Tospoviruses through Recognition of a Conserved 21-Amino Acid Viral Effector Epitope. THE PLANT CELL 2017; 29:2214-2232. [PMID: 28814646 PMCID: PMC5635987 DOI: 10.1105/tpc.17.00180] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/20/2017] [Accepted: 08/16/2017] [Indexed: 05/20/2023]
Abstract
Plants use both cell surface-resident pattern recognition receptors (PRRs) and intracellular nucleotide binding leucine-rich repeat (NLR) receptors to detect various pathogens. Plant PRRs typically recognize conserved pathogen-associated molecular patterns (PAMPs) to provide broad-spectrum resistance. By contrast, plant NLRs generally detect pathogen strain-specific effectors and confer race-specific resistance. Here, we demonstrate that the tomato (Solanum lycopersicum) NLR Sw-5b confers broad-spectrum resistance against American-type tospoviruses by recognizing a conserved 21-amino acid peptide region within viral movement protein NSm (NSm21). Sw-5b NB-ARC-LRR domains directly associate with NSm21 in vitro and in planta. Domain swap, site-directed mutagenesis and structure modeling analyses identified four polymorphic sites in the Sw-5b LRR domain that are critical for the recognition of NSm21 Furthermore, recognition of NSm21 by Sw-5b likely disturbs the residues adjacent to R927 in the LRR domain to weaken the intramolecular interaction between LRR and NB-ARC domains, thus translating recognition of NSm21 into activation of Sw-5b. Natural variation analysis of Sw-5b homologs from wild tomato species of South America revealed that the four polymorphic sites in the Sw-5b LRR domain were positively selected during evolution and are all necessary to confer resistance to tospovirus. The results described here provide a new example of a plant NLR mediating broad-spectrum resistance through recognition of a small conserved PAMP-like region within the pathogen effector.
Collapse
Affiliation(s)
- Min Zhu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Lei Jiang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Baohui Bai
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Wenyang Zhao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Xiaojiao Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Jia Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Yong Liu
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Zhengqiang Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Boting Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Chunli Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Qian Wu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Qianhua Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, California 95616
| | - Xiaorong Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| |
Collapse
|
69
|
Huang C, Cun Y, Yu H, Tong Z, Xiao B, Song Z, Wang B, Li Y, Liu Y. Transcriptomic profile of tobacco in response to Tomato zonate spot orthotospovirus infection. Virol J 2017; 14:153. [PMID: 28807054 PMCID: PMC5557316 DOI: 10.1186/s12985-017-0821-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/07/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Tomato zonate spot virus (TZSV), a dominant species of thrips-transmitted orthotospoviruses in Yunnan and Guangxi provinces in China, causes significant loss of yield in lots of crops and is a major threat to incomes of rural families. However, the detailed molecular mechanism of crop disease caused by TZSV remains obscure. METHODS Next-generation sequencing (NGS)-based transcriptome analysis (RNA-seq) was performed to investigate and compare the gene expression changes in systemic leaves of tobacco upon infection with TZSV and mock-inoculated plants as a control. RESULTS De novo assembly and analysis of tobacco transcriptome data by RNA-Seq identified 135,395 unigenes. 2102 differentially expressed genes (DEGs) were obtained in tobacco with TZSV infection, among which 1518 DEGs were induced and 584 were repressed. Gene Ontology enrichment analysis revealed that these DEGs were associated with multiple biological functions, including metabolic process, oxidation-reduction process, photosynthesis process, protein kinase activity. The KEGG pathway analysis of these DEGs indicated that pathogenesis caused by TZSV may affect multiple processes including primary and secondary metabolism, photosynthesis and plant-pathogen interactions. CONCLUSION Our global survey of transcriptional changes in TZSV infected tobacco provides crucial information into the precise molecular mechanisms underlying pathogenesis and symptom development. This is the first report on the relationships in the TZSV-plant interaction using transcriptome analysis. Findings of present study will significantly help enhance our understanding of the complicated mechanisms of plant responses to orthotospoviral infection.
Collapse
Affiliation(s)
- Changjun Huang
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming, 650021 China
| | - Yupeng Cun
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming, 650021 China
| | - Haiqin Yu
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming, 650021 China
| | - Zhijun Tong
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming, 650021 China
| | - Bingguang Xiao
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming, 650021 China
| | - Zhongbang Song
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming, 650021 China
| | - Bingwu Wang
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming, 650021 China
| | - Yongping Li
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming, 650021 China
| | - Yong Liu
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming, 650021 China
| |
Collapse
|
70
|
Ishikawa K, Hashimoto M, Yusa A, Koinuma H, Kitazawa Y, Netsu O, Yamaji Y, Namba S. Dual targeting of a virus movement protein to ER and plasma membrane subdomains is essential for plasmodesmata localization. PLoS Pathog 2017; 13:e1006463. [PMID: 28640879 PMCID: PMC5498070 DOI: 10.1371/journal.ppat.1006463] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 07/05/2017] [Accepted: 06/10/2017] [Indexed: 11/18/2022] Open
Abstract
Plant virus movement proteins (MPs) localize to plasmodesmata (PD) to facilitate virus cell-to-cell movement. Numerous studies have suggested that MPs use a pathway either through the ER or through the plasma membrane (PM). Furthermore, recent studies reported that ER-PM contact sites and PM microdomains, which are subdomains found in the ER and PM, are involved in virus cell-to-cell movement. However, functional relationship of these subdomains in MP traffic to PD has not been described previously. We demonstrate here the intracellular trafficking of fig mosaic virus MP (MPFMV) using live cell imaging, focusing on its ER-directing signal peptide (SPFMV). Transiently expressed MPFMV was distributed predominantly in PD and patchy microdomains of the PM. Investigation of ER translocation efficiency revealed that SPFMV has quite low efficiency compared with SPs of well-characterized plant proteins, calreticulin and CLAVATA3. An MPFMV mutant lacking SPFMV localized exclusively to the PM microdomains, whereas SP chimeras, in which the SP of MPFMV was replaced by an SP of calreticulin or CLAVATA3, localized exclusively to the nodes of the ER, which was labeled with Arabidopsis synaptotagmin 1, a major component of ER-PM contact sites. From these results, we speculated that the low translocation efficiency of SPFMV contributes to the generation of ER-translocated and the microdomain-localized populations, both of which are necessary for PD localization. Consistent with this hypothesis, SP-deficient MPFMV became localized to PD when co-expressed with an SP chimera. Here we propose a new model for the intracellular trafficking of a viral MP. A substantial portion of MPFMV that fails to be translocated is transferred to the microdomains, whereas the remainder of MPFMV that is successfully translocated into the ER subsequently localizes to ER-PM contact sites and plays an important role in the entry of the microdomain-localized MPFMV into PD.
Collapse
Affiliation(s)
- Kazuya Ishikawa
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Masayoshi Hashimoto
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Akira Yusa
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Hiroaki Koinuma
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Yugo Kitazawa
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Osamu Netsu
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Yasuyuki Yamaji
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Shigetou Namba
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
71
|
Widana Gamage SMK, Dietzgen RG. Intracellular Localization, Interactions and Functions of Capsicum Chlorosis Virus Proteins. Front Microbiol 2017; 8:612. [PMID: 28443083 PMCID: PMC5387057 DOI: 10.3389/fmicb.2017.00612] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/27/2017] [Indexed: 12/22/2022] Open
Abstract
Tospoviruses are among the most devastating viruses of horticultural and field crops. Capsicum chlorosis virus (CaCV) has emerged as an important pathogen of capsicum and tomato in Australia and South-east Asia. Present knowledge about CaCV protein functions in host cells is lacking. We determined intracellular localization and interactions of CaCV proteins by live plant cell imaging to gain insight into the associations of viral proteins during infection. Proteins were transiently expressed as fusions to autofluorescent proteins in leaf epidermal cells of Nicotiana benthamiana and capsicum. All viral proteins localized at least partially in the cell periphery suggestive of cytoplasmic replication and assembly of CaCV. Nucleocapsid (N) and non-structural movement (NSm) proteins localized exclusively in the cell periphery, while non-structural suppressor of silencing (NSs) protein and Gc and Gn glycoproteins accumulated in both the cell periphery and the nucleus. Nuclear localization of CaCV Gn and NSs is unique among tospoviruses. We validated nuclear localization of NSs by immunofluorescence in protoplasts. Bimolecular fluorescence complementation showed self-interactions of CaCV N, NSs and NSm, and heterotypic interactions of N with NSs and Gn. All interactions occurred in the cytoplasm, except NSs self-interaction was exclusively nuclear. Interactions of a tospoviral NSs protein with itself and with N had not been reported previously. Functionally, CaCV NSs showed strong local and systemic RNA silencing suppressor activity and appears to delay short-distance spread of silencing signal. Cell-to-cell movement activity of NSm was demonstrated by trans-complementation of a movement-defective tobamovirus replicon. CaCV NSm localized at plasmodesmata and its transient expression led to the formation of tubular structures that protruded from protoplasts. The D155 residue in the 30K-like movement protein-specific LxD/N50-70G motif of NSm was critical for plasmodesmata localization and movement activity. Compared to other tospoviruses, CaCV proteins have both conserved and unique properties in terms of in planta localization, interactions and protein functions which will effect viral multiplication and movement in host plants.
Collapse
Affiliation(s)
| | - Ralf G. Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St LuciaQLD, Australia
| |
Collapse
|
72
|
Hashimoto M, Neriya Y, Yamaji Y, Namba S. Recessive Resistance to Plant Viruses: Potential Resistance Genes Beyond Translation Initiation Factors. Front Microbiol 2016; 7:1695. [PMID: 27833593 PMCID: PMC5080351 DOI: 10.3389/fmicb.2016.01695] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/11/2016] [Indexed: 12/13/2022] Open
Abstract
The ability of plant viruses to propagate their genomes in host cells depends on many host factors. In the absence of an agrochemical that specifically targets plant viral infection cycles, one of the most effective methods for controlling viral diseases in plants is taking advantage of the host plant’s resistance machinery. Recessive resistance is conferred by a recessive gene mutation that encodes a host factor critical for viral infection. It is a branch of the resistance machinery and, as an inherited characteristic, is very durable. Moreover, recessive resistance may be acquired by a deficiency in a negative regulator of plant defense responses, possibly due to the autoactivation of defense signaling. Eukaryotic translation initiation factor (eIF) 4E and eIF4G and their isoforms are the most widely exploited recessive resistance genes in several crop species, and they are effective against a subset of viral species. However, the establishment of efficient, recessive resistance-type antiviral control strategies against a wider range of plant viral diseases requires genetic resources other than eIF4Es. In this review, we focus on recent advances related to antiviral recessive resistance genes evaluated in model plants and several crop species. We also address the roles of next-generation sequencing and genome editing technologies in improving plant genetic resources for recessive resistance-based antiviral breeding in various crop species.
Collapse
Affiliation(s)
- Masayoshi Hashimoto
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo Tokyo, Japan
| | - Yutaro Neriya
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo Tokyo, Japan
| | - Yasuyuki Yamaji
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo Tokyo, Japan
| | - Shigetou Namba
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo Tokyo, Japan
| |
Collapse
|
73
|
Zhao W, Jiang L, Feng Z, Chen X, Huang Y, Xue F, Huang C, Liu Y, Li F, Liu Y, Tao X. Plasmodesmata targeting and intercellular trafficking of Tomato spotted wilt tospovirus movement protein NSm is independent of its function in HR induction. J Gen Virol 2016; 97:1990-1997. [DOI: 10.1099/jgv.0.000496] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Wenyang Zhao
- Key Laboratory for the Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lei Jiang
- Key Laboratory for the Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhike Feng
- Key Laboratory for the Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaojiao Chen
- Key Laboratory for the Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ying Huang
- Key Laboratory for the Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Fan Xue
- Key Laboratory for the Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Changjun Huang
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming, 650021, PR China
| | - Yong Liu
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming, 650021, PR China
| | - Fan Li
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, PR China
| | - Yating Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, PR China
| | - Xiaorong Tao
- Key Laboratory for the Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|