51
|
Yang Q, Zou P, Cao Z, Wang Q, Fu S, Xie G, Huang J. QseC Inhibition as a Novel Antivirulence Strategy for the Prevention of Acute Hepatopancreatic Necrosis Disease (AHPND)-Causing Vibrio parahaemolyticus. Front Cell Infect Microbiol 2021; 10:594652. [PMID: 33553003 PMCID: PMC7859628 DOI: 10.3389/fcimb.2020.594652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/04/2020] [Indexed: 11/13/2022] Open
Abstract
Acute hepatopancreatic necrosis disease (AHPND) caused by Vibrio parahaemolyticus resulted in great economic losses in global shrimp aquaculture. There is an urgent need for development of novel strategies to combat AHPND-causing V. parahaemolyticus (Vp AHPND), given that one of the greatest challenges currently is the widespread use of antibiotics and subsequent emergence of multidrug-resistant bacteria. Here, we proposed a broad-spectrum antivirulence approach targeting a conserved histidine kinase, QseC, which has been demonstrated to activate virulence expression in several Gram-negative pathogens. Our results showed that QseC mediated the catecholamine stimulated effects on growth and flagellar motility of Vp AHPND. Transcriptome analysis revealed that QseC was involved in the global regulation of the virulence of Vp AHPND as the ΔqseC mutant exhibited a decreased expression of genes related to type IV pilin, flagellar motility, and biofilm formation, while an overexpression of type VI secretion system and cell wall biosynthesis. Subsequently, the bacterial catecholamine receptor antagonist LED209 not only neutralized the stimulatory effects of host catecholamines on the growth and motility of Vp AHPND in vitro, but also attenuated the virulence of Vp AHPND towards brine shrimp larvae and white shrimp in vivo. Additionally, LED209 presented no interference with pathogen growth, nor the toxicity to the experimental animals. These results suggest that QseC can be an attractive antivirulence therapy target, and LED209 is a promising candidate for development of broad-spectrum antivirulence agents. This is the first study that demonstrated the role of QseC in the global regulation of Vp AHPND infection and demonstrated the antivirulence potential of LED209, which provides insight into the use of an antivirulence approach for targeting not only Vp AHPND, but also a much larger collection of pathogenic bacteria.
Collapse
Affiliation(s)
- Qian Yang
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao, China.,Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Center for Microbial Ecology and Technology (CMET), Ghent University, Gent, Belgium
| | - Peizhuo Zou
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao, China.,Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Zhi Cao
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao, China.,Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Qingyao Wang
- College of Marine Science and Environment, Dalian Ocean University, Dalian, China.,Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, Dalian, China
| | - Songzhe Fu
- College of Marine Science and Environment, Dalian Ocean University, Dalian, China.,Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, Dalian, China
| | - Guosi Xie
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao, China.,Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Jie Huang
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao, China.,Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Network of Aquaculture Centers in Asia-Pacific, Bangkok, Thailand
| |
Collapse
|
52
|
Desaint H, Aoun N, Deslandes L, Vailleau F, Roux F, Berthomé R. Fight hard or die trying: when plants face pathogens under heat stress. THE NEW PHYTOLOGIST 2021; 229:712-734. [PMID: 32981118 DOI: 10.1111/nph.16965] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/31/2020] [Indexed: 05/22/2023]
Abstract
In their natural environment, plants are exposed to biotic or abiotic stresses that occur sequentially or simultaneously. Plant responses to these stresses have been studied widely and have been well characterised in simplified systems involving single plant species facing individual stress. Temperature elevation is a major abiotic driver of climate change and scenarios have predicted an increase in the number and severity of epidemics. In this context, here we review the available data on the effect of heat stress on plant-pathogen interactions. Considering 45 studies performed on model or crop species, we discuss the possible implications of the optimum growth temperature of plant hosts and pathogens, mode of stress application and temperature variation on resistance modulations. Alarmingly, most identified resistances are altered under temperature elevation, regardless of the plant and pathogen species. Therefore, we have listed current knowledge on heat-dependent plant immune mechanisms and pathogen thermosensory processes, mainly studied in animals and human pathogens, that could help to understand the outcome of plant-pathogen interactions under elevated temperatures. Based on a general overview of the mechanisms involved in plant responses to pathogens, and integrating multiple interactions with the biotic environment, we provide recommendations to optimise plant disease resistance under heat stress and to identify thermotolerant resistance mechanisms.
Collapse
Affiliation(s)
- Henri Desaint
- LIPM, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
- SYNGENTA Seeds, Sarrians, 84260, France
| | - Nathalie Aoun
- LIPM, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | | | | | - Fabrice Roux
- LIPM, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Richard Berthomé
- LIPM, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| |
Collapse
|
53
|
Singh NK, Dutta A, Puccetti G, Croll D. Tackling microbial threats in agriculture with integrative imaging and computational approaches. Comput Struct Biotechnol J 2020; 19:372-383. [PMID: 33489007 PMCID: PMC7787954 DOI: 10.1016/j.csbj.2020.12.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/08/2020] [Accepted: 12/13/2020] [Indexed: 11/29/2022] Open
Abstract
Pathogens and pests are one of the major threats to agricultural productivity worldwide. For decades, targeted resistance breeding was used to create crop cultivars that resist pathogens and environmental stress while retaining yields. The often decade-long process of crossing, selection, and field trials to create a new cultivar is challenged by the rapid rise of pathogens overcoming resistance. Similarly, antimicrobial compounds can rapidly lose efficacy due to resistance evolution. Here, we review three major areas where computational, imaging and experimental approaches are revolutionizing the management of pathogen damage on crops. Recognizing and scoring plant diseases have dramatically improved through high-throughput imaging techniques applicable both under well-controlled greenhouse conditions and directly in the field. However, computer vision of complex disease phenotypes will require significant improvements. In parallel, experimental setups similar to high-throughput drug discovery screens make it possible to screen thousands of pathogen strains for variation in resistance and other relevant phenotypic traits. Confocal microscopy and fluorescence can capture rich phenotypic information across pathogen genotypes. Through genome-wide association mapping approaches, phenotypic data helps to unravel the genetic architecture of stress- and virulence-related traits accelerating resistance breeding. Finally, joint, large-scale screenings of trait variation in crops and pathogens can yield fundamental insights into how pathogens face trade-offs in the adaptation to resistant crop varieties. We discuss how future implementations of such innovative approaches in breeding and pathogen screening can lead to more durable disease control.
Collapse
Affiliation(s)
- Nikhil Kumar Singh
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - Anik Dutta
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Guido Puccetti
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
- Syngenta Crop Protection AG, CH-4332 Stein, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| |
Collapse
|
54
|
The LysR-Type Transcriptional Regulator CrgA Negatively Regulates the Flagellar Master Regulator flhDC in Ralstonia solanacearum GMI1000. J Bacteriol 2020; 203:JB.00419-20. [PMID: 33046561 DOI: 10.1128/jb.00419-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/03/2020] [Indexed: 01/07/2023] Open
Abstract
The invasion and colonization of host plants by the destructive pathogen Ralstonia solanacearum rely on its cell motility, which is controlled by multiple factors. Here, we report that the LysR-type transcriptional regulator CrgA (RS_RS16695) represses cell motility in R. solanacearum GMI1000. CrgA possesses common features of a LysR-type transcriptional regulator and contains an N-terminal helix-turn-helix motif as well as a C-terminal LysR substrate-binding domain. Deletion of crgA results in an enhanced swim ring and increased transcription of flhDC In addition, the ΔcrgA mutant possesses more polar flagella than wild-type GMI1000 and exhibits higher expression of the flagellin gene fliC Despite these alterations, the ΔcrgA mutant did not have a detectable growth defect in culture. Yeast one-hybrid and electrophoretic mobility shift assays revealed that CrgA interacts directly with the flhDC promoter. Expressing the β-glucuronidase (GUS) reporter under the control of the crgA promoter showed that crgA transcription is dependent on cell density. Soil-soaking inoculation with the crgA mutant caused wilt symptoms on tomato (Solanum lycopersicum L. cv. Hong yangli) plants earlier than inoculation with the wild-type GMI1000 but resulted in lower disease severity. We conclude that the R. solanacearum regulator CrgA represses flhDC expression and consequently affects the expression of fliC to modulate cell motility, thereby conditioning disease development in host plants.IMPORTANCE Ralstonia solanacearum is a widely distributed soilborne plant pathogen that causes bacterial wilt disease on diverse plant species. Motility is a critical virulence attribute of R. solanacearum because it allows this pathogen to efficiently invade and colonize host plants. In R. solanacearum, motility-defective strains are markedly affected in pathogenicity, which is coregulated with multiple virulence factors. In this study, we identified a new LysR-type transcriptional regulator (LTTR), CrgA, that negatively regulates motility. The mutation of the corresponding gene leads to the precocious appearance of wilt symptoms on tomato plants when the pathogen is introduced using soil-soaking inoculation. This study indicates that the regulation of R. solanacearum motility is more complex than previously thought and enhances our understanding of flagellum regulation in R. solanacearum.
Collapse
|
55
|
Yoshihara A, Shimatani M, Sakata M, Takemura C, Senuma W, Hikichi Y, Kai K. Quorum Sensing Inhibition Attenuates the Virulence of the Plant Pathogen Ralstonia solanacearum Species Complex. ACS Chem Biol 2020; 15:3050-3059. [PMID: 33172253 DOI: 10.1021/acschembio.0c00752] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Strains of Ralstonia solanacearum species complex (RSSC) cause "bacterial wilt" on a wide range of plant species and thus lead to marked economic losses in agriculture. Quorum sensing (QS), a bacterial cell-cell communication mechanism, controls the virulence of RSSC strains by regulating the production of extracellular polysaccharide (EPS) and secondary metabolites, biofilm formation, and cellular motility. R. solanacearum strain OE1-1 employs (R)-methyl 3-hydroxymyristate (3-OH MAME) as a QS signal, which is synthesized by the PhcB methyltransferase and sensed by the PhcS/PhcRQ two-component system. We describe the design, synthesis, and biological evaluation of inhibitors of the phc QS system. Initial screening of a small set of QS signal analogues revealed that methyl 3-hydroxy-8-phenyloctanoate, named, PQI-1 (phc quorum sensing inhibitor-1), inhibited biofilm formation by strain OE1-1. To improve its inhibitory activity, the derivatives of PQI-1 were synthesized, and their QS inhibition activities were evaluated. PQIs-2-5 evolved from PQI-1 more strongly inhibited not only biofilm formation but also the production of ralfuranone and EPS. Furthermore, RNA-Seq analysis revealed that the PQIs effectively inhibited QS-dependent gene expression and repression in strain OE1-1. On the other hand, the PQIs did not affect the canonical QS systems of the representative reporter bacteria. These antagonists, especially PQI-5, reduced wilting symptoms of the tomato plants infected with strain OE1-1. Taken together, we suggest that targeting the phc QS system has potential for the development of chemicals that protect agricultural crops from bacterial wilt disease.
Collapse
Affiliation(s)
- Ayaka Yoshihara
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Mika Shimatani
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Megumi Sakata
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Chika Takemura
- Laboratory of Plant Pathology and Biotechnology, Kochi University, 200 Otsu, Monobe, Nanko-ku, Kochi 783-8502, Japan
| | - Wakana Senuma
- Laboratory of Plant Pathology and Biotechnology, Kochi University, 200 Otsu, Monobe, Nanko-ku, Kochi 783-8502, Japan
| | - Yasufumi Hikichi
- Laboratory of Plant Pathology and Biotechnology, Kochi University, 200 Otsu, Monobe, Nanko-ku, Kochi 783-8502, Japan
| | - Kenji Kai
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
56
|
Abstract
Plant pathogens are a critical component of the microbiome that exist as populations undergoing ecological and evolutionary processes within their host. Many aspects of virulence rely on social interactions mediated through multiple forms of public goods, including quorum-sensing signals, exoenzymes, and effectors. Virulence and disease progression involve life-history decisions that have social implications with large effects on both host and microbe fitness, such as the timing of key transitions. Considering the molecular basis of sequential stages of plant-pathogen interactions highlights many opportunities for pathogens to cheat, and there is evidence for ample variation in virulence. Case studies reveal systems where cheating has been demonstrated and others where it is likely occurring. Harnessing the social interactions of pathogens, along with leveraging novel sensing and -omics technologies to understand microbial fitness in the field, will enable us to better manage plant microbiomes in the interest of plant health.
Collapse
Affiliation(s)
- Maren L Friesen
- Department of Plant Pathology and Department of Crop and Soil Sciences, Washington State University, Pullman, Washington 99164, USA;
| |
Collapse
|
57
|
Botero D, Monk J, Rodríguez Cubillos MJ, Rodríguez Cubillos A, Restrepo M, Bernal-Galeano V, Reyes A, González Barrios A, Palsson BØ, Restrepo S, Bernal A. Genome-Scale Metabolic Model of Xanthomonas phaseoli pv. manihotis: An Approach to Elucidate Pathogenicity at the Metabolic Level. Front Genet 2020; 11:837. [PMID: 32849823 PMCID: PMC7432306 DOI: 10.3389/fgene.2020.00837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 07/10/2020] [Indexed: 01/05/2023] Open
Abstract
Xanthomonas phaseoli pv. manihotis (Xpm) is the causal agent of cassava bacterial blight, the most important bacterial disease in this crop. There is a paucity of knowledge about the metabolism of Xanthomonas and its relevance in the pathogenic process, with the exception of the elucidation of the xanthan biosynthesis route. Here we report the reconstruction of the genome-scale model of Xpm metabolism and the insights it provides into plant-pathogen interactions. The model, iXpm1556, displayed 1,556 reactions, 1,527 compounds, and 890 genes. Metabolic maps of central amino acid and carbohydrate metabolism, as well as xanthan biosynthesis of Xpm, were reconstructed using Escher (https://escher.github.io/) to guide the curation process and for further analyses. The model was constrained using the RNA-seq data of a mutant of Xpm for quorum sensing (QS), and these data were used to construct context-specific models (CSMs) of the metabolism of the two strains (wild type and QS mutant). The CSMs and flux balance analysis were used to get insights into pathogenicity, xanthan biosynthesis, and QS mechanisms. Between the CSMs, 653 reactions were shared; unique reactions belong to purine, pyrimidine, and amino acid metabolism. Alternative objective functions were used to demonstrate a trade-off between xanthan biosynthesis and growth and the re-allocation of resources in the process of biosynthesis. Important features altered by QS included carbohydrate metabolism, NAD(P)+ balance, and fatty acid elongation. In this work, we modeled the xanthan biosynthesis and the QS process and their impact on the metabolism of the bacterium. This model will be useful for researchers studying host-pathogen interactions and will provide insights into the mechanisms of infection used by this and other Xanthomonas species.
Collapse
Affiliation(s)
- David Botero
- Laboratory of Mycology and Plant Pathology (LAMFU), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
- Max Planck Tandem Group in Computational Biology, Universidad de Los Andes, Bogotá, Colombia
- Grupo de Biología Computacional y Ecología Microbiana, Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| | - Jonathan Monk
- Systems Biology Research Group, Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - María Juliana Rodríguez Cubillos
- Laboratory of Mycology and Plant Pathology (LAMFU), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
| | | | - Mariana Restrepo
- Laboratory of Mycology and Plant Pathology (LAMFU), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Vivian Bernal-Galeano
- Laboratory of Mycology and Plant Pathology (LAMFU), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Alejandro Reyes
- Max Planck Tandem Group in Computational Biology, Universidad de Los Andes, Bogotá, Colombia
- Grupo de Biología Computacional y Ecología Microbiana, Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| | - Andrés González Barrios
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Bernhard Ø. Palsson
- Systems Biology Research Group, Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Silvia Restrepo
- Laboratory of Mycology and Plant Pathology (LAMFU), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Adriana Bernal
- Laboratory of Molecular Interactions of Agricultural Microbes, LIMMA, Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| |
Collapse
|
58
|
Wakimoto T, Nakagishi S, Matsukawa N, Tani S, Kai K. A Unique Combination of Two Different Quorum Sensing Systems in the β-Rhizobium Cupriavidus taiwanensis. JOURNAL OF NATURAL PRODUCTS 2020; 83:1876-1884. [PMID: 32484353 DOI: 10.1021/acs.jnatprod.0c00054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cupriavidus taiwanensis LMG19424, a β-rhizobial symbiont of Mimosa pudica, harbors phc and tqs quorum sensing (QS), which are the homologous cell-cell communication systems previously identified from the plant pathogen Ralstonia solanacearum and the human pathogen Vibrio cholerae, respectively. However, there has been no experimental evidence reported that these QS systems function in C. taiwanensis LMG19424. We identified (R)-methyl 3-hydroxymyristate (3-OH MAME) and (S)-3-hydroxypentadecan-4-one (C15-AHK) as phc and tqs QS signals, respectively, and characterized these QS systems. The expression of the signal synthase gene phcB and tqsA in E. coli BL21(DE3) resulted in the high production of 3-OH MAME and C15-AHK, respectively. Their structures were elucidated by comparison of EI-MS data and GC/chiral LC retention times with synthetic standards. The deletion of phcB reduced cell motility and increased biofilm formation, and the double deletion of phcB/tqsA caused the accumulation of the metal chelator coproporphyrin III in its mutant culture. Although the deletion of phcB and tqsA slightly reduced its ability to nodulate on aseptically grown seedlings of M. pudica, there was no significant difference in nodule formation between LMG19424 and its QS mutants when commercial soils were used. Taken together, this is the first example of the simultaneous production of 3-OH MAME/C15-AHK as QS signals in a bacterial species, and the importance of the phc/tqs QS systems in the saprophytic stage of C. taiwanensis LMG19424 is suggested.
Collapse
Affiliation(s)
- Takayuki Wakimoto
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Shiori Nakagishi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Nao Matsukawa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Shuji Tani
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Kenji Kai
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
59
|
Longchar B, Phukan T, Yadav S, Senthil‐Kumar M. An efficient low-cost xylem sap isolation method for bacterial wilt assays in tomato. APPLICATIONS IN PLANT SCIENCES 2020; 8:e11335. [PMID: 32351796 PMCID: PMC7186903 DOI: 10.1002/aps3.11335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/12/2020] [Indexed: 06/01/2023]
Abstract
PREMISE A portable, simple, yet efficient method was developed for the rapid extraction of xylem sap from the stems and petioles of tomato plants for diagnostic and quantification assays of the xylem-colonizing wilt bacterium Ralstonia solanacearum. METHODS AND RESULTS Xylem saps were extracted from tomato stem sections using negative pressure generated from handheld needleless syringes. The samples were collected from plants grown under different soil moisture levels at four days after inoculation with the pathogen. Pipette tips were modified to serve as adapters for the stem sections. The quantification of the bacterial load in the extracted sap was performed by plating sap dilutions in Kelman's triphenyltetrazolium chloride (TTC) medium. Pathogen identity was further confirmed by performing a PCR using R. solanacearum-specific primers. CONCLUSIONS Due to its simplicity, portability, and thoroughness of extraction from predetermined tissue sizes, the method can potentially facilitate high-throughput onsite sampling from a large number of samples in a short time, which cannot be achieved with other available techniques.
Collapse
Affiliation(s)
| | - Tarinee Phukan
- National Institute of Plant Genome Research, Aruna Asaf Ali MargNew Delhi110067India
| | - Sarita Yadav
- National Institute of Plant Genome Research, Aruna Asaf Ali MargNew Delhi110067India
| | | |
Collapse
|
60
|
Abstract
Xylella fastidiosa is one of the most important threats to plant health worldwide, causing disease in the Americas on a range of agricultural crops and trees, and recently associated with a critical epidemic affecting olive trees in Europe. A main challenge for the detection of the pathogen and the development of physiological studies is its fastidious growth, as the generation time can vary from 10 to 100 h for some strains. This physiological peculiarity is shared with several human pathogens and is poorly understood. We performed an analysis of the metabolic capabilities of X. fastidiosa through a genome-scale metabolic model of the bacterium. This model was reconstructed and manually curated using experiments and bibliographical evidence. Our study revealed that fastidious growth most probably results from different metabolic specificities such as the absence of highly efficient enzymes or a global inefficiency in virulence factor production. These results support the idea that the fragility of the metabolic network may have been shaped during evolution to lead to the self-limiting behavior of X. fastidiosa. High proliferation rate and robustness are vital characteristics of bacterial pathogens that successfully colonize their hosts. The observation of drastically slow growth in some pathogens is thus paradoxical and remains unexplained. In this study, we sought to understand the slow (fastidious) growth of the plant pathogen Xylella fastidiosa. Using genome-scale metabolic network reconstruction, modeling, and experimental validation, we explored its metabolic capabilities. Despite genome reduction and slow growth, the pathogen’s metabolic network is complete but strikingly minimalist and lacking in robustness. Most alternative reactions were missing, especially those favoring fast growth, and were replaced by less efficient paths. We also found that the production of some virulence factors imposes a heavy burden on growth. Interestingly, some specific determinants of fastidious growth were also found in other slow-growing pathogens, enriching the view that these metabolic peculiarities are a pathogenicity strategy to remain at a low population level. IMPORTANCEXylella fastidiosa is one of the most important threats to plant health worldwide, causing disease in the Americas on a range of agricultural crops and trees, and recently associated with a critical epidemic affecting olive trees in Europe. A main challenge for the detection of the pathogen and the development of physiological studies is its fastidious growth, as the generation time can vary from 10 to 100 h for some strains. This physiological peculiarity is shared with several human pathogens and is poorly understood. We performed an analysis of the metabolic capabilities of X. fastidiosa through a genome-scale metabolic model of the bacterium. This model was reconstructed and manually curated using experiments and bibliographical evidence. Our study revealed that fastidious growth most probably results from different metabolic specificities such as the absence of highly efficient enzymes or a global inefficiency in virulence factor production. These results support the idea that the fragility of the metabolic network may have been shaped during evolution to lead to the self-limiting behavior of X. fastidiosa.
Collapse
|
61
|
Doin de Moura GG, Remigi P, Masson-Boivin C, Capela D. Experimental Evolution of Legume Symbionts: What Have We Learnt? Genes (Basel) 2020; 11:E339. [PMID: 32210028 PMCID: PMC7141107 DOI: 10.3390/genes11030339] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
Rhizobia, the nitrogen-fixing symbionts of legumes, are polyphyletic bacteria distributed in many alpha- and beta-proteobacterial genera. They likely emerged and diversified through independent horizontal transfers of key symbiotic genes. To replay the evolution of a new rhizobium genus under laboratory conditions, the symbiotic plasmid of Cupriavidus taiwanensis was introduced in the plant pathogen Ralstonia solanacearum, and the generated proto-rhizobium was submitted to repeated inoculations to the C. taiwanensis host, Mimosa pudica L.. This experiment validated a two-step evolutionary scenario of key symbiotic gene acquisition followed by genome remodeling under plant selection. Nodulation and nodule cell infection were obtained and optimized mainly via the rewiring of regulatory circuits of the recipient bacterium. Symbiotic adaptation was shown to be accelerated by the activity of a mutagenesis cassette conserved in most rhizobia. Investigating mutated genes led us to identify new components of R. solanacearum virulence and C. taiwanensis symbiosis. Nitrogen fixation was not acquired in our short experiment. However, we showed that post-infection sanctions allowed the increase in frequency of nitrogen-fixing variants among a non-fixing population in the M. pudica-C. taiwanensis system and likely allowed the spread of this trait in natura. Experimental evolution thus provided new insights into rhizobium biology and evolution.
Collapse
Affiliation(s)
| | | | | | - Delphine Capela
- LIPM, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan 31320, France; (G.G.D.d.M.); (P.R.); (C.M.-B.)
| |
Collapse
|
62
|
The Entner-Doudoroff and Nonoxidative Pentose Phosphate Pathways Bypass Glycolysis and the Oxidative Pentose Phosphate Pathway in Ralstonia solanacearum. mSystems 2020; 5:5/2/e00091-20. [PMID: 32156794 PMCID: PMC7065512 DOI: 10.1128/msystems.00091-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Understanding the metabolic versatility of Ralstonia solanacearum is important, as it regulates the trade-off between virulence and metabolism (1, 2) in a wide range of plant hosts. Due to a lack of clear evidence until this work, several published research papers reported on the potential roles of glycolysis and the oxidative pentose phosphate pathway (OxPPP) in R. solanacearum (3, 4). This work provided evidence from 13C stable isotope feeding and genome annotation-based comparative metabolic network analysis that the Entner-Doudoroff pathway and non-OxPPP bypass glycolysis and OxPPP during the oxidation of glucose, a component of the host xylem pool that serves as a potential carbon source (5). The outcomes help better define the central carbon metabolic network of R. solanacearum that can be integrated with 13C metabolic flux analysis as well as flux balance analysis studies for defining the metabolic phenotypes. The study highlights the need to critically examine phytopathogens whose metabolism is poorly understood. In Ralstonia solanacearum, a devastating phytopathogen whose metabolism is poorly understood, we observed that the Entner-Doudoroff (ED) pathway and nonoxidative pentose phosphate pathway (non-OxPPP) bypass glycolysis and OxPPP under glucose oxidation. Evidence derived from 13C stable isotope feeding and genome annotation-based comparative metabolic network analysis supported the observations. Comparative metabolic network analysis derived from the currently available 53 annotated R. solanacearum strains, including a recently reported strain (F1C1), representing the four phylotypes, confirmed the lack of key genes coding for phosphofructokinase (pfk-1) and phosphogluconate dehydrogenase (gnd) enzymes that are relevant for glycolysis and OxPPP, respectively. R. solanacearum F1C1 cells fed with [13C]glucose (99% [1-13C]glucose or 99% [1,2-13C]glucose or 40% [13C6]glucose) followed by gas chromatography-mass spectrometry (GC-MS)-based labeling analysis of fragments from amino acids, glycerol, and ribose provided clear evidence that rather than glycolysis and the OxPPP, the ED pathway and non-OxPPP are the main routes sustaining metabolism in R. solanacearum. The 13C incorporation in the mass ions of alanine (m/z 260 and m/z 232), valine (m/z 288 and m/z 260), glycine (m/z 218), serine (m/z 390 and m/z 362), histidine (m/z 440 and m/z 412), tyrosine (m/z 466 and m/z 438), phenylalanine (m/z 336 and m/z 308), glycerol (m/z 377), and ribose (m/z 160) mapped the pathways supporting the observations. The outcomes help better define the central carbon metabolic network of R. solanacearum that can be integrated with 13C metabolic flux analysis as well as flux balance analysis studies for defining the metabolic phenotypes. IMPORTANCE Understanding the metabolic versatility of Ralstonia solanacearum is important, as it regulates the trade-off between virulence and metabolism (1, 2) in a wide range of plant hosts. Due to a lack of clear evidence until this work, several published research papers reported on the potential roles of glycolysis and the oxidative pentose phosphate pathway (OxPPP) in R. solanacearum (3, 4). This work provided evidence from 13C stable isotope feeding and genome annotation-based comparative metabolic network analysis that the Entner-Doudoroff pathway and non-OxPPP bypass glycolysis and OxPPP during the oxidation of glucose, a component of the host xylem pool that serves as a potential carbon source (5). The outcomes help better define the central carbon metabolic network of R. solanacearum that can be integrated with 13C metabolic flux analysis as well as flux balance analysis studies for defining the metabolic phenotypes. The study highlights the need to critically examine phytopathogens whose metabolism is poorly understood.
Collapse
|
63
|
MacIntyre AM, Barth JX, Pellitteri Hahn MC, Scarlett CO, Genin S, Allen C. Trehalose Synthesis Contributes to Osmotic Stress Tolerance and Virulence of the Bacterial Wilt Pathogen Ralstonia solanacearum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:462-473. [PMID: 31765286 DOI: 10.1094/mpmi-08-19-0218-r] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The xylem-dwelling plant pathogen Ralstonia solanacearum changes the chemical composition of host xylem sap during bacterial wilt disease. The disaccharide trehalose, implicated in stress tolerance across all kingdoms of life, is enriched in sap from R. solanacearum-infected tomato plants. Trehalose in xylem sap could be synthesized by the bacterium, the plant, or both. To investigate the source and role of trehalose metabolism during wilt disease, we evaluated the effects of deleting the three trehalose synthesis pathways in the pathogen: TreYZ, TreS, and OtsAB, as well as its sole trehalase, TreA. A quadruple treY/treS/otsA/treA mutant produced 30-fold less intracellular trehalose than the wild-type strain missing the trehalase enzyme. This trehalose-nonproducing mutant had reduced tolerance to osmotic stress, which the bacterium likely experiences in plant xylem vessels. Following naturalistic soil-soak inoculation of tomato plants, this triple mutant did not cause disease as well as wild-type R. solanacearum. Further, the wild-type strain out-competed the trehalose-nonproducing mutant by over 600-fold when tomato plants were coinoculated with both strains, showing that trehalose biosynthesis helps R. solanacearum overcome environmental stresses during infection. An otsA (trehalose-6-phosphate synthase) single mutant behaved similarly to ΔtreY/treS/otsA in all experimental settings, suggesting that the OtsAB pathway is the dominant trehalose synthesis pathway in R. solanacearum.
Collapse
Affiliation(s)
- April M MacIntyre
- Department of Plant Pathology, University of Wisconsin-Madison, U.S.A
| | - John X Barth
- Department of Plant Pathology, University of Wisconsin-Madison, U.S.A
| | | | - Cameron O Scarlett
- Analytical Instrumentation Center, School of Pharmacy, University of Wisconsin-Madison
| | - Stéphane Genin
- LIPM, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Caitilyn Allen
- Department of Plant Pathology, University of Wisconsin-Madison, U.S.A
| |
Collapse
|
64
|
Modulation of Quorum Sensing as an Adaptation to Nodule Cell Infection during Experimental Evolution of Legume Symbionts. mBio 2020; 11:mBio.03129-19. [PMID: 31992622 PMCID: PMC6989110 DOI: 10.1128/mbio.03129-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Over millions of years, changes have occurred in regulatory circuitries in response to genome reorganization and/or persistent changes in environmental conditions. How bacteria optimize regulatory circuitries is crucial to understand bacterial adaptation. Here, we analyzed the experimental evolution of the plant pathogen Ralstonia solanacearum into legume symbionts after the transfer of a natural plasmid encoding the essential mutualistic genes. We showed that the Phc quorum sensing system required for the virulence of the ancestral bacterium was reconfigured to improve intracellular infection of root nodules induced by evolved Ralstonia A single mutation in either the PhcB autoinducer synthase or the PhcQ regulator of the sensory cascade tuned the kinetics of activation of the central regulator PhcA in response to cell density so that the minimal stimulatory concentration of autoinducers needed for a given response was increased. Yet, a change in the expression of a PhcA target gene was observed in infection threads progressing in root hairs, suggesting early programming for the late accommodation of bacteria in nodule cells. Moreover, this delayed switch to the quorum sensing mode decreased the pathogenicity of the ancestral strain, illustrating the functional plasticity of regulatory systems and showing how a small modulation in signal response can produce drastic changes in bacterial lifestyle.IMPORTANCE Rhizobia are soil bacteria from unrelated genera able to form a mutualistic relationship with legumes. Bacteria induce the formation of root nodules, invade nodule cells, and fix nitrogen to the benefit of the plant. Rhizobial lineages emerged from the horizontal transfer of essential symbiotic genes followed by genome remodeling to activate and/or optimize the acquired symbiotic potential. This evolutionary scenario was replayed in a laboratory evolution experiment in which the plant pathogen Ralstonia solanacearum successively evolved the capacities to nodulate Mimosa pudica and poorly invade, then massively invade, nodule cells. In some lines, the improvement of intracellular infection was achieved by mutations modulating a quorum sensing regulatory system of the ancestral strain. This modulation that affects the activity of a central regulator during the earliest stages of symbiosis has a huge impact on late stages of symbiosis. This work showed that regulatory rewiring is the main driver of this pathogeny-symbiosis transition.
Collapse
|
65
|
Wang X, Wei Z, Yang K, Wang J, Jousset A, Xu Y, Shen Q, Friman VP. Phage combination therapies for bacterial wilt disease in tomato. Nat Biotechnol 2019; 37:1513-1520. [PMID: 31792408 DOI: 10.1038/s41587-019-0328-3] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 10/28/2019] [Indexed: 12/21/2022]
Abstract
Bacteriophages have been proposed as an alternative to pesticides to kill bacterial pathogens of crops. However, the efficacy of phage biocontrol is variable and poorly understood in natural rhizosphere microbiomes. We studied biocontrol efficacy of different phage combinations on Ralstonia solanacearum infection in tomato. Increasing the number of phages in combinations decreased the incidence of disease by up to 80% in greenhouse and field experiments during a single crop season. The decreased incidence of disease was explained by a reduction in pathogen density and the selection for phage-resistant but slow-growing pathogen strains, together with enrichment for bacterial species that were antagonistic toward R. solanacearum. Phage treatment did not affect the existing rhizosphere microbiota. Specific phage combinations have potential as precision tools to control plant pathogenic bacteria.
Collapse
Affiliation(s)
- Xiaofang Wang
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-Based Fertilizers, Nanjing Agricultural University, Weigang, Nanjing, China
| | - Zhong Wei
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-Based Fertilizers, Nanjing Agricultural University, Weigang, Nanjing, China.
| | - Keming Yang
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-Based Fertilizers, Nanjing Agricultural University, Weigang, Nanjing, China
| | - Jianing Wang
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-Based Fertilizers, Nanjing Agricultural University, Weigang, Nanjing, China
| | - Alexandre Jousset
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-Based Fertilizers, Nanjing Agricultural University, Weigang, Nanjing, China.,Institute of Environmental Biology, Ecology and Biodiversity, Utrecht University, Utrecht, the Netherlands
| | - Yangchun Xu
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-Based Fertilizers, Nanjing Agricultural University, Weigang, Nanjing, China
| | - Qirong Shen
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-Based Fertilizers, Nanjing Agricultural University, Weigang, Nanjing, China.
| | - Ville-Petri Friman
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-Based Fertilizers, Nanjing Agricultural University, Weigang, Nanjing, China. .,Department of Biology, University of York, York, UK.
| |
Collapse
|
66
|
Hayashi K, Senuma W, Kai K, Kiba A, Ohnishi K, Hikichi Y. Major exopolysaccharide, EPS I, is associated with the feedback loop in the quorum sensing of Ralstonia solanacearum strain OE1-1. MOLECULAR PLANT PATHOLOGY 2019; 20:1740-1747. [PMID: 31560834 PMCID: PMC6859485 DOI: 10.1111/mpp.12870] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The Gram-negative soil-borne bacterium Ralstonia solanacearum first infects roots of host plants and then invades xylem vessels. In xylem vessels, the bacteria grow vigorously and produce exopolysaccharides (EPSs) to cause a wilt symptom on host plants. The EPSs are thus the main virulence factors of R. solanacearum. The strain OE1-1 of R. solanacearum produces methyl 3-hydroxymyristate as a quorum-sensing (QS) signal, and senses this QS signal, activating QS. The QS-activated LysR-type transcriptional regulator PhcA induces the production of virulence-related metabolites including ralfuranone and the major EPS, EPS I. To elucidate the function of EPS I, the transcriptomes of R. solanacearum strains were analysed using RNA sequencing technology. The expression of 97.2% of the positively QS-regulated genes was down-regulated in the epsB-deleted mutant ΔepsB, which lost its EPS I productivity. Furthermore, expression of 98.0% of the negatively QS-regulated genes was up-regulated in ΔepsB. The deficiency to produce EPS I led to a significantly suppressed ralfuranone productivity and significantly enhanced swimming motility, which are suppressed by QS, but did not affect the expression levels of phcA and phcB, which encode a methyltransferase required for methyl 3-hydroxymyristate production. Overall, QS-dependently produced EPS I may be associated with the feedback loop of QS.
Collapse
Affiliation(s)
- Kazusa Hayashi
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuKochi783‐8502Japan
- Present address:
Kochi Prefectural Agriculture Research CenterNankokuKochi783‐0023Japan
| | - Wakana Senuma
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuKochi783‐8502Japan
| | - Kenji Kai
- Graduate School of Life and Environmental SciencesOsaka Prefecture UniversitySakaiOsaka599‐8531Japan
| | - Akinori Kiba
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuKochi783‐8502Japan
| | - Kouhei Ohnishi
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuKochi783‐8502Japan
| | - Yasufumi Hikichi
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuKochi783‐8502Japan
| |
Collapse
|
67
|
Sharma A, Sharma D, Verma SK. Zinc binding proteome of a phytopathogen Xanthomonas translucens pv. undulosa. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190369. [PMID: 31598288 PMCID: PMC6774946 DOI: 10.1098/rsos.190369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/21/2019] [Indexed: 05/15/2023]
Abstract
Xanthomonas translucens pv. undulosa (Xtu) is a proteobacteria which causes bacterial leaf streak (BLS) or bacterial chaff disease in wheat and barley. The constant competition for zinc (Zn) metal nutrients contributes significantly in plant-pathogen interactions. In this study, we have employed a systematic in silico approach to study the Zn-binding proteins of Xtu. From the whole proteome of Xtu, we have identified approximately 7.9% of proteins having Zn-binding sequence and structural motifs. Further, 115 proteins were found homologous to plant-pathogen interaction database. Among these 115 proteins, 11 were predicted as putative secretory proteins. The functional diversity in Zn-binding proteins was revealed by functional domain, gene ontology and subcellular localization analysis. The roles of Zn-binding proteins were found to be varied in the range from metabolism, proteolysis, protein biosynthesis, transport, cell signalling, protein folding, transcription regulation, DNA repair, response to oxidative stress, RNA processing, antimicrobial resistance, DNA replication and DNA integration. This study provides preliminary information on putative Zn-binding proteins of Xtu which may further help in designing new metal-based antimicrobial agents for controlling BLS and bacterial chaff infections on staple crops.
Collapse
|
68
|
Cui Z, Yang CH, Kharadi RR, Yuan X, Sundin GW, Triplett LR, Wang J, Zeng Q. Cell-length heterogeneity: a population-level solution to growth/virulence trade-offs in the plant pathogen Dickeya dadantii. PLoS Pathog 2019; 15:e1007703. [PMID: 31381590 PMCID: PMC6695200 DOI: 10.1371/journal.ppat.1007703] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/15/2019] [Accepted: 06/30/2019] [Indexed: 12/19/2022] Open
Abstract
Necrotrophic plant pathogens acquire nutrients from dead plant cells, which requires the disintegration of the plant cell wall and tissue structures by the pathogen. Infected plants lose tissue integrity and functional immunity as a result, exposing the nutrient rich, decayed tissues to the environment. One challenge for the necrotrophs to successfully cause secondary infection (infection spread from an initially infected plant to the nearby uninfected plants) is to effectively utilize nutrients released from hosts towards building up a large population before other saprophytes come. In this study, we observed that the necrotrophic pathogen Dickeya dadantii exhibited heterogeneity in bacterial cell length in an isogenic population during infection of potato tuber. While some cells were regular rod-shape (<10μm), the rest elongated into filamentous cells (>10μm). Short cells tended to occur at the interface of healthy and diseased tissues, during the early stage of infection when active attacking and killing is occurring, while filamentous cells tended to form at a later stage of infection. Short cells expressed all necessary virulence factors and motility, whereas filamentous cells did not engage in virulence, were non-mobile and more sensitive to environmental stress. However, compared to the short cells, the filamentous cells displayed upregulated metabolic genes and increased growth, which may benefit the pathogens to build up a large population necessary for the secondary infection. The segregation of the two subpopulations was dependent on differential production of the alarmone guanosine tetraphosphate (ppGpp). When exposed to fresh tuber tissues or freestanding water, filamentous cells quickly transformed to short virulent cells. The pathogen adaptation of cell length heterogeneity identified in this study presents a model for how some necrotrophs balance virulence and vegetative growth to maximize fitness during infection. Virulence and vegetative growth are two distinct lifestyles in pathogenic bacteria. Although virulence factors are critical for pathogens to successfully cause infections, producing these factors is costly and imposes growth penalty to the pathogen. Although each single bacterial cell exists in one lifestyle or the other at any moment, we demonstrated in this study that a bacterial population could accomplish the two functions simultaneously by maintaining subpopulations of cells in each of the two lifestyles. During the invasion of potato tuber, the soft rot pathogen Dickeya dadantii formed two distinct subpopulations characterized by their cell morphology. The population consisting of short cells actively produced virulence factors to break down host tissues, whereas the other population, consisting of filamentous cells, was only engaged in vegetative growth and was non-virulent. We hypothesize that this phenotypic heterogeneity allows D. dadantii to break down plant tissues and release nutrients, while efficiently utilizing nutrients needed to build up a large pathogen population at the same time. Our study provides insights into how phenotypic heterogeneity could grant bacteria abilities to “multi-task” distinct functions as a population.
Collapse
Affiliation(s)
- Zhouqi Cui
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, United States of America
| | - Ching-Hong Yang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Roshni R. Kharadi
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, United States of America
| | - Xiaochen Yuan
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - George W. Sundin
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, United States of America
| | - Lindsay R. Triplett
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, United States of America
| | - Jie Wang
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Quan Zeng
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
69
|
Ishikawa Y, Murai Y, Sakata M, Mori S, Matsuo S, Senuma W, Ohnishi K, Hikichi Y, Kai K. Activation of Ralfuranone/Ralstonin Production by Plant Sugars Functions in the Virulence of Ralstonia solanacearum. ACS Chem Biol 2019; 14:1546-1555. [PMID: 31246411 DOI: 10.1021/acschembio.9b00301] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Plant pathogenic bacteria possess sophisticated mechanisms to detect the presence of host plants by sensing host-derived compounds. Ralstonia solanacearum, the causative agent of bacterial wilt on solanaceous plants, employs quorum sensing to control the production of the secondary metabolite ralfuranones/ralstonins, which have been suggested to be involved in virulence. Here, we report that d-galactose and d-glucose, plant sugars, activate the production of ralfuranones/ralstonins in R. solanacearum. As a result, two new derivatives, ralfuranone M (1) and ralstonin C (2), were found in the culture extracts, and their structures were elucidated by spectroscopic and chemical methods. Ralstonin C (2) is a cyclic lipopeptide containing a unique fatty acid, (2S,3S,Z)-3-amino-2-hydroxyicos-13-enoic acid, whereas ralfuranone M (1) has a common aryl-furanone structure with other ralfuranones. d-Galactose and d-glucose activated the expression of the biosynthetic ralfuranone/ralstonin genes and in part became the biosynthetic source of ralfuranones/ralstonins. Ralfuranones and ralstonins were detected from the xylem fluid of the infected tomato plants, and their production-deficient mutants exhibited reduced virulence on tomato and tobacco plants. Taken together, these results suggest that activation of ralfuranone/ralstonin production by host sugars functions in R. solanacearum virulence.
Collapse
Affiliation(s)
- Yoko Ishikawa
- Graduate School of Life and Environmental Sciences , Osaka Prefecture University , 1-1 Gakuen-cho , Naka-ku, Sakai , Osaka 599-8531 , Japan
| | - Yuta Murai
- Graduate School of Life and Environmental Sciences , Osaka Prefecture University , 1-1 Gakuen-cho , Naka-ku, Sakai , Osaka 599-8531 , Japan
| | - Megumi Sakata
- Graduate School of Life and Environmental Sciences , Osaka Prefecture University , 1-1 Gakuen-cho , Naka-ku, Sakai , Osaka 599-8531 , Japan
| | - Shoko Mori
- Bioorganic Research Institute , Suntory Foundation for Life Sciences , 8-1-1 Seikadai, Seika-cho , Soraku-gun, Kyoto 619-0284 , Japan
| | - Shoma Matsuo
- Graduate School of Life and Environmental Sciences , Osaka Prefecture University , 1-1 Gakuen-cho , Naka-ku, Sakai , Osaka 599-8531 , Japan
| | - Wakana Senuma
- Laboratory of Plant Pathology and Biotechnology , Kochi University , 200 Otsu, Monobe , Nanko-ku, Kochi 783-8502 , Japan
| | - Kouhei Ohnishi
- Research Institute of Molecular Genetics , Kochi University , 200 Otsu, Monobe , Nanko-ku, Kochi 783-8502 , Japan
| | - Yasufumi Hikichi
- Laboratory of Plant Pathology and Biotechnology , Kochi University , 200 Otsu, Monobe , Nanko-ku, Kochi 783-8502 , Japan
| | - Kenji Kai
- Graduate School of Life and Environmental Sciences , Osaka Prefecture University , 1-1 Gakuen-cho , Naka-ku, Sakai , Osaka 599-8531 , Japan
| |
Collapse
|
70
|
Perrier A, Barlet X, Rengel D, Prior P, Poussier S, Genin S, Guidot A. Spontaneous mutations in a regulatory gene induce phenotypic heterogeneity and adaptation of Ralstonia solanacearum to changing environments. Environ Microbiol 2019; 21:3140-3152. [PMID: 31209989 DOI: 10.1111/1462-2920.14717] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 11/28/2022]
Abstract
An evolution experiment with the bacterial plant pathogen Ralstonia solanacearum revealed that several adaptive mutations conferring enhanced fitness in plants arose in the efpR gene encoding a regulator of virulence and metabolic functions. In this study, we found that an efpR mutant systematically displays colonies with two morphotypes: the type S ('smooth', similar to the wild type) and the type EV ('efpR variant'). We demonstrated that the efpH gene, a homologue of efpR, plays a key role in the control of phenotypic heterogeneity, the ΔefpR-ΔefpH double mutant being stably locked into the EV type. Using mixed infection assays, we demonstrated that the type EV is metabolically more proficient than the type S and displays fitness gain in specific environments, whereas the type S has a better fitness into the plant environment. We provide evidence that this efpR-dependent phenotypic heterogeneity is a general feature of strains of the R. solanacearum species complex and could occur in natural conditions. This study highlights the potential role of phenotypic heterogeneity in this plant pathogen as an adaptive trait to changing environments.
Collapse
Affiliation(s)
- Anthony Perrier
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Xavier Barlet
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - David Rengel
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Philippe Prior
- UMR, Peuplements Végétaux et Bioagresseurs en Milieu Tropical, INRA, Saint-Pierre, Réunion, France
| | - Stéphane Poussier
- UMR, Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Université de la Réunion, Saint-Pierre, Réunion, France
| | - Stéphane Genin
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Alice Guidot
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| |
Collapse
|
71
|
Giri S, Waschina S, Kaleta C, Kost C. Defining Division of Labor in Microbial Communities. J Mol Biol 2019; 431:4712-4731. [PMID: 31260694 DOI: 10.1016/j.jmb.2019.06.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 06/13/2019] [Accepted: 06/19/2019] [Indexed: 11/15/2022]
Abstract
In order to survive and reproduce, organisms must perform a multitude of tasks. However, trade-offs limit their ability to allocate energy and resources to all of these different processes. One strategy to solve this problem is to specialize in some traits and team up with other organisms that can help by providing additional, complementary functions. By reciprocally exchanging metabolites and/or services in this way, both parties benefit from the interaction. This phenomenon, which has been termed functional specialization or division of labor, is very common in nature and exists on all levels of biological organization. Also, microorganisms have evolved different types of synergistic interactions. However, very often, it remains unclear whether or not a given example represents a true case of division of labor. Here we aim at filling this gap by providing a list of criteria that clearly define division of labor in microbial communities. Furthermore, we propose a set of diagnostic experiments to verify whether a given interaction fulfills these conditions. In contrast to the common use of the term, our analysis reveals that both intraspecific and interspecific interactions meet the criteria defining division of labor. Moreover, our analysis identified non-cooperators of intraspecific public goods interactions as growth specialists that divide labor with conspecific producers, rather than being social parasites. By providing a conceptual toolkit, our work will help to unambiguously identify cases of division of labor and stimulate more detailed investigations of this important and widespread type of inter-microbial interaction.
Collapse
Affiliation(s)
- Samir Giri
- Department of Ecology, School of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Silvio Waschina
- Research Group Medical Systems Biology, Institute for Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Christoph Kaleta
- Research Group Medical Systems Biology, Institute for Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Christian Kost
- Department of Ecology, School of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany.
| |
Collapse
|
72
|
Castillo JA, Agathos SN. A genome-wide scan for genes under balancing selection in the plant pathogen Ralstonia solanacearum. BMC Evol Biol 2019; 19:123. [PMID: 31208326 PMCID: PMC6580516 DOI: 10.1186/s12862-019-1456-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/10/2019] [Indexed: 02/07/2023] Open
Abstract
Background Plant pathogens are under significant selective pressure by the plant host. Consequently, they are expected to have adapted to this condition or contribute to evading plant defenses. In order to acquire long-term fitness, plant bacterial pathogens are usually forced to maintain advantageous genetic diversity in populations. This strategy ensures that different alleles in the pathogen’s gene pool are maintained in a population at frequencies larger than expected under neutral evolution. This selective process, known as balancing selection, is the subject of this work in the context of a common bacterial phytopathogen. We performed a genome-wide scan of Ralstonia solanacearum species complex, an aggressive plant bacterial pathogen that shows broad host range and causes a devastating disease called ‘bacterial wilt’. Results Using a sliding window approach, we analyzed 57 genomes from three phylotypes of the R. solanacearum species complex to detect signatures of balancing selection. A total of 161 windows showed extreme values in three summary statistics of population genetics: Tajima’s D, θw and Fu & Li’s D*. We discarded any confounding effects due to demographic events by means of coalescent simulations of genetic data. The prospective windows correspond to 78 genes with known function that map in any of the two main replicons (1.7% of total number of genes). The candidate genes under balancing selection are related to primary metabolism and other basal activities (51.3%) or directly associated to virulence (48.7%), the latter being involved in key functions targeted to dismantle plant defenses or to participate in critical stages in the pathogenic process. Conclusions We identified various genes under balancing selection that play a significant role in basic metabolism as well as in virulence of the R. solanacearum species complex. These genes are useful to understand and monitor the evolution of bacterial pathogen populations and emerge as potential candidates for future treatments to induce specific plant immune responses. Electronic supplementary material The online version of this article (10.1186/s12862-019-1456-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- José A Castillo
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San Jose s/n and Proyecto Yachay, Urcuquí, Ecuador.
| | - Spiros N Agathos
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San Jose s/n and Proyecto Yachay, Urcuquí, Ecuador
| |
Collapse
|
73
|
Abstract
This essay is written from the vantage point of the microbial world. While the focus of much thought in the microbial pathogenesis and infectious diseases fields has been on the impact of host-microbe interaction on the host, here we ask questions about what happens to the microbe. This essay is written from the vantage point of the microbial world. While the focus of much thought in the microbial pathogenesis and infectious diseases fields has been on the impact of host-microbe interaction on the host, here we ask questions about what happens to the microbe. What are the costs and benefits for microbes of having the capacity for virulence? Our exploration of this topic leads us to conclude that virulence confers very few benefits for microbes, unless disease is necessary for microbial survival through host-to-host spread. In fact, the capacity for virulence is often fraught with risk for microbes, including host dependence and the threat of extinction. The costs of virulence may explain why, relative to their enormous numbers in nature, very few microbes are actually associated with human and animal disease.
Collapse
|
74
|
Hu X, Zhao Z, Zhuo T, Fan X, Zou H. The RSc0454-Encoded FAD-Linked Oxidase Is Indispensable for Pathogenicity in Ralstonia solanacearum GMI1000. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:697-707. [PMID: 30540527 DOI: 10.1094/mpmi-08-18-0224-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ralstonia solanacearum is the causal agent of bacterial wilt disease. Here, we report that a large FAD-linked oxidase encoded by RSc0454 in GMI1000 is required for pathogenicity. The FAD-linked oxidase encoded by RSc0454 is composed of 1,345 amino acids, including DUF3683, lactate dehydrogenase (LDH), and succinate dehydrogenase (SDH) domains. The RSc0454 protein showed both LDH and SDH activities. To investigate its role in pathogenicity, a deletion mutant of the RSc0454 gene was constructed in GMI1000, which was impaired in its ability to cause bacterial wilt disease in tomato. A single DUF3683, LDH, or SDH domain was insufficient to restore bacterial pathogenicity. Mutagenesis of the RSc0454 gene did not affect growth rate but caused cell aggregation at the bottom of the liquid nutrient medium, which was reversed by exogenous applications of lactate, fumarate, pyruvate, and succinate. qRT-PCR and promoter LacZ fusion experiments demonstrated that RSc0454 gene transcription was induced by lactate and fumarate (both substrates of LDH). Compared with the downregulation of the succinate dehydrogenase gene sdhBADC and the lactate dehydrogenase gene ldh, RSc0454 gene transcription was enhanced in planta. This suggests that the oxidase encoded by RSc0454 was involved in a redox balance, which is in line with the different living conditions of R. solanacearum.
Collapse
Affiliation(s)
- Xun Hu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhiwen Zhao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tao Zhuo
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaojing Fan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huasong Zou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
75
|
Zoledowska S, Presta L, Fondi M, Decorosi F, Giovannetti L, Mengoni A, Lojkowska E. Metabolic Modeling of Pectobacterium parmentieri SCC3193 Provides Insights into Metabolic Pathways of Plant Pathogenic Bacteria. Microorganisms 2019; 7:E101. [PMID: 30959803 PMCID: PMC6518042 DOI: 10.3390/microorganisms7040101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 03/26/2019] [Accepted: 04/02/2019] [Indexed: 12/17/2022] Open
Abstract
Understanding plant⁻microbe interactions is crucial for improving plants' productivity and protection. Constraint-based metabolic modeling is one of the possible ways to investigate the bacterial adaptation to different ecological niches and may give insights into the metabolic versatility of plant pathogenic bacteria. We reconstructed a raw metabolic model of the emerging plant pathogenic bacterium Pectobacterium parmentieri SCC3193 with the use of KBase. The model was curated by using inParanoind and phenotypic data generated with the use of the OmniLog system. Metabolic modeling was performed through COBRApy Toolbox v. 0.10.1. The curated metabolic model of P. parmentieri SCC3193 is highly reliable, as in silico obtained results overlapped up to 91% with experimental data on carbon utilization phenotypes. By mean of flux balance analysis (FBA), we predicted the metabolic adaptation of P. parmentieri SCC3193 to two different ecological niches, relevant for the persistence and plant colonization by this bacterium: soil and the rhizosphere. We performed in silico gene deletions to predict the set of essential core genes for this bacterium to grow in such environments. We anticipate that our metabolic model will be a valuable element for defining a set of metabolic targets to control infection and spreading of this plant pathogen.
Collapse
Affiliation(s)
- Sabina Zoledowska
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 58 Abrahama Street, 80-307 Gdansk, Poland.
| | - Luana Presta
- Department of Biology, University of Florence, via Madonna del Piano 6, Sesto Fiorentino, 50019 Florence, Italy.
| | - Marco Fondi
- Department of Biology, University of Florence, via Madonna del Piano 6, Sesto Fiorentino, 50019 Florence, Italy.
| | - Francesca Decorosi
- Department of Agri-food Production and Environmental Sciences, University of Florence, Piazzale delle Cascine 18, 50144 Florence, Italy.
| | - Luciana Giovannetti
- Department of Agri-food Production and Environmental Sciences, University of Florence, Piazzale delle Cascine 18, 50144 Florence, Italy.
| | - Alessio Mengoni
- Department of Biology, University of Florence, via Madonna del Piano 6, Sesto Fiorentino, 50019 Florence, Italy.
| | - Ewa Lojkowska
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 58 Abrahama Street, 80-307 Gdansk, Poland.
| |
Collapse
|
76
|
Peyraud R, Mbengue M, Barbacci A, Raffaele S. Intercellular cooperation in a fungal plant pathogen facilitates host colonization. Proc Natl Acad Sci U S A 2019; 116:3193-3201. [PMID: 30728304 PMCID: PMC6386666 DOI: 10.1073/pnas.1811267116] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cooperation is associated with major transitions in evolution such as the emergence of multicellularity. It is central to the evolution of many complex traits in nature, including growth and virulence in pathogenic bacteria. Whether cells of multicellular parasites function cooperatively during infection remains, however, largely unknown. Here, we show that hyphal cells of the fungal pathogen Sclerotinia sclerotiorum reprogram toward division of labor to facilitate the colonization of host plants. Using global transcriptome sequencing, we reveal that gene expression patterns diverge markedly in cells at the center and apex of hyphae during Arabidopsis thaliana colonization compared with in vitro growth. We reconstructed a genome-scale metabolic model for S. sclerotiorum and used flux balance analysis to demonstrate metabolic heterogeneity supporting division of labor between hyphal cells. Accordingly, continuity between the central and apical compartments of invasive hyphae was required for optimal growth in planta Using a multicell model of fungal hyphae, we show that this cooperative functioning enhances fungal growth predominantly during host colonization. Our work identifies cooperation in fungal hyphae as a mechanism emerging at the multicellular level to support host colonization and virulence.
Collapse
Affiliation(s)
- Rémi Peyraud
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Institut National de la Recherche Agronomique (INRA), CNRS, Université de Toulouse, 31326 Castanet-Tolosan, France
| | - Malick Mbengue
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Institut National de la Recherche Agronomique (INRA), CNRS, Université de Toulouse, 31326 Castanet-Tolosan, France
| | - Adelin Barbacci
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Institut National de la Recherche Agronomique (INRA), CNRS, Université de Toulouse, 31326 Castanet-Tolosan, France
| | - Sylvain Raffaele
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Institut National de la Recherche Agronomique (INRA), CNRS, Université de Toulouse, 31326 Castanet-Tolosan, France
| |
Collapse
|
77
|
Yang L, Yurkovich JT, King ZA, Palsson BO. Modeling the multi-scale mechanisms of macromolecular resource allocation. Curr Opin Microbiol 2018; 45:8-15. [PMID: 29367175 PMCID: PMC6419967 DOI: 10.1016/j.mib.2018.01.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 12/16/2022]
Abstract
As microbes face changing environments, they dynamically allocate macromolecular resources to produce a particular phenotypic state. Broad 'omics' data sets have revealed several interesting phenomena regarding how the proteome is allocated under differing conditions, but the functional consequences of these states and how they are achieved remain open questions. Various types of multi-scale mathematical models have been used to elucidate the genetic basis for systems-level adaptations. In this review, we outline several different strategies by which microbes accomplish resource allocation and detail how mathematical models have aided in our understanding of these processes. Ultimately, such modeling efforts have helped elucidate the principles of proteome allocation and hold promise for further discovery.
Collapse
Affiliation(s)
- Laurence Yang
- Bioengineering Department, University of California, San Diego, La Jolla, CA, USA.
| | - James T Yurkovich
- Bioengineering Department, University of California, San Diego, La Jolla, CA, USA; Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA
| | - Zachary A King
- Bioengineering Department, University of California, San Diego, La Jolla, CA, USA
| | - Bernhard O Palsson
- Bioengineering Department, University of California, San Diego, La Jolla, CA, USA; Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
78
|
Khokhani D, Tran TM, Lowe-Power TM, Allen C. Plant Assays for Quantifying Ralstonia solanacearum Virulence. Bio Protoc 2018; 8:e3028. [PMID: 34395814 DOI: 10.21769/bioprotoc.3028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 12/15/2022] Open
Abstract
Virulence assays are powerful tools to study microbial pathogenesis in vivo. Good assays track disease development and, coupled with targeted mutagenesis, can identify pathogen virulence factors. Disease development in plants is extremely sensitive to environmental factors such as temperature, atmospheric humidity, and soil water level, so it can be challenging to standardize conditions to achieve consistent results. Here, we present optimized and validated experimental conditions and analysis methods for nine assays that measure specific aspects of virulence in the phytopathogenic bacterium Ralstonia solanacearum, using tomato as the model host plant.
Collapse
Affiliation(s)
- Devanshi Khokhani
- Department of Bacteriology, University of Wisconsin-Madison, Madison, USA
| | - Tuan Minh Tran
- School of Biological Sciences, Nanyang Technological University, Singapore
| | | | - Caitilyn Allen
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, USA
| |
Collapse
|
79
|
Machado D, Andrejev S, Tramontano M, Patil KR. Fast automated reconstruction of genome-scale metabolic models for microbial species and communities. Nucleic Acids Res 2018; 46:7542-7553. [PMID: 30192979 PMCID: PMC6125623 DOI: 10.1093/nar/gky537] [Citation(s) in RCA: 364] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/17/2018] [Accepted: 05/29/2018] [Indexed: 12/26/2022] Open
Abstract
Genome-scale metabolic models are instrumental in uncovering operating principles of cellular metabolism, for model-guided re-engineering, and unraveling cross-feeding in microbial communities. Yet, the application of genome-scale models, especially to microbial communities, is lagging behind the availability of sequenced genomes. This is largely due to the time-consuming steps of manual curation required to obtain good quality models. Here, we present an automated tool, CarveMe, for reconstruction of species and community level metabolic models. We introduce the concept of a universal model, which is manually curated and simulation ready. Starting with this universal model and annotated genome sequences, CarveMe uses a top-down approach to build single-species and community models in a fast and scalable manner. We show that CarveMe models perform closely to manually curated models in reproducing experimental phenotypes (substrate utilization and gene essentiality). Additionally, we build a collection of 74 models for human gut bacteria and test their ability to reproduce growth on a set of experimentally defined media. Finally, we create a database of 5587 bacterial models and demonstrate its potential for fast generation of microbial community models. Overall, CarveMe provides an open-source and user-friendly tool towards broadening the use of metabolic modeling in studying microbial species and communities.
Collapse
Affiliation(s)
- Daniel Machado
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Sergej Andrejev
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Melanie Tramontano
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Kiran Raosaheb Patil
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| |
Collapse
|
80
|
Bousset L, Sprague SJ, Thrall PH, Barrett LG. Spatio-temporal connectivity and host resistance influence evolutionary and epidemiological dynamics of the canola pathogen Leptosphaeria maculans. Evol Appl 2018; 11:1354-1370. [PMID: 30151045 PMCID: PMC6099830 DOI: 10.1111/eva.12630] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/07/2018] [Indexed: 11/27/2022] Open
Abstract
Genetic, physiological and physical homogenization of agricultural landscapes creates ideal environments for plant pathogens to proliferate and rapidly evolve. Thus, a critical challenge in plant pathology and epidemiology is to design durable and effective strategies to protect cropping systems from damage caused by pathogens. Theoretical studies suggest that spatio-temporal variation in the diversity and distribution of resistant hosts across agricultural landscapes may have strong effects on the epidemiology and evolutionary potential of crop pathogens. However, we lack empirical tests of spatio-temporal deployment of host resistance to pathogens can be best used to manage disease epidemics and disrupt pathogen evolutionary dynamics in real-world systems. In a field experiment, we simulated how differences in Brassica napus resistance deployment strategies and landscape connectivity influence epidemic severity and Leptosphaeria maculans pathogen population composition. Host plant resistance, spatio-temporal connectivity [stubble loads], and genetic connectivity of the inoculum source [composition of canola stubble mixtures] jointly impacted epidemiology (disease severity) and pathogen evolution (population composition). Changes in population composition were consistent with directional selection for the ability to infect the host (infectivity), leading to changes in pathotype (multilocus phenotypes) and infectivity frequencies. We repeatedly observed decreases in the frequency of unnecessary infectivity, suggesting that carrying multiple infectivity genes is costly for the pathogen. From an applied perspective, our results indicate that varying resistance genes in space and time can be used to help control disease, even when resistance has already been overcome. Furthermore, our approach extends our ability to test not only for the efficacy of host varieties in a given year, but also for durability over multiple cropping seasons, given variation in the combination of resistance genes deployed.
Collapse
Affiliation(s)
- Lydia Bousset
- CSIRO Agriculture & FoodCanberraACTAustralia
- UMR1349 IGEPPINRALe RheuFrance
| | | | | | | |
Collapse
|
81
|
Wei Y, Caceres‐Moreno C, Jimenez‐Gongora T, Wang K, Sang Y, Lozano‐Duran R, Macho AP. The Ralstonia solanacearum csp22 peptide, but not flagellin-derived peptides, is perceived by plants from the Solanaceae family. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1349-1362. [PMID: 29265643 PMCID: PMC5999195 DOI: 10.1111/pbi.12874] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/10/2017] [Accepted: 12/12/2017] [Indexed: 05/20/2023]
Abstract
Ralstonia solanacearum, the causal agent of bacterial wilt disease, is considered one of the most destructive bacterial pathogens due to its lethality, unusually wide host range, persistence and broad geographical distribution. In spite of the extensive research on plant immunity over the last years, the perception of molecular patterns from R. solanacearum that activate immunity in plants is still poorly understood, which hinders the development of strategies to generate resistance against bacterial wilt disease. The perception of a conserved peptide of bacterial flagellin, flg22, is regarded as paradigm of plant perception of invading bacteria; however, no elicitor activity has been detected for R. solanacearum flg22. Recent reports have shown that other epitopes from flagellin are able to elicit immune responses in specific species from the Solanaceae family, yet our results show that these plants do not perceive any epitope from R. solanacearum flagellin. Searching for elicitor peptides from R. solanacearum, we found several protein sequences similar to the consensus of the elicitor peptide csp22, reported to elicit immunity in specific Solanaceae plants. A R. solanacearum csp22 peptide (csp22Rsol ) was indeed able to trigger immune responses in Nicotiana benthamiana and tomato, but not in Arabidopsis thaliana. Additionally, csp22Rsol treatment conferred increased resistance to R. solanacearum in tomato. Transgenic A. thaliana plants expressing the tomato csp22 receptor (SlCORE) gained the ability to respond to csp22Rsol and became more resistant to R. solanacearum infection. Our results shed light on the mechanisms for perception of R. solanacearum by plants, paving the way for improving current approaches to generate resistance against R. solanacearum.
Collapse
Affiliation(s)
- Yali Wei
- Shanghai Center for Plant Stress BiologyCAS Center for Excellence in Molecular Plant SciencesShanghai Institutes of Biological SciencesChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Carlos Caceres‐Moreno
- Shanghai Center for Plant Stress BiologyCAS Center for Excellence in Molecular Plant SciencesShanghai Institutes of Biological SciencesChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Tamara Jimenez‐Gongora
- Shanghai Center for Plant Stress BiologyCAS Center for Excellence in Molecular Plant SciencesShanghai Institutes of Biological SciencesChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Keke Wang
- Shanghai Center for Plant Stress BiologyCAS Center for Excellence in Molecular Plant SciencesShanghai Institutes of Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Yuying Sang
- Shanghai Center for Plant Stress BiologyCAS Center for Excellence in Molecular Plant SciencesShanghai Institutes of Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Rosa Lozano‐Duran
- Shanghai Center for Plant Stress BiologyCAS Center for Excellence in Molecular Plant SciencesShanghai Institutes of Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Alberto P. Macho
- Shanghai Center for Plant Stress BiologyCAS Center for Excellence in Molecular Plant SciencesShanghai Institutes of Biological SciencesChinese Academy of SciencesShanghaiChina
| |
Collapse
|
82
|
Lowe-Power TM, Khokhani D, Allen C. How Ralstonia solanacearum Exploits and Thrives in the Flowing Plant Xylem Environment. Trends Microbiol 2018; 26:929-942. [PMID: 29941188 DOI: 10.1016/j.tim.2018.06.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/24/2018] [Accepted: 06/04/2018] [Indexed: 10/28/2022]
Abstract
The plant wilt pathogen Ralstonia solanacearum thrives in the water-transporting xylem vessels of its host plants. Xylem is a relatively nutrient-poor, high-flow environment but R. solanacearum succeeds there by tuning its own metabolism and altering xylem sap biochemistry. Flow influences many traits that the bacterium requires for pathogenesis. Most notably, a quorum sensing system mediates the pathogen's major transition from a rapidly dividing early phase that voraciously consumes diverse food sources and avidly adheres to plant surfaces to a slower-growing late phase that can use fewer nutrients but produces virulence factors and disperses effectively. This review discusses recent findings about R. solanacearum pathogenesis in the context of its flowing in planta niche, with emphasis on R. solanacearum metabolism in plants.
Collapse
Affiliation(s)
- Tiffany M Lowe-Power
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, USA; Current address: Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Devanshi Khokhani
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, USA; Current address: Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Caitilyn Allen
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
83
|
Rodenburg SYA, Seidl MF, de Ridder D, Govers F. Genome-wide characterization of Phytophthora infestans metabolism: a systems biology approach. MOLECULAR PLANT PATHOLOGY 2018; 19:1403-1413. [PMID: 28990716 PMCID: PMC6638193 DOI: 10.1111/mpp.12623] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/23/2017] [Accepted: 10/04/2017] [Indexed: 05/18/2023]
Abstract
Genome-scale metabolic models (GEMs) provide a functional view of the complex network of biochemical reactions in the living cell. Initially mainly applied to reconstruct the metabolism of model organisms, the availability of increasingly sophisticated reconstruction methods and more extensive biochemical databases now make it possible to reconstruct GEMs for less well-characterized organisms, and have the potential to unravel the metabolism in pathogen-host systems. Here, we present a GEM for the oomycete plant pathogen Phytophthora infestans as a first step towards an integrative model with its host. We predict the biochemical reactions in different cellular compartments and investigate the gene-protein-reaction associations in this model to obtain an impression of the biochemical capabilities of P. infestans. Furthermore, we generate life stage-specific models to place the transcriptomic changes of the genes encoding metabolic enzymes into a functional context. In sporangia and zoospores, there is an overall down-regulation, most strikingly reflected in the fatty acid biosynthesis pathway. To investigate the robustness of the GEM, we simulate gene deletions to predict which enzymes are essential for in vitro growth. This model is an essential first step towards an understanding of P. infestans and its interactions with plants as a system, which will help to formulate new hypotheses on infection mechanisms and disease prevention.
Collapse
Affiliation(s)
- Sander Y. A. Rodenburg
- Laboratory of PhytopathologyWageningen University, Wageningen 6708 PBthe Netherlands
- Bioinformatics GroupWageningen University, Wageningen 6708 PBthe Netherlands
| | - Michael F. Seidl
- Laboratory of PhytopathologyWageningen University, Wageningen 6708 PBthe Netherlands
| | - Dick de Ridder
- Bioinformatics GroupWageningen University, Wageningen 6708 PBthe Netherlands
| | - Francine Govers
- Laboratory of PhytopathologyWageningen University, Wageningen 6708 PBthe Netherlands
| |
Collapse
|
84
|
Defoirdt T, Mai Anh NT, De Schryver P. Virulence-inhibitory activity of the degradation product 3-hydroxybutyrate explains the protective effect of poly-β-hydroxybutyrate against the major aquaculture pathogen Vibrio campbellii. Sci Rep 2018; 8:7245. [PMID: 29740008 PMCID: PMC5940922 DOI: 10.1038/s41598-018-25385-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/19/2018] [Indexed: 11/23/2022] Open
Abstract
The bacterial storage compound poly-β-hydroxybutyrate, a polymer of the short-chain fatty acid 3-hydroxybutyrate, has been reported to protect various aquatic animals from bacterial disease. In order to obtain a better mechanistic insight, we aimed to (1) investigate whether 3-hydroxybutyrate is released from poly-β-hydroxybutyrate within sterile brine shrimp larvae, (2) determine the impact of 3-hydroxybutyrate on the virulence of Vibrio campbellii to brine shrimp larvae and on its cell density in the shrimp, and (3) determine the impact of this compound on virulence factor production in the pathogen. We detected 3-hydroxybutyrate in poly-β-hydroxybutyrate-fed brine shrimp, resulting in 24 mM 3-hydroxybutyrate in the intestinal tract of shrimp reared in the presence of 1000 mg l-1 poly-β-hydroxybutyrate. We further demonstrate that this concentration of 3-hydroxybutyrate does not affect the growth of V. campbellii, whereas it decreases the production of different virulence factors, including hemolysin, phospholipase and protease activities, and swimming motility. We hypothesize that by affecting all these virulence factors at once, 3-hydroxybutyrate (and thus also poly-β-hydroxybutyrate) can exert a significant impact on the virulence of V. campbellii. This hypothesis was confirmed in a challenge test showing that 3-hydroxybutyrate protected gnotobiotic brine shrimp from pathogenic V. campbellii, without affecting the number of host-associated vibrios.
Collapse
Affiliation(s)
- Tom Defoirdt
- Center for Microbial Ecology and Technology, Ghent University, Coupure Links 653, Ghent, Belgium.
| | - Nguyen Thi Mai Anh
- Laboratory of Aquaculture & Artemia Reference Center, Gent University, Coupure Links 653, Ghent, Belgium
- Research Institue in Aquaculture no 2, Ho Chi Minh City, Vietnam
| | - Peter De Schryver
- Laboratory of Aquaculture & Artemia Reference Center, Gent University, Coupure Links 653, Ghent, Belgium
- INVE Technologies NV, Hoogveld 93, Dendermonde, Belgium
| |
Collapse
|
85
|
Singh N, Phukan T, Sharma PL, Kabyashree K, Barman A, Kumar R, Sonti RV, Genin S, Ray SK. An Innovative Root Inoculation Method to Study Ralstonia solanacearum Pathogenicity in Tomato Seedlings. PHYTOPATHOLOGY 2018; 108:436-442. [PMID: 29182472 DOI: 10.1094/phyto-08-17-0291-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, we report Ralstonia solanacearum pathogenicity in the early stages of tomato seedlings by an innovative root inoculation method. Pathogenicity assays were performed under gnotobiotic conditions in microfuge tubes by employing only 6- to 7-day-old tomato seedlings for root inoculation. Tomato seedlings inoculated by this method exhibited the wilted symptom within 48 h and the virulence assay can be completed in 2 weeks. Colonization of the wilted seedlings by R. solanacearum was confirmed by using gus staining as well as fluorescence microscopy. Using this method, mutants in different virulence genes such as hrpB, phcA, and pilT could be clearly distinguished from wild-type R. solanacearum. The method described here is economic in terms of space, labor, and cost as well as the required quantity of bacterial inoculum. Thus, the newly developed assay is an easy and useful approach for investigating virulence functions of the pathogen at the seedling stage of hosts, and infection under these conditions appears to require pathogenicity mechanisms used by the pathogen for infection of adult plants.
Collapse
Affiliation(s)
- N Singh
- First, second, third, fourth, fifth, sixth, and ninth authors: Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India; seventh author: Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, Andhra Pradesh, India; and eighth author: LIPM, Université de Toulouse, INRA, CNRS, F-31326 Castanet-Tolosan, France
| | - T Phukan
- First, second, third, fourth, fifth, sixth, and ninth authors: Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India; seventh author: Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, Andhra Pradesh, India; and eighth author: LIPM, Université de Toulouse, INRA, CNRS, F-31326 Castanet-Tolosan, France
| | - P L Sharma
- First, second, third, fourth, fifth, sixth, and ninth authors: Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India; seventh author: Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, Andhra Pradesh, India; and eighth author: LIPM, Université de Toulouse, INRA, CNRS, F-31326 Castanet-Tolosan, France
| | - K Kabyashree
- First, second, third, fourth, fifth, sixth, and ninth authors: Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India; seventh author: Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, Andhra Pradesh, India; and eighth author: LIPM, Université de Toulouse, INRA, CNRS, F-31326 Castanet-Tolosan, France
| | - A Barman
- First, second, third, fourth, fifth, sixth, and ninth authors: Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India; seventh author: Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, Andhra Pradesh, India; and eighth author: LIPM, Université de Toulouse, INRA, CNRS, F-31326 Castanet-Tolosan, France
| | - R Kumar
- First, second, third, fourth, fifth, sixth, and ninth authors: Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India; seventh author: Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, Andhra Pradesh, India; and eighth author: LIPM, Université de Toulouse, INRA, CNRS, F-31326 Castanet-Tolosan, France
| | - R V Sonti
- First, second, third, fourth, fifth, sixth, and ninth authors: Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India; seventh author: Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, Andhra Pradesh, India; and eighth author: LIPM, Université de Toulouse, INRA, CNRS, F-31326 Castanet-Tolosan, France
| | - S Genin
- First, second, third, fourth, fifth, sixth, and ninth authors: Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India; seventh author: Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, Andhra Pradesh, India; and eighth author: LIPM, Université de Toulouse, INRA, CNRS, F-31326 Castanet-Tolosan, France
| | - S K Ray
- First, second, third, fourth, fifth, sixth, and ninth authors: Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India; seventh author: Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, Andhra Pradesh, India; and eighth author: LIPM, Université de Toulouse, INRA, CNRS, F-31326 Castanet-Tolosan, France
| |
Collapse
|
86
|
Comparative transcriptomic studies identify specific expression patterns of virulence factors under the control of the master regulator PhcA in the Ralstonia solanacearum species complex. Microb Pathog 2018; 116:273-278. [DOI: 10.1016/j.micpath.2018.01.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 11/20/2022]
|
87
|
Mori Y, Ishikawa S, Ohnishi H, Shimatani M, Morikawa Y, Hayashi K, Ohnishi K, Kiba A, Kai K, Hikichi Y. Involvement of ralfuranones in the quorum sensing signalling pathway and virulence of Ralstonia solanacearum strain OE1-1. MOLECULAR PLANT PATHOLOGY 2018; 19:454-463. [PMID: 28116815 PMCID: PMC6638173 DOI: 10.1111/mpp.12537] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/05/2017] [Accepted: 01/10/2017] [Indexed: 05/02/2023]
Abstract
The soil-borne, plant-pathogenic Ralstonia solanacearum strain OE1-1 produces and secretes methyl 3-hydroxymyristate (3-OH MAME) as a quorum sensing (QS) signal, which contributes to its virulence. A global virulence regulator, PhcA, functioning through the QS system, positively regulates the expression of ralA, which encodes furanone synthase, to produce aryl-furanone secondary metabolites, ralfuranones. A ralfuranone-deficient mutant (ΔralA) is weakly virulent when directly inoculated into tomato xylem vessels. To investigate the functions of ralfuranones, we analysed R. solanacearum transcriptome data generated by RNA sequencing technology. ΔralA expressed phcB, which is associated with 3-OH MAME production, and phcA at levels similar to those in strain OE1-1. In addition, ΔralA exhibited down-regulated expression of more than 90% of the QS positively regulated genes, and up-regulated expression of more than 75% of the QS negatively regulated genes. These results suggest that ralfuranones affect the QS feedback loop. Ralfuranone supplementation restored the ability of ΔralA cells to aggregate. In addition, ralfuranones A and B restored the swimming motility of ΔralA to wild-type levels. However, the application of exogenous ralfuranones did not affect the production of the major exopolysaccharide, EPS I, in ΔralA. Quantitative real-time polymerase chain reaction assays revealed that the deletion of ralA results in the down-regulated expression of vsrAD and vsrBC, which encode a sensor kinase and a response regulator, respectively, in the two-component regulatory systems that influence EPS I production. The application of ralfuranone B restored the expression of these two genes. Overall, our findings indicate that integrated signalling via ralfuranones influences the QS and virulence of R. solanacearum.
Collapse
Affiliation(s)
- Yuka Mori
- Laboratory of Plant Pathology and BiotechnologyKochi University, NankokuKochi783‐8502Japan
| | - Shiho Ishikawa
- Laboratory of Plant Pathology and BiotechnologyKochi University, NankokuKochi783‐8502Japan
| | - Hideyuki Ohnishi
- Graduate School of Life and Environmental SciencesOsaka Prefecture University, SakaiOsaka599‐8531Japan
| | - Mika Shimatani
- Graduate School of Life and Environmental SciencesOsaka Prefecture University, SakaiOsaka599‐8531Japan
| | - Yukino Morikawa
- Laboratory of Plant Pathology and BiotechnologyKochi University, NankokuKochi783‐8502Japan
| | - Kazusa Hayashi
- Laboratory of Plant Pathology and BiotechnologyKochi University, NankokuKochi783‐8502Japan
| | - Kouhei Ohnishi
- Research Institute of Molecular GeneticsKochi University, NankokuKochi783‐8502Japan
| | - Akinori Kiba
- Laboratory of Plant Pathology and BiotechnologyKochi University, NankokuKochi783‐8502Japan
| | - Kenji Kai
- Graduate School of Life and Environmental SciencesOsaka Prefecture University, SakaiOsaka599‐8531Japan
| | - Yasufumi Hikichi
- Laboratory of Plant Pathology and BiotechnologyKochi University, NankokuKochi783‐8502Japan
| |
Collapse
|
88
|
Botero D, Alvarado C, Bernal A, Danies G, Restrepo S. Network Analyses in Plant Pathogens. Front Microbiol 2018; 9:35. [PMID: 29441045 PMCID: PMC5797656 DOI: 10.3389/fmicb.2018.00035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/09/2018] [Indexed: 11/14/2022] Open
Abstract
Even in the age of big data in Biology, studying the connections between the biological processes and the molecular mechanisms behind them is a challenging task. Systems biology arose as a transversal discipline between biology, chemistry, computer science, mathematics, and physics to facilitate the elucidation of such connections. A scenario, where the application of systems biology constitutes a very powerful tool, is the study of interactions between hosts and pathogens using network approaches. Interactions between pathogenic bacteria and their hosts, both in agricultural and human health contexts are of great interest to researchers worldwide. Large amounts of data have been generated in the last few years within this area of research. However, studies have been relatively limited to simple interactions. This has left great amounts of data that remain to be utilized. Here, we review the main techniques in network analysis and their complementary experimental assays used to investigate bacterial-plant interactions. Other host-pathogen interactions are presented in those cases where few or no examples of plant pathogens exist. Furthermore, we present key results that have been obtained with these techniques and how these can help in the design of new strategies to control bacterial pathogens. The review comprises metabolic simulation, protein-protein interactions, regulatory control of gene expression, host-pathogen modeling, and genome evolution in bacteria. The aim of this review is to offer scientists working on plant-pathogen interactions basic concepts around network biology, as well as an array of techniques that will be useful for a better and more complete interpretation of their data.
Collapse
Affiliation(s)
- David Botero
- Laboratory of Mycology and Plant Pathology (LAMFU), Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia.,Grupo de Diseño de Productos y Procesos, Department of Chemical Engineering, Universidad de Los Andes, Bogotá, Colombia.,Grupo de Biología Computacional y Ecología Microbiana, Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| | - Camilo Alvarado
- Laboratory of Mycology and Plant Pathology (LAMFU), Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| | - Adriana Bernal
- Laboratory of Molecular Interactions of Agricultural Microbes, LIMMA, Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| | - Giovanna Danies
- Department of Design, Universidad de Los Andes, Bogotá, Colombia
| | - Silvia Restrepo
- Laboratory of Mycology and Plant Pathology (LAMFU), Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| |
Collapse
|
89
|
Control of primary metabolism by a virulence regulatory network promotes robustness in a plant pathogen. Nat Commun 2018; 9:418. [PMID: 29379078 PMCID: PMC5788922 DOI: 10.1038/s41467-017-02660-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 12/17/2017] [Indexed: 11/09/2022] Open
Abstract
Robustness is a key system-level property of living organisms to maintain their functions while tolerating perturbations. We investigate here how a regulatory network controlling multiple virulence factors impacts phenotypic robustness of a bacterial plant pathogen. We reconstruct a cell-scale model of Ralstonia solanacearum connecting a genome-scale metabolic network, a virulence macromolecule network, and a virulence regulatory network, which includes 63 regulatory components. We develop in silico methods to quantify phenotypic robustness under a broad set of conditions in high-throughput simulation analyses. This approach reveals that the virulence regulatory network exerts a control of the primary metabolism to promote robustness upon infection. The virulence regulatory network plugs into the primary metabolism mainly through the control of genes likely acquired via horizontal gene transfer, which results in a functional overlay with ancestral genes. These results support the view that robustness may be a selected trait that promotes pathogenic fitness upon infection.
Collapse
|
90
|
Exopolysaccharide production in Caulobacter crescentus: A resource allocation trade-off between protection and proliferation. PLoS One 2018; 13:e0190371. [PMID: 29293585 PMCID: PMC5749776 DOI: 10.1371/journal.pone.0190371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 12/13/2017] [Indexed: 01/21/2023] Open
Abstract
Complex and interacting selective pressures can produce bacterial communities with a range of phenotypes. One measure of bacterial success is the ability of cells or populations to proliferate while avoiding lytic phage infection. Resistance against bacteriophage infection can occur in the form of a metabolically expensive exopolysaccharide capsule. Here, we show that in Caulobacter crescentus, presence of an exopolysaccharide capsule provides measurable protection against infection from a lytic paracrystalline S-layer bacteriophage (CR30), but at a metabolic cost that reduces success in a phage-free environment. Carbon flux through GDP-mannose 4,6 dehydratase in different catabolic and anabolic pathways appears to mediate this trade-off. Together, our data support a model in which diversity in bacterial communities may be maintained through variable selection on phenotypes utilizing the same metabolic pathway.
Collapse
|
91
|
Barton IS, Fuqua C, Platt TG. Ecological and evolutionary dynamics of a model facultative pathogen: Agrobacterium and crown gall disease of plants. Environ Microbiol 2018; 20:16-29. [PMID: 29105274 PMCID: PMC5764771 DOI: 10.1111/1462-2920.13976] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 10/20/2017] [Accepted: 10/25/2017] [Indexed: 01/09/2023]
Abstract
Many important pathogens maintain significant populations in highly disparate disease and non-disease environments. The consequences of this environmental heterogeneity in shaping the ecological and evolutionary dynamics of these facultative pathogens are incompletely understood. Agrobacterium tumefaciens, the causative agent for crown gall disease of plants has proven a productive model for many aspects of interactions between pathogens and their hosts and with other microbes. In this review, we highlight how this past work provides valuable context for the use of this system to examine how heterogeneity and transitions between disease and non-disease environments influence the ecology and evolution of facultative pathogens. We focus on several features common among facultative pathogens, such as the physiological remodelling required to colonize hosts from environmental reservoirs and the consequences of competition with host and non-host associated microbiota. In addition, we discuss how the life history of facultative pathogens likely often results in ecological tradeoffs associated with performance in disease and non-disease environments. These pathogens may therefore have different competitive dynamics in disease and non-disease environments and are subject to shifting selective pressures that can result in pathoadaptation or the within-host spread of avirulent phenotypes.
Collapse
Affiliation(s)
- Ian S. Barton
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Clay Fuqua
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Thomas G. Platt
- Division of Biology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
92
|
Lowe-Power TM, Hendrich CG, von Roepenack-Lahaye E, Li B, Wu D, Mitra R, Dalsing BL, Ricca P, Naidoo J, Cook D, Jancewicz A, Masson P, Thomma B, Lahaye T, Michael AJ, Allen C. Metabolomics of tomato xylem sap during bacterial wilt reveals Ralstonia solanacearum produces abundant putrescine, a metabolite that accelerates wilt disease. Environ Microbiol 2017; 20:1330-1349. [PMID: 29215193 DOI: 10.1111/1462-2920.14020] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/29/2017] [Accepted: 12/03/2017] [Indexed: 12/20/2022]
Abstract
Ralstonia solanacearum thrives in plant xylem vessels and causes bacterial wilt disease despite the low nutrient content of xylem sap. We found that R. solanacearum manipulates its host to increase nutrients in tomato xylem sap, enabling it to grow better in sap from infected plants than in sap from healthy plants. Untargeted GC/MS metabolomics identified 22 metabolites enriched in R. solanacearum-infected sap. Eight of these could serve as sole carbon or nitrogen sources for R. solanacearum. Putrescine, a polyamine that is not a sole carbon or nitrogen source for R. solanacearum, was enriched 76-fold to 37 µM in R. solanacearum-infected sap. R. solanacearum synthesized putrescine via a SpeC ornithine decarboxylase. A ΔspeC mutant required ≥ 15 µM exogenous putrescine to grow and could not grow alone in xylem even when plants were treated with putrescine. However, co-inoculation with wildtype rescued ΔspeC growth, indicating R. solanacearum produced and exported putrescine to xylem sap. Intriguingly, treating plants with putrescine before inoculation accelerated wilt symptom development and R. solanacearum growth and systemic spread. Xylem putrescine concentration was unchanged in putrescine-treated plants, so the exogenous putrescine likely accelerated disease indirectly by affecting host physiology. These results indicate that putrescine is a pathogen-produced virulence metabolite.
Collapse
Affiliation(s)
- Tiffany M Lowe-Power
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Connor G Hendrich
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Edda von Roepenack-Lahaye
- Leibniz Institute of Plant Biochemistry, Zentrum für Molekularbiologie der Pflanzen (ZMBP), Universität Tübingen, Tübingen, Germany
| | - Bin Li
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dousheng Wu
- Leibniz Institute of Plant Biochemistry, Zentrum für Molekularbiologie der Pflanzen (ZMBP), Universität Tübingen, Tübingen, Germany
| | - Raka Mitra
- Department of Biology, Carleton College, Northfield, MN 55057, USA
| | - Beth L Dalsing
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Patrizia Ricca
- Leibniz Institute of Plant Biochemistry, Zentrum für Molekularbiologie der Pflanzen (ZMBP), Universität Tübingen, Tübingen, Germany
| | - Jacinth Naidoo
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David Cook
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Amy Jancewicz
- Department of Genetics, University of Wisconsin, Madison, Madison, WI 53706, USA
| | - Patrick Masson
- Department of Genetics, University of Wisconsin, Madison, Madison, WI 53706, USA
| | - Bart Thomma
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Thomas Lahaye
- Leibniz Institute of Plant Biochemistry, Zentrum für Molekularbiologie der Pflanzen (ZMBP), Universität Tübingen, Tübingen, Germany
| | - Anthony J Michael
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Caitilyn Allen
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, WI 53706, USA
| |
Collapse
|
93
|
Capela D, Marchetti M, Clérissi C, Perrier A, Guetta D, Gris C, Valls M, Jauneau A, Cruveiller S, Rocha EPC, Masson-Boivin C. Recruitment of a Lineage-Specific Virulence Regulatory Pathway Promotes Intracellular Infection by a Plant Pathogen Experimentally Evolved into a Legume Symbiont. Mol Biol Evol 2017; 34:2503-2521. [PMID: 28535261 DOI: 10.1093/molbev/msx165] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ecological transitions between different lifestyles, such as pathogenicity, mutualism and saprophytism, have been very frequent in the course of microbial evolution, and often driven by horizontal gene transfer. Yet, how genomes achieve the ecological transition initiated by the transfer of complex biological traits remains poorly known. Here, we used experimental evolution, genomics, transcriptomics and high-resolution phenotyping to analyze the evolution of the plant pathogen Ralstonia solanacearum into legume symbionts, following the transfer of a natural plasmid encoding the essential mutualistic genes. We show that a regulatory pathway of the recipient R. solanacearum genome involved in extracellular infection of natural hosts was reused to improve intracellular symbiosis with the Mimosa pudica legume. Optimization of intracellular infection capacity was gained through mutations affecting two components of a new regulatory pathway, the transcriptional regulator efpR and a region upstream from the RSc0965-0967 genes of unknown functions. Adaptive mutations caused the downregulation of efpR and the over-expression of a downstream regulatory module, the three unknown genes RSc3146-3148, two of which encoding proteins likely associated to the membrane. This over-expression led to important metabolic and transcriptomic changes and a drastic qualitative and quantitative improvement of nodule intracellular infection. In addition, these adaptive mutations decreased the virulence of the original pathogen. The complete efpR/RSc3146-3148 pathway could only be identified in the genomes of the pathogenic R. solanacearum species complex. Our findings illustrate how the rewiring of a genetic network regulating virulence allows a radically different type of symbiotic interaction and contributes to ecological transitions and trade-offs.
Collapse
Affiliation(s)
- Delphine Capela
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Marta Marchetti
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Camille Clérissi
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France.,Microbial Evolutionary Genomics, Institut Pasteur, Paris, France.,CNRS, UMR3525, Paris, France
| | - Anthony Perrier
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Dorian Guetta
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Carine Gris
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Marc Valls
- Department of Genetics, University of Barcelona and Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Edifici CRAG, Campus UAB, Bellaterra, Spain
| | - Alain Jauneau
- Fédération de Recherches Agrobiosciences, Interactions, Biodiversity, Plateforme d'Imagerie TRI, CNRS, UPS, Castanet-Tolosan, France
| | - Stéphane Cruveiller
- CNRS-UMR8030 and Commissariat à l'Energie Atomique et aux Energies Alternatives CEA/DRF/IG/GEN LABGeM, Evry, France
| | - Eduardo P C Rocha
- Microbial Evolutionary Genomics, Institut Pasteur, Paris, France.,CNRS, UMR3525, Paris, France
| | | |
Collapse
|
94
|
A Single Regulator Mediates Strategic Switching between Attachment/Spread and Growth/Virulence in the Plant Pathogen Ralstonia solanacearum. mBio 2017; 8:mBio.00895-17. [PMID: 28951474 PMCID: PMC5615195 DOI: 10.1128/mbio.00895-17] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The PhcA virulence regulator in the vascular wilt pathogen Ralstonia solanacearum responds to cell density via quorum sensing. To understand the timing of traits that enable R. solanacearum to establish itself inside host plants, we created a ΔphcA mutant that is genetically locked in a low-cell-density condition. Comparing levels of gene expression of wild-type R. solanacearum and the ΔphcA mutant during tomato colonization revealed that the PhcA transcriptome includes an impressive 620 genes (>2-fold differentially expressed; false-discovery rate [FDR], ≤0.005). Many core metabolic pathways and nutrient transporters were upregulated in the ΔphcA mutant, which grew faster than the wild-type strain in tomato xylem sap and on dozens of specific metabolites, including 36 found in xylem. This suggests that PhcA helps R. solanacearum to survive in nutrient-poor environmental habitats and to grow rapidly during early pathogenesis. However, after R. solanacearum reaches high cell densities in planta, PhcA mediates a trade-off from maximizing growth to producing costly virulence factors. R. solanacearum infects through roots, and low-cell-density-mode-mimicking ΔphcA cells attached to tomato roots better than the wild-type cells, consistent with their increased expression of several adhesins. Inside xylem vessels, ΔphcA cells formed aberrantly dense mats. Possibly as a result, the mutant could not spread up or down tomato stems as well as the wild type. This suggests that aggregating improves R. solanacearum survival in soil and facilitates infection and that it reduces pathogenic fitness later in disease. Thus, PhcA mediates a second strategic switch between initial pathogen attachment and subsequent dispersal inside the host. PhcA helps R. solanacearum optimally invest resources and correctly sequence multiple steps in the bacterial wilt disease cycle. Ralstonia solanacearum is a destructive soilborne crop pathogen that wilts plants by colonizing their water-transporting xylem vessels. It produces its costly virulence factors only after it has grown to a high population density inside a host. To identify traits that this pathogen needs in other life stages, we studied a mutant that mimics the low-cell-density condition. This mutant (the ΔphcA mutant) cannot sense its own population density. It grew faster than and used many nutrients not available to the wild-type bacterium, including metabolites present in tomato xylem sap. The mutant also attached much better to tomato roots, and yet it failed to spread once it was inside plants because it was trapped in dense mats. Thus, PhcA helps R. solanacearum succeed over the course of its complex life cycle by ensuring avid attachment to plant surfaces and rapid growth early in disease, followed by high virulence and effective dispersal later in disease.
Collapse
|
95
|
Transposon Sequencing Uncovers an Essential Regulatory Function of Phosphoribulokinase for Methylotrophy. Curr Biol 2017; 27:2579-2588.e6. [PMID: 28823675 DOI: 10.1016/j.cub.2017.07.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/04/2017] [Accepted: 07/11/2017] [Indexed: 11/21/2022]
Abstract
Methylotrophy is the ability of organisms to grow at the expense of reduced one-carbon compounds, such as methanol or methane. Here, we used transposon sequencing combining hyper-saturated transposon mutagenesis with high-throughput sequencing to define the essential methylotrophy genome of Methylobacterium extorquens PA1, a model methylotroph. To distinguish genomic regions required for growth only on methanol from general required genes, we contrasted growth on methanol with growth on succinate, a non-methylotrophic reference substrate. About 500,000 insertions were mapped for each condition, resulting in a median insertion distance of five base pairs. We identified 147 genes and 76 genes as specific for growth on methanol and succinate, respectively, and a set of 590 genes as required under both growth conditions. For the integration of metabolic functions, we reconstructed a genome-scale metabolic model and performed in silico essentiality analysis. In total, the approach uncovered 95 genes not previously described as crucial for methylotrophy, including genes involved in respiration, carbon metabolism, transport, and regulation. Strikingly, regardless of the absence of the Calvin cycle in the methylotroph, the screen led to the identification of the gene for phosphoribulokinase as essential during growth on methanol, but not during growth on succinate. Genetic experiments in addition to metabolomics and proteomics revealed that phosphoribulokinase serves a key regulatory function. Our data support a model according to which ribulose-1,5-bisphosphate is an essential metabolite that induces a transcriptional regulator driving one-carbon assimilation.
Collapse
|
96
|
Schatschneider S, Schneider J, Blom J, Létisse F, Niehaus K, Goesmann A, Vorhölter FJ. Systems and synthetic biology perspective of the versatile plant-pathogenic and polysaccharide-producing bacterium Xanthomonas campestris. Microbiology (Reading) 2017; 163:1117-1144. [DOI: 10.1099/mic.0.000473] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Sarah Schatschneider
- Abteilung für Proteom und Metabolomforschung, Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Bielefeld, Germany
- Present address: Evonik Nutrition and Care GmbH, Kantstr. 2, 33790 Halle-Künsebeck, Germany
| | - Jessica Schneider
- Bioinformatics Resource Facility, Centrum für Biotechnologie, Universität Bielefeld, Germany
- Present address: Evonik Nutrition and Care GmbH, Kantstr. 2, 33790 Halle-Künsebeck, Germany
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Gießen, Germany
| | - Fabien Létisse
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Karsten Niehaus
- Abteilung für Proteom und Metabolomforschung, Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus-Liebig-University Gießen, Germany
| | - Frank-Jörg Vorhölter
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnology (CeBiTec), Universität Bielefeld, Bielefeld, Germany
- Present address: MVZ Dr. Eberhard & Partner Dortmund, Dortmund, Germany
| |
Collapse
|
97
|
Li P, Yin W, Yan J, Chen Y, Fu S, Song S, Zhou J, Lyu M, Deng Y, Zhang LH. Modulation of Inter-kingdom Communication by PhcBSR Quorum Sensing System in Ralstonia solanacearum Phylotype I Strain GMI1000. Front Microbiol 2017; 8:1172. [PMID: 28690607 PMCID: PMC5481312 DOI: 10.3389/fmicb.2017.01172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/08/2017] [Indexed: 01/16/2023] Open
Abstract
Ralstonia solanacearum is a ubiquitous soil-borne plant pathogenic bacterium, which frequently encounters and interacts with other soil cohabitants in competition for environmental niches. Ralsolamycin, which is encoded by the rmy genes, has been characterized as a novel inter-kingdom interaction signal that induces chlamydospore development in fungi. In this study, we provide the first genetic evidence that the rmy gene expression is controlled by the PhcBSR quorum sensing (QS) system in strain GMI1000. Mutation of phcB could lead to significant reduction of the expression levels of the genes involved in ralsolamycin biosynthesis. In addition, both the phcB and rmy mutants were attenuated in induction of chlamydospore formation in Fusarium oxysporum f. cubense and diminished in the ability to compete with the sugarcane pathogen Sporisorium scitamineum. Agreeable with the pattern of QS regulation, transcriptional expression analysis showed that the transcripts of the rmy genes were increased along with the increment of the bacterial population density. Taken together, the above findings provide new insights into the regulatory mechanisms that the QS system involves in governing the ralsolamycin inter-kingdom signaling system.
Collapse
Affiliation(s)
- Peng Li
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural UniversityGuangzhou, China.,School of Biological and Science Technology, University of JinanJinan, China
| | - Wenfang Yin
- Guangdong Innovative and Entrepreneurial Research Team of Sociomicrobiology Basic Science and Frontier Technology, College of Agriculture, South China Agricultural UniversityGuangzhou, China
| | - Jinli Yan
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural UniversityGuangzhou, China
| | - Yufan Chen
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural UniversityGuangzhou, China
| | - Shuna Fu
- Guangdong Innovative and Entrepreneurial Research Team of Sociomicrobiology Basic Science and Frontier Technology, College of Agriculture, South China Agricultural UniversityGuangzhou, China
| | - Shihao Song
- Guangdong Innovative and Entrepreneurial Research Team of Sociomicrobiology Basic Science and Frontier Technology, College of Agriculture, South China Agricultural UniversityGuangzhou, China
| | - Jianuan Zhou
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural UniversityGuangzhou, China
| | - Mingfa Lyu
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural UniversityGuangzhou, China
| | - Yinyue Deng
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural UniversityGuangzhou, China.,Guangdong Innovative and Entrepreneurial Research Team of Sociomicrobiology Basic Science and Frontier Technology, College of Agriculture, South China Agricultural UniversityGuangzhou, China
| | - Lian-Hui Zhang
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural UniversityGuangzhou, China.,Institute of Molecular and Cell BiologySingapore, Singapore
| |
Collapse
|
98
|
Peyraud R, Denny TP, Genin S. Exopolysaccharide Quantification for the Plant Pathogen Ralstonia solanacearum. Bio Protoc 2017; 7:e2289. [PMID: 34541063 DOI: 10.21769/bioprotoc.2289] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/19/2017] [Accepted: 04/13/2017] [Indexed: 01/08/2023] Open
Abstract
Soluble exopolysaccharide is a major virulence factor produced by the plant pathogen Ralstonia solanacearum. Its massive production during plant infection is associated with the arrest of water flow in xylem vessels leading eventually to plant death. The composition of this heavy macromolecule includes mainly N-acetylgalactosamine. Here we describe a colorimetric method for quantitative determination of the soluble exopolysaccharide present in culture supernatant of R. solanacearum.
Collapse
Affiliation(s)
- Rémi Peyraud
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Timothy P Denny
- Department of Plant Pathology, University of Georgia, Athens, Georgia
| | - Stéphane Genin
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| |
Collapse
|
99
|
Peyraud R, Dubiella U, Barbacci A, Genin S, Raffaele S, Roby D. Advances on plant-pathogen interactions from molecular toward systems biology perspectives. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:720-737. [PMID: 27870294 PMCID: PMC5516170 DOI: 10.1111/tpj.13429] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/14/2016] [Accepted: 11/14/2016] [Indexed: 05/21/2023]
Abstract
In the past 2 decades, progress in molecular analyses of the plant immune system has revealed key elements of a complex response network. Current paradigms depict the interaction of pathogen-secreted molecules with host target molecules leading to the activation of multiple plant response pathways. Further research will be required to fully understand how these responses are integrated in space and time, and exploit this knowledge in agriculture. In this review, we highlight systems biology as a promising approach to reveal properties of molecular plant-pathogen interactions and predict the outcome of such interactions. We first illustrate a few key concepts in plant immunity with a network and systems biology perspective. Next, we present some basic principles of systems biology and show how they allow integrating multiomics data and predict cell phenotypes. We identify challenges for systems biology of plant-pathogen interactions, including the reconstruction of multiscale mechanistic models and the connection of host and pathogen models. Finally, we outline studies on resistance durability through the robustness of immune system networks, the identification of trade-offs between immunity and growth and in silico plant-pathogen co-evolution as exciting perspectives in the field. We conclude that the development of sophisticated models of plant diseases incorporating plant, pathogen and climate properties represent a major challenge for agriculture in the future.
Collapse
Affiliation(s)
- Rémi Peyraud
- LIPMUniversité de ToulouseINRACNRSCastanet‐TolosanFrance
| | | | | | - Stéphane Genin
- LIPMUniversité de ToulouseINRACNRSCastanet‐TolosanFrance
| | | | - Dominique Roby
- LIPMUniversité de ToulouseINRACNRSCastanet‐TolosanFrance
| |
Collapse
|
100
|
Complete Genome Sequence of Ralstonia solanacearum FJAT-1458, a Potential Biocontrol Agent for Tomato Wilt. GENOME ANNOUNCEMENTS 2017; 5:5/14/e00070-17. [PMID: 28385834 PMCID: PMC5383882 DOI: 10.1128/genomea.00070-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An avirulent strain of Ralstonia solanacearum FJAT-1458 was isolated from a living tomato. Here, we report the complete R. solanacearum FJAT-1458 genome sequence of 6,059,899 bp and 5,241 genes. This bacterial strain is a potential candidate as a biocontrol agent in the form of a plant vaccine for bacterial wilt.
Collapse
|