51
|
Deep Mutational Scanning Comprehensively Maps How Zika Envelope Protein Mutations Affect Viral Growth and Antibody Escape. J Virol 2019; 93:JVI.01291-19. [PMID: 31511387 DOI: 10.1128/jvi.01291-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 09/06/2019] [Indexed: 12/11/2022] Open
Abstract
Functional constraints on viral proteins are often assessed by examining sequence conservation among natural strains, but this approach is relatively ineffective for Zika virus because all known sequences are highly similar. Here, we take an alternative approach to map functional constraints on Zika virus's envelope (E) protein by using deep mutational scanning to measure how all amino acid mutations to the E protein affect viral growth in cell culture. The resulting sequence-function map is consistent with existing knowledge about E protein structure and function but also provides insight into mutation-level constraints in many regions of the protein that have not been well characterized in prior functional work. In addition, we extend our approach to completely map how mutations affect viral neutralization by two monoclonal antibodies, thereby precisely defining their functional epitopes. Overall, our study provides a valuable resource for understanding the effects of mutations to this important viral protein and also offers a roadmap for future work to map functional and antigenic selection to Zika virus at high resolution.IMPORTANCE Zika virus has recently been shown to be associated with severe birth defects. The virus's E protein mediates its ability to infect cells and is also the primary target of the antibodies that are elicited by natural infection and vaccines that are being developed against the virus. Therefore, determining the effects of mutations to this protein is important for understanding its function, its susceptibility to vaccine-mediated immunity, and its potential for future evolution. We completely mapped how amino acid mutations to the E protein affected the virus's ability to grow in cells in the laboratory and escape from several antibodies. The resulting maps relate changes in the E protein's sequence to changes in viral function and therefore provide a valuable complement to existing maps of the physical structure of the protein.
Collapse
|
52
|
Esposito D, Weile J, Shendure J, Starita LM, Papenfuss AT, Roth FP, Fowler DM, Rubin AF. MaveDB: an open-source platform to distribute and interpret data from multiplexed assays of variant effect. Genome Biol 2019; 20:223. [PMID: 31679514 PMCID: PMC6827219 DOI: 10.1186/s13059-019-1845-6] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 10/01/2019] [Indexed: 11/10/2022] Open
Abstract
Multiplex assays of variant effect (MAVEs), such as deep mutational scans and massively parallel reporter assays, test thousands of sequence variants in a single experiment. Despite the importance of MAVE data for basic and clinical research, there is no standard resource for their discovery and distribution. Here, we present MaveDB ( https://www.mavedb.org ), a public repository for large-scale measurements of sequence variant impact, designed for interoperability with applications to interpret these datasets. We also describe the first such application, MaveVis, which retrieves, visualizes, and contextualizes variant effect maps. Together, the database and applications will empower the community to mine these powerful datasets.
Collapse
Affiliation(s)
- Daniel Esposito
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Jochen Weile
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Lea M Starita
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Anthony T Papenfuss
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Bioinformatics and Cancer Genomics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Department of Mathematics and Statistics, University of Melbourne, Melbourne, VIC, Australia
| | - Frederick P Roth
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada.
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Department of Computer Science, University of Toronto, Toronto, ON, Canada.
- Canadian Institute for Advanced Research, Toronto, ON, Canada.
| | - Douglas M Fowler
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Canadian Institute for Advanced Research, Toronto, ON, Canada.
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
| | - Alan F Rubin
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
- Bioinformatics and Cancer Genomics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
| |
Collapse
|
53
|
Abstract
Evolvability is the ability of a biological system to produce phenotypic variation that is both heritable and adaptive. It has long been the subject of anecdotal observations and theoretical work. In recent years, however, the molecular causes of evolvability have been an increasing focus of experimental work. Here, we review recent experimental progress in areas as different as the evolution of drug resistance in cancer cells and the rewiring of transcriptional regulation circuits in vertebrates. This research reveals the importance of three major themes: multiple genetic and non-genetic mechanisms to generate phenotypic diversity, robustness in genetic systems, and adaptive landscape topography. We also discuss the mounting evidence that evolvability can evolve and the question of whether it evolves adaptively.
Collapse
|
54
|
Dingens AS, Arenz D, Overbaugh J, Bloom JD. Massively Parallel Profiling of HIV-1 Resistance to the Fusion Inhibitor Enfuvirtide. Viruses 2019; 11:v11050439. [PMID: 31096572 PMCID: PMC6563210 DOI: 10.3390/v11050439] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/09/2019] [Accepted: 05/12/2019] [Indexed: 01/21/2023] Open
Abstract
Identifying drug resistance mutations is important for the clinical use of antivirals and can help define both a drug’s mechanism of action and the mechanistic basis of resistance. Resistance mutations are often identified one-at-a-time by studying viral evolution within treated patients or during viral growth in the presence of a drug in cell culture. Such approaches have previously mapped resistance to enfuvirtide, the only clinically approved HIV-1 fusion inhibitor, to enfuvirtide’s binding site in the N-terminal heptad repeat (NHR) of the Envelope (Env) transmembrane domain as well as a limited number of allosteric sites. Here, we sought to better delineate the genotypic determinants of resistance throughout Env. We used deep mutational scanning to quantify the effect of all single-amino-acid mutations to the subtype A BG505 Env on resistance to enfuvirtide. We identified both previously characterized and numerous novel resistance mutations in the NHR. Additional resistance mutations clustered in other regions of Env conformational intermediates, suggesting they may act during different fusion steps by altering fusion kinetics and/or exposure of the enfuvirtide binding site. This complete map of resistance sheds light on the diverse mechanisms of enfuvirtide resistance and highlights the utility of using deep mutational scanning to comprehensively map potential drug resistance mutations.
Collapse
Affiliation(s)
- Adam S Dingens
- Basic Sciences and Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
- Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Dana Arenz
- Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Julie Overbaugh
- Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Jesse D Bloom
- Basic Sciences and Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
- Howard Hughes Medical Institute, Seattle, WA 98109, USA.
| |
Collapse
|
55
|
Conformational Engineering of HIV-1 Env Based on Mutational Tolerance in the CD4 and PG16 Bound States. J Virol 2019; 93:JVI.00219-19. [PMID: 30894475 DOI: 10.1128/jvi.00219-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/16/2019] [Indexed: 12/22/2022] Open
Abstract
HIV-1 infection is initiated by viral Env engaging the host receptor CD4, triggering Env to transition from a "closed" to "open" conformation during the early events of virus-cell membrane fusion. To understand how Env sequence accommodates this conformational change, mutational landscapes decoupled from virus replication were determined for Env from BaL (clade B) and DU422 (clade C) isolates interacting with CD4 or antibody PG16 that preferentially recognizes closed trimers. Sequence features uniquely important to each bound state were identified, including glycosylation and binding sites. Notably, the Env apical domain and trimerization interface are under selective pressure for PG16 binding. Based on this key observation, mutations were found that increase presentation of quaternary epitopes associated with properly conformed trimers when Env is expressed at the plasma membrane. Many mutations reduce electrostatic repulsion at the Env apex and increase PG16 recognition of Env sequences from clades A and B. Other mutations increase hydrophobic packing at the gp120 inner-outer domain interface and were broadly applicable for engineering Env from diverse strains spanning tiers 1, 2, and 3 across clades A, B, C, and BC recombinants. Core mutations predicted to introduce steric strain in the open state show markedly reduced CD4 interactions. Finally, we demonstrate how our methodology can be adapted to interrogate interactions between membrane-associated Env and the matrix domain of Gag. These findings and methods may assist vaccine design.IMPORTANCE HIV-1 Env is dynamic and undergoes large conformational changes that drive fusion of virus and host cell membranes. Three Env proteins in a trimer contact each other at their apical tips to form a closed conformation that presents epitopes recognized by broadly neutralizing antibodies. The apical tips separate, among other changes, to form an open conformation that binds tightly to host receptors. Understanding how Env sequence facilitates these structural changes can inform the biophysical mechanism and aid immunogen design. Using deep mutational scans decoupled from virus replication, we report mutational landscapes for Env from two strains interacting with conformation-dependent binding proteins. Residues in the Env trimer interface and apical domains are preferentially conserved in the closed conformation, and conformational diversity is facilitated by electrostatic repulsion and an underpacked core between domains. Specific mutations are described that enhance presentation of the trimeric closed conformation across diverse HIV-1 strains.
Collapse
|
56
|
Dingens AS, Arenz D, Weight H, Overbaugh J, Bloom JD. An Antigenic Atlas of HIV-1 Escape from Broadly Neutralizing Antibodies Distinguishes Functional and Structural Epitopes. Immunity 2019; 50:520-532.e3. [PMID: 30709739 PMCID: PMC6435357 DOI: 10.1016/j.immuni.2018.12.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/16/2018] [Accepted: 12/14/2018] [Indexed: 11/18/2022]
Abstract
Anti-HIV broadly neutralizing antibodies (bnAbs) have revealed vaccine targets on the virus's envelope (Env) protein and are themselves promising immunotherapies. The efficacy of bnAb-based therapies and vaccines depends in part on how readily the virus can escape neutralization. Although structural studies can define contacts between bnAbs and Env, only functional studies can define mutations that confer escape. Here, we mapped how all possible single amino acid mutations in Env affect neutralization of HIV by nine bnAbs targeting five epitopes. For most bnAbs, mutations at only a small fraction of structurally defined contact sites mediated escape, and most escape occurred at sites near, but not in direct contact with, the antibody. The Env mutations selected by two pooled bnAbs were similar to those expected from the combination of the bnAbs's independent action. Overall, our mutation-level antigenic atlas provides a comprehensive dataset for understanding viral immune escape and refining therapies and vaccines.
Collapse
Affiliation(s)
- Adam S Dingens
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Molecular & Cellular Biology PhD Program, University of Washington, Seattle, WA 98195, USA; Division of Human Biology and Epidemiology Program, Seattle, WA 98109, USA
| | - Dana Arenz
- Division of Human Biology and Epidemiology Program, Seattle, WA 98109, USA
| | - Haidyn Weight
- Division of Human Biology and Epidemiology Program, Seattle, WA 98109, USA
| | - Julie Overbaugh
- Division of Human Biology and Epidemiology Program, Seattle, WA 98109, USA.
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA.
| |
Collapse
|
57
|
Gutierrez B, Escalera-Zamudio M, Pybus OG. Parallel molecular evolution and adaptation in viruses. Curr Opin Virol 2019; 34:90-96. [PMID: 30703578 PMCID: PMC7102768 DOI: 10.1016/j.coviro.2018.12.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/11/2018] [Indexed: 01/05/2023]
Abstract
Parallel molecular evolution is the independent evolution of the same genotype or phenotype from distinct ancestors. The simple genomes and rapid evolution of many viruses mean they are useful model systems for studying parallel evolution by natural selection. Parallel adaptation occurs in the context of several viral behaviours, including cross-species transmission, drug resistance, and host immune escape, and its existence suggests that at least some aspects of virus evolution and emergence are repeatable and predictable. We introduce examples of virus parallel evolution and summarise key concepts. We outline the difficulties in detecting parallel adaptation using virus genomes, with a particular focus on phylogenetic and structural approaches, and we discuss future approaches that may improve our understanding of the phenomenon.
Collapse
Affiliation(s)
| | | | - Oliver G Pybus
- Department of Zoology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
58
|
Abstract
Mutagenesis is one of the key techniques in virus research. The recent development of deep mutational scanning allows the assessment of replication fitness effects of a large number of viral mutants in a high-throughput manner. Here, we describe a protocol for studying hepatitis C virus (HCV) using deep mutational scanning, which includes the methodologies for mutant library construction, passaging, sequencing, and data analysis.
Collapse
Affiliation(s)
- Nicholas C Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Hangfei Qi
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| |
Collapse
|
59
|
Bons E, Bertels F, Regoes RR. Estimating the mutational fitness effects distribution during early HIV infection. Virus Evol 2018; 4:vey029. [PMID: 30310682 PMCID: PMC6172364 DOI: 10.1093/ve/vey029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The evolution of HIV during acute infection is often considered a neutral process. Recent analysis of sequencing data from this stage of infection, however, showed high levels of shared mutations between independent viral populations. This suggests that selection might play a role in the early stages of HIV infection. We adapted an existing model for random evolution during acute HIV-infection to include selection. Simulations of this model were used to fit a global mutational fitness effects distribution to previously published sequencing data of the env gene of individuals with acute HIV infection. Measures of sharing between viral populations were used as summary statistics to compare the data to the simulations. We confirm that evolution during acute infection is significantly different from neutral. The distribution of mutational fitness effects is best fit by a distribution with a low, but significant fraction of beneficial mutations and a high fraction of deleterious mutations. While most mutations are neutral or deleterious in this model, about 5% of mutations are beneficial. These beneficial mutations will, on average, result in a small but significant increase in fitness. When assuming no epistasis, this indicates that, at the moment of transmission, HIV is near, but not on the fitness peak for early infection.
Collapse
Affiliation(s)
- Eva Bons
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, Universitätstrasse 16, Zurich, Switzerland
| | - Frederic Bertels
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, Universitätstrasse 16, Zurich, Switzerland.,Department for Evolutionary Theory, Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, Plön, Germany
| | - Roland R Regoes
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, Universitätstrasse 16, Zurich, Switzerland
| |
Collapse
|
60
|
Cohen YZ, Lorenzi JCC, Krassnig L, Barton JP, Burke L, Pai J, Lu CL, Mendoza P, Oliveira TY, Sleckman C, Millard K, Butler AL, Dizon JP, Belblidia SA, Witmer-Pack M, Shimeliovich I, Gulick RM, Seaman MS, Jankovic M, Caskey M, Nussenzweig MC. Relationship between latent and rebound viruses in a clinical trial of anti-HIV-1 antibody 3BNC117. J Exp Med 2018; 215:2311-2324. [PMID: 30072495 PMCID: PMC6122972 DOI: 10.1084/jem.20180936] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/19/2018] [Accepted: 07/17/2018] [Indexed: 11/04/2022] Open
Abstract
A clinical trial was performed to evaluate 3BNC117, a potent anti-HIV-1 antibody, in infected individuals during suppressive antiretroviral therapy and subsequent analytical treatment interruption (ATI). The circulating reservoir was evaluated by quantitative and qualitative viral outgrowth assay (Q2VOA) at entry and after 6 mo. There were no significant quantitative changes in the size of the reservoir before ATI, and the composition of circulating reservoir clones varied in a manner that did not correlate with 3BNC117 sensitivity. 3BNC117 binding site amino acid variants found in rebound viruses preexisted in the latent reservoir. However, only 3 of 217 rebound viruses were identical to 868 latent viruses isolated by Q2VOA and near full-length sequencing. Instead, 63% of the rebound viruses appeared to be recombinants, even in individuals with 3BNC117-resistant reservoir viruses. In conclusion, viruses emerging during ATI in individuals treated with 3BNC117 are not the dominant species found in the circulating latent reservoir, but frequently appear to represent recombinants of latent viruses.
Collapse
Affiliation(s)
- Yehuda Z Cohen
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Julio C C Lorenzi
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Lisa Krassnig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - John P Barton
- Department of Physics and Astronomy, University of California, Riverside, CA
| | - Leah Burke
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY
| | - Joy Pai
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Ching-Lan Lu
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Pilar Mendoza
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Thiago Y Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | | | - Katrina Millard
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Allison L Butler
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Juan P Dizon
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Shiraz A Belblidia
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Maggi Witmer-Pack
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Irina Shimeliovich
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Roy M Gulick
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA
| | - Mila Jankovic
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
- Howard Hughes Medical Institute, Chevy Chase, MD
| |
Collapse
|
61
|
Deep mutational scanning of hemagglutinin helps predict evolutionary fates of human H3N2 influenza variants. Proc Natl Acad Sci U S A 2018; 115:E8276-E8285. [PMID: 30104379 PMCID: PMC6126756 DOI: 10.1073/pnas.1806133115] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A key goal in the study of influenza virus evolution is to forecast which viral strains will persist and which ones will die out. Here we experimentally measure the effects of all amino acid mutations to the hemagglutinin protein from a human H3N2 influenza strain on viral growth in cell culture. We show that these measurements have utility for distinguishing among viral strains that do and do not succeed in nature. Overall, our work suggests that new high-throughput experimental approaches may be useful for understanding virus evolution in nature. Human influenza virus rapidly accumulates mutations in its major surface protein hemagglutinin (HA). The evolutionary success of influenza virus lineages depends on how these mutations affect HA’s functionality and antigenicity. Here we experimentally measure the effects on viral growth in cell culture of all single amino acid mutations to the HA from a recent human H3N2 influenza virus strain. We show that mutations that are measured to be more favorable for viral growth are enriched in evolutionarily successful H3N2 viral lineages relative to mutations that are measured to be less favorable for viral growth. Therefore, despite the well-known caveats about cell-culture measurements of viral fitness, such measurements can still be informative for understanding evolution in nature. We also compare our measurements for H3 HA to similar data previously generated for a distantly related H1 HA and find substantial differences in which amino acids are preferred at many sites. For instance, the H3 HA has less disparity in mutational tolerance between the head and stalk domains than the H1 HA. Overall, our work suggests that experimental measurements of mutational effects can be leveraged to help understand the evolutionary fates of viral lineages in nature—but only when the measurements are made on a viral strain similar to the ones being studied in nature.
Collapse
|
62
|
Lyons DM, Lauring AS. Evidence for the Selective Basis of Transition-to-Transversion Substitution Bias in Two RNA Viruses. Mol Biol Evol 2018; 34:3205-3215. [PMID: 29029187 PMCID: PMC5850290 DOI: 10.1093/molbev/msx251] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The substitution rates of transitions are higher than expected by chance relative to those of transversions. Many have argued that selection disfavors transversions, as nonsynonymous transversions are less likely to conserve biochemical properties of the original amino acid. Only recently has it become feasible to directly test this selective hypothesis by comparing the fitness effects of a large number of transition and transversion mutations. For example, a recent study of six viruses and one beta-lactamase gene did not find evidence supporting the selective hypothesis. Here, we analyze the relative fitness effects of transition and transversion mutations from our recently published genome-wide study of mutational fitness effects in influenza virus. In contrast to prior work, we find that transversions are significantly more detrimental than transitions. Using what we believe to be an improved statistical framework, we also identify a similar trend in two HIV data sets. We further demonstrate a fitness difference in transition and transversion mutations using four deep mutational scanning data sets of influenza virus and HIV, which provided adequate statistical power. We find that three of the most commonly cited radical/conservative amino acid categories are predictive of fitness, supporting their utility in studies of positive selection and codon usage bias. We conclude that selection is a major contributor to the transition:transversion substitution bias in viruses and that this effect is only partially explained by the greater likelihood of transversion mutations to cause radical as opposed to conservative amino acid changes.
Collapse
Affiliation(s)
- Daniel M Lyons
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
| | - Adam S Lauring
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI.,Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI.,Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| |
Collapse
|
63
|
Dingens AS, Acharya P, Haddox HK, Rawi R, Xu K, Chuang GY, Wei H, Zhang B, Mascola JR, Carragher B, Potter CS, Overbaugh J, Kwong PD, Bloom JD. Complete functional mapping of infection- and vaccine-elicited antibodies against the fusion peptide of HIV. PLoS Pathog 2018; 14:e1007159. [PMID: 29975771 PMCID: PMC6049957 DOI: 10.1371/journal.ppat.1007159] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/17/2018] [Accepted: 06/15/2018] [Indexed: 11/19/2022] Open
Abstract
Eliciting broadly neutralizing antibodies (bnAbs) targeting envelope (Env) is a major goal of HIV vaccine development, but cross-clade breadth from immunization has only sporadically been observed. Recently, Xu et al (2018) elicited cross-reactive neutralizing antibody responses in a variety of animal models using immunogens based on the epitope of bnAb VRC34.01. The VRC34.01 antibody, which was elicited by natural human infection, targets the N terminus of the Env fusion peptide, a critical component of the virus entry machinery. Here we precisely characterize the functional epitopes of VRC34.01 and two vaccine-elicited murine antibodies by mapping all single amino-acid mutations to the BG505 Env that affect viral neutralization. While escape from VRC34.01 occurred via mutations in both fusion peptide and distal interacting sites of the Env trimer, escape from the vaccine-elicited antibodies was mediated predominantly by mutations in the fusion peptide. Cryo-electron microscopy of four vaccine-elicited antibodies in complex with Env trimer revealed focused recognition of the fusion peptide and provided a structural basis for development of neutralization breadth. Together, these functional and structural data suggest that the breadth of vaccine-elicited antibodies targeting the fusion peptide can be enhanced by specific interactions with additional portions of Env. Thus, our complete maps of viral escape both delineate pathways of resistance to these fusion peptide-directed antibodies and provide a strategy to improve the breadth or potency of future vaccine-induced antibodies against Env’s fusion peptide. A major goal of HIV-1 vaccine design is to elicit antibodies that neutralize diverse strains of HIV-1. Recently, some of us elicited such antibodies in animal models using immunogens based on the epitope of a broad antibody (VRC34.01) isolated from an infected individual. Further improving these vaccine-elicited antibody responses will require a detailed understanding of how the resulting antibodies target HIV’s envelope protein (Env). Here, we used mutational antigenic profiling to precisely map the epitopes of two vaccine-elicited antibodies and the template VRC34.01 antibody. We did this by quantifying the effect of all possible amino acid mutations to Env on antibody neutralization. Although all antibodies target a similar region of Env, we found clear differences in the functional interaction of Env with these vaccine- and infection-elicited antibodies. We combined these functional data with structural analyses to identify antibody–Env interactions that may contribute to the relatively greater breadth of the infection-elicited antibody and could improve the breadth of vaccine-elicited antibodies. These data thereby help to refine vaccination schemes to achieve broader responses.
Collapse
Affiliation(s)
- Adam S. Dingens
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology PhD program, University of Washington, Seattle, Washington, United States of America
- Division of Human Biology and Epidemiology Program, Seattle, Washington, United States of America
| | - Priyamvada Acharya
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, New York, United States of America
| | - Hugh K. Haddox
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology PhD program, University of Washington, Seattle, Washington, United States of America
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kai Xu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hui Wei
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, New York, United States of America
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Bridget Carragher
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, New York, United States of America
| | - Clinton S. Potter
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, New York, United States of America
| | - Julie Overbaugh
- Division of Human Biology and Epidemiology Program, Seattle, Washington, United States of America
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (PDK); (JDB)
| | - Jesse D. Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail: (PDK); (JDB)
| |
Collapse
|
64
|
Abstract
The evolution of viral pathogens is shaped by strong selective forces that are exerted during jumps to new hosts, confrontations with host immune responses and antiviral drugs, and numerous other processes. However, while undeniably strong and frequent, adaptive evolution is largely confined to small parts of information-packed viral genomes, and the majority of observed variation is effectively neutral. The predictions and implications of the neutral theory have proven immensely useful in this context, with applications spanning understanding within-host population structure, tracing the origins and spread of viral pathogens, predicting evolutionary dynamics, and modeling the emergence of drug resistance. We highlight the multiple ways in which the neutral theory has had an impact, which has been accelerated in the age of high-throughput, high-resolution genomics.
Collapse
Affiliation(s)
- Simon D W Frost
- Department of Veterinary Medicine, University of Cambridge, Cambridge,
United Kingdom
- The Alan Turing Institute, London, United Kingdom
| | - Brittany Rife Magalis
- Institute for Genomics and Evolutionary Medicine, Temple University,
Philadelphia, PA
| | | |
Collapse
|
65
|
Theys K, Feder AF, Gelbart M, Hartl M, Stern A, Pennings PS. Within-patient mutation frequencies reveal fitness costs of CpG dinucleotides and drastic amino acid changes in HIV. PLoS Genet 2018; 14:e1007420. [PMID: 29953449 PMCID: PMC6023119 DOI: 10.1371/journal.pgen.1007420] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/29/2018] [Indexed: 12/22/2022] Open
Abstract
HIV has a high mutation rate, which contributes to its ability to evolve quickly. However, we know little about the fitness costs of individual HIV mutations in vivo, their distribution and the different factors shaping the viral fitness landscape. We calculated the mean frequency of transition mutations at 870 sites of the pol gene in 160 patients, allowing us to determine the cost of these mutations. As expected, we found high costs for non-synonymous and nonsense mutations as compared to synonymous mutations. In addition, we found that non-synonymous mutations that lead to drastic amino acid changes are twice as costly as those that do not and mutations that create new CpG dinucleotides are also twice as costly as those that do not. We also found that G→A and C→T mutations are more costly than A→G mutations. We anticipate that our new in vivo frequency-based approach will provide insights into the fitness landscape and evolvability of not only HIV, but a variety of microbes.
Collapse
Affiliation(s)
- Kristof Theys
- Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Leuven, Belgium
| | - Alison F. Feder
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Maoz Gelbart
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Marion Hartl
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Adi Stern
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Pleuni S. Pennings
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| |
Collapse
|
66
|
Heredia JD, Park J, Brubaker RJ, Szymanski SK, Gill KS, Procko E. Mapping Interaction Sites on Human Chemokine Receptors by Deep Mutational Scanning. THE JOURNAL OF IMMUNOLOGY 2018; 200:3825-3839. [PMID: 29678950 DOI: 10.4049/jimmunol.1800343] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 03/30/2018] [Indexed: 02/02/2023]
Abstract
Chemokine receptors CXCR4 and CCR5 regulate WBC trafficking and are engaged by the HIV-1 envelope glycoprotein gp120 during infection. We combine a selection of human CXCR4 and CCR5 libraries comprising nearly all of ∼7000 single amino acid substitutions with deep sequencing to define sequence-activity landscapes for surface expression and ligand interactions. After consideration of sequence constraints for surface expression, known interaction sites with HIV-1-blocking Abs were appropriately identified as conserved residues following library sorting for Ab binding, validating the use of deep mutational scanning to map functional interaction sites in G protein-coupled receptors. Chemokine CXCL12 was found to interact with residues extending asymmetrically into the CXCR4 ligand-binding cavity, similar to the binding surface of CXCR4 recognized by an antagonistic viral chemokine previously observed crystallographically. CXCR4 mutations distal from the chemokine binding site were identified that enhance chemokine recognition. This included disruptive mutations in the G protein-coupling site that diminished calcium mobilization, as well as conservative mutations to a membrane-exposed site (CXCR4 residues H792.45 and W1614.50) that increased ligand binding without loss of signaling. Compared with CXCR4-CXCL12 interactions, CCR5 residues conserved for gp120 (HIV-1 BaL strain) interactions map to a more expansive surface, mimicking how the cognate chemokine CCL5 makes contacts across the entire CCR5 binding cavity. Acidic substitutions in the CCR5 N terminus and extracellular loops enhanced gp120 binding. This study demonstrates how comprehensive mutational scanning can define functional interaction sites on receptors, and novel mutations that enhance receptor activities can be found simultaneously.
Collapse
Affiliation(s)
- Jeremiah D Heredia
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Jihye Park
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Riley J Brubaker
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Steven K Szymanski
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Kevin S Gill
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Erik Procko
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
67
|
Haddox HK, Dingens AS, Hilton SK, Overbaugh J, Bloom JD. Mapping mutational effects along the evolutionary landscape of HIV envelope. eLife 2018; 7:34420. [PMID: 29590010 PMCID: PMC5910023 DOI: 10.7554/elife.34420] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/15/2018] [Indexed: 01/04/2023] Open
Abstract
The immediate evolutionary space accessible to HIV is largely determined by how single amino acid mutations affect fitness. These mutational effects can shift as the virus evolves. However, the prevalence of such shifts in mutational effects remains unclear. Here, we quantify the effects on viral growth of all amino acid mutations to two HIV envelope (Env) proteins that differ at >100 residues. Most mutations similarly affect both Envs, but the amino acid preferences of a minority of sites have clearly shifted. These shifted sites usually prefer a specific amino acid in one Env, but tolerate many amino acids in the other. Surprisingly, shifts are only slightly enriched at sites that have substituted between the Envs—and many occur at residues that do not even contact substitutions. Therefore, long-range epistasis can unpredictably shift Env’s mutational tolerance during HIV evolution, although the amino acid preferences of most sites are conserved between moderately diverged viral strains. The virus that causes AIDS, or HIV, has a protein called Env on its surface, which is essential for the virus to infect cells. Env can also be recognized by the immune system, which then targets the virus for destruction or blocks it from infecting cells. Unfortunately, Env evolves very quickly, which means that HIV can evade our defenses. However, there are limits to how much this protein can change, since it still needs to perform its essential role in helping viruses enter cells. In the century since HIV first appeared in human populations, the virus has evolved considerably. There are now many HIV strains that infect people, and they bear Env proteins with substantially different sequences. However, it is not clear if these changes in sequence have resulted in Envs from distinct strains being able to tolerate different mutations. To examine this question, Haddox et al. compared how the Envs from two strains of HIV react to modifications in their sequences. They created all possible individual mutations in the proteins, and the resulting collections of mutated viruses were then tested for their ability to infect cells in the laboratory. Most mutations had similar effects in both Env proteins. This allowed Haddox et al. to identify portions of the protein that easily accommodate changes, and portions that must remain unchanged for viruses to remain infectious—at least in the laboratory. Some of these mutations are under different types of pressures when the virus faces the immune system, and those were identified using computational approaches. However, some mutations were tolerated differently by the two Env proteins. Therefore, viral strains differ in how their Env proteins can evolve. The parts of Env that showed differences in mutational tolerance between the strains were not necessarily the parts that differ in sequence. This shows that changes in sequence in one part of the protein can modify how other portions evolve. It remains to be determined whether changes in tolerance to mutations translate into differences in how the virus can escape immunity. This is an important question given that the rapid evolution of Env is a major obstacle to creating a vaccine for HIV.
Collapse
Affiliation(s)
- Hugh K Haddox
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, United States.,Molecular and Cellular Biology PhD program, University of Washington, Seattle, United States
| | - Adam S Dingens
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, United States.,Molecular and Cellular Biology PhD program, University of Washington, Seattle, United States
| | - Sarah K Hilton
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, United States.,Department of Genome Sciences, University of Washington, Seattle, United States
| | - Julie Overbaugh
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States.,Epidemiology Program, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, United States.,Department of Genome Sciences, University of Washington, Seattle, United States
| |
Collapse
|
68
|
Louie RHY, Kaczorowski KJ, Barton JP, Chakraborty AK, McKay MR. Fitness landscape of the human immunodeficiency virus envelope protein that is targeted by antibodies. Proc Natl Acad Sci U S A 2018; 115:E564-E573. [PMID: 29311326 PMCID: PMC5789945 DOI: 10.1073/pnas.1717765115] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
HIV is a highly mutable virus, and over 30 years after its discovery, a vaccine or cure is still not available. The isolation of broadly neutralizing antibodies (bnAbs) from HIV-infected patients has led to renewed hope for a prophylactic vaccine capable of combating the scourge of HIV. A major challenge is the design of immunogens and vaccination protocols that can elicit bnAbs that target regions of the virus's spike proteins where the likelihood of mutational escape is low due to the high fitness cost of mutations. Related challenges include the choice of combinations of bnAbs for therapy. An accurate representation of viral fitness as a function of its protein sequences (a fitness landscape), with explicit accounting of the effects of coupling between mutations, could help address these challenges. We describe a computational approach that has allowed us to infer a fitness landscape for gp160, the HIV polyprotein that comprises the viral spike that is targeted by antibodies. We validate the inferred landscape through comparisons with experimental fitness measurements, and various other metrics. We show that an effective antibody that prevents immune escape must selectively bind to high escape cost residues that are surrounded by those where mutations incur a low fitness cost, motivating future applications of our landscape for immunogen design.
Collapse
Affiliation(s)
- Raymond H Y Louie
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong
- Institute for Advanced Study, Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Kevin J Kaczorowski
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - John P Barton
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA 02139
| | - Arup K Chakraborty
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139;
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA 02139
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Matthew R McKay
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong;
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong
| |
Collapse
|
69
|
Effects of Mutations on Replicative Fitness and Major Histocompatibility Complex Class I Binding Affinity Are Among the Determinants Underlying Cytotoxic-T-Lymphocyte Escape of HIV-1 Gag Epitopes. mBio 2017; 8:mBio.01050-17. [PMID: 29184023 PMCID: PMC5705913 DOI: 10.1128/mbio.01050-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Certain “protective” major histocompatibility complex class I (MHC-I) alleles, such as B*57 and B*27, are associated with long-term control of HIV-1 in vivo mediated by the CD8+ cytotoxic-T-lymphocyte (CTL) response. However, the mechanism of such superior protection is not fully understood. Here we combined high-throughput fitness profiling of mutations in HIV-1 Gag, in silico prediction of MHC-peptide binding affinity, and analysis of intraperson virus evolution to systematically compare differences with respect to CTL escape mutations between epitopes targeted by protective MHC-I alleles and those targeted by nonprotective MHC-I alleles. We observed that the effects of mutations on both viral replication and MHC-I binding affinity are among the determinants of CTL escape. Mutations in Gag epitopes presented by protective MHC-I alleles are associated with significantly higher fitness cost and lower reductions in binding affinity with respect to MHC-I. A linear regression model accounting for the effect of mutations on both viral replicative capacity and MHC-I binding can explain the protective efficacy of MHC-I alleles. Finally, we found a consistent pattern in the evolution of Gag epitopes in long-term nonprogressors versus progressors. Overall, our results suggest that certain protective MHC-I alleles allow superior control of HIV-1 by targeting epitopes where mutations typically incur high fitness costs and small reductions in MHC-I binding affinity. Understanding the mechanism of viral control achieved in long-term nonprogressors with protective HLA alleles provides insights for developing functional cure of HIV infection. Through the characterization of CTL escape mutations in infected persons, previous researchers hypothesized that protective alleles target epitopes where escape mutations significantly reduce viral replicative capacity. However, these studies were usually limited to a few mutations observed in vivo. Here we utilized our recently developed high-throughput fitness profiling method to quantitatively measure the fitness of mutations across the entirety of HIV-1 Gag. The data enabled us to integrate the results with in silico prediction of MHC-peptide binding affinity and analysis of intraperson virus evolution to systematically determine the differences in CTL escape mutations between epitopes targeted by protective HLA alleles and those targeted by nonprotective HLA alleles. We observed that the effects of Gag epitope mutations on HIV replicative fitness and MHC-I binding affinity are among the major determinants of CTL escape.
Collapse
|
70
|
Hilton SK, Doud MB, Bloom JD. phydms: software for phylogenetic analyses informed by deep mutational scanning. PeerJ 2017; 5:e3657. [PMID: 28785526 PMCID: PMC5541924 DOI: 10.7717/peerj.3657] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/15/2017] [Indexed: 11/30/2022] Open
Abstract
It has recently become possible to experimentally measure the effects of all amino-acid point mutations to proteins using deep mutational scanning. These experimental measurements can inform site-specific phylogenetic substitution models of gene evolution in nature. Here we describe software that efficiently performs analyses with such substitution models. This software, phydms, can be used to compare the results of deep mutational scanning experiments to the selection on genes in nature. Given a phylogenetic tree topology inferred with another program, phydms enables rigorous comparison of how well different experiments on the same gene capture actual natural selection. It also enables re-scaling of deep mutational scanning data to account for differences in the stringency of selection in the lab and nature. Finally, phydms can identify sites that are evolving differently in nature than expected from experiments in the lab. As data from deep mutational scanning experiments become increasingly widespread, phydms will facilitate quantitative comparison of the experimental results to the actual selection pressures shaping evolution in nature.
Collapse
Affiliation(s)
- Sarah K Hilton
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Genome Sciences, University of Washington, Seattle, WA, United States of America
| | - Michael B Doud
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Genome Sciences, University of Washington, Seattle, WA, United States of America.,Medical Scientist Training Program, University of Washington, Seattle, WA, United States of America
| | - Jesse D Bloom
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Genome Sciences, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
71
|
Transposon Mutagenesis of the Zika Virus Genome Highlights Regions Essential for RNA Replication and Restricted for Immune Evasion. J Virol 2017; 91:JVI.00698-17. [PMID: 28515302 DOI: 10.1128/jvi.00698-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 05/08/2017] [Indexed: 12/11/2022] Open
Abstract
The molecular constraints affecting Zika virus (ZIKV) evolution are not well understood. To investigate ZIKV genetic flexibility, we used transposon mutagenesis to add 15-nucleotide insertions throughout the ZIKV MR766 genome and subsequently deep sequenced the viable mutants. Few ZIKV insertion mutants replicated, which likely reflects a high degree of functional constraints on the genome. The NS1 gene exhibited distinct mutational tolerances at different stages of the screen. This result may define regions of the NS1 protein that are required for the different stages of the viral life cycle. The ZIKV structural genes showed the highest degree of insertional tolerance. Although the envelope (E) protein exhibited particular flexibility, the highly conserved envelope domain II (EDII) fusion loop of the E protein was intolerant of transposon insertions. The fusion loop is also a target of pan-flavivirus antibodies that are generated against other flaviviruses and neutralize a broad range of dengue virus and ZIKV isolates. The genetic restrictions identified within the epitopes in the EDII fusion loop likely explain the sequence and antigenic conservation of these regions in ZIKV and among multiple flaviviruses. Thus, our results provide insights into the genetic restrictions on ZIKV that may affect the evolution of this virus.IMPORTANCE Zika virus recently emerged as a significant human pathogen. Determining the genetic constraints on Zika virus is important for understanding the factors affecting viral evolution. We used a genome-wide transposon mutagenesis screen to identify where mutations were tolerated in replicating viruses. We found that the genetic regions involved in RNA replication were mostly intolerant of mutations. The genes coding for structural proteins were more permissive to mutations. Despite the flexibility observed in these regions, we found that epitopes bound by broadly reactive antibodies were genetically constrained. This finding may explain the genetic conservation of these epitopes among flaviviruses.
Collapse
|
72
|
Dingens AS, Haddox HK, Overbaugh J, Bloom JD. Comprehensive Mapping of HIV-1 Escape from a Broadly Neutralizing Antibody. Cell Host Microbe 2017; 21:777-787.e4. [PMID: 28579254 DOI: 10.1016/j.chom.2017.05.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/27/2017] [Accepted: 05/09/2017] [Indexed: 11/24/2022]
Abstract
Precisely defining how viral mutations affect HIV's sensitivity to antibodies is vital to develop and evaluate vaccines and antibody immunotherapeutics. Despite great effort, a full map of escape mutants has not been delineated for an anti-HIV antibody. We describe a massively parallel experimental approach to quantify how all single amino acid mutations to HIV Envelope (Env) affect neutralizing antibody sensitivity in the context of replication-competent virus. We apply this approach to PGT151, a broadly neutralizing antibody recognizing a combination of Env residues and glycans. We confirm sites previously defined by structural and functional studies and reveal additional sites of escape, such as positively charged mutations in the antibody-Env interface. Evaluating the effect of each amino acid at each site lends insight into biochemical mechanisms of escape throughout the epitope, highlighting roles for charge-charge repulsions. Thus, comprehensively mapping HIV antibody escape gives a quantitative, mutation-level view of Env evasion of neutralization.
Collapse
Affiliation(s)
- Adam S Dingens
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Division of Human Biology and Epidemiology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Molecular and Cellular Biology PhD Program, University of Washington, Seattle, WA 98195, USA
| | - Hugh K Haddox
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Molecular and Cellular Biology PhD Program, University of Washington, Seattle, WA 98195, USA
| | - Julie Overbaugh
- Division of Human Biology and Epidemiology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Jesse D Bloom
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| |
Collapse
|
73
|
Flynn WF, Haldane A, Torbett BE, Levy RM. Inference of Epistatic Effects Leading to Entrenchment and Drug Resistance in HIV-1 Protease. Mol Biol Evol 2017; 34:1291-1306. [PMID: 28369521 PMCID: PMC5435099 DOI: 10.1093/molbev/msx095] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Understanding the complex mutation patterns that give rise to drug resistant viral strains provides a foundation for developing more effective treatment strategies for HIV/AIDS. Multiple sequence alignments of drug-experienced HIV-1 protease sequences contain networks of many pair correlations which can be used to build a (Potts) Hamiltonian model of these mutation patterns. Using this Hamiltonian model, we translate HIV-1 protease sequence covariation data into quantitative predictions for the probability of observing specific mutation patterns which are in agreement with the observed sequence statistics. We find that the statistical energies of the Potts model are correlated with the fitness of individual proteins containing therapy-associated mutations as estimated by in vitro measurements of protein stability and viral infectivity. We show that the penalty for acquiring primary resistance mutations depends on the epistatic interactions with the sequence background. Primary mutations which lead to drug resistance can become highly advantageous (or entrenched) by the complex mutation patterns which arise in response to drug therapy despite being destabilizing in the wildtype background. Anticipating epistatic effects is important for the design of future protease inhibitor therapies.
Collapse
Affiliation(s)
- William F. Flynn
- Department of Physics and Astronomy, Rutgers University, New Brunswick, NJ
- Center for Biophysics and Computational Biology, Temple University, Philadelphia, PA
| | - Allan Haldane
- Center for Biophysics and Computational Biology, Temple University, Philadelphia, PA
- Department of Chemistry, Temple University, Philadelphia, PA
| | - Bruce E. Torbett
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA
| | - Ronald M. Levy
- Center for Biophysics and Computational Biology, Temple University, Philadelphia, PA
- Department of Chemistry, Temple University, Philadelphia, PA
| |
Collapse
|
74
|
Doud MB, Hensley SE, Bloom JD. Complete mapping of viral escape from neutralizing antibodies. PLoS Pathog 2017; 13:e1006271. [PMID: 28288189 PMCID: PMC5363992 DOI: 10.1371/journal.ppat.1006271] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/23/2017] [Accepted: 03/06/2017] [Indexed: 11/18/2022] Open
Abstract
Identifying viral mutations that confer escape from antibodies is crucial for understanding the interplay between immunity and viral evolution. We describe a high-throughput approach to quantify the selection that monoclonal antibodies exert on all single amino-acid mutations to a viral protein. This approach, mutational antigenic profiling, involves creating all replication-competent protein variants of a virus, selecting with antibody, and using deep sequencing to identify enriched mutations. We use mutational antigenic profiling to comprehensively identify mutations that enable influenza virus to escape four monoclonal antibodies targeting hemagglutinin, and validate key findings with neutralization assays. We find remarkable mutation-level idiosyncrasy in antibody escape: for instance, at a single residue targeted by two antibodies, some mutations escape both antibodies while other mutations escape only one or the other. Because mutational antigenic profiling rapidly maps all mutations selected by an antibody, it is useful for elucidating immune specificities and interpreting the antigenic consequences of viral genetic variation.
Collapse
Affiliation(s)
- Michael B. Doud
- Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- Medical Scientist Training Program, University of Washington, Seattle, Washington, United States of America
| | - Scott E. Hensley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jesse D. Bloom
- Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
75
|
Zanini F, Puller V, Brodin J, Albert J, Neher RA. In vivo mutation rates and the landscape of fitness costs of HIV-1. Virus Evol 2017; 3:vex003. [PMID: 28458914 PMCID: PMC5399928 DOI: 10.1093/ve/vex003] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mutation rates and fitness costs of deleterious mutations are difficult to measure in vivo but essential for a quantitative understanding of evolution. Using whole genome deep sequencing data from longitudinal samples during untreated HIV-1 infection, we estimated mutation rates and fitness costs in HIV-1 from the dynamics of genetic variation. At approximately neutral sites, mutations accumulate with a rate of 1.2 × 10-5 per site per day, in agreement with the rate measured in cell cultures. We estimated the rate from G to A to be the largest, followed by the other transitions C to T, T to C, and A to G, while transversions are less frequent. At other sites, mutations tend to reduce virus replication. We estimated the fitness cost of mutations at every site in the HIV-1 genome using a model of mutation selection balance. About half of all non-synonymous mutations have large fitness costs (>10 percent), while most synonymous mutations have costs <1 percent. The cost of synonymous mutations is especially low in most of pol where we could not detect measurable costs for the majority of synonymous mutations. In contrast, we find high costs for synonymous mutations in important RNA structures and regulatory regions. The intra-patient fitness cost estimates are consistent across multiple patients, indicating that the deleterious part of the fitness landscape is universal and explains a large fraction of global HIV-1 group M diversity.
Collapse
Affiliation(s)
- Fabio Zanini
- Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Vadim Puller
- Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
| | - Johanna Brodin
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, SE-171 76 Stockholm, Sweden
| | - Jan Albert
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, SE-171 76 Stockholm, Sweden
- Department of Clinical Microbiology, Karolinska Institute, SE-171 76, Stockholm, Sweden
| | - Richard A. Neher
- Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
| |
Collapse
|