51
|
Zhang G, Zhang J, Yao Z, Shi Y, Xu C, Shao L, Jiang L, Li M, Tong Y, Wang Y. Time-series gene expression patterns and their characteristics of Beauveria bassiana in the process of infecting pest insects. J Basic Microbiol 2022; 62:1274-1286. [PMID: 35781725 DOI: 10.1002/jobm.202200155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/27/2022] [Accepted: 06/11/2022] [Indexed: 11/06/2022]
Abstract
Beauveria bassiana has been widely used as an important biological control fungus for agricultural and forest pests, and clarifying the interaction mechanism between B. bassiana and its host will help to better exert the efficacy of the mycoinsecticide. Here, we proposed a novel pattern analysis (PA) method for analyzing time-series data and applied it to a transcriptomic data set of B. bassiana infecting Galleria mellonella. We screened out 14 patterns including 868 genes, which had some characteristics that were not inferior to differentially expressed genes (DEGs). Compared with the previous analysis of this data set, we had three novel discoveries during B. bassiana infection, including overall downregulation of gene expression, the more critical first 24 h, and enrichment of regulatory functions of downregulated genes. Our new PA method promises to be an important complement to DEGs analysis for time-series transcriptomic data, and our findings enrich our knowledge of molecular mechanisms of fungal-host interactions.
Collapse
Affiliation(s)
- Guochao Zhang
- College of Plant Protection, Shandong Agricultural University, Tai'an, China.,School of Biological Engineering/Institute of Digital Ecology and Health, Huainan Normal University, Huainan, Anhui, China.,Shandong Tobacco Research Institute Co., Ltd., Jinan, China
| | - Jifeng Zhang
- School of Biological Engineering/Institute of Digital Ecology and Health, Huainan Normal University, Huainan, Anhui, China.,Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes/School of Plant Protection, Anhui Agricultural University, Hefei, China.,State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, China.,Key Laboratory of Industrial Dust Prevention and Control & Occupational Health and Safety, Ministry of Education, Huainan, China.,Anhui Shanhe Pharmaceutical Excipients Co., Ltd., Huainan, China
| | - Zhuo Yao
- Jinan Agricultural Technology Extension Service Center, Jinan, China
| | - Yong Shi
- School of Computer Science/School of Electronic Engineering, Huainan Normal University, Huainan, China
| | - Chenxi Xu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Lvyi Shao
- School of Biological Engineering/Institute of Digital Ecology and Health, Huainan Normal University, Huainan, Anhui, China
| | - Lei Jiang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes/School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Maoye Li
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes/School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yue Tong
- School of Computer Science/School of Electronic Engineering, Huainan Normal University, Huainan, China
| | - Yujun Wang
- College of Plant Protection, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
52
|
Khan HA, Telengech P, Kondo H, Bhatti MF, Suzuki N. Mycovirus Hunting Revealed the Presence of Diverse Viruses in a Single Isolate of the Phytopathogenic Fungus Diplodia seriata From Pakistan. Front Cell Infect Microbiol 2022; 12:913619. [PMID: 35846770 PMCID: PMC9277117 DOI: 10.3389/fcimb.2022.913619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/06/2022] [Indexed: 12/23/2022] Open
Abstract
Diplodia seriata in the family Botryosphaeriaceae is a cosmopolitan phytopathogenic fungus and is responsible for causing cankers, fruit rot and leaf spots on economically important plants. In this study, we characterized the virome of a single Pakistani strain (L3) of D. seriata. Several viral-like contig sequences were obtained via a previously conducted next-generation sequencing analysis. Multiple infection of the L3 strain by eight RNA mycoviruses was confirmed through RT-PCR using total RNA samples extracted from this strain; the entire genomes were determined via Sanger sequencing of RT-PCR and RACE clones. A BLAST search and phylogenetic analyses indicated that these eight mycoviruses belong to seven different viral families. Four identified mycoviruses belong to double-stranded RNA viral families, including Polymycoviridae, Chrysoviridae, Totiviridae and Partitiviridae, and the remaining four identified mycoviruses belong to single-stranded RNA viral families, i.e., Botourmiaviridae, and two previously proposed families "Ambiguiviridae" and "Splipalmiviridae". Of the eight, five mycoviruses appear to represent new virus species. A morphological comparison of L3 and partially cured strain L3ht1 suggested that one or more of the three viruses belonging to Polymycoviridae, "Splipalmiviridae" and "Ambiguiviridae" are involved in the irregular colony phenotype of L3. To our knowledge, this is the first report of diverse virome characterization from D. seriata.
Collapse
Affiliation(s)
- Haris Ahmed Khan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Paul Telengech
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Muhammad Faraz Bhatti
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| |
Collapse
|
53
|
Mycoviromic Analysis Unveils Complex Virus Composition in a Hypovirulent Strain of Sclerotinia sclerotiorum. J Fungi (Basel) 2022; 8:jof8070649. [PMID: 35887405 PMCID: PMC9317179 DOI: 10.3390/jof8070649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
Mycoviruses are ubiquitous in pathogenic fungi including Sclerotinia sclerotiorum. Using RNA sequencing, more mycoviruses have been identified in individual strains, which were previously reported to be infected by a single mycovirus. A hypovirulent strain of S. sclerotiorum, HC025, was previously thought to harbor a single mitovirus, Sclerotinia sclerotiorum mitovirus 1 (SsMV1), based on the analysis of the conventional dsRNA extraction method. We found HC025 to be co-infected by five mycoviruses. In addition to SsMV1, four mycoviruses were identified: Sclerotinia sclerotiorum narnavirus 4 (SsNV4), Sclerotinia sclerotiorum negative-stranded RNA virus 1 (SsNSRV1), Sclerotinia sclerotiorum ourmia-like virus 14 (SsOLV14), and SsOLV22. Three mycoviruses including SsNV4, SsNSRV1, and SsOLV14 share high replicase identities (more than 95%) with the previously reported corresponding mycoviruses, and SsOLV22 shows lower identity to the known viruses. The complete genome of SsOLV22 is 3987 nt long and contains a single ORF-encoded RdRp, which shares 24.84% identity with the RNA-dependent RNA polymerase (RdRp) of Hubei narna-like virus 10 (query coverage: 26%; e-value: 8 × 10−19). The phylogenetic tree of RdRp suggests that SsOLV22 is a new member within the family Botourmiaviridae. All of the mycoviruses except for SsNSRV1 could horizontally co-transfer from HC025 to the virulent strain Ep-1PNA367 with hypovirulent phenotypes, and converted a later strain into a hypovirulent strain. In summary, we molecularly characterized the hypovirulent strain HC025 and identified five RNA mycoviruses including a new member within Botourmiaviridae.
Collapse
|
54
|
Zhang Y, Gao J, Li Y. Diversity of mycoviruses in edible fungi. Virus Genes 2022; 58:377-391. [PMID: 35668282 DOI: 10.1007/s11262-022-01908-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/21/2022] [Indexed: 11/25/2022]
Abstract
Mycoviruses (fungal viruses) are widespread in all major taxonomic groups of fungi. Although most mycovirus infections are latent, some mycoviruses, such as La France isometric virus, mushroom virus X, and oyster mushroom spherical virus, can cause severe diseases in edible fungi and lead to significant production losses. Recently, deep sequencing has been employed as a powerful research tool to identify new mycoviruses and to enhance our understanding of virus diversity and evolution. An increasing number of novel mycoviruses that can infect edible fungi have been reported, including double-stranded (ds) RNA, positive-sense ( +)ssRNA, and negative-sense (-)ssRNA viruses. To date, approximately 60 mycoviruses have been reported in edible fungi. In this review, we summarize the recent advances in the diversity and evolution of mycoviruses that can infect edible fungi. We also discuss mycovirus transmission, co-infections, and genetic variations, as well as the methods used to detect and control of mycoviruses in edible fungi, and provide insights for future research on mushroom viral diseases.
Collapse
Affiliation(s)
- Yanjing Zhang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, College of Plant Protection, Jilin Agricultural University, Changchun, 130118, Jilin, China
- Laboratory of Plant Pathology, College of Plant Protection, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Jie Gao
- Laboratory of Plant Pathology, College of Plant Protection, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Yu Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, College of Plant Protection, Jilin Agricultural University, Changchun, 130118, Jilin, China.
| |
Collapse
|
55
|
Kotta-Loizou I, Coutts RHA, Ictv Report Consortium. ICTV Virus Taxonomy Profile: Polymycoviridae 2022. J Gen Virol 2022; 103. [PMID: 35639592 DOI: 10.1099/jgv.0.001747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Members of the family Polymycoviridae are small viruses with multi-segmented and non-conventionally encapsidated double-stranded (ds) RNA genomes. Typically, polymycoviruses have four genomic segments, although some have up to eight. The genus Polymycovirus includes several species whose members infect fungi (ascomycetes and basidiomycetes), and oomycetes, altering host morphology, sporulation, growth and virulence. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Polymycoviridae, which is available at ictv.global/report/polymycoviridae.
Collapse
Affiliation(s)
- Ioly Kotta-Loizou
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | - Robert H A Coutts
- Department of Clinical, Pharmaceutical and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | | |
Collapse
|
56
|
Li Y, Li S, Liang Z, Cai Q, Zhou T, Zhao C, Wu X. RNA-seq Analysis of Rhizoctonia solani AG-4HGI Strain BJ-1H Infected by a New Viral Strain of Rhizoctonia solani Partitivirus 2 Reveals a Potential Mechanism for Hypovirulence. PHYTOPATHOLOGY 2022; 112:1373-1385. [PMID: 34965159 DOI: 10.1094/phyto-08-21-0349-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Rhizoctonia solani partitivirus 2 (RsPV2), in the genus Alphapartitivirus, confers hypovirulence on R. solani AG-1-IA, the causal agent of rice sheath blight. In this study, a new strain of RsPV2 obtained from R. solani AG-4HGI strain BJ-1H, the causal agent of black scurf on potato, wasidentified and designated as Rhizoctonia solani partitivirus 2 strain BJ-1H (RsPV2-BJ). An RNA sequencing analysis of strain BJ-1H and the virus RsPV2-BJ-free strain BJ-1H-VF derived from strain BJ-1H was conducted to investigate the potential molecular mechanism of hypovirulence induced by RsPV2-BJ. In total, 14,319 unigenes were obtained, and 1,341 unigenes were identified as differentially expressed genes (DEGs), with 570 DEGs being down-regulated and 771 being up-regulated. Notably, several up-regulated DEGs were annotated to cell wall degrading enzymes, including β-1,3-glucanases. Strain BJ-1H exhibited increased expression of β-1,3-glucanase after RsPV2-BJ infection, suggesting that cell wall autolysis activity in R. solani AG-4HGI strain BJ-1H might be promoted by RsPV2-BJ, inducing hypovirulence in its host fungus R. solani AG-4HGI. To the best of our knowledge, this is the first report on the potential mechanism of hypovirulence induced by a mycovirus in R. solani.
Collapse
Affiliation(s)
- Yuting Li
- College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, People's Republic of China
| | - Siwei Li
- College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, People's Republic of China
| | - Zhijian Liang
- College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, People's Republic of China
| | - Qingnian Cai
- College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, People's Republic of China
| | - Tao Zhou
- College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, People's Republic of China
| | - Can Zhao
- College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, People's Republic of China
- College of Horticulture, China Agricultural University, Haidian District, Beijing 100193, People's Republic of China
| | - Xuehong Wu
- College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, People's Republic of China
| |
Collapse
|
57
|
A Novel Heptasegmented Positive-Sense Single-Stranded RNA Virus from the Phytopathogenic Fungus Colletotrichum fructicola. J Virol 2022; 96:e0031822. [PMID: 35435725 DOI: 10.1128/jvi.00318-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, a novel positive-sense single-stranded RNA (+ssRNA) mycovirus, tentatively named Colletotrichum fructicola RNA virus 1 (CfRV1), was identified in the phytopathogenic fungus Colletotrichum fructicola. CfRV1 has seven genomic components, encoding seven proteins from open reading frames (ORFs) flanked by highly conserved untranslated regions (UTRs). Proteins encoded by ORFs 1, 2, 3, 5, and 6 are more similar to the putative RNA-dependent RNA polymerase (RdRp), hypothetical protein (P2), methyltransferase, and two hypothetical proteins of Hadaka virus 1 (HadV1), a capsidless 10- or 11-segmented +ssRNA virus, while proteins encoded by ORFs 4 and 7 showed no detectable similarity to any known proteins. Notably, proteins encoded by ORFs 1 to 3 also share considerably high similarity with the corresponding proteins of polymycoviruses. Phylogenetic analysis conducted based on the amino acid sequence of CfRV1 RdRp and related viruses placed CfRV1 and HadV1 together in the same clade, close to polymycoviruses and astroviruses. CfRV1-infected C. fructicola strains demonstrate a moderately attenuated growth rate and virulence compared to uninfected isolates. CfRV1 is capsidless and potentially encapsulated in vesicles inside fungal cells, as revealed by transmission electron microscopy. CfRV1 and HadV1 are +ssRNA mycoviruses closely related to polymycoviruses and astroviruses, represent a new linkage between +ssRNA viruses and the intermediate double-stranded RNA (dsRNA) polymycoviruses, and expand our understanding of virus diversity, taxonomy, evolution, and biological traits. IMPORTANCE A scenario proposing that dsRNA viruses evolved from +ssRNA viruses is still considered controversial due to intergroup knowledge gaps in virus diversity. Recently, polymycoviruses and hadakaviruses were found as intermediate dsRNA and +ssRNA stages, respectively, between +ssRNA and dsRNA viruses. Here, we identified a novel +ssRNA mycovirus, Colletotrichum fructicola RNA virus 1 (CfRV1), isolated from Colletotrichum fructicola in China. CfRV1 is phylogenetically related to the 10- or 11-segmented Hadaka virus 1 (HadV1) but consists of only seven genomic segments encoding two novel proteins. CfRV1 is naked and may be encapsulated in vesicles inside fungal cells, representing a potential novel lifestyle for multisegmented RNA viruses. CfRV1 and HadV1 are intermediate +ssRNA mycoviruses in the linkage between +ssRNA viruses and the intermediate dsRNA polymycoviruses and expand our understanding of virus diversity, taxonomy, and evolution.
Collapse
|
58
|
Abstract
Rhabdoviruses are ubiquitous and diverse viruses that propagate owing to bidirectional interactions with their vertebrate, arthropod, and plant hosts, and some of them could pose global health or agricultural threats. However, rhabdoviruses have rarely been reported in fungi. Here, two newly identified fungal rhabdoviruses, Rhizoctonia solani rhabdovirus 1 (RsRhV1) and RsRhV2, were discovered and molecularly characterized from the phytopathogenic fungus Rhizoctonia solani. The genomic organizations of RsRhV1 and RsRhV2 are 11,716 and 11,496 nucleotides (nt) in length, respectively, and consist of five open reading frames (ORFs) (ORFs I to V). ORF I, ORF IV, and ORF V encode the viral nucleocapsid (N), glycoprotein (G), and RNA polymerase (L), respectively. The putative protein encoded by ORF III has a lower level of identity with the matrix protein of rhabdoviruses. ORF II encodes a hypothetical protein with unknown function. Phylogenetic trees based on multiple alignments of N, L, and G proteins revealed that RsRhV1 and RsRhV2 are new members of the family Rhabdoviridae, but they form an independent evolutionary branch significantly distinct from other known nonfungal rhabdoviruses, suggesting that they represent a novel viral evolutionary lineage within Rhabdoviridae. Compared to strains lacking rhabdoviruses, strains harboring RsRhV2 and RsRhV1 showed hypervirulence, suggesting that RsRhV1 and RsRhV2 might be associated with the virulence of R. solani. Taken together, this study enriches our understanding of the diversity and host range of rhabdoviruses. IMPORTANCE Mycoviruses have been attracting an increasing amount of attention due to their impact on important medical, agricultural, and industrial fungi. Rhabdoviruses are prevalent across a wide spectrum of hosts, from plants to invertebrates and vertebrates. This study molecularly characterized two novel rhabdoviruses from four Rhizoctonia solani strains, based on their genomic structures, transcription strategy, phylogenetic relationships, and biological impact on their host. Our study makes a significant contribution to the literature because it not only enriches the mycovirus database but also expands the known host range of rhabdoviruses. It also offers insight into the evolutionary linkage between animal viruses and mycoviruses and the transmission of viruses from one host to another. Our study will also help expand the contemporary knowledge of the classification of rhabdoviruses, as well as providing a new model to study rhabdovirus-host interactions, which will benefit the agriculture and medical areas of human welfare.
Collapse
|
59
|
|
60
|
Molecular characterization of a novel fusagravirus in the phytopathogenic fungus Streptobotrys caulophylli. Arch Virol 2022; 167:619-623. [DOI: 10.1007/s00705-021-05328-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/27/2021] [Indexed: 11/02/2022]
|
61
|
Sato Y, Shahi S, Telengech P, Hisano S, Cornejo C, Rigling D, Kondo H, Suzuki N. A new tetra-segmented splipalmivirus with divided RdRP domains from Cryphonectria naterciae, a fungus found on chestnut and cork oak trees in Europe. Virus Res 2022; 307:198606. [PMID: 34688782 DOI: 10.1016/j.virusres.2021.198606] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 01/01/2023]
Abstract
Positive-sense (+), single-stranded (ss) RNA viruses with divided RNA-dependent RNA polymerase (RdRP) domains have been reported from diverse filamentous ascomycetes since 2020. These viruses are termed splipalmiviruses or polynarnaviruses and have been characterized largely at the sequence level, but ill-defined biologically. Cryphonectria naterciae, from which only one virus has been reported, is an ascomycetous fungus potentially plant-pathogenic to chestnut and oak trees. We molecularly characterized multiple viruses in a single Portuguese isolate (C0614) of C. naterciae, taking a metatranscriptomic and conventional double-stranded RNA approach. Among them are a novel splipalmivirus (Cryphonectria naterciae splipalmivirus 1, CnSpV1) and a novel fusagravirus (Cryphonectria naterciae fusagravirus 1, CnFGV1). This study focused on the former virus. CnSpV1 has a tetra-segmented, (+)ssRNA genome (RNA1 to RNA4). As observed for other splipalmiviruses reported in 2020 and 2021, the RdRP domain is separately encoded by RNA1 (motifs F, A and B) and RNA2 (motifs C and D). A hypothetical protein encoded by the 5'-proximal open reading frame of RNA3 shows similarity to a counterpart conserved in some splipalmiviruses. The other RNA3-encoded protein and RNA4-encoded protein show no similarity with known proteins in a blastp search. The tetra-segment nature was confirmed by the conserved terminal sequences of the four CnSpV1 segments (RNA1 to RNA4) and their 100% coexistence in over 100 single conidial isolates tested. The experimental introduction of CnSpV1 along with CnFGV1 into a virus free strain C0754 of C. naterciae vegetatively incompatible with C0614 resulted in no phenotypic alteration, suggesting asymptomatic infection. The protoplast fusion assay indicates a considerably narrow host range of CnSpV1, restricted to the species C. naterciae and C. carpinicola. This study contributes to better understanding of the molecular and biological properties of this unique group of viruses.
Collapse
Affiliation(s)
- Yukiyo Sato
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Sabitree Shahi
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Paul Telengech
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Sakae Hisano
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Carolina Cornejo
- Swiss Federal Research Institute WSL, Forest Health & Biotic Interactions, Zuercherstrasse 111, CH-8903 Birmensdorf
| | - Daniel Rigling
- Swiss Federal Research Institute WSL, Forest Health & Biotic Interactions, Zuercherstrasse 111, CH-8903 Birmensdorf
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan.
| |
Collapse
|
62
|
Khan HA, Shamsi W, Jamal A, Javaied M, Sadiq M, Fatma T, Ahmed A, Arshad M, Waseem M, Babar S, Dogar MM, Virk N, Janjua HA, Kondo H, Suzuki N, Bhatti MF. Assessment of mycoviral diversity in Pakistani fungal isolates revealed infection by 11 novel viruses of a single strain of Fusarium mangiferae isolate SP1. J Gen Virol 2021; 102. [PMID: 34850675 DOI: 10.1099/jgv.0.001690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An extensive screening survey was conducted on Pakistani filamentous fungal isolates for the identification of viral infections. A total of 396 fungal samples were screened, of which 36 isolates were found double-stranded (ds) RNA positive with an overall frequency of 9% when analysed by a classical dsRNA isolation method. One of 36 dsRNA-positive strains, strain SP1 of a plant pathogenic fungus Fusarium mangiferae, was subjected to virome analysis. Next-generation sequencing and subsequent completion of the entire genome sequencing by a classical Sanger sequencing method showed the SP1 strain to be co-infected by 11 distinct viruses, at least seven of which should be described as new taxa at the species level according to the ICTV (International Committee on Taxonomy of Viruses) species demarcation criteria. The newly identified F. mangiferae viruses (FmVs) include two partitivirids, one betapartitivirus (FmPV1) and one gammapartitivirus (FmPV2); six mitovirids, three unuamitovirus (FmMV2, FmMV4, FmMV6), one duamitovirus (FmMV5), and two unclassified mitovirids (FmMV1, FmMV3); and three botourmiavirids, two magoulivirus (FmBOV1, FmBOV3) and one scleroulivirus (FmBOV2). The number of coinfecting viruses is among the largest ones of fungal coinfections. Their molecular features are thoroughly described here. This represents the first large virus survey in the Indian sub-continent.
Collapse
Affiliation(s)
- Haris Ahmed Khan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, 44000, Islamabad, Pakistan.,Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Wajeeha Shamsi
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, 44000, Islamabad, Pakistan.,Present address: Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| | - Atif Jamal
- Crop Diseases Research Institute, National Agricultural Research Centre, Islamabad, Pakistan
| | - Memoona Javaied
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, 44000, Islamabad, Pakistan
| | - Mashal Sadiq
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, 44000, Islamabad, Pakistan
| | - Tehsin Fatma
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, 44000, Islamabad, Pakistan
| | - Aqeel Ahmed
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, 44000, Islamabad, Pakistan
| | - Maleeha Arshad
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, 44000, Islamabad, Pakistan
| | - Mubashra Waseem
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, 44000, Islamabad, Pakistan
| | - Samra Babar
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, 44000, Islamabad, Pakistan
| | - Midhat Mustafa Dogar
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, 44000, Islamabad, Pakistan
| | - Nasar Virk
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, 44000, Islamabad, Pakistan.,Present address: EBS Universität für Wirtschaft und Recht, EBS Business School, Rheingaustrasse 1, 65375, Oestrich-Winkel, Germany
| | - Hussnain Ahmed Janjua
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, 44000, Islamabad, Pakistan
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Muhammad Faraz Bhatti
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, 44000, Islamabad, Pakistan
| |
Collapse
|
63
|
Li Y, Sun Y, Yu L, Chen W, Liu H, Yin L, Guang Y, Yang G, Mo X. Complete genome sequence of a novel mitovirus from binucleate Rhizoctonia AG-K strain FAS2909W. Arch Virol 2021; 167:271-276. [PMID: 34773510 DOI: 10.1007/s00705-021-05277-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/02/2021] [Indexed: 11/30/2022]
Abstract
The full-length AU-rich (63.14%) 2,794-nucleotide sequence of Rhizoctonia mitovirus K1 (RMV-K1) isolated from the binucleate AG-K strain FAS2909W was determined. The positive strand of RMV-K1 contains a large open reading frame (ORF) when the fungal mitochondrial genetic code is used. This ORF was predicted to encode an RdRp protein exhibiting the highest sequence identity (41.77%) to Rhizoctonia solani mitovirus 30. Phylogenetic analysis showed that RMV-K1 is a novel member of the genus Mitovirus, family Mitoviridae.
Collapse
Affiliation(s)
- Yanqiong Li
- College of Agriculture and Life Sciences, Kunming University, Kunming, 650214, Yunnan, China.,Yunnan Agricultural University, Kunming, 650201, Yunnan, China.,Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, Yunnan, China
| | - Yang Sun
- Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Lei Yu
- College of Agriculture and Life Sciences, Kunming University, Kunming, 650214, Yunnan, China
| | - Wurong Chen
- College of Agriculture and Life Sciences, Kunming University, Kunming, 650214, Yunnan, China
| | - He Liu
- College of Agriculture and Life Sciences, Kunming University, Kunming, 650214, Yunnan, China
| | - Lifang Yin
- College of Agriculture and Life Sciences, Kunming University, Kunming, 650214, Yunnan, China
| | - Yingxia Guang
- College of Agriculture and Life Sciences, Kunming University, Kunming, 650214, Yunnan, China
| | - Genhua Yang
- Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| | - Xiaohan Mo
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, Yunnan, China.
| |
Collapse
|
64
|
Wu CF, Aoki N, Takeshita N, Fukuhara T, Chiura HX, Arie T, Kotta-Loizou I, Okada R, Komatsu K, Moriyama H. Unique Terminal Regions and Specific Deletions of the Segmented Double-Stranded RNA Genome of Alternaria Alternata Virus 1, in the Proposed Family Alternaviridae. Front Microbiol 2021; 12:773062. [PMID: 34745080 PMCID: PMC8570381 DOI: 10.3389/fmicb.2021.773062] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Alternaria alternata virus 1 (AaV1) has been identified in the saprophytic fungus Alternaria alternata strain EGS 35-193. AaV1 has four genomic double-stranded (ds)RNA segments (dsRNA1-4) packaged in isometric particles. The 3' end of each coding strand is polyadenylated (36-50nt), but the presence of a cap structure at each 5' end has not previously been investigated. Here, we have characterized the AaV1 genome and found that it has unique features among the mycoviruses. We confirmed the existence of cap structures on the 5' ends of the AaV1 genomic dsRNAs using RNA dot blots with anti-cap antibodies and the oligo-capping method. Polyclonal antibodies against purified AaV1 particles specifically bound to an 82kDa protein, suggesting that this protein is the major capsid component. Subsequent Edman degradation indicated that the AaV1 dsRNA3 segment encodes the major coat protein. Two kinds of defective AaV1 dsRNA2, which is 2,794bp (844 aa) in length when intact, appeared in EGS 35-193 during subculturing, as confirmed by RT-PCR and northern hybridization. Sequence analysis revealed that one of the two defective dsRNA2s contained a 231bp deletion, while the other carried both the 231bp deletion and an additional 465bp deletion in the open reading frame. Both deletions occurred in-frame, resulting in predicted proteins of 767 aa and 612 aa. The fungal isolates carrying virions with the defective dsRNA2s showed impaired growth and abnormal pigmentation. To our best knowledge, AaV1 is the first dsRNA virus to be identified with both 5' cap and 3'poly(A) structures on its genomic segments, as well as the specific deletions of dsRNA2.
Collapse
Affiliation(s)
- Chien-Fu Wu
- Laboratory of Molecular and Cellular Biology, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Nanako Aoki
- Laboratory of Molecular and Cellular Biology, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Naoki Takeshita
- Laboratory of Molecular and Cellular Biology, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Toshiyuki Fukuhara
- Laboratory of Molecular and Cellular Biology, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Hiroshi X Chiura
- Laboratory of Molecular and Cellular Biology, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Tsutomu Arie
- Laboratory of Plant Pathology, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Ioly Kotta-Loizou
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Ryo Okada
- Laboratory of Molecular and Cellular Biology, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Ken Komatsu
- Laboratory of Plant Pathology, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Hiromitsu Moriyama
- Laboratory of Molecular and Cellular Biology, Tokyo University of Agriculture and Technology, Fuchu, Japan
| |
Collapse
|
65
|
A New Double-Stranded RNA Mycovirus in Cryphonectria naterciae Is Able to Cross the Species Barrier and Is Deleterious to a New Host. J Fungi (Basel) 2021; 7:jof7100861. [PMID: 34682282 PMCID: PMC8538617 DOI: 10.3390/jof7100861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 12/25/2022] Open
Abstract
Cryphonectria is a fungal genus associated with economically significant disease of trees. Herein we characterized a novel double-stranded RNA virus from the fungal species Cryphonectria naterciae, a species unexplored as a virus host. De novo assembly of RNA-seq data and Sanger sequencing of RACE (rapid amplification of cDNA ends) clones gave the complete, non-segmented genome (10,164 bp) of the virus termed Cryphonectria naterciae fusagravirus (CnFGV1) that was phylogenetically placed within the previously proposed viral family Fusagraviridae. Of 31 field-collected strains of C. naterciae, 40% tested CnFGV1-positive. Cocultivation resulted in within-species transmission of CnFGV1 to virus-free strains of C. naterciae. Comparison of the mycelium phenotype and the growth rate of CnFGV1-infected and virus-free isogenic strains revealed frequent sectoring and growth reduction in C. naterciae upon virus infection. Co-culturing also led to cross-species transmission of CnFGV1 to Cryphonectria carpinicola and Cryphonectria radicalis, but not to Cryphonectria parasitica. The virus-infected C. naterciae and the experimentally infected Cryphonectria spp. readily transmitted CnFGV1 through asexual spores to the next generation. CnFGV1 strongly reduced conidiation and in some cases vegetative growth of C. carpinicola, which is involved in the European hornbeam disease. This study is the first report of a fusagravirus in the family Cryphonectriaceae and lays the groundwork for assessing a hypovirulence effect of CnFGV1 against the hornbeam decline in Europe.
Collapse
|
66
|
Ma G, Wu C, Li Y, Mi Y, Zhou T, Zhao C, Wu X. Identification and genomic characterization of a novel polymycovirus from Alternaria alternata causing watermelon leaf blight. Arch Virol 2021; 167:223-227. [PMID: 34636952 DOI: 10.1007/s00705-021-05272-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/29/2021] [Indexed: 11/25/2022]
Abstract
A double-stranded RNA (dsRNA) mycovirus from the phytopathogenic fungus Alternaria alternata, which causes watermelon leaf blight, was characterized. The genome of this virus has eight dsRNA segments, ranging from 1039 bp to 2398 bp. DsRNAs 1-6 each contain a single large open reading frame (ORF), while dsRNAs 7 and 8 each dsRNA contain two ORFs. The RNA-dependent RNA polymerase (RdRp) encoded by dsRNA1 and the viral methyltransferase encoded by dsRNA3 share 97.6% and 98.9% amino acid sequence identity, respectively, with the corresponding proteins of Plasmopara viticola lesion associated polymycovirus 1. The dsRNA5-encoded proline-alanine-serine-rich protein shows 48.1% sequence identity to that of Beauveria bassiana polymycovirus 3. The proteins encoded on dsRNAs 2, 4, and 8 have 99.7%, 98.2%, and 65.1% sequence identity, respectively, to the corresponding proteins of a mycovirus identified in Alternaria sp. FA0703 (AltR1). The proteins encoded by dsRNAs 6 and 7 do not match any known proteins of mycoviruses. Phylogenetic analysis of the RdRp domain showed that the virus clustered with members of the family Polymycoviridae. Based on these characteristics, the mycovirus was identified as a polymycovirus and designated as "Alternaria alternata polymycovirus 1" (AaPmV1). This is the first report of a polymycovirus associated with A. alternata.
Collapse
Affiliation(s)
- Guoping Ma
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China.,Institute of Plant Protection, Shandong Academy of Agricultural Sciences/Shandong Key Laboratory of Plant Virology, Jinan, 250100, People's Republic of China
| | - Chunyan Wu
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Yuting Li
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Yiran Mi
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Tao Zhou
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Can Zhao
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China. .,College of Horticulture, China Agricultural University, Haidian District, Beijing, 100193, People's Republic of China.
| | - Xuehong Wu
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China.
| |
Collapse
|
67
|
Kang Q, Li L, Li J, Zhang S, Xie J, Li Q, Zhang Z. A novel polymycovirus with defective RNA isolated from the entomopathogenic fungus Beauveria bassiana Vuillemin. Arch Virol 2021; 166:3487-3492. [PMID: 34623502 DOI: 10.1007/s00705-021-05238-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
A novel double-stranded RNA virus was isolated and identified from Beauveria bassiana Vuillemin, derived from the muscardine cadaver of an Ostrinia furnacalis larva in China. The virus contains six dsRNAs, and each viral dsRNA contains only one open reading frame (ORF). As in other polymycoviruses, dsRNA1 encodes an RNA-dependent RNA polymerase (RdRp), dsRNA3 encodes a methyltransferase (MTR), and dsRNA4 encodes a proline-alanine-serine-rich protein. A BLASTp search revealed that the viral RdRp domain showed 79.43%, 79.04%, and 59.05% sequence identity to Beauveria bassiana polymycovirus 2 and 3 (BbPmV-2, BbPmV-3) and Magnaporthe oryzae polymycovirus 1 (MoPmV-1), respectively. Phylogenetic analysis based on RdRp sequences showed that the phylogenetically closest relatives of this virus are BbPmV-2, BbPmV-3, and MoPmV-1. This virus, along with previously ill-defined polymycoviruses (BbPmV-2 and BbPmV-3), appears to belong to an as-yet-unestablished species. The findings further suggest that the virus is a new member of the genus Polymycovirus within the family Polymycoviridae, and we have named it "Beauveria bassiana polymycovirus 4" (BbPmV-4). However, the sixth dsRNA is a defective RNA with the same sequence as that of dsRNA4 except for a deletion of 312 bp from nt 185 to nt 496, but it still contains a complete ORF. To our knowledge, this is the first report of the existence of a defective RNA in a polymycovirus.
Collapse
Affiliation(s)
- Qin Kang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China.,Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Le Li
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.,College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Jincang Li
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Songbai Zhang
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Qiyun Li
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China. .,Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| | - Zhengkun Zhang
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| |
Collapse
|
68
|
Li L, Kang Q, Zhang S, Hai D, Lu Y, Sui L, Zhang Z, Li Q. The complete genome sequence of a novel chrysovirus from the entomopathogenic fungus Beauveria bassiana Vuillemin. Arch Virol 2021; 166:3443-3447. [PMID: 34553285 DOI: 10.1007/s00705-021-05215-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/09/2021] [Indexed: 10/20/2022]
Abstract
Beauveria bassiana, an entomopathogenic fungus, is used for arthropod pest control worldwide. Here, we report the discovery and characterization of a novel double-stranded RNA (dsRNA) mycovirus, Beauveria bassiana chrysovirus 2 (BbCV-2), isolated from a Chinese B. bassiana strain. The genome sequence of the virus was determined by metagenomic sequencing, RT-PCR, and RACE cloning and was found to consist of four dsRNA segments that are 3441 bp, 2779 bp, 2925 bp, and 2688 bp long, respectively. Each dsRNA segment contains a single ORF. The ORF of dsRNA1 encodes a 1114-amino-acid (aa) protein (123.4 kDa) with a conserved RNA-dependent RNA polymerase (RdRp) motif, the sequence of which showed the highest identity of only 16.13% to that of Beauveria bassiana chrysovirus-1 (BbCV-1). The ORF of dsRNA2 encodes an 805-aa coat protein (CP) (84.7 kDa). The ORFs of dsRNAs 3 and 4 encodes proteins of undetermined function. The virus is a new member of the family Chrysoviridae from B. bassiana.
Collapse
Affiliation(s)
- Le Li
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture, Jilin Academy of Agricultural Sciences, Changchun, 130033, Jilin, People's Republic of China.,College of Plant Protection, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Qin Kang
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture, Jilin Academy of Agricultural Sciences, Changchun, 130033, Jilin, People's Republic of China.,Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Songbai Zhang
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, Hubei, People's Republic of China
| | - Du Hai
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Yang Lu
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture, Jilin Academy of Agricultural Sciences, Changchun, 130033, Jilin, People's Republic of China
| | - Li Sui
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture, Jilin Academy of Agricultural Sciences, Changchun, 130033, Jilin, People's Republic of China
| | - Zhengkun Zhang
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture, Jilin Academy of Agricultural Sciences, Changchun, 130033, Jilin, People's Republic of China.
| | - Qiyun Li
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture, Jilin Academy of Agricultural Sciences, Changchun, 130033, Jilin, People's Republic of China. .,College of Plant Protection, Jilin Agricultural University, Changchun, 130118, People's Republic of China. .,Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
69
|
Shi N, Hu F, Wang P, Zhang Y, Zhu Q, Yang G, Huang B. Molecular characterization of two dsRNAs that could correspond to the genome of a new mycovirus that infects the entomopathogenic fungus Beauveria bassiana. Arch Virol 2021; 166:3233-3237. [PMID: 34535823 DOI: 10.1007/s00705-021-05239-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/28/2021] [Indexed: 10/20/2022]
Abstract
The entomopathogenic fungus Beauveria bassiana is used worldwide for biological control of insects. Seven dsRNA segments were detected in a single B. bassiana strain, RCEF1446. High-throughput sequencing indicated the presence of three mycoviruses in RCEF1446. Two were identified as the known mycoviruses Beauveria bassiana victorivirus 1 and Beauveria bassiana polymycovirus 1, and the novel mycovirus was designated as "Beauveria bassiana bipartite mycovirus 1" (BbBV1). The complete sequence of the BbBV1 is described here. The mycovirus contains two dsRNA segments. The RNA 1 (dsRNA 4) of BbBV1 is 2,026 bp in length, encoding a RNA-dependent RNA polymerase (RdRp) (68.54 kDa), while the RNA 2 (dsRNA 6) is 1,810 bp in length, encoding a hypothetical protein (35.55 kDa) with unknown function. Moreover, the amino acid sequence of RdRp showed the highest sequence identity of 62.31% to Botryosphaeria dothidea bipartite mycovirus 1. Phylogenetic analysis based on RdRp sequences revealed that BbBV1 represents a distinct lineage of unassigned dsRNA mycoviruses infecting fungi.
Collapse
Affiliation(s)
- Najie Shi
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Fei Hu
- Institute of Plant Protection and Agro-products Safety, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Ping Wang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Yuxiang Zhang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Qiuyan Zhu
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Guogen Yang
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Bo Huang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
70
|
Wang J, Li C, Qiu R, Li X, Zhao J, Bai J, Chen Y, Li S. Complete genome sequence of a novel mitovirus from the phytopathogenic fungus Fusarium oxysporum. Arch Virol 2021; 166:3211-3216. [PMID: 34495411 DOI: 10.1007/s00705-021-05210-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/02/2021] [Indexed: 11/26/2022]
Abstract
Fusarium oxysporum is a cosmopolitan plant pathogen that causes fusarium wilt and fusarium root rot in many economically important crops. There is still limited information about mycoviruses that infect F. oxysporum. Here, a novel mitovirus tentatively named "Fusarium oxysporum mitovirus 1" (FoMV1) was identified in F. oxysporum strain B2-10. The genome of FoMV1 is 2,453 nt in length with a predicted AU content of 71.6% and contains one large open reading frame (ORF) using the fungal mitochondrial genetic code. The ORF putatively encodes an RNA-dependent RNA polymerase (RdRp) of 723 aa with a molecular mass of 84.98 kDa. The RdRp domain of FoMV1 shares 29.01% to 68.43% sequence identity with the members of the family Mitoviridae. Phylogenetic analysis further suggested that FoMV1 is a new member of a distinct species in the genus Mitovirus.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory for Green Preservation and Control of Tobacco Diseases and Pest in Huanghuai Growing Area, Institute of Tobacco, Henan Academy of Agricultural Sciences, No. 116, Garden road, Jingshui District, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Chengjun Li
- Key Laboratory for Green Preservation and Control of Tobacco Diseases and Pest in Huanghuai Growing Area, Institute of Tobacco, Henan Academy of Agricultural Sciences, No. 116, Garden road, Jingshui District, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Rui Qiu
- Key Laboratory for Green Preservation and Control of Tobacco Diseases and Pest in Huanghuai Growing Area, Institute of Tobacco, Henan Academy of Agricultural Sciences, No. 116, Garden road, Jingshui District, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Xiaojie Li
- Key Laboratory for Green Preservation and Control of Tobacco Diseases and Pest in Huanghuai Growing Area, Institute of Tobacco, Henan Academy of Agricultural Sciences, No. 116, Garden road, Jingshui District, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Jun Zhao
- Key Laboratory for Green Preservation and Control of Tobacco Diseases and Pest in Huanghuai Growing Area, Institute of Tobacco, Henan Academy of Agricultural Sciences, No. 116, Garden road, Jingshui District, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Jingke Bai
- Key Laboratory for Green Preservation and Control of Tobacco Diseases and Pest in Huanghuai Growing Area, Institute of Tobacco, Henan Academy of Agricultural Sciences, No. 116, Garden road, Jingshui District, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Yuguo Chen
- Key Laboratory for Green Preservation and Control of Tobacco Diseases and Pest in Huanghuai Growing Area, Institute of Tobacco, Henan Academy of Agricultural Sciences, No. 116, Garden road, Jingshui District, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Shujun Li
- Key Laboratory for Green Preservation and Control of Tobacco Diseases and Pest in Huanghuai Growing Area, Institute of Tobacco, Henan Academy of Agricultural Sciences, No. 116, Garden road, Jingshui District, Zhengzhou, 450002, Henan Province, People's Republic of China.
| |
Collapse
|
71
|
Quintanilha-Peixoto G, Fonseca PLC, Raya FT, Marone MP, Bortolini DE, Mieczkowski P, Olmo RP, Carazzolle MF, Voigt CA, Soares ACF, Pereira GAG, Góes-Neto A, Aguiar ERGR. The Sisal Virome: Uncovering the Viral Diversity of Agave Varieties Reveals New and Organ-Specific Viruses. Microorganisms 2021; 9:microorganisms9081704. [PMID: 34442783 PMCID: PMC8400513 DOI: 10.3390/microorganisms9081704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 12/29/2022] Open
Abstract
Sisal is a common name for different plant varieties in the genus Agave (especially Agave sisalana) used for high-quality natural leaf fiber extraction. Despite the economic value of these plants, we still lack information about the diversity of viruses (virome) in non-tequilana species from the genus Agave. In this work, by associating RNA and DNA deep sequencing we were able to identify 25 putative viral species infecting A. sisalana, A. fourcroydes, and Agave hybrid 11648, including one strain of Cowpea Mild Mottle Virus (CPMMV) and 24 elements likely representing new viruses. Phylogenetic analysis indicated they belong to at least six viral families: Alphaflexiviridae, Betaflexiviridae, Botourmiaviridae, Closteroviridae, Partitiviridae, Virgaviridae, and three distinct unclassified groups. We observed higher viral taxa richness in roots when compared to leaves and stems. Furthermore, leaves and stems are very similar diversity-wise, with a lower number of taxa and dominance of a single viral species. Finally, approximately 50% of the identified viruses were found in all Agave organs investigated, which suggests that they likely produce a systemic infection. This is the first metatranscriptomics study focused on viral identification in species from the genus Agave. Despite having analyzed symptomless individuals, we identified several viruses supposedly infecting Agave species, including organ-specific and systemic species. Surprisingly, some of these putative viruses are probably infecting microorganisms composing the plant microbiota. Altogether, our results reinforce the importance of unbiased strategies for the identification and monitoring of viruses in plant species, including those with asymptomatic phenotypes.
Collapse
Affiliation(s)
- Gabriel Quintanilha-Peixoto
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.Q.-P.); (P.L.C.F.); (D.E.B.); (R.P.O.)
| | - Paula Luize Camargos Fonseca
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.Q.-P.); (P.L.C.F.); (D.E.B.); (R.P.O.)
| | - Fábio Trigo Raya
- Department of Genetics and Evolution, Institute of Biology, Universidade Estadual de Campinas, Campinas 13083-872, Brazil; (F.T.R.); (M.P.M.); (M.F.C.); (G.A.G.P.)
| | - Marina Pupke Marone
- Department of Genetics and Evolution, Institute of Biology, Universidade Estadual de Campinas, Campinas 13083-872, Brazil; (F.T.R.); (M.P.M.); (M.F.C.); (G.A.G.P.)
| | - Dener Eduardo Bortolini
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.Q.-P.); (P.L.C.F.); (D.E.B.); (R.P.O.)
| | - Piotr Mieczkowski
- High-Throughput Sequencing Facility, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA;
| | - Roenick Proveti Olmo
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.Q.-P.); (P.L.C.F.); (D.E.B.); (R.P.O.)
- CNRS UPR9022, INSERM U1257, Université de Strasbourg, 67084 Strasbourg, France
| | - Marcelo Falsarella Carazzolle
- Department of Genetics and Evolution, Institute of Biology, Universidade Estadual de Campinas, Campinas 13083-872, Brazil; (F.T.R.); (M.P.M.); (M.F.C.); (G.A.G.P.)
| | | | - Ana Cristina Fermino Soares
- Center of Agricultural, Environmental and Biological Sciences, Universidade Federal do Recôncavo da Bahia, Cruz das Almas 44380-000, Brazil;
| | - Gonçalo Amarante Guimarães Pereira
- Department of Genetics and Evolution, Institute of Biology, Universidade Estadual de Campinas, Campinas 13083-872, Brazil; (F.T.R.); (M.P.M.); (M.F.C.); (G.A.G.P.)
| | - Aristóteles Góes-Neto
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.Q.-P.); (P.L.C.F.); (D.E.B.); (R.P.O.)
- Correspondence: (A.G.-N.); (E.R.G.R.A.)
| | - Eric Roberto Guimarães Rocha Aguiar
- Center of Biotechnology and Genetics, Department of Biological Science, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, Brazil
- Correspondence: (A.G.-N.); (E.R.G.R.A.)
| |
Collapse
|
72
|
Khan HA, Sato Y, Kondo H, Jamal A, Bhatti MF, Suzuki N. A second capsidless hadakavirus strain with 10 positive-sense single-stranded RNA genomic segments from Fusarium nygamai. Arch Virol 2021; 166:2711-2722. [PMID: 34313859 DOI: 10.1007/s00705-021-05176-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 05/28/2021] [Indexed: 11/29/2022]
Abstract
A unique capsidless virus with a positive-sense, single-stranded RNA genome (hadakavirus 1, HadV1), a member of the extended picorna-like supergroup, was isolated previously from the phytopathogenic fungus Fusarium oxysporum. Here, we describe the molecular and biological characterisation of a second hadakavirus strain from Fusarium nygamai, which has not been investigated in detail previously as a virus host. This virus, hadakavirus 1 strain 1NL (HadV1-1NL), has features similar to the first hadakavirus, HadV1-7n, despite having a different number of segments (10 for HadV1-1NL vs. 11 for HadV1-7n). The 10 genomic RNA segments of HadV1-1NL range in size from 0.9 kb to 2.5 kb. All HadV1-1NL segments show 67% to 86% local nucleotide sequence identity to their HadV1-7n counterparts, whereas HadV1-1NL has no homolog of HadV1-7n RNA8, which encodes a zinc-finger motif. Another interesting feature is the possible coding incapability of HadV1-1NL RNA10. HadV1-1NL was predicted to be capsidless based on the RNase A susceptibility of its replicative form dsRNA. Phenotypic comparison of multiple virus-infected and virus-free single-spore isolates indicated asymptomatic infection by HadV1-1NL. Less-efficient vertical transmission via spores was observed as the infected fungal colonies from which the spores were derived became older, as was observed for HadV1-7n. This study shows a second example of a hadakavirus that appears to have unusual features.
Collapse
Affiliation(s)
- Haris Ahmed Khan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, 44000, Pakistan.,Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Yukiyo Sato
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Atif Jamal
- Crop Diseases Research Institute, National Agricultural Research Centre, Islamabad, Pakistan
| | - Muhammad Faraz Bhatti
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, 44000, Pakistan.
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan.
| |
Collapse
|
73
|
Kotta-Loizou I. Mycoviruses and their role in fungal pathogenesis. Curr Opin Microbiol 2021; 63:10-18. [PMID: 34102567 DOI: 10.1016/j.mib.2021.05.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/03/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022]
Abstract
Nowadays, the focus of mycovirology research has expanded from plant pathogenic fungi and mycovirus mediated hypovirulence to include insect and human pathogenic fungi together with a range of mycovirus mediated phenotypes, such as hypervirulence, control of endophytic traits, regulation of metabolite production and drug resistance. In fungus-mycovirus-environmental interactions, the environment and both abiotic and biotic factors play crucial roles in whether and how mycovirus mediated phenotypes are manifest. Mycovirus infections result in alterations in the host transcriptome profile, via protein-protein interactions and triggering of antiviral RNA silencing in the fungus. These alterations, in combination with the environmental factors, may result in desirable phenotypic traits for the host, for us and in some cases for both.
Collapse
Affiliation(s)
- Ioly Kotta-Loizou
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, South Kensington Campus, SW7 2AZ London, United Kingdom.
| |
Collapse
|
74
|
Zhong J, Yang ZZ, Yang X, Guo ZJ, Xie W, Zhang YJ. Molecular characterization of a novel partitivirus and a fusarivirus coinfecting the fungus Nigrospora sphaerica. Arch Virol 2021; 166:2325-2331. [PMID: 34057607 DOI: 10.1007/s00705-021-05095-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
In this report, we describe the molecular characterization of two novel mycoviruses coinfecting the plant pathogenic fungus Nigrospora sphaerica, which were designated "Nigrospora sphaerica fusarivirus 1" (NsFV1) and "Nigrospora sphaerica partitivirus 1" (NsPV1). NsFV1 has an undivided genome measuring 6,147 nt, excluding the polyA tail, and was predicted to contain two nonoverlapping open reading frames (ORF1 and 2). The larger ORF1 encodes a polyprotein containing a conserved RNA-dependent RNA polymerase (RdRp) and a helicase domain that has functions related to RNA replication, and the smaller ORF2 encodes a putative protein with an unknown function. NsPV1 consists of two genome segments, which measure 1,796 bp and 1,455 bp in length. Each of the two dsRNAs has a single ORF, and they are predicted to encode proteins with homology to viral RdRps and coat proteins of members of the family Partitiviridae. Phylogenetic analysis indicated that NsFV1 is a member of the recently proposed family "Fusariviridae", while NsPV1 was determined to belong to the genus Gammapartitivirus in the family Partitiviridae. To the best of our knowledge, this report is the first to describe mycoviruses infecting N. sphaerica.
Collapse
Affiliation(s)
- Jie Zhong
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha City, Hunan Province, 410128, People's Republic of China
| | - Ze Zhong Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xin Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhao Jiang Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - You Jun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
75
|
Pérez-González O, Gomez-Flores R, Tamez-Guerra P. Mycelial compatibility, anastomosis, and nucleus numbers of eight Mexican Hirsutella citriformis strains isolated from Diaphorina citri. PeerJ 2021; 9:e11080. [PMID: 33976961 PMCID: PMC8061572 DOI: 10.7717/peerj.11080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/17/2021] [Indexed: 11/20/2022] Open
Abstract
Background Among entomopathogenic fungi, H. citriformis has been recognized as potential biocontrol agent against the Asian citrus psyllid Diaphorina citri (Hemiptera: Liviidae). Nevertheless, this fungus is poorly characterized. Previous molecular studies have shown high sequence similarities among strains, but significant differences in Diaphorina citri virulence. Objective The aim of the present study was to determine mycelial compatibility and anastomosis, and nucleus numbers in mycelium and conidia of eight H. citriformis strains isolated from mycosed D. citri adults collected from several Mexican states. Methods Mycelial compatibility and anastomosis evaluation was performed after pairing strains, leading to 36 confrontations, and cultured in chlorate minimum medium to obtain mutants for vegetative compatibility group. Results Hypha or conidia nuclei were visualized with safranin-O and 3% KOH, and 0.05% trypan blue–lactophenol solution. H. citriformis strains showed compatibly and anastomosis events after confrontation. In addition, they showed one nucleus per conidium and mycelium section. It was not possible to obtain H. citriformis nit mutants from the chlorate concentrations tested. Conclusions To date, this is the first report demonstrating mycelial compatibility, anastomosis occurrence, and hyphae and conidia nuclei number among H. citriformis strains.
Collapse
Affiliation(s)
- Orquídea Pérez-González
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo Leon, Mexico
| | - Ricardo Gomez-Flores
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo Leon, Mexico
| | - Patricia Tamez-Guerra
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo Leon, Mexico
| |
Collapse
|
76
|
Nazik H, Kotta-Loizou I, Sass G, Coutts RHA, Stevens DA. Virus Infection of Aspergillus fumigatus Compromises the Fungus in Intermicrobial Competition. Viruses 2021; 13:v13040686. [PMID: 33923408 PMCID: PMC8073786 DOI: 10.3390/v13040686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
Aspergillus and Pseudomonas compete in nature, and are the commonest bacterial and fungal pathogens in some clinical settings, such as the cystic fibrosis lung. Virus infections of fungi occur naturally. Effects on fungal physiology need delineation. A common reference Aspergillus fumigatus strain, long studied in two (of many) laboratories, was found infected with the AfuPmV-1 virus. One isolate was cured of virus, producing a virus-free strain. Virus from the infected strain was purified and used to re-infect three subcultures of the virus-free fungus, producing six fungal strains, otherwise isogenic. They were studied in intermicrobial competition with Pseudomonasaeruginosa. Pseudomonas culture filtrates inhibited forming or preformed Aspergillus biofilm from infected strains to a greater extent, also seen when Pseudomonas volatiles were assayed on Aspergillus. Purified iron-chelating Pseudomonas molecules, known inhibitors of Aspergillus biofilm, reproduced these differences. Iron, a stimulus of Aspergillus, enhanced the virus-free fungus, compared to infected. All infected fungal strains behaved similarly in assays. We show an important consequence of virus infection, a weakening in intermicrobial competition. Viral infection may affect the outcome of bacterial–fungal competition in nature and patients. We suggest that this occurs via alteration in fungal stress responses, the mechanism best delineated here is a result of virus-induced altered Aspergillus iron metabolism.
Collapse
Affiliation(s)
- Hasan Nazik
- California Institute for Medical Research, 2260 Clove Dr., San Jose, CA 95128, USA; (H.N.); (G.S.)
| | - Ioly Kotta-Loizou
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK;
| | - Gabriele Sass
- California Institute for Medical Research, 2260 Clove Dr., San Jose, CA 95128, USA; (H.N.); (G.S.)
| | - Robert H. A. Coutts
- Department of Clinical, Pharmaceutical and Biological Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK;
| | - David A. Stevens
- California Institute for Medical Research, 2260 Clove Dr., San Jose, CA 95128, USA; (H.N.); (G.S.)
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA 95128, USA
- Correspondence: ; Tel.: +1-408-998-4554
| |
Collapse
|
77
|
Jia J, Fu Y, Jiang D, Mu F, Cheng J, Lin Y, Li B, Marzano SYL, Xie J. Interannual dynamics, diversity and evolution of the virome in Sclerotinia sclerotiorum from a single crop field. Virus Evol 2021; 7:veab032. [PMID: 33927888 PMCID: PMC8058396 DOI: 10.1093/ve/veab032] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mycovirus diversity is generally analyzed from isolates of fungal culture isolates at a single point in time as a snapshot. The stability of mycovirus composition within the same geographical location over time remains unclear. Not knowing how the population fluctuates in the field can be a source of unpredictability in the successful application of virocontrol. To better understand the changes over time, we monitored the interannual dynamics and abundance of mycoviruses infecting Sclerotinia sclerotiorum at a rapeseed-growing field for three years. We found that the virome in S. sclerotiorum harbors unique mycovirus compositions each year. In total, sixty-eight mycoviruses were identified, among which twenty-four were detected in all three successive years. These twenty-four mycoviruses can be classified as the members of the core virome in this S. sclerotiorum population, which show persistence and relatively high transmissibility under field conditions. Nearly two-thirds of the mycoviruses have positive-sense, single-stranded RNA genomes and were found consistently across all three years. Moreover, twenty-eight mycoviruses are newly described, including four novel, multi-segmented narnaviruses, and four unique bunyaviruses. Overall, the newly discovered mycoviruses in this study belong to as many as twenty families, into which eight were first identified in S. sclerotiorum, demonstrating evolutionarily diverse viromes. Our findings not only shed light on the annual variation of mycovirus diversity but also provide important virus evolutionary clues.
Collapse
Affiliation(s)
- Jichun Jia
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070 Hubei Province, People's Republic of China.,Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Hubei Province, Wuhan 430070, People's Republic of China
| | - Yanping Fu
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Hubei Province, Wuhan 430070, People's Republic of China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070 Hubei Province, People's Republic of China.,Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Hubei Province, Wuhan 430070, People's Republic of China
| | - Fan Mu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070 Hubei Province, People's Republic of China.,Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Hubei Province, Wuhan 430070, People's Republic of China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070 Hubei Province, People's Republic of China.,Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Hubei Province, Wuhan 430070, People's Republic of China
| | - Yang Lin
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Hubei Province, Wuhan 430070, People's Republic of China
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070 Hubei Province, People's Republic of China.,Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Hubei Province, Wuhan 430070, People's Republic of China
| | - Shin-Yi Lee Marzano
- United States Department of Agriculture/Agricultural Research Service, Toledo, OH 43606, USA
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070 Hubei Province, People's Republic of China.,Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Hubei Province, Wuhan 430070, People's Republic of China
| |
Collapse
|
78
|
Mahillon M, Decroës A, Caulier S, Tiendrebeogo A, Legrève A, Bragard C. Genomic and biological characterization of a novel partitivirus infecting Fusarium equiseti. Virus Res 2021; 297:198386. [PMID: 33716183 DOI: 10.1016/j.virusres.2021.198386] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 12/18/2022]
Abstract
This study describes a new mycovirus infecting a strain from the Fusarium incarnatum-equiseti species complex. Based on phylogenetic and genomic analyses, this virus belongs to the recently proposed genus "Zetapartitivirus" in the family Partitiviridae. The name "Fusarium equiseti partitivirus 1″ (FePV1) is therefore suggested for this novel viral species. Similar to other partitiviruses, FePV1 genome is composed by two dsRNA segments that exhibit each one large ORF encoding for an RdRp and a CP, respectively. A smaller dsRNA was also detected in infected mycelium and could be a satellite RNA of FePV1. In addition to characterized zetapartitiviruses, other FePV1-related sequences were retrieved from online databases and their significance is discussed. Following conidial isolation, an FePV1-free isogenic line of the fungal host was obtained. In comparison with the original infected strain, this line showed higher growth, biomass production and pathogenicity on tomato, advocating that FePV1 induces hypovirulence on its host.
Collapse
Affiliation(s)
- Mathieu Mahillon
- Earth and Life Institute, Applied Microbiology-Phytopathology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Alain Decroës
- Earth and Life Institute, Applied Microbiology-Phytopathology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Simon Caulier
- Earth and Life Institute, Applied Microbiology-Phytopathology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Assiata Tiendrebeogo
- Earth and Life Institute, Applied Microbiology-Phytopathology, UCLouvain, Louvain-la-Neuve, Belgium; Natural System, Agrosystem and Environmental Engineering, Phytopathology, Nazi Boni University, Bobo-Dioulasso, Burkina-Faso
| | - Anne Legrève
- Earth and Life Institute, Applied Microbiology-Phytopathology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Claude Bragard
- Earth and Life Institute, Applied Microbiology-Phytopathology, UCLouvain, Louvain-la-Neuve, Belgium.
| |
Collapse
|
79
|
Filippou C, Diss RM, Daudu JO, Coutts RHA, Kotta-Loizou I. The Polymycovirus-Mediated Growth Enhancement of the Entomopathogenic Fungus Beauveria bassiana Is Dependent on Carbon and Nitrogen Metabolism. Front Microbiol 2021; 12:606366. [PMID: 33603722 PMCID: PMC7884332 DOI: 10.3389/fmicb.2021.606366] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
Polymycoviridae is a growing family of mycoviruses whose members typically have non-conventional capsids and multi-segmented, double-stranded (ds) RNA genomes. Beauveria bassiana polymycovirus (BbPmV) 1 is known to enhance the growth and virulence of its fungal host, the entomopathogenic ascomycete and popular biological control agent B. bassiana. Here we report the complete sequence of BbPmV-3, which has six genomic dsRNA segments. Phylogenetic analysis of RNA-dependent RNA polymerase (RdRp) protein sequences revealed that BbPmV-3 is closely related to the partially sequenced BbPmV-2 but not BbPmV-1. Nevertheless, both BbPmV-3 and BbPmV-1 have similar effects on their respective host isolates ATHUM 4946 and EABb 92/11-Dm, affecting pigmentation, sporulation, and radial growth. Production of conidia and radial growth are significantly enhanced in virus-infected isolates as compared to virus-free isogenic lines on Czapek-Dox complete and minimal media that contain sucrose and sodium nitrate. However, this polymycovirus-mediated effect on growth is dependent on the carbon and nitrogen sources available to the host fungus. Both BbPmV-3 and BbPmV-1 increase growth of ATHUM 4946 and EABb 92/11-Dm when sucrose is replaced by lactose, trehalose, glucose, or glycerol, while the effect is reversed on maltose and fructose. Similarly, both BbPmV-3 and BbPmV-1 decrease growth of ATHUM 4946 and EABb 92/11-Dm when sodium nitrate is replaced by sodium nitrite, potassium nitrate, or ammonium nitrate. In conclusion, the effects of polymycoviruses on B. bassiana are at least partially mediated via its metabolic pathways.
Collapse
Affiliation(s)
- Charalampos Filippou
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Department of Clinical, Pharmaceutical and Biological Science, University of Hertfordshire, Hatfield, United Kingdom
| | - Rebecca M Diss
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - John O Daudu
- Department of Clinical, Pharmaceutical and Biological Science, University of Hertfordshire, Hatfield, United Kingdom
| | - Robert H A Coutts
- Department of Clinical, Pharmaceutical and Biological Science, University of Hertfordshire, Hatfield, United Kingdom
| | - Ioly Kotta-Loizou
- Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
80
|
Wang P, Yang G, Shi N, Huang B. A novel gammapartitivirus from the entomopathogenic fungus Metarhizium brunneum. Arch Virol 2021; 166:977-981. [PMID: 33427966 DOI: 10.1007/s00705-020-04939-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/11/2020] [Indexed: 11/24/2022]
Abstract
Here, we report a novel partitivirus infecting Metarhizium brunneum, which was designated "Metarhizium brunneum partitivirus 2" (MbPV2). The complete genome of MbPV2 consists of two segments, dsRNA1 and dsRNA2, with each dsRNA possessing a single open reading frame (ORF). dsRNA1 (1,775 bp) encodes a conserved RNA-dependent RNA polymerase (RdRp) with the highest sequence similarity to Plasmopara viticola associated partitivirus 1 (PvAPV1), while dsRNA2 (1,568 bp) encodes a coat protein (CP) with the highest sequence similarity to Colletotrichum partitivirus 1 (CtParV1). Phylogenetic analysis based on RdRp sequences showed that MbPV2 is a new member of the genus Gammapartitivirus, family Partitiviridae. This is the first report of a gammapartitivirus that infects the entomopathogenic fungus Metarhizium brunneum.
Collapse
Affiliation(s)
- Ping Wang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Guogen Yang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Najie Shi
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Bo Huang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
81
|
Takahashi-Nakaguchi A, Shishido E, Yahara M, Urayama SI, Ninomiya A, Chiba Y, Sakai K, Hagiwara D, Chibana H, Moriyama H, Gonoi T. Phenotypic and Molecular Biological Analysis of Polymycovirus AfuPmV-1M From Aspergillus fumigatus: Reduced Fungal Virulence in a Mouse Infection Model. Front Microbiol 2020; 11:607795. [PMID: 33424809 PMCID: PMC7794001 DOI: 10.3389/fmicb.2020.607795] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/24/2020] [Indexed: 11/30/2022] Open
Abstract
The filamentous fungal pathogen Aspergillus fumigatus is one of the most common causal agents of invasive fungal infection in humans; the infection is associated with an alarmingly high mortality rate. In this study, we investigated whether a mycovirus, named AfuPmV-1M, can reduce the virulence of A. fumigatus in a mouse infection model. AfuPmV-1M has high sequence similarity to AfuPmV-1, one of the polymycovirus that is a capsidless four-segment double-stranded RNA (dsRNA) virus, previously isolated from the genome reference strain of A. fumigatus, Af293. However, we found the isolate had an additional fifth dsRNA segment, referred to as open reading frame 5 (ORF5), which has not been reported in AfuPmV-1. We then established isogenic lines of virus-infected and virus-free A. fumigatus strains. Mycovirus infection had apparent influences on fungal phenotypes, with the virus-infected strain producing a reduced mycelial mass and reduced conidial number in comparison with these features of the virus-free strain. Also, resting conidia of the infected strain showed reduced adherence to pulmonary epithelial cells and reduced tolerance to macrophage phagocytosis. In an immunosuppressed mouse infection model, the virus-infected strain showed reduced mortality in comparison with mortality due to the virus-free strain. RNA sequencing and high-performance liquid chromatography (HPLC) analysis showed that the virus suppressed the expression of genes for gliotoxin synthesis and its production at the mycelial stage. Conversely, the virus enhanced gene expression and biosynthesis of fumagillin. Viral RNA expression was enhanced during conidial maturation, conidial germination, and the mycelial stage. We presume that the RNA or translation products of the virus affected fungal phenotypes, including spore formation and toxin synthesis. To identify the mycovirus genes responsible for attenuation of fungal virulence, each viral ORF was ectopically expressed in the virus-free KU strain. We found that the expression of ORF2 and ORF5 reduced fungal virulence in the mouse model. In addition, ORF3 affected the stress tolerance of host A. fumigatus in culture. We hypothesize that the respective viral genes work cooperatively to suppress the pathogenicity of the fungal host.
Collapse
Affiliation(s)
| | - Erika Shishido
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Misa Yahara
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Syun-Ichi Urayama
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.,Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Japan
| | - Akihiro Ninomiya
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yuto Chiba
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kanae Sakai
- Medical Mycology Research Center, Chiba University, Chiba, Japan.,Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Daisuke Hagiwara
- Medical Mycology Research Center, Chiba University, Chiba, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.,Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Japan
| | - Hiroji Chibana
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Hiromitsu Moriyama
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Tohru Gonoi
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| |
Collapse
|
82
|
Chun J, Na B, Kim DH. Characterization of a novel dsRNA mycovirus of Trichoderma atroviride NFCF377 reveals a member of "Fusagraviridae" with changes in antifungal activity of the host fungus. J Microbiol 2020; 58:1046-1053. [PMID: 33095387 DOI: 10.1007/s12275-020-0380-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 12/21/2022]
Abstract
Trichoderma atroviride is a common fungus found in various ecosystems that shows mycoparasitic ability on other fungi. A novel dsRNA virus was isolated from T. atroviride NFCF377 strain and its molecular features were analyzed. The viral genome consists of a single segmented double-stranded RNA and is 9,584 bp in length, with two discontinuous open reading frames (ORF1 and ORF2). A mycoviral structural protein and an RNA-dependent RNA polymerase (RdRp) are encoded by ORF1 and ORF2, respectively, between which is found a canonical shifty heptameric signal motif (AAAAAAC) followed by an RNA pseudoknot. Analysis of sequence similarity and phylogeny showed that it is closely related to members of the proposed family "Fusagraviridae", with a highest similarity to the Trichoderma atroviride mycovirus 1 (TaMV1). Although the sequence similarity of deduced amino acid to TaMV1 was evident, sequence deviations were distinctive at untranslated regions (UTRs) due to the extended size. Thus, we inferred this dsRNA to be a different strain of Trichoderma atroviride mycovirus 1 (TaMV1-NFCF377). Electron microscopy image exhibited an icosahedral viral particle of 40 nm diameter. Virus-cured isogenic isolates were generated and no differences in growth rate, colony morphology, or conidia production were observed between virus-infected and virus-cured strains. However, culture filtrates of TaMV1-NFCF377-infected strain showed enhanced antifungal activity against the plant pathogen Rhizoctonia solani but not to edible mushroom Pleurotus ostreatus. These results suggested that TaMV1-NFCF377 affected the metabolism of the fungal host to potentiate antifungal compounds against a plant pahogen, but this enhanced antifungal activity appeared to be species-specific.
Collapse
Affiliation(s)
- Jeesun Chun
- Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Byeonghak Na
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Dae-Hyuk Kim
- Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
- Department of Molecular Biology, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
83
|
Sato Y, Jamal A, Kondo H, Suzuki N. Molecular Characterization of a Novel Polymycovirus From Penicillium janthinellum With a Focus on Its Genome-Associated PASrp. Front Microbiol 2020; 11:592789. [PMID: 33193262 PMCID: PMC7606342 DOI: 10.3389/fmicb.2020.592789] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 09/18/2020] [Indexed: 12/24/2022] Open
Abstract
The genus Polymycovirus of the family Polymycoviridae accommodates fungal RNA viruses with different genomic segment numbers (four, five, or eight). It is suggested that four members form no true capsids and one forms filamentous virus particles enclosing double-stranded RNA (dsRNA). In both cases, viral dsRNA is associated with a viral protein termed “proline-alanine-serine-rich protein” (PASrp). These forms are assumed to be the infectious entity. However, the detailed molecular characteristics of PASrps remain unclear. Here, we identified a novel five-segmented polymycovirus, Penicillium janthinellum polymycovirus 1 (PjPmV1), and characterized its purified fraction form in detail. The PjPmV1 had five dsRNA segments associated with PASrp. Density gradient ultracentrifugation of the PASrp-associated PjPmV1 dsRNA revealed its uneven structure and a broad fractionation profile distinct from that of typical encapsidated viruses. Moreover, PjPmV1-PASrp interacted in vitro with various nucleic acids in a sequence-non-specific manner. These PjPmV1 features are discussed in view of the diversification of genomic segment numbers of the genus Polymycovirus.
Collapse
Affiliation(s)
- Yukiyo Sato
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Atif Jamal
- Crop Diseases Research Institute, National Agricultural Research Centre, Islamabad, Pakistan
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| |
Collapse
|
84
|
Jacquat AG, Theumer MG, Cañizares MC, Debat HJ, Iglesias J, García Pedrajas MD, Dambolena JS. A Survey of Mycoviral Infection in Fusarium spp. Isolated from Maize and Sorghum in Argentina Identifies the First Mycovirus from Fusarium verticillioides. Viruses 2020; 12:v12101161. [PMID: 33066620 PMCID: PMC7602464 DOI: 10.3390/v12101161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/28/2020] [Accepted: 10/09/2020] [Indexed: 12/30/2022] Open
Abstract
Mycoviruses appear to be widespread in Fusarium species worldwide. The aim of this work was to identify mycoviral infections in Fusarium spp., isolated from maize and sorghum grown in Argentina, and to estimate their potential effects on the pathogenicity and toxigenesis of the host fungus towards maize. Mycoviruses were identified in 2 out of 105 isolates analyzed; Fusarium verticillioides strain Sec505 and Fusarium andiyazi strain 162. They were characterized as members of the genus Mitovirus by high-throughput sequencing and sequence analysis. The F. verticillioides mitovirus was a novel mycovirus whereas the F. andiyazi mitovirus was found to be a new strain of a previously identified mitovirus. We have named these mitoviruses, Fusarium verticillioides mitovirus 1 (FvMV1) and Fusarium andiyazi mitovirus 1 strain 162 (FaMV1-162). To our knowledge, FvMV1 is the first mycovirus reported as naturally infecting F. verticillioides, the major causal agent of ear rot and fumonisin producer in corn. Both mitoviruses exhibited 100% vertical transmission rate to microconidia. The Fa162 strain infected with FaMV1-162 did not show phenotypic alterations. In contract, F. verticillioides Sec505 infected with FvMV1 showed increased virulence as well as microconidia and fumonisin-B1 production, compared with two uninfected strains. These results suggest that FvMV1 could have a role in modulating F. verticillioides pathogenicity and toxin production worth further exploring.
Collapse
Affiliation(s)
- Andrés Gustavo Jacquat
- Facultad de Ciencias Exactas Físicas y Naturales (FCEFyN), Universidad Nacional de Córdoba (UNC), Córdoba 5000, Argentina;
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Vélez Sarsfield 1611, Córdoba X5016GCA, Argentina
| | - Martín Gustavo Theumer
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas (FCQ), Universidad Nacional de Córdoba (UNC), Córdoba 5000, Argentina;
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Haya de la Torre y Medina Allende—Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - María Carmen Cañizares
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM—UMA—CSIC), Estación Experimental “La Mayora”, Avenida Dr. Wienberg s/n, 29750 Algarrobo-Costa, Málaga, Spain;
| | - Humberto Julio Debat
- Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE—CIAP—INTA), Camino 60 Cuadras Km 5.5, Córdoba X5020ICA, Argentina;
| | - Juliana Iglesias
- Estación Experimental Pergamino, (EEA) INTA Pergamino, Universidad Nacional Noroeste (UNNOBA), Pergamino (Buenos Aires) B2700, Argentina;
| | - María Dolores García Pedrajas
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM—UMA—CSIC), Estación Experimental “La Mayora”, Avenida Dr. Wienberg s/n, 29750 Algarrobo-Costa, Málaga, Spain;
- Correspondence: (M.D.G.P.); (J.S.D.)
| | - José Sebastián Dambolena
- Facultad de Ciencias Exactas Físicas y Naturales (FCEFyN), Universidad Nacional de Córdoba (UNC), Córdoba 5000, Argentina;
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Vélez Sarsfield 1611, Córdoba X5016GCA, Argentina
- Correspondence: (M.D.G.P.); (J.S.D.)
| |
Collapse
|
85
|
Mata CP, Rodríguez JM, Suzuki N, Castón JR. Structure and assembly of double-stranded RNA mycoviruses. Adv Virus Res 2020; 108:213-247. [PMID: 33837717 DOI: 10.1016/bs.aivir.2020.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mycoviruses are a diverse group that includes ssRNA, dsRNA, and ssDNA viruses, with or without a protein capsid, as well as with a complex envelope. Most mycoviruses are transmitted by cytoplasmic interchange and are thought to lack an extracellular phase in their infection cycle. Structural analysis has focused on dsRNA mycoviruses, which usually package their genome in a 120-subunit T=1 icosahedral capsid, with a capsid protein (CP) dimer as the asymmetric unit. The atomic structure is available for four dsRNA mycovirus from different families: Saccharomyces cerevisiae virus L-A (ScV-L-A), Penicillium chrysogenum virus (PcV), Penicillium stoloniferum virus F (PsV-F), and Rosellinia necatrix quadrivirus 1 (RnQV1). Their capsids show structural variations of the same framework, with asymmetric or symmetric CP dimers respectively for ScV-L-A and PsV-F, dimers of similar domains of a single CP for PcV, or of two different proteins for RnQV1. The CP dimer is the building block, and assembly proceeds through dimers of dimers or pentamers of dimers, in which the genome is packed as ssRNA by interaction with CP and/or viral polymerase. These capsids remain structurally undisturbed throughout the viral cycle. The T=1 capsid participates in RNA synthesis, organizing the viral polymerase (1-2 copies) and a single loosely packaged genome segment. It also acts as a molecular sieve, to allow the passage of viral transcripts and nucleotides, but to prevent triggering of host defense mechanisms. Due to the close mycovirus-host relationship, CP evolved to allocate peptide insertions with enzyme activity, as reflected in a rough outer capsid surface.
Collapse
Affiliation(s)
- Carlos P Mata
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain; Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Javier M Rodríguez
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - José R Castón
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
86
|
Olivé M, Campo S. The dsRNA mycovirus ChNRV1 causes mild hypervirulence in the fungal phytopathogen Colletotrichum higginsianum. Arch Microbiol 2020; 203:241-249. [PMID: 32914229 DOI: 10.1007/s00203-020-02030-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 08/21/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022]
Abstract
The genus Colletotrichum comprises a large number of filamentous fungi responsible for anthracnose diseases in many tropical and subtropical fruits and vegetables. In particular, Colletotrichum higginsianum infects Brassicaceae species, including Arabidopsis. The C. higginsianum strain IMI349063A is naturally infected with a dsRNA virus, named Colletorichum higginsianum non-segmented virus (ChNRV1). Here, we investigated the biological effect of ChNRV1 in C. higginsianum by comparing strains with and without the virus. ChNRV1 does not have an effect on C. higginsianum growth under salt and cell-wall stress conditions. However, thermal stress reduced C. higginsianum growth rate, this effect being more evident in the wild-type C. higginsianum strain containing the virus. Although ChNRV1 had no effect in conidiation, conidia were narrower when the virus is present. More importantly, ChNRV1 causes a mild increase in C. higginsianum virulence (hypervirulence) when infecting Arabidopsis plants. These findings indicated that, whereas the ChNRV1 mycovirus does not impair growth and conidiation of C. higginsianum, it confers hypervirulence to the fungal host. These findings will help in future research on the effect of mycoviral infection on pathogenic fungi in plant species of agronomical relevance.
Collapse
Affiliation(s)
- Marta Olivé
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
| | - Sonia Campo
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), Barcelona, Spain.
| |
Collapse
|
87
|
Dolja VV, Krupovic M, Koonin EV. Deep Roots and Splendid Boughs of the Global Plant Virome. ANNUAL REVIEW OF PHYTOPATHOLOGY 2020; 58:23-53. [PMID: 32459570 DOI: 10.1146/annurev-phyto-030320-041346] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Land plants host a vast and diverse virome that is dominated by RNA viruses, with major additional contributions from reverse-transcribing and single-stranded (ss) DNA viruses. Here, we introduce the recently adopted comprehensive taxonomy of viruses based on phylogenomic analyses, as applied to the plant virome. We further trace the evolutionary ancestry of distinct plant virus lineages to primordial genetic mobile elements. We discuss the growing evidence of the pivotal role of horizontal virus transfer from invertebrates to plants during the terrestrialization of these organisms, which was enabled by the evolution of close ecological associations between these diverse organisms. It is our hope that the emerging big picture of the formation and global architecture of the plant virome will be of broad interest to plant biologists and virologists alike and will stimulate ever deeper inquiry into the fascinating field of virus-plant coevolution.
Collapse
Affiliation(s)
- Valerian V Dolja
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331-2902, USA;
| | - Mart Krupovic
- Archaeal Virology Unit, Department of Microbiology, Institut Pasteur, 75015 Paris, France
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| |
Collapse
|
88
|
Wang Y, Zhao H, Xue C, Xu C, Geng Y, Zang R, Guo Y, Wu H, Zhang M. Complete genome sequence of a novel mycovirus isolated from the phytopathogenic fungus Corynespora cassiicola in China. Arch Virol 2020; 165:2401-2404. [PMID: 32757057 DOI: 10.1007/s00705-020-04723-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/01/2020] [Indexed: 12/19/2022]
Abstract
A novel mycovirus, named "Corynespora cassiicola bipartite mycovirus 1" (CcBV1), was isolated from a phytopathogenic fungus, Corynespora cassiicola, the causal agent of rubber leaf fall disease. The nucleotide sequence of the complete genome of CcBV1, which consists of two double-stranded RNA (dsRNA) segments, was determined. The first dsRNA is 2,002 bp in length and contains a single open reading frame (ORF) encoding a putative RNA-dependent RNA polymerase (RdRp) (69 kDa), while the second is 1,738 bp in length and contains a single ORF encoding a hypothetical protein of unknown function, with an approximately molecular weight of 36 kDa. The amino acid sequences of the both deduced proteins are most similar (58.9% and 45.1% identity, respectively) to those of Cryphonectria parasitica bipartite mycovirus 1 (CpBV1). Phylogenetic analysis indicated that CcBV1 clusters together with CpBV1 and other unassigned dsRNA mycoviruses. To the best of our knowledge, this represents the first report of a mycovirus infecting C. cassiicola.
Collapse
Affiliation(s)
- Yanfen Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Hang Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Caiying Xue
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Chao Xu
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Yuehua Geng
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Rui Zang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Yuxia Guo
- College of Animal and Veterinary Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Haiyan Wu
- Centre for Modern Experimental Technology, Henan Agricultural University, Zhengzhou, 450002, Henan, China.
| | - Meng Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
89
|
Abstract
Mycoviruses, just as the fungal endophytes they infect, are ubiquitous biological entities on Earth. Mycoviruses constitute a diverse group of viruses, and metagenomic approaches have-through recent discoveries of been mycoviruses-only recently began to provide evidence of this astonishing diversity. The current review presents (1) various mycoviruses which infect fungal endophytes and forest pathogens, (2) their presumed origins and interactions with fungi, plants and the environment, (3) high-throughput sequencing techniques that can be used to explore the horizontal gene transfer of mycoviruses, and (4) how the hypo- and hypervirulence induced by mycoviral infection is relevant to the biological control of pathogenic fungi.
Collapse
Affiliation(s)
- Abu Bakar Siddique
- Department of Ecology and Environmental Sciences (EMG), Umeå University, Umeå, Sweden.
| |
Collapse
|
90
|
Doubling of the known set of RNA viruses by metagenomic analysis of an aquatic virome. Nat Microbiol 2020; 5:1262-1270. [PMID: 32690954 PMCID: PMC7508674 DOI: 10.1038/s41564-020-0755-4] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 06/16/2020] [Indexed: 12/26/2022]
Abstract
RNA viruses in aquatic environments remain poorly studied. Here, we analysed the RNA virome from approximately 10 l water from Yangshan Deep-Water Harbour near the Yangtze River estuary in China and identified more than 4,500 distinct RNA viruses, doubling the previously known set of viruses. Phylogenomic analysis identified several major lineages, roughly, at the taxonomic ranks of class, order and family. The 719-member-strong Yangshan virus assemblage is the sister clade to the expansive class Alsuviricetes and consists of viruses with simple genomes that typically encode only RNA-dependent RNA polymerase (RdRP), capping enzyme and capsid protein. Several clades within the Yangshan assemblage independently evolved domain permutation in the RdRP. Another previously unknown clade shares ancestry with Potyviridae, the largest known plant virus family. The ‘Aquatic picorna-like viruses/Marnaviridae’ clade was greatly expanded, with more than 800 added viruses. Several RdRP-linked protein domains not previously detected in any RNA viruses were identified, such as the small ubiquitin-like modifier (SUMO) domain, phospholipase A2 and PrsW-family protease domain. Multiple viruses utilize alternative genetic codes implying protist (especially ciliate) hosts. The results reveal a vast RNA virome that includes many previously unknown groups. However, phylogenetic analysis of the RdRPs supports the previously established five-branch structure of the RNA virus evolutionary tree, with no additional phyla. Metagenomic analysis of a single RNA virome from the Yangshan Deep-Water Harbour in China enabled the recovery of more than 4,500 distinct RNA viruses, doubling the known set of RNA viruses to date, and provided insights into their biology.
Collapse
|
91
|
Filippou C, Coutts RHA, Stevens DA, Sabino R, Kotta-Loizou I. Completion of the sequence of the Aspergillus fumigatus partitivirus 1 genome. Arch Virol 2020; 165:1891-1894. [PMID: 32458177 PMCID: PMC7351820 DOI: 10.1007/s00705-020-04660-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 04/12/2020] [Indexed: 11/26/2022]
Abstract
A Portuguese isolate of Aspergillus fumigatus was found to contain three double-stranded (ds) RNA elements ranging in size from 1.1 to 1.8 kbp and comprising the genome of a strain of Aspergillus fumigatus partitivirus 1 (AfuPV-1) previously thought to contain only the two largest dsRNA elements. The sequence of the smallest dsRNA element is described here, completing the sequence of the AfuPV-1 genome. Sequence analysis of the element revealed an open reading frame encoding a protein of unknown function similar in size and distantly related to elements previously identified in other members of the family Partitiviridae.
Collapse
Affiliation(s)
- Charalampos Filippou
- Department of Biological and Environmental Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | - Robert H A Coutts
- Department of Biological and Environmental Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | - David A Stevens
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
- California Institute for Medical Research, San Jose, California, USA
| | - Raquel Sabino
- Infectious Diseases Department, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Ioly Kotta-Loizou
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK.
| |
Collapse
|
92
|
Sato Y, Shamsi W, Jamal A, Bhatti MF, Kondo H, Suzuki N. Hadaka Virus 1: a Capsidless Eleven-Segmented Positive-Sense Single-Stranded RNA Virus from a Phytopathogenic Fungus, Fusarium oxysporum. mBio 2020; 11:e00450-20. [PMID: 32457242 PMCID: PMC7251205 DOI: 10.1128/mbio.00450-20] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/28/2020] [Indexed: 12/16/2022] Open
Abstract
The search for viruses infecting fungi, or mycoviruses, has extended our knowledge about the diversity of RNA viruses, as exemplified by the discovery of polymycoviruses, a phylogenetic group of multisegmented RNA viruses with unusual forms. The genomic RNAs of known polymycoviruses, which show a phylogenetic affinity for animal positive-sense single-stranded RNA [(+)RNA] viruses such as caliciviruses, are comprised of four conserved segments with an additional zero to four segments. The double-stranded form of polymycovirus genomic RNA is assumed to be associated with a virally encoded protein (proline-alanine-serine-rich protein [PASrp]) in either of two manners: a capsidless colloidal form or a filamentous encapsidated form. Detailed molecular characterizations of polymycoviruses, however, have been conducted for only a few strains. Here, a novel polymyco-related virus named Hadaka virus 1 (HadV1), from the phytopathogenic fungus Fusarium oxysporum, was characterized. The genomic RNA of HadV1 consisted of an 11-segmented positive-sense RNA with highly conserved terminal nucleotide sequences. HadV1 shared the three conserved segments with known polymycoviruses but lacked the PASrp-encoding segment. Unlike the known polymycoviruses and encapsidated viruses, HadV1 was not pelleted by conventional ultracentrifugation, possibly due to the lack of PASrp. This result implied that HadV1 exists only as a soluble form with naked RNA. Nevertheless, the 11 genomic segments of HadV1 have been stably maintained through host subculturing and conidiation. Taken together, the results of this study revealed a virus with a potential novel virus lifestyle, carrying many genomic segments without typical capsids or PASrp-associated forms.IMPORTANCE Fungi collectively host various RNA viruses. Examples include encapsidated double-stranded RNA (dsRNA) viruses with diverse numbers of genomic segments (from 1 to 12) and capsidless viruses with nonsegmented (+)RNA genomes. Recently, viruses with unusual intermediate features of an infectious entity between encapsidated dsRNA viruses and capsidless (+)RNA viruses were found. They are called polymycoviruses, which typically have four to eight dsRNA genomic segments associated with one of the virus-encoded proteins and are phylogenetically distantly related to animal (+)RNA caliciviruses. Here, we identified a novel virus phylogenetically related to polymycoviruses, from the phytopathogenic fungus Fusarium oxysporum The virus, termed Hadaka virus 1 (HadV1), has 11 (+)RNA genomic segments, the largest number in known (+)RNA viruses. Nevertheless, HadV1 lacked a typical structural protein of polymycoviruses and was not pelleted by standard ultracentrifugation, implying an unusual capsidless nature of HadV1. This study reveals a potential novel lifestyle of multisegmented RNA viruses.
Collapse
Affiliation(s)
- Yukiyo Sato
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Wajeeha Shamsi
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| | - Atif Jamal
- Crop Diseases Research Institute, National Agricultural Research Centre, Islamabad, Pakistan
| | - Muhammad Faraz Bhatti
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| |
Collapse
|
93
|
Koonin EV, Dolja VV, Krupovic M, Varsani A, Wolf YI, Yutin N, Zerbini FM, Kuhn JH. Global Organization and Proposed Megataxonomy of the Virus World. Microbiol Mol Biol Rev 2020; 84:e00061-19. [PMID: 32132243 PMCID: PMC7062200 DOI: 10.1128/mmbr.00061-19] [Citation(s) in RCA: 371] [Impact Index Per Article: 74.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Viruses and mobile genetic elements are molecular parasites or symbionts that coevolve with nearly all forms of cellular life. The route of virus replication and protein expression is determined by the viral genome type. Comparison of these routes led to the classification of viruses into seven "Baltimore classes" (BCs) that define the major features of virus reproduction. However, recent phylogenomic studies identified multiple evolutionary connections among viruses within each of the BCs as well as between different classes. Due to the modular organization of virus genomes, these relationships defy simple representation as lines of descent but rather form complex networks. Phylogenetic analyses of virus hallmark genes combined with analyses of gene-sharing networks show that replication modules of five BCs (three classes of RNA viruses and two classes of reverse-transcribing viruses) evolved from a common ancestor that encoded an RNA-directed RNA polymerase or a reverse transcriptase. Bona fide viruses evolved from this ancestor on multiple, independent occasions via the recruitment of distinct cellular proteins as capsid subunits and other structural components of virions. The single-stranded DNA (ssDNA) viruses are a polyphyletic class, with different groups evolving by recombination between rolling-circle-replicating plasmids, which contributed the replication protein, and positive-sense RNA viruses, which contributed the capsid protein. The double-stranded DNA (dsDNA) viruses are distributed among several large monophyletic groups and arose via the combination of distinct structural modules with equally diverse replication modules. Phylogenomic analyses reveal the finer structure of evolutionary connections among RNA viruses and reverse-transcribing viruses, ssDNA viruses, and large subsets of dsDNA viruses. Taken together, these analyses allow us to outline the global organization of the virus world. Here, we describe the key aspects of this organization and propose a comprehensive hierarchical taxonomy of viruses.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Valerian V Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Mart Krupovic
- Institut Pasteur, Archaeal Virology Unit, Department of Microbiology, Paris, France
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory, Cape Town, South Africa
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - F Murilo Zerbini
- Departamento de Fitopatologia/Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| |
Collapse
|
94
|
Description of a Novel Mycovirus in the Phytopathogen Fusarium culmorum and a Related EVE in the Yeast Lipomyces starkeyi. Viruses 2020; 12:v12050523. [PMID: 32397544 PMCID: PMC7290986 DOI: 10.3390/v12050523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 11/20/2022] Open
Abstract
A new mycovirus was found in the Fusarium culmorum strain A104-1 originally sampled on wheat in Belgium. This novel virus, for which the name Fusarium culmorum virus 1 (FcV1) is suggested, is phylogenetically related to members of the previously proposed family ‘’Unirnaviridae’’. FcV1 has a monopartite dsRNA genome of 2898 bp that harbors two large non-overlapping ORFs. A typical -1 slippery motif is found at the end of ORF1, advocating that ORF2 is translated by programmed ribosomal frameshifting. While ORF2 exhibits a conserved replicase domain, ORF1 encodes for an undetermined protein. Interestingly, a hypothetically transcribed gene similar to unirnaviruses ORF1 was found in the genome of Lipomyces starkeyi, presumably resulting from a viral endogenization in this yeast. Conidial isolation and chemical treatment were unsuccessful to obtain a virus-free isogenic line of the fungal host, highlighting a high retention rate for FcV1 but hindering its biological characterization. In parallel, attempt to horizontally transfer FcV1 to another strain of F. culmorum by dual culture failed. Eventually, a screening of other strains of the same fungal species suggests the presence of FcV1 in two other strains from Europe.
Collapse
|
95
|
Torres-Trenas A, Pérez-Artés E. Characterization and Incidence of the First Member of the Genus Mitovirus Identified in the Phytopathogenic Species Fusarium oxysporum. Viruses 2020; 12:v12030279. [PMID: 32138251 PMCID: PMC7150889 DOI: 10.3390/v12030279] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/26/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023] Open
Abstract
A novel mycovirus named Fusarium oxysporum f. sp. dianthi mitovirus 1 (FodMV1) has been identified infecting a strain of Fusarium oxysporum f. sp. dianthi from Colombia. The genome of FodMV1 is 2313 nt long, and comprises a 172-nt 5’-UTR, a 2025-nt single ORF encoding an RdRp of 675 amino acid residues, and a 113-nt 3´-UTR. Homology BlastX searches identifies FodMV1 as a novel member of the genus Mitovirus in the family Narnaviridae. As the rest of mitoviruses, the genome of FodMV1 presents a high percentage of A+U (58.8%) and contains a number of UGA codons that encode the amino acid tryptophan rather than acting as stop codons as in the universal genetic code. Another common feature with other mitoviruses is that the 5′- and 3′-UTR regions of FodMV1 can be folded into potentially stable stem-loop structures. Result from phylogenetic analysis place FodMV1 in a different clade than the rest of mitoviruses described in other Fusarium spp. Incidence of FodMV1-infections in the collection of F. oxysporum f. sp. dianthi isolates analyzed is relatively high. Of particular interest is the fact that FodMV1 has been detected infecting isolates from two geographical areas as distant as Spain and Colombia.
Collapse
|
96
|
Shah UA, Kotta-Loizou I, Fitt BDL, Coutts RHA. Mycovirus-Induced Hypervirulence of Leptosphaeria biglobosa Enhances Systemic Acquired Resistance to Leptosphaeria maculans in Brassica napus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:98-107. [PMID: 31652089 DOI: 10.1094/mpmi-09-19-0254-r] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phoma stem canker (blackleg) is one of the most important diseases of winter oilseed rape (Brassica napus) worldwide and is caused by a complex that comprises at least two species: Leptosphaeria maculans and L. biglobosa. Screening a panel of field Leptosphaeria isolates from B. napus for the presence of mycoviruses revealed the presence of a novel double-stranded RNA quadrivirus in L. biglobosa and no viruses in L. maculans. Following elimination of the mycovirus, virus-infected and virus-free isogenic lines of L. biglobosa were created. A direct comparison of the growth and virulence of these isogenic lines illustrated that virus infection caused hypervirulence and resulted in induced systemic resistance toward L. maculans in B. napus following lower leaf preinoculation with the virus-infected isolate. Analysis of the plant transcriptome suggests that the presence of the virus leads to subtle alterations in metabolism and plant defenses. For instance, transcripts involved in carbohydrate and amino acid metabolism are enriched in plants treated with the virus-infected isolate, while pathogenesis-related proteins, chitinases and WRKY transcription factors are differentially expressed. These results illustrate the potential for deliberate inoculation of plants with hypervirulent L. biglobosa to decrease the severity of Phoma stem canker later in the growing season.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Unnati A Shah
- Department of Biological and Environmental Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire, AL10 9AB, U.K
| | - Ioly Kotta-Loizou
- Department of Biological and Environmental Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire, AL10 9AB, U.K
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, U.K
| | - Bruce D L Fitt
- Department of Biological and Environmental Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire, AL10 9AB, U.K
| | - Robert H A Coutts
- Department of Biological and Environmental Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire, AL10 9AB, U.K
| |
Collapse
|
97
|
Viruses Infecting the Plant Pathogenic Fungus Rhizoctonia solani. Viruses 2019; 11:v11121113. [PMID: 31801308 PMCID: PMC6950361 DOI: 10.3390/v11121113] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/18/2019] [Accepted: 11/26/2019] [Indexed: 12/15/2022] Open
Abstract
The cosmopolitan fungus Rhizoctonia solani has a wide host range and is the causal agent of numerous crop diseases, leading to significant economic losses. To date, no cultivars showing complete resistance to R. solani have been identified and it is imperative to develop a strategy to control the spread of the disease. Fungal viruses, or mycoviruses, are widespread in all major groups of fungi and next-generation sequencing (NGS) is currently the most efficient approach for their identification. An increasing number of novel mycoviruses are being reported, including double-stranded (ds) RNA, circular single-stranded (ss) DNA, negative sense (−)ssRNA, and positive sense (+)ssRNA viruses. The majority of mycovirus infections are cryptic with no obvious symptoms on the hosts; however, some mycoviruses may alter fungal host pathogenicity resulting in hypervirulence or hypovirulence and are therefore potential biological control agents that could be used to combat fungal diseases. R. solani harbors a range of dsRNA and ssRNA viruses, either belonging to established families, such as Endornaviridae, Tymoviridae, Partitiviridae, and Narnaviridae, or unclassified, and some of them have been associated with hypervirulence or hypovirulence. Here we discuss in depth the molecular features of known viruses infecting R. solani and their potential as biological control agents.
Collapse
|
98
|
You J, Zhou K, Liu X, Wu M, Yang L, Zhang J, Chen W, Li G. Defective RNA of a Novel Mycovirus with High Transmissibility Detrimental to Biocontrol Properties of Trichoderma spp. Microorganisms 2019; 7:microorganisms7110507. [PMID: 31671828 PMCID: PMC6920978 DOI: 10.3390/microorganisms7110507] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/20/2019] [Accepted: 10/25/2019] [Indexed: 01/07/2023] Open
Abstract
Trichoderma species are a group of fungi which is widely distributed in major terrestrial ecosystems; they are also commonly used as biocontrol agents for many plant diseases. A virus, namely Trichoderma harzianum hypovirus 1 (ThHV1), was identified in T. harzianum isolate T-70, and also infected isolate T-70D, together with its defective RNA (ThHV1-S). The ThHV1 genome possessed two Open Reading Frames (ORFs), namely ORF1 and ORF2. The start codon of ORF2 overlapped with the stop codon of ORF1 in a 43 nt long region. The polypeptide encoded by ORF2 of ThHV1 shared sequence similarities with those of betahypoviruses, indicating that ThHV1 is a novel member of Hypoviridea. Isolate T-70D, carrying both ThHV1 and ThHV1-S, showed abnormal biological properties, notably a decreased mycoparasitism ability when compared with isolate T-70. Both ThHV1 and ThHV1-S could be vertically transmitted to conidia and horizontally transmitted to T. harzianum isolate T-68 and T. koningiopsis T-51. The derivative strains carrying both ThHV1 and ThHV1-S showed decreased mycoparasitism ability, whereas strains carrying ThHV1 alone were normal, indicating that ThHV1-S is closely associated with the decreased mycoparasitism ability of T. harzianum isolate T-70D. ThHV1 was widely detected in isolates of T. harzianum, T. koningiopsis and T. atroviride originating from soil of China. Therefore, viruses in fungal biocontrol agents may also be a factor associated with the stability of their application.
Collapse
Affiliation(s)
- Jiaqi You
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- The Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
- Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China.
| | - Kang Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- The Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiaolin Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- The Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| | - Mingde Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- The Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| | - Long Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- The Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jing Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- The Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| | - Weidong Chen
- U.S. Department of Agriculture, Agricultural Research Service, Washington State University, Pullman, WA 99164, USA.
| | - Guoqing Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- The Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
99
|
Complete genome sequence of a novel partitivirus from the entomogenous fungus Beauveria bassiana in China. Arch Virol 2019; 164:3141-3144. [DOI: 10.1007/s00705-019-04428-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/10/2019] [Indexed: 11/25/2022]
|
100
|
Nerva L, Forgia M, Ciuffo M, Chitarra W, Chiapello M, Vallino M, Varese GC, Turina M. The mycovirome of a fungal collection from the sea cucumber Holothuria polii. Virus Res 2019; 273:197737. [PMID: 31479695 DOI: 10.1016/j.virusres.2019.197737] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/26/2019] [Accepted: 08/30/2019] [Indexed: 01/11/2023]
Abstract
Holothuria polii is a marine animal with an important ecological and economic impact. In the present study we analysed the presence of mycoviruses associated to fungi that were isolated from different H. polii tissues. Among the 48 fungal isolates analysed we identified 10 viruses in 8 strains belonging to 7 fungal species. Five out of nine viruses have a dsRNA genome: three of them belong to the Partitiviridae family, one belongs to a still undefined clade of bipartite viruses and the last one belongs to the Chrysoviridae family. We also identified two viruses belonging to a recently proposed new mycovirus taxon named polymycovirus. Two viruses belong to the positive single stranded RNA clade: one falls into the new Botourmiaviridae family, specifically in the Magoulivirus genus, and the other one falls into a still undefined clade phylogenetically related to tombusviruses. Finally, we also identified a virus with a negative stranded RNA genome showing similarity to a group of viruses recently proposed as a new family of mycoviruses in the order Bunyavirales. A bioinformatics approach comparing two datasets of contigs containing two closely related mycobunyaviruses allowed us to identify putative nucleocapsids (Nc) and non-structural (Ns) associated proteins. The GenBank/eMBL/DDBJ accession numbers of the sequences reported in this paper are: PRJNA432529, MG913290, MG913291, MG887747, MG887748, MG887749, MG887750, MG887751, MG887752, MG887753, MG887754, MG887755, MG887756, MG887757, MG887758, MG887759, MG887760, MG887761, MG887762, MG887763, MG887764, MG887765, MG887766, MG887767, MH271211, MN163273, MN163274.
Collapse
Affiliation(s)
- L Nerva
- Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, 10135 Torino, Italy; Research Centre for Viticulture and Enology, CREA, Via XXVIII Aprile 26, 31015 Conegliano, Italy
| | - M Forgia
- Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, 10135 Torino, Italy; Mycotheca Universitatis Taurinensis (MUT), Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125 Torino, Italy
| | - M Ciuffo
- Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, 10135 Torino, Italy
| | - W Chitarra
- Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, 10135 Torino, Italy; Research Centre for Viticulture and Enology, CREA, Via XXVIII Aprile 26, 31015 Conegliano, Italy
| | - M Chiapello
- Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, 10135 Torino, Italy
| | - M Vallino
- Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, 10135 Torino, Italy
| | - G C Varese
- Mycotheca Universitatis Taurinensis (MUT), Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125 Torino, Italy
| | - M Turina
- Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, 10135 Torino, Italy.
| |
Collapse
|