51
|
Seto S, Nakamura H, Guo TC, Hikichi H, Wakabayashi K, Miyabayashi A, Nagata T, Hijikata M, Keicho N. Spatial multiomic profiling reveals the novel polarization of foamy macrophages within necrotic granulomatous lesions developed in lungs of C3HeB/FeJ mice infected with Mycobacterium tuberculosis. Front Cell Infect Microbiol 2022; 12:968543. [PMID: 36237431 PMCID: PMC9551193 DOI: 10.3389/fcimb.2022.968543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/26/2022] [Indexed: 11/29/2022] Open
Abstract
Infection with Mycobacterium tuberculosis leads to the development of tuberculosis (TB) with the formation of granulomatous lesions. Foamy macrophages (FM) are a hallmark of TB granulomas, because they provide the primary platform of M. tuberculosis proliferation and the main source of caseous necrosis. In this study, we applied spatial multiomic profiling to identify the signatures of FM within the necrotic granulomas developed in a mouse model resembling human TB histopathology. C3HeB/FeJ mice were infected with M. tuberculosis to induce the formation of necrotic granulomas in the lungs. Using laser microdissection, necrotic granulomas were fractionated into three distinct regions, including the central caseous necrosis, the rim containing FM, and the peripheral layer of macrophages and lymphocytes, and subjected to proteomic and transcriptomic analyses. Comparison of proteomic and transcriptomic analyses of three distinct granulomatous regions revealed that four proteins/genes are commonly enriched in the rim region. Immunohistochemistry confirmed the localization of identified signatures to the rim of necrotic granulomas. We also investigated the localization of the representative markers for M1 macrophages in granulomas because the signatures of the rim included M2 macrophage markers. The localization of both macrophage markers suggests that FM in necrotic granulomas possessed the features of M1 or M2 macrophages. Gene set enrichment analysis of transcriptomic profiling revealed the upregulation of genes related to M2 macrophage activation and mTORC1 signaling in the rim. These results will provide new insights into the process of FM biogenesis, leading to further understanding of the pathophysiology of TB granulomas.
Collapse
Affiliation(s)
- Shintaro Seto
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
- *Correspondence: Shintaro Seto,
| | - Hajime Nakamura
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Tz-Chun Guo
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Haruka Hikichi
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Keiko Wakabayashi
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Akiko Miyabayashi
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Toshi Nagata
- Department of Health Science, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Minako Hijikata
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Naoto Keicho
- Vice Director, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| |
Collapse
|
52
|
Parbhoo T, Mouton JM, Sampson SL. Phenotypic adaptation of Mycobacterium tuberculosis to host-associated stressors that induce persister formation. Front Cell Infect Microbiol 2022; 12:956607. [PMID: 36237425 PMCID: PMC9551238 DOI: 10.3389/fcimb.2022.956607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Mycobacterium tuberculosis exhibits a remarkable ability to interfere with the host antimicrobial response. The pathogen exploits elaborate strategies to cope with diverse host-induced stressors by modulating its metabolism and physiological state to prolong survival and promote persistence in host tissues. Elucidating the adaptive strategies that M. tuberculosis employs during infection to enhance persistence is crucial to understanding how varying physiological states may differentially drive disease progression for effective management of these populations. To improve our understanding of the phenotypic adaptation of M. tuberculosis, we review the adaptive strategies employed by M. tuberculosis to sense and coordinate a physiological response following exposure to various host-associated stressors. We further highlight the use of animal models that can be exploited to replicate and investigate different aspects of the human response to infection, to elucidate the impact of the host environment and bacterial adaptive strategies contributing to the recalcitrance of infection.
Collapse
|
53
|
Long NP, Anh NK, Yen NTH, Phat NK, Park S, Thu VTA, Cho YS, Shin JG, Oh JY, Kim DH. Comprehensive lipid and lipid-related gene investigations of host immune responses to characterize metabolism-centric biomarkers for pulmonary tuberculosis. Sci Rep 2022; 12:13395. [PMID: 35927287 PMCID: PMC9352691 DOI: 10.1038/s41598-022-17521-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/26/2022] [Indexed: 12/04/2022] Open
Abstract
Despite remarkable success in the prevention and treatment of tuberculosis (TB), it remains one of the most devastating infectious diseases worldwide. Management of TB requires an efficient and timely diagnostic strategy. In this study, we comprehensively characterized the plasma lipidome of TB patients, then selected candidate lipid and lipid-related gene biomarkers using a data-driven, knowledge-based framework. Among 93 lipids that were identified as potential biomarker candidates, ether-linked phosphatidylcholine (PC O–) and phosphatidylcholine (PC) were generally upregulated, while free fatty acids and triglycerides with longer fatty acyl chains were downregulated in the TB group. Lipid-related gene enrichment analysis revealed significantly altered metabolic pathways (e.g., ether lipid, linolenic acid, and cholesterol) and immune response signaling pathways. Based on these potential biomarkers, TB patients could be differentiated from controls in the internal validation (random forest model, area under the curve [AUC] 0.936, 95% confidence interval [CI] 0.865–0.992). PC(O-40:4), PC(O-42:5), PC(36:0), and PC(34:4) were robust biomarkers able to distinguish TB patients from individuals with latent infection and healthy controls, as shown in the external validation. Small changes in expression were identified for 162 significant lipid-related genes in the comparison of TB patients vs. controls; in the random forest model, their utilities were demonstrated by AUCs that ranged from 0.829 to 0.956 in three cohorts. In conclusion, this study introduced a potential framework that can be used to identify and validate metabolism-centric biomarkers.
Collapse
Affiliation(s)
- Nguyen Phuoc Long
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea.,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Nguyen Ky Anh
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea.,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Nguyen Thi Hai Yen
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea.,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Nguyen Ky Phat
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea.,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Seongoh Park
- School of Mathematics, Statistics and Data Science, Sungshin Women's University, Seoul, Republic of Korea
| | - Vo Thuy Anh Thu
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea.,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Yong-Soon Cho
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea.,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Jae-Gook Shin
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea.,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea.,Department of Clinical Pharmacology, Inje University Busan Paik Hospital, Busan, Republic of Korea
| | - Jee Youn Oh
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Seoul, Republic of Korea.
| | - Dong Hyun Kim
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea.
| |
Collapse
|
54
|
Al-Sayyar A, Hulme KD, Thibaut R, Bayry J, Sheedy FJ, Short KR, Alzaid F. Respiratory Tract Infections in Diabetes - Lessons From Tuberculosis and Influenza to Guide Understanding of COVID-19 Severity. Front Endocrinol (Lausanne) 2022; 13:919223. [PMID: 35957811 PMCID: PMC9363013 DOI: 10.3389/fendo.2022.919223] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Patients with type-2 diabetes (T2D) are more likely to develop severe respiratory tract infections. Such susceptibility has gained increasing attention since the global spread of Coronavirus Disease 2019 (COVID-19) in early 2020. The earliest reports marked T2D as an important risk-factor for severe forms of disease and mortality across all adult age groups. Several mechanisms have been proposed for this increased susceptibility, including pre-existing immune dysfunction, a lack of metabolic flexibility due to insulin resistance, inadequate dietary quality or adverse interactions with antidiabetic treatments or common comorbidities. Some mechanisms that predispose patients with T2D to severe COVID-19 may indeed be shared with other previously characterized respiratory tract infections. Accordingly, in this review, we give an overview of response to Influenza A virus and to Mycobacterium tuberculosis (Mtb) infections. Similar risk factors and mechanisms are discussed between the two conditions and in the case of COVID-19. Lastly, we address emerging approaches to address research needs in infection and metabolic disease, and perspectives with regards to deployment or repositioning of metabolically active therapeutics.
Collapse
Affiliation(s)
| | - Katina D. Hulme
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Ronan Thibaut
- Institut Necker Enfants Malades (INEM), Institut National de la Santé et de la Recherche Médicale (INSERM) U1151/CNRS UMRS8253, Immunity and Metabolism of Diabetes (IMMEDIAB), Université de Paris Cité, Paris, France
| | - Jagadeesh Bayry
- Department of Biological Sciences & Engineering, Indian Institute of Technology Palakkad, Palakkad, India
| | | | - Kirsty R. Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia
| | - Fawaz Alzaid
- Dasman Diabetes Institute, Dasman, Kuwait
- Institut Necker Enfants Malades (INEM), Institut National de la Santé et de la Recherche Médicale (INSERM) U1151/CNRS UMRS8253, Immunity and Metabolism of Diabetes (IMMEDIAB), Université de Paris Cité, Paris, France
| |
Collapse
|
55
|
Andrews JT, Voth DE, Huang SCC, Huang L. Breathe In, Breathe Out: Metabolic Regulation of Lung Macrophages in Host Defense Against Bacterial Infection. Front Cell Infect Microbiol 2022; 12:934460. [PMID: 35899042 PMCID: PMC9309258 DOI: 10.3389/fcimb.2022.934460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/15/2022] [Indexed: 12/03/2022] Open
Abstract
Lung macrophages are substantially distinct from other tissue-resident macrophages. They act as frontier sentinels of the alveolar-blood interface and are constantly exposed to various pathogens. Additionally, they precisely regulate immune responses under homeostatic and pathological conditions to curtail tissue damage while containing respiratory infections. As a highly heterogeneous population, the phenotypes and functions of lung macrophages with differing developmental ontogenies are linked to both intrinsic and extrinsic metabolic processes. Importantly, targeting these metabolic pathways greatly impacts macrophage functions, which in turn leads to different disease outcomes in the lung. In this review, we will discuss underlying metabolic regulation of lung macrophage subsets and how metabolic circuits, together with epigenetic modifications, dictate lung macrophage function during bacterial infection.
Collapse
Affiliation(s)
- J. Tucker Andrews
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Daniel E. Voth
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Stanley Ching-Cheng Huang
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- *Correspondence: Lu Huang, ; Stanley Ching-Cheng Huang,
| | - Lu Huang
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- *Correspondence: Lu Huang, ; Stanley Ching-Cheng Huang,
| |
Collapse
|
56
|
Van Dis E, Fox DM, Morrison HM, Fines DM, Babirye JP, McCann LH, Rawal S, Cox JS, Stanley SA. IFN-γ-independent control of M. tuberculosis requires CD4 T cell-derived GM-CSF and activation of HIF-1α. PLoS Pathog 2022; 18:e1010721. [PMID: 35877763 PMCID: PMC9352196 DOI: 10.1371/journal.ppat.1010721] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 08/04/2022] [Accepted: 07/01/2022] [Indexed: 11/29/2022] Open
Abstract
The prevailing model of protective immunity to tuberculosis is that CD4 T cells produce the cytokine IFN-γ to activate bactericidal mechanisms in infected macrophages. Although IFN-γ-independent CD4 T cell based control of M. tuberculosis infection has been demonstrated in vivo it is unclear whether CD4 T cells are capable of directly activating macrophages to control infection in the absence of IFN-γ. We developed a co-culture model using CD4 T cells isolated from the lungs of infected mice and M. tuberculosis-infected murine bone marrow-derived macrophages (BMDMs) to investigate mechanisms of CD4 dependent control of infection. We found that even in the absence of IFN-γ signaling, CD4 T cells drive macrophage activation, M1 polarization, and control of infection. This IFN-γ-independent control of infection requires activation of the transcription factor HIF-1α and a shift to aerobic glycolysis in infected macrophages. While HIF-1α activation following IFN-γ stimulation requires nitric oxide, HIF-1α-mediated control in the absence of IFN-γ is nitric oxide-independent, indicating that distinct pathways can activate HIF-1α during infection. We show that CD4 T cell-derived GM-CSF is required for IFN-γ-independent control in BMDMs, but that recombinant GM-CSF is insufficient to control infection in BMDMs or alveolar macrophages and does not rescue the absence of control by GM-CSF-deficient T cells. In contrast, recombinant GM-CSF controls infection in peritoneal macrophages, induces lipid droplet biogenesis, and also requires HIF-1α for control. These results advance our understanding of CD4 T cell-mediated immunity to M. tuberculosis, reveal important differences in immune activation of distinct macrophage types, and outline a novel mechanism for the activation of HIF-1α. We establish a previously unknown functional link between GM-CSF and HIF-1α and provide evidence that CD4 T cell-derived GM-CSF is a potent bactericidal effector.
Collapse
Affiliation(s)
- Erik Van Dis
- Department of Molecular and Cell Biology, Division of Immunology and Pathogenesis, University of California, Berkeley, Berkeley, California, United States of America
| | - Douglas M. Fox
- Department of Molecular and Cell Biology, Division of Immunology and Pathogenesis, University of California, Berkeley, Berkeley, California, United States of America
| | - Huntly M. Morrison
- Department of Molecular and Cell Biology, Division of Immunology and Pathogenesis, University of California, Berkeley, Berkeley, California, United States of America
| | - Daniel M. Fines
- Department of Molecular and Cell Biology, Division of Immunology and Pathogenesis, University of California, Berkeley, Berkeley, California, United States of America
| | - Janet Peace Babirye
- Department of Molecular and Cell Biology, Division of Immunology and Pathogenesis, University of California, Berkeley, Berkeley, California, United States of America
| | - Lily H. McCann
- School of Public Health, Division of Infectious Diseases and Vaccinology, University of California, Berkeley, Berkeley, California, United States of America
| | - Sagar Rawal
- Department of Molecular and Cell Biology, Division of Immunology and Pathogenesis, University of California, Berkeley, Berkeley, California, United States of America
| | - Jeffery S. Cox
- Department of Molecular and Cell Biology, Division of Immunology and Pathogenesis, University of California, Berkeley, Berkeley, California, United States of America
| | - Sarah A. Stanley
- Department of Molecular and Cell Biology, Division of Immunology and Pathogenesis, University of California, Berkeley, Berkeley, California, United States of America
- School of Public Health, Division of Infectious Diseases and Vaccinology, University of California, Berkeley, Berkeley, California, United States of America
| |
Collapse
|
57
|
Hill NS, Welch MD. A glycine-rich PE_PGRS protein governs mycobacterial actin-based motility. Nat Commun 2022; 13:3608. [PMID: 35750685 PMCID: PMC9232537 DOI: 10.1038/s41467-022-31333-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 06/14/2022] [Indexed: 11/09/2022] Open
Abstract
Many key insights into actin regulation have been derived through examining how microbial pathogens intercept the actin cytoskeleton during infection. Mycobacterium marinum, a close relative of the human pathogen Mycobacterium tuberculosis, polymerizes host actin at the bacterial surface to drive intracellular movement and cell-to-cell spread during infection. However, the mycobacterial factor that commandeers actin polymerization has remained elusive. Here, we report the identification and characterization of the M. marinum actin-based motility factor designated mycobacterial intracellular rockets A (MirA), which is a member of the glycine-rich PE_PGRS protein family. MirA contains an amphipathic helix to anchor into the mycobacterial outer membrane and, surprisingly, also the surface of host lipid droplet organelles. MirA directly binds to and activates the host protein N-WASP to stimulate actin polymerization through the Arp2/3 complex, directing both bacterial and lipid droplet actin-based motility. MirA is dissimilar to known N-WASP activating ligands and may represent a new class of microbial and host actin regulator. Additionally, the MirA-N-WASP interaction represents a model to understand how the enigmatic PE_PGRS proteins contribute to mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Norbert S Hill
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| | - Matthew D Welch
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
58
|
Horetski M, Gorlova A, Płocińska R, Brzostek A, Faletrov Y, Dziadek J, Shkumatov V. Synthesis, Optical Properties, Preliminary Antimycobacterial Evaluation and Docking Studies of Trifluoroacetylated 3‐Pyrrolyl Boron‐Dipyrromethene. ChemistrySelect 2022. [DOI: 10.1002/slct.202200506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Matvey Horetski
- Department of Macromolecular Compounds Belarusian State University 14 Leningradskaya Street. Minsk 220030 Belarus
| | - Anna Gorlova
- Department of Natural Sciences Novosibirsk State University 1 Pirogova Street. Novosibirsk 630090 Russia
| | - Renata Płocińska
- The Institute of Medical Biology Polish Academy of Sciences 106 Lodowa Street. Lodz 93-232 Poland
| | - Anna Brzostek
- The Institute of Medical Biology Polish Academy of Sciences 106 Lodowa Street. Lodz 93-232 Poland
| | - Yaroslav Faletrov
- Department of Macromolecular Compounds Belarusian State University 14 Leningradskaya Street. Minsk 220030 Belarus
| | - Jarosław Dziadek
- The Institute of Medical Biology Polish Academy of Sciences 106 Lodowa Street. Lodz 93-232 Poland
| | - Vladimir Shkumatov
- Department of Macromolecular Compounds Belarusian State University 14 Leningradskaya Street. Minsk 220030 Belarus
| |
Collapse
|
59
|
Sánchez-Álvarez M, del Pozo MÁ, Bosch M, Pol A. Insights Into the Biogenesis and Emerging Functions of Lipid Droplets From Unbiased Molecular Profiling Approaches. Front Cell Dev Biol 2022; 10:901321. [PMID: 35756995 PMCID: PMC9213792 DOI: 10.3389/fcell.2022.901321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
Lipid droplets (LDs) are spherical, single sheet phospholipid-bound organelles that store neutral lipids in all eukaryotes and some prokaryotes. Initially conceived as relatively inert depots for energy and lipid precursors, these highly dynamic structures play active roles in homeostatic functions beyond metabolism, such as proteostasis and protein turnover, innate immunity and defense. A major share of the knowledge behind this paradigm shift has been enabled by the use of systematic molecular profiling approaches, capable of revealing and describing these non-intuitive systems-level relationships. Here, we discuss these advances and some of the challenges they entail, and highlight standing questions in the field.
Collapse
Affiliation(s)
- Miguel Sánchez-Álvarez
- Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Miguel Ángel del Pozo
- Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Marta Bosch
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Albert Pol
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
60
|
Matteucci KC, Correa AAS, Costa DL. Recent Advances in Host-Directed Therapies for Tuberculosis and Malaria. Front Cell Infect Microbiol 2022; 12:905278. [PMID: 35669122 PMCID: PMC9163498 DOI: 10.3389/fcimb.2022.905278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/21/2022] [Indexed: 11/30/2022] Open
Abstract
Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis, and malaria, caused by parasites from the Plasmodium genus, are two of the major causes of death due to infectious diseases in the world. Both diseases are treatable with drugs that have microbicidal properties against each of the etiologic agents. However, problems related to treatment compliance by patients and emergence of drug resistant microorganisms have been a major problem for combating TB and malaria. This factor is further complicated by the absence of highly effective vaccines that can prevent the infection with either M. tuberculosis or Plasmodium. However, certain host biological processes have been found to play a role in the promotion of infection or in the pathogenesis of each disease. These processes can be targeted by host-directed therapies (HDTs), which can be administered in conjunction with the standard drug treatments for each pathogen, aiming to accelerate their elimination or to minimize detrimental side effects resulting from exacerbated inflammation. In this review we discuss potential new targets for the development of HDTs revealed by recent advances in the knowledge of host-pathogen interaction biology, and present an overview of strategies that have been tested in vivo, either in experimental models or in patients.
Collapse
Affiliation(s)
- Kely C. Matteucci
- Plataforma de Medicina Translacional Fundação Oswaldo Cruz/Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - André A. S. Correa
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Diego L. Costa
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- *Correspondence: Diego L. Costa,
| |
Collapse
|
61
|
Luo Y, Xue Y, Lin Q, Tang G, Song H, Liu W, Mao L, Sun Z, Wang F. CD39 pathway inhibits Th1 cell function in tuberculosis. Immunology 2022; 166:522-538. [PMID: 35574713 PMCID: PMC9426615 DOI: 10.1111/imm.13493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/23/2022] [Indexed: 12/01/2022] Open
Abstract
The role of CD39 pathway in Th1 cell function in tuberculosis (TB) is rarely elucidated. The present study aims to investigate the modulating mechanism of CD39 pathway during Mycobacterium tuberculosis (MTB) infection. CD39 expression was examined on host immune cells among patients with TB. The relationship between CD39 expression and Th1 cell function was analysed. Patients with TB displayed dramatically higher CD39 expression on Th1 cells than healthy controls, and a significantly increased expression of surface markers, including activation, exhaustion and apoptosis markers, were noted in CD39+ Th1 cells in comparison with CD39− Th1 cells. Conversely, CD39 expression on Th1 cells was associated with diminished number of polyfunctional cells producing Th1‐type cytokines, and CD39+ Th1 cells showed obviously lower proliferation potential. Notably, tetramer analysis demonstrated a predominant CD39 expression on TB‐specific CD4+ cells, which was associated with higher apoptosis and lower cytokine‐producing ability. Transcriptome sequencing identified 27 genes that were differentially expressed between CD39+ and CD39− Th1 cells, such as IL32, DUSP4 and RGS1. Inhibition of CD39 pathway could enhance the activation, proliferation and cytokine‐producing ability of Th1 cells. Furthermore, there was a significantly negative correlation between CD39 expression on Th1 cells and nutritional status indicators such as lymphocyte count and albumin levels, and we observed a significant decline in CD39 expression on Th1 cells after anti‐TB treatment. CD39 is predominantly expressed on TB‐specific Th1 cells and correlated with their exhausted function, which suggests that CD39 could serve as a prominent target for TB therapy.
Collapse
Affiliation(s)
- Ying Luo
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Xue
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qun Lin
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoxing Tang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huijuan Song
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Liu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liyan Mao
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziyong Sun
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
62
|
Wang Y, Ni W, Jin X, Li J, Yu Y. Vitexin-2-O-rhamnoside improves immunosuppression, oxidative stress, and phosphorylation of PI3K/Akt signal pathway in cyclophosphamide treated mice. Eur J Pharmacol 2022; 925:174999. [PMID: 35525311 DOI: 10.1016/j.ejphar.2022.174999] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/18/2022]
Abstract
Vitexin-2-O-rhamnoside (VR) is an important active substance in hawthorn, which is widely used as a food or functional food raw material; however, its immunomodulatory activities have not been extensively studied. In this study, BALB/c mice immunocompromised by cyclophosphamide (CY) were used as models to explore the effects of VR on the immunity and antioxidant capacity of mice. The results revealed that VR can restore weight to the immunosuppressed mice to varying degrees, improve spleen and thymus injury, and restore peripheral blood levels. Furthermore, it can effectively promote the proliferation of T and B lymphocytes, natural killer (NK) and cytotoxic T lymphocyte (CTL) cell activities, and the secretion and mRNA expression of cytokines IFN-γ, IL-2, IL-6, and IL-12 to 0.36, 0.34, 50.25%, 45.74%, 28.36 pg/mL or 0.68, 31.81 pg/mL or 0.74, 20.40 pg/mL or 0.75, and 19.81 pg/mL or 0.55, respectively. Moreover, it can upregulate the phosphorylation level of PI3K/Akt signaling pathway in mice immunosuppressed by CY, increase the activities of glutathione peroxidase (GSH-Px), chloramphenicol acetyltransferase (CAT), superoxide dismutase (SOD), and total antioxidant capacity (T-AOC), and decrease the level of malondialdehyde (MDA). This study provides a theoretical and experimental basis for the research and development of health products with targeted efficacy, and the development of diversified products in the hawthorn deep-processing industry.
Collapse
Affiliation(s)
- Yilun Wang
- College of Food Science and Engineering, Jinzhou Medical University, Jinzhou, 121000, Liaoning Province, China
| | - Wan Ni
- College of Food Science and Engineering, Jinzhou Medical College, Jinzhou, 121013, Liaoning Province, China
| | - Xin Jin
- College of Food Science and Engineering, Jinzhou Medical University, Jinzhou, 121000, Liaoning Province, China
| | - Jingshuang Li
- College of Veterinary, Jinzhou Medical University, Jinzhou, 121000, Liaoning Province, China
| | - Yang Yu
- College of Food Science and Engineering, Jinzhou Medical University, Jinzhou, 121000, Liaoning Province, China.
| |
Collapse
|
63
|
Ror2-mediated cholesterol accumulation regulates autophagic activity within BCG-infected macrophages. Microb Pathog 2022; 167:105564. [DOI: 10.1016/j.micpath.2022.105564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/24/2022] [Accepted: 04/29/2022] [Indexed: 11/19/2022]
|
64
|
Li Y, Du Y, Xu Z, He Y, Yao R, Jiang H, Ju W, Qiao J, Xu K, Liu TM, Zeng L. Intravital lipid droplet labeling and imaging reveals the phenotypes and functions of individual macrophages in vivo. J Lipid Res 2022; 63:100207. [PMID: 35398040 PMCID: PMC9117931 DOI: 10.1016/j.jlr.2022.100207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 01/06/2023] Open
Abstract
Macrophages play pivotal roles in the maintenance of tissue homeostasis. However, the reactivation of macrophages toward proinflammatory states correlates with a plethora of inflammatory diseases, including atherosclerosis, obesity, neurodegeneration, and bone marrow (BM) failure syndromes. The lack of methods to reveal macrophage phenotype and function in vivo impedes the translational research of these diseases. Here, we found that proinflammatory macrophages accumulate intracellular lipid droplets (LDs) relative to resting or noninflammatory macrophages both in vitro and in vivo, indicating that LD accumulation serves as a structural biomarker for macrophage phenotyping. To realize the staining and imaging of macrophage LDs in vivo, we developed a fluorescent fatty acid analog-loaded poly(lactic-co-glycolic acid) nanoparticle to label macrophages in mice with high efficiency and specificity. Using these novel nanoparticles, we achieved in situ functional identification of single macrophages in BM, liver, lung, and adipose tissues under conditions of acute or chronic inflammation. Moreover, with this intravital imaging platform, we further realized in vivo phenotyping of individual macrophages in the calvarial BM of mice under systemic inflammation. In conclusion, we established an efficient in vivo LD labeling and imaging system for single macrophage phenotyping, which will aid in the development of diagnostics and therapeutic monitoring. Moreover, this method also provides new avenues for the study of lipid trafficking and dynamics in vivo.
Collapse
|
65
|
Rosenberg G, Riquelme S, Prince A, Avraham R. Immunometabolic crosstalk during bacterial infection. Nat Microbiol 2022; 7:497-507. [PMID: 35365784 DOI: 10.1038/s41564-022-01080-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 02/03/2022] [Indexed: 01/22/2023]
Abstract
Following detection of bacteria, macrophages switch their metabolism from oxidative respiration through the tricarboxylic acid cycle to high-rate aerobic glycolysis. This immunometabolic shift enables pro-inflammatory and antimicrobial responses and is facilitated by the accumulation of fatty acids, tricarboxylic acid-derived metabolites and catabolism of amino acids. Recent studies have shown that these immunometabolites are co-opted by pathogens as environmental cues for expression of virulence genes. We review mechanisms by which host immunometabolites regulate bacterial pathogenicity and discuss opportunities for the development of therapeutics targeting metabolic host-pathogen crosstalk.
Collapse
Affiliation(s)
- Gili Rosenberg
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | | | - Alice Prince
- Columbia University Medical Center, New York, NY, USA.
| | - Roi Avraham
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
66
|
Bosch M, Pol A. Eukaryotic lipid droplets: metabolic hubs, and immune first responders. Trends Endocrinol Metab 2022; 33:218-229. [PMID: 35065875 DOI: 10.1016/j.tem.2021.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 12/18/2022]
Abstract
As major eukaryotic lipid storage organelles, lipid droplets (LDs) are metabolic hubs coordinating energy flux and building block distribution. Infectious pathogens often promote accumulation and physically interact with LDs. The most accepted view is that host LDs are hijacked by invaders to draw on nutrients for host colonisation. However, unique traits such as biogenesis plasticity, dynamic proteome, signalling capacity, and ability to interact with other organelles endow LDs with competencies to face complex biological challenges. Here, we focus on published data suggesting that LDs are not usurped organelles but innate immunity first responders. By comparison with analogous mechanisms activated on LDs in nutrient-poor environments, our review supports the hypothesis that host LDs actively participate in immunometabolism, immune signalling, and microbial killing.
Collapse
Affiliation(s)
- Marta Bosch
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain.
| | - Albert Pol
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona
| |
Collapse
|
67
|
Gauthier T, Chen W. Modulation of Macrophage Immunometabolism: A New Approach to Fight Infections. Front Immunol 2022; 13:780839. [PMID: 35154105 PMCID: PMC8825490 DOI: 10.3389/fimmu.2022.780839] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/07/2022] [Indexed: 12/13/2022] Open
Abstract
Macrophages are essential innate immune cells that contribute to host defense during infection. An important feature of macrophages is their ability to respond to extracellular cues and to adopt different phenotypes and functions in response to these stimuli. The evidence accumulated in the last decade has highlighted the crucial role of metabolic reprogramming during macrophage activation in infectious context. Thus, understanding and manipulation of macrophage immunometabolism during infection could be of interest to develop therapeutic strategies. In this review, we focus on 5 major metabolic pathways including glycolysis, pentose phosphate pathway, fatty acid oxidation and synthesis, tricarboxylic acid cycle and amino acid metabolism and discuss how they sustain and regulate macrophage immune function in response to parasitic, bacterial and viral infections as well as trained immunity. At the end, we assess whether some drugs including those used in clinic and in development can target macrophage immunometabolism for potential therapy during infection with an emphasis on SARS-CoV2 infection.
Collapse
Affiliation(s)
- Thierry Gauthier
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Wanjun Chen
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
68
|
Agarwal P, Gordon S, Martinez FO. Foam Cell Macrophages in Tuberculosis. Front Immunol 2022; 12:775326. [PMID: 34975863 PMCID: PMC8714672 DOI: 10.3389/fimmu.2021.775326] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/29/2021] [Indexed: 12/18/2022] Open
Abstract
Mycobacterium tuberculosis infects primarily macrophages in the lungs. Infected macrophages are surrounded by other immune cells in well organised structures called granulomata. As part of the response to TB, a type of macrophage loaded with lipid droplets arises which we call Foam cell macrophages. They are macrophages filled with lipid laden droplets, which are synthesised in response to increased uptake of extracellular lipids, metabolic changes and infection itself. They share the appearance with atherosclerosis foam cells, but their lipid contents and roles are different. In fact, lipid droplets are immune and metabolic organelles with emerging roles in Tuberculosis. Here we discuss lipid droplet and foam cell formation, evidence regarding the inflammatory and immune properties of foam cells in TB, and address gaps in our knowledge to guide further research.
Collapse
Affiliation(s)
- Pooja Agarwal
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Siamon Gordon
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan.,Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Fernando O Martinez
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
69
|
Mukherjee T, Bhatt B, Prakhar P, Lohia GK, Rajmani R, Balaji KN. Epigenetic reader BRD4 supports mycobacterial pathogenesis by co-modulating host lipophagy and angiogenesis. Autophagy 2022; 18:391-408. [PMID: 34074211 PMCID: PMC8942508 DOI: 10.1080/15548627.2021.1936355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 10/21/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb)-driven lipid accumulation is intricately associated with the progression of tuberculosis (TB) disease. Although several studies elucidating the mechanisms for lipid droplet (LD) biosynthesis exist, we provide evidence for the significance of their regulated turnover via macroautophagy/autophagy during Mtb infection. We demonstrate that Mtb utilizes EGFR (epidermal growth factor receptor) signaling to induce the expression of the histone acetylation reader, BRD4 (bromodomain containing 4). The EGFR-BRD4 axis suppresses lipid-specific autophagy, and hence favors cellular lipid accumulation. Specifically, we found that pharmacological inhibition or knockdown of Egfr or Brd4 enhances autophagic flux and concomitantly decreases cellular LDs that is otherwise maintained at a significant level in chloroquine-treated or Atg5 knocked down autophagy-compromised host cells. In line with the enhanced lipophagy, we found that loss of EGFR or BRD4 function restricts mycobacterial burden that is rescued by external replenishment with oleic acid. We also report that the EGFR-BRD4 axis exerts additional effects by modulating pro-angiogenic gene expression and consequently aberrant angiogenesis during mycobacterial infection. This is important in the context of systemic Mtb dissemination as well as for the efficient delivery of anti-mycobacterial therapeutics to the Mtb-rich core of TB granuloma. Finally, utilizing an in vivo mouse model of TB, we show that pharmacological inhibition of EGFR and BRD4 compromises LD buildup via enhanced lipophagy and normalizes angiogenesis, thereby restricting Mtb burden and rescuing mice from severe TB-like pathology. These findings shed light on the novel roles of BRD4 during Mtb infection, and its possible implication in potentiating anti-TB responses.Abbreviations: ATG5: autophagy related 5; BRDs: bromodomain containing; COL18A1: collagen type XVIII alpha 1 chain; EGFR: epidermal growth factor receptor; EP300: E1A binding protein p300; KDR: kinase insert domain receptor; KLF5: Kruppel like factor 5; LDs: lipid droplets; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; Mtb: Mycobacterium tuberculosis; PECAM1: platelet and endothelial cell adhesion molecule 1; SQSTM1/p62: sequestosome 1; TB: tuberculosis; THBS1: thrombospondin 1; VEGF: vascular endothelial growth factor.
Collapse
Affiliation(s)
- Tanushree Mukherjee
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Bharat Bhatt
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Praveen Prakhar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Gaurav Kumar Lohia
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - R.S. Rajmani
- Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
| | | |
Collapse
|
70
|
Alam A, Abubaker Bagabir H, Sultan A, Siddiqui MF, Imam N, Alkhanani MF, Alsulimani A, Haque S, Ishrat R. An Integrative Network Approach to Identify Common Genes for the Therapeutics in Tuberculosis and Its Overlapping Non-Communicable Diseases. Front Pharmacol 2022; 12:770762. [PMID: 35153741 PMCID: PMC8829040 DOI: 10.3389/fphar.2021.770762] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/27/2021] [Indexed: 12/15/2022] Open
Abstract
Tuberculosis (TB) is the leading cause of death from a single infectious agent. The estimated total global TB deaths in 2019 were 1.4 million. The decline in TB incidence rate is very slow, while the burden of noncommunicable diseases (NCDs) is exponentially increasing in low- and middle-income countries, where the prevention and treatment of TB disease remains a great burden, and there is enough empirical evidence (scientific evidence) to justify a greater research emphasis on the syndemic interaction between TB and NCDs. The current study was proposed to build a disease-gene network based on overlapping TB with NCDs (overlapping means genes involved in TB and other/s NCDs), such as Parkinson's disease, cardiovascular disease, diabetes mellitus, rheumatoid arthritis, and lung cancer. We compared the TB-associated genes with genes of its overlapping NCDs to determine the gene-disease relationship. Next, we constructed the gene interaction network of disease-genes by integrating curated and experimentally validated interactions in humans and find the 13 highly clustered modules in the network, which contains a total of 86 hub genes that are commonly associated with TB and its overlapping NCDs, which are largely involved in the Inflammatory response, cellular response to cytokine stimulus, response to cytokine, cytokine-mediated signaling pathway, defense response, response to stress and immune system process. Moreover, the identified hub genes and their respective drugs were exploited to build a bipartite network that assists in deciphering the drug-target interaction, highlighting the influential roles of these drugs on apparently unrelated targets and pathways. Targeting these hub proteins by using drugs combination or drug repurposing approaches will improve the clinical conditions in comorbidity, enhance the potency of a few drugs, and give a synergistic effect with better outcomes. Thus, understanding the Mycobacterium tuberculosis (Mtb) infection and associated NCDs is a high priority to contain its short and long-term effects on human health. Our network-based analysis opens a new horizon for more personalized treatment, drug-repurposing opportunities, investigates new targets, multidrug treatment, and can uncover several side effects of unrelated drugs for TB and its overlapping NCDs.
Collapse
Affiliation(s)
- Aftab Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Hala Abubaker Bagabir
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Armiya Sultan
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | | | - Nikhat Imam
- Department of Mathematics, Institute of Computer Science and Information Technology, Magadh University, Bodh Gaya, India
| | - Mustfa F Alkhanani
- Emergency Service Department, College of Applied Sciences, AlMaarefa University, Riyadh, Saudi Arabia
| | - Ahmad Alsulimani
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Romana Ishrat
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
71
|
Laval T, Pedró-Cos L, Malaga W, Guenin-Macé L, Pawlik A, Mayau V, Yahia-Cherbal H, Delos O, Frigui W, Bertrand-Michel J, Guilhot C, Demangel C. De novo synthesized polyunsaturated fatty acids operate as both host immunomodulators and nutrients for Mycobacterium tuberculosis. eLife 2021; 10:71946. [PMID: 34951591 PMCID: PMC8752091 DOI: 10.7554/elife.71946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/24/2021] [Indexed: 11/30/2022] Open
Abstract
Successful control of Mycobacterium tuberculosis (Mtb) infection by macrophages relies on immunometabolic reprogramming, where the role of fatty acids (FAs) remains poorly understood. Recent studies unraveled Mtb’s capacity to acquire saturated and monounsaturated FAs via the Mce1 importer. However, upon activation, macrophages produce polyunsaturated fatty acids (PUFAs), mammal-specific FAs mediating the generation of immunomodulatory eicosanoids. Here, we asked how Mtb modulates de novo synthesis of PUFAs in primary mouse macrophages and whether this benefits host or pathogen. Quantitative lipidomics revealed that Mtb infection selectively activates the biosynthesis of ω6 PUFAs upstream of the eicosanoid precursor arachidonic acid (AA) via transcriptional activation of Fads2. Inhibiting FADS2 in infected macrophages impaired their inflammatory and antimicrobial responses but had no effect on Mtb growth in host cells nor mice. Using a click-chemistry approach, we found that Mtb efficiently imports ω6 PUFAs via Mce1 in axenic culture, including AA. Further, Mtb preferentially internalized AA over all other FAs within infected macrophages by mechanisms partially depending on Mce1 and supporting intracellular persistence. Notably, IFNγ repressed de novo synthesis of AA by infected mouse macrophages and restricted AA import by intracellular Mtb. Together, these findings identify AA as a major FA substrate for intracellular Mtb, whose mobilization by innate immune responses is opportunistically hijacked by the pathogen and downregulated by IFNγ.
Collapse
Affiliation(s)
- Thomas Laval
- Immunobiology of Infection Unit, Institut Pasteur, Paris, France
| | - Laura Pedró-Cos
- Immunobiology of Infection Unit, Institut Pasteur, Paris, France
| | - Wladimir Malaga
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS UMR5089, Toulouse, France
| | | | - Alexandre Pawlik
- Integrated Mycobacterial Pathogenomics Unit, Institut Pasteur, Paris, France
| | - Véronique Mayau
- Immunobiology of Infection Unit, Institut Pasteur, Paris, France
| | | | | | - Wafa Frigui
- Integrated Mycobacterial Pathogenomics Unit, Institut Pasteur, Paris, France
| | | | - Christophe Guilhot
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS UMR5089, Toulouse, France
| | | |
Collapse
|
72
|
Song Q, Bian Q, Liang T, Zhang Y, Zhang K. Identification of immune-related genes and susceptible population of pulmonary tuberculosis by constructing TF-miRNA-mRNA regulatory network. Tuberculosis (Edinb) 2021; 131:102139. [PMID: 34740018 DOI: 10.1016/j.tube.2021.102139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 10/14/2021] [Accepted: 10/22/2021] [Indexed: 12/23/2022]
Abstract
We aimed to explore the potential biomarkers and susceptible population for early diagnosis and treatment of tuberculosis (TB). Ten hub differentially expressed TB-related genes (DETRGs) from GSE83456 dataset were screened with the "limma" package and the GeneCards database. Unsupervised clustering was utilized to identify susceptible population among TB patients based on 10 hub DETRGs. TRANSFAC, MirTarbase, miRanda and TargetScan was used to predict microRNAs and transcription factors (TFs) and construct TF-miRNA-mRNA regulatory network. The results showed that a total of 266 DEGs were identified. Functional analysis mainly enriched in interferon pathway, cytokine and receptor interaction and host defense response to virus, while the four-module genes screened were closely related to interferon-γ signal transduction pathway as well. Based on 10 DETRGs, TB patients were divided into two clusters with significant differences in neutrophil function and 16 hub miRNAs and 10 hub TFs were predicted. Finally, NFATc1- (miR145) - STAT1 regulatory pathway was identified as the critical regulatory pathway, which mediates cytokine receptor binding, interleukin-1 receptor binding and TNF signaling pathway. Hence, we concluded that immunoheterogeneity exists among TB patients and NFATC1-(miR145)-STAT1 regulatory pathway might be associated with tuberculosis infection, which may be valuable targets for prevention and treatment of tuberculosis.
Collapse
Affiliation(s)
- Quanquan Song
- Department of Prevention and Health Care, Guangyuan Mental Health Center, Guangyuan, 628000, China
| | - Qin Bian
- Department of Clinical Laboratory, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Tingting Liang
- Department of Hospital-Acquired Infection Control, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Yinghui Zhang
- Department of Prevention and Health Care, Guangyuan Mental Health Center, Guangyuan, 628000, China
| | - Kai Zhang
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China.
| |
Collapse
|
73
|
Wang L, Lin J, Yu J, Yang K, Sun L, Tang H, Pan L. Downregulation of Perilipin1 by the Immune Deficiency Pathway Leads to Lipid Droplet Reconfiguration and Adaptation to Bacterial Infection in Drosophila. THE JOURNAL OF IMMUNOLOGY 2021; 207:2347-2358. [PMID: 34588219 DOI: 10.4049/jimmunol.2100343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/26/2021] [Indexed: 11/19/2022]
Abstract
Lipid droplets (LDs), the highly dynamic intracellular organelles, are critical for lipid metabolism. Dynamic alterations in the configurations and functions of LDs during innate immune responses to bacterial infections and the underlying mechanisms, however, remain largely unknown. In this study, we trace the time-course morphology of LDs in fat bodies of Drosophila after transient bacterial infection. Detailed analysis shows that perilipin1 (plin1), a core gene involved in the regulation of LDs, is suppressed by the immune deficiency signaling, one major innate immune pathway in Drosophila During immune activation, downregulated plin1 promotes the enlargement of LDs, which in turn alleviates immune reaction-associated reactive oxygen species stress. Thus, the growth of LDs is likely an active adaptation to maintain redox homeostasis in response to immune deficiency activation. Therefore, our study provides evidence that plin1 serves as a modulator on LDs' reconfiguration in regulating infection-induced pathogenesis, and plin1 might be a potential therapeutic target for coordinating inflammation resolution and lipid metabolism.
Collapse
Affiliation(s)
- Lei Wang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.,The Center for Microbes, Development, and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiaxin Lin
- The Center for Microbes, Development, and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Junjing Yu
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China; and
| | - Kaiyan Yang
- The Center for Microbes, Development, and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Li Sun
- The Center for Microbes, Development, and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Hong Tang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China;
| | - Lei Pan
- The Center for Microbes, Development, and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China; .,University of Chinese Academy of Sciences, Beijing, China.,Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
74
|
Dawa S, Menon D, Arumugam P, Bhaskar AK, Mondal M, Rao V, Gandotra S. Inhibition of Granuloma Triglyceride Synthesis Imparts Control of Mycobacterium tuberculosis Through Curtailed Inflammatory Responses. Front Immunol 2021; 12:722735. [PMID: 34603294 PMCID: PMC8479166 DOI: 10.3389/fimmu.2021.722735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/25/2021] [Indexed: 12/11/2022] Open
Abstract
Lipid metabolism plays a complex and dynamic role in host-pathogen interaction during Mycobacterium tuberculosis infection. While bacterial lipid metabolism is key to the success of the pathogen, the host also offers a lipid rich environment in the form of necrotic caseous granulomas, making this association beneficial for the pathogen. Accumulation of the neutral lipid triglyceride, as lipid droplets within the cellular cuff of necrotic granulomas, is a peculiar feature of pulmonary tuberculosis. The role of triglyceride synthesis in the TB granuloma and its impact on the disease outcome has not been studied in detail. Here, we identified diacylglycerol O-acyltransferase 1 (DGAT1) to be essential for accumulation of triglyceride in necrotic TB granulomas using the C3HeB/FeJ murine model of infection. Treatment of infected mice with a pharmacological inhibitor of DGAT1 (T863) led to reduction in granuloma triglyceride levels and bacterial burden. A decrease in bacterial burden was associated with reduced neutrophil infiltration and degranulation, and a reduction in several pro-inflammatory cytokines including IL1β, TNFα, IL6, and IFNβ. Triglyceride lowering impacted eicosanoid production through both metabolic re-routing and via transcriptional control. Our data suggests that manipulation of lipid droplet homeostasis may offer a means for host directed therapy in Tuberculosis.
Collapse
Affiliation(s)
- Stanzin Dawa
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.,Cardiorespiratory Disease Biology, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Dilip Menon
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.,Cardiorespiratory Disease Biology, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Prabhakar Arumugam
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.,Cardiorespiratory Disease Biology, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Akash Kumar Bhaskar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.,Cardiorespiratory Disease Biology, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Moumita Mondal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.,Cardiorespiratory Disease Biology, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Vivek Rao
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.,Cardiorespiratory Disease Biology, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Sheetal Gandotra
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.,Cardiorespiratory Disease Biology, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| |
Collapse
|
75
|
Mekonnen D, Derbie A, Mihret A, Yimer SA, Tønjum T, Gelaw B, Nibret E, Munshae A, Waddell SJ, Aseffa A. Lipid droplets and the transcriptome of Mycobacterium tuberculosis from direct sputa: a literature review. Lipids Health Dis 2021; 20:129. [PMID: 34602073 PMCID: PMC8487580 DOI: 10.1186/s12944-021-01550-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/09/2021] [Indexed: 11/21/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the main etiology of tuberculosis (TB), is predominantly an intracellular pathogen that has caused infection, disease and death in humans for centuries. Lipid droplets (LDs) are dynamic intracellular organelles that are found across the evolutionary tree of life. This review is an evaluation of the current state of knowledge regarding Mtb-LD formation and associated Mtb transcriptome directly from sputa.Based on the LD content, Mtb in sputum may be classified into three groups: LD positive, LD negative and LD borderline. However, the clinical and evolutionary importance of each state is not well elaborated. Mounting evidence supports the view that the presence of LD positive Mtb bacilli in sputum is a biomarker of slow growth, low energy state, towards lipid degradation, and drug tolerance. In Mtb, LD may serve as a source of chemical energy, scavenger of toxic compounds, prevent destruction of Mtb through autophagy, delay trafficking of lysosomes towards the phagosome, and contribute to Mtb persistence. It is suggest that LD is a key player in the induction of a spectrum of phenotypic and metabolic states of Mtb in the macrophage, granuloma and extracellular sputum microenvironment. Tuberculosis patients with high proportion of LD positive Mtb in pretreatment sputum was associated with higher rate of poor treatment outcome, indicating that LD may have a clinical application in predicting treatment outcome.The propensity for LD formation among Mtb lineages is largely unknown. The role of LD on Mtb transmission and disease phenotype (pulmonary TB vs extra-pulmonary TB) is not well understood. Thus, further studies are needed to understand the relationships between LD positivity and Mtb lineage, Mtb transmission and clinical types.
Collapse
Affiliation(s)
- Daniel Mekonnen
- Department of Medical Microbiology, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia.
- Institute of Biotechnology, Bahir Dar University, Bahir Dar, Ethiopia.
| | - Awoke Derbie
- Department of Medical Microbiology, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
- Institute of Biotechnology, Bahir Dar University, Bahir Dar, Ethiopia
- The Centre for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), Addis Ababa University, Addis Ababa, Ethiopia
| | - Adane Mihret
- Armauer Hansen Research Institute, Jimma Road, ALERT Compound, PO Box 1005, Addis Ababa, Ethiopia
- Department of Medical Microbiology, Immunology and Parasitology, College of Medicine and Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Solomon Abebe Yimer
- Department of Microbiology, University of Oslo, PO Box 1071, Blindern, NO-0316, Oslo, Norway
- Coalition for Epidemic Preparedness Innovations, CEPI, P.O. Box 123, Torshov, 0412, Oslo, Norway
| | - Tone Tønjum
- Department of Microbiology, University of Oslo, PO Box 1071, Blindern, NO-0316, Oslo, Norway
- Department of Microbiology, Oslo University Hospital, PO Box 4950, Nydalen, NO-0424, Oslo, Norway
| | - Baye Gelaw
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Endalkachew Nibret
- Institute of Biotechnology, Bahir Dar University, Bahir Dar, Ethiopia
- Department of Biology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Abaineh Munshae
- Institute of Biotechnology, Bahir Dar University, Bahir Dar, Ethiopia
- Department of Biology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Simon J Waddell
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PX, UK
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Jimma Road, ALERT Compound, PO Box 1005, Addis Ababa, Ethiopia
| |
Collapse
|
76
|
Ghanavi J, Farnia P, Farnia P, Velayati AA. The role of interferon-gamma and interferon-gamma receptor in tuberculosis and nontuberculous mycobacterial infections. Int J Mycobacteriol 2021; 10:349-357. [PMID: 34916451 DOI: 10.4103/ijmy.ijmy_186_21] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) and nontuberculous mycobacteria (NTM) remain the leading causes of lung disease and mortality worldwide. Interferon-gamma (IFN-γ) and its receptor (IFN-γR) play a key role in mediating immunity against Mtb and NTM. This study was conducted as a systematic review; all information was collected from databases such as: PubMed, Scopus, Medline, SID, and medical databases. Finally, all the collected data were reviewed, and all content was categorized briefly. There is growing evidence that IFN-γ plays an important role in host defense against these two intracellular pathogens by activating macrophages. In addition, IFN-γ has been shown to be an integral part of various antibacterial methods such as granuloma formation and phagosome-lysosome fusion, both of which lead to the death of intracellular Mycobacterium. As a result, its absence is associated with overgrowth of intracellular pathogens and disease caused by Mtb or Mycobacterium nontuberculosis. We also look at the role of IFN-γR in Mtb or NTM because IFN-γ acts through IFN-γR. Finally, we introduce new approaches to the treatment of M. tuberculosis complex (MTC) and NTM disease, such as cell and gene-based therapies that work by modulating IFN-γ and IFN-γR.
Collapse
Affiliation(s)
- Jalaledin Ghanavi
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Poopak Farnia
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parissa Farnia
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Velayati
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
77
|
Llibre A, Dedicoat M, Burel JG, Demangel C, O’Shea MK, Mauro C. Host Immune-Metabolic Adaptations Upon Mycobacterial Infections and Associated Co-Morbidities. Front Immunol 2021; 12:747387. [PMID: 34630426 PMCID: PMC8495197 DOI: 10.3389/fimmu.2021.747387] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/08/2021] [Indexed: 12/14/2022] Open
Abstract
Mycobacterial diseases are a major public health challenge. Their causative agents include, in order of impact, members of the Mycobacterium tuberculosis complex (causing tuberculosis), Mycobacterium leprae (causing leprosy), and non-tuberculous mycobacterial pathogens including Mycobacterium ulcerans. Macrophages are mycobacterial targets and they play an essential role in the host immune response to mycobacteria. This review aims to provide a comprehensive understanding of the immune-metabolic adaptations of the macrophage to mycobacterial infections. This metabolic rewiring involves changes in glycolysis and oxidative metabolism, as well as in the use of fatty acids and that of metals such as iron, zinc and copper. The macrophage metabolic adaptations result in changes in intracellular metabolites, which can post-translationally modify proteins including histones, with potential for shaping the epigenetic landscape. This review will also cover how critical tuberculosis co-morbidities such as smoking, diabetes and HIV infection shape host metabolic responses and impact disease outcome. Finally, we will explore how the immune-metabolic knowledge gained in the last decades can be harnessed towards the design of novel diagnostic and therapeutic tools, as well as vaccines.
Collapse
Affiliation(s)
- Alba Llibre
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Martin Dedicoat
- Department of Infectious Diseases, Heartlands Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Julie G. Burel
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Caroline Demangel
- Immunobiology of Infection Unit, Institut Pasteur, INSERM U1224, Paris, France
| | - Matthew K. O’Shea
- Department of Infectious Diseases, Heartlands Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Claudio Mauro
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
78
|
Metabolic orchestration of the wound healing response. Cell Metab 2021; 33:1726-1743. [PMID: 34384520 DOI: 10.1016/j.cmet.2021.07.017] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/16/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022]
Abstract
Wound healing requires cooperation between different cell types, among which macrophages play a central role. In particular, inflammatory macrophages are engaged in the initial response to wounding, and alternatively activated macrophages are essential for wound closure and the resolution of tissue repair. The links between temporal activation-induced changes in the metabolism of such macrophages and the influence this has on their functional states, along with the realization that metabolites play both intrinsic and extrinsic roles in the cells that produce them, has focused attention on the metabolism of wound healing. Here, we discuss macrophage metabolism during distinct stages of normal healing and its related pathologic processes, such as during cancer and fibrosis. Further, we frame these insights in a broader context of the current understanding of macrophage metabolic reprogramming linked to cellular activation and function. Finally, we discuss parallels between the metabolism of macrophages and fibroblasts, the latter being a key stromal cell type in wound healing, and consider the importance of the metabolic interplay between different cell types in the wound microenvironment.
Collapse
|
79
|
Sheppe AEF, Santelices J, Czyz DM, Edelmann MJ. Yersinia pseudotuberculosis YopJ Limits Macrophage Response by Downregulating COX-2-Mediated Biosynthesis of PGE2 in a MAPK/ERK-Dependent Manner. Microbiol Spectr 2021; 9:e0049621. [PMID: 34319170 PMCID: PMC8552654 DOI: 10.1128/spectrum.00496-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022] Open
Abstract
Prostaglandin E2 (PGE2) is an essential immunomodulatory lipid released by cells in response to infection with many bacteria, yet its function in macrophage-mediated bacterial clearance is poorly understood. Yersinia overall inhibits the inflammatory circuit, but its effect on PGE2 production is unknown. We hypothesized that one of the Yersinia effector proteins is responsible for the inhibition of PGE2 biosynthesis. We identified that yopB-deficient Y. enterocolitica and Y. pseudotuberculosis deficient in the secretion of virulence proteins via a type 3 secretion system (T3SS) failed to inhibit PGE2 biosynthesis in macrophages. Consistently, COX-2-mediated PGE2 biosynthesis is upregulated in cells treated with heat-killed or T3SS-deficient Y. pseudotuberculosis but diminished in the presence of a MAPK/ERK inhibitor. Mutants expressing catalytically inactive YopJ induce similar levels of PGE2 as heat-killed or ΔyopB Y. pseudotuberculosis, reversed by YopJ complementation. Shotgun proteomics discovered host pathways regulated in a YopJ-mediated manner, including pathways regulating PGE2 synthesis and oxidative phosphorylation. Consequently, this study identified that YopJ-mediated inhibition of MAPK signal transduction serves as a mechanism targeting PGE2, an alternative means of inflammasome inhibition by Yersinia. Finally, we showed that EP4 signaling supports macrophage function in clearing intracellular bacteria. In summary, our unique contribution was to determine a bacterial virulence factor that targets COX-2 transcription, thereby enhancing the intracellular survival of yersiniae. Future studies should investigate whether PGE2 or its stable synthetic derivatives could serve as a potential therapeutic molecule to improve the outcomes of specific bacterial infections. Since other pathogens encode YopJ homologs, this mechanism is expected to be present in other infections. IMPORTANCE PGE2 is a critical immunomodulatory lipid, but its role in bacterial infection and pathogen clearance is poorly understood. We previously demonstrated that PGE2 leads to macrophage polarization toward the M1 phenotype and stimulates inflammasome activation in infected macrophages. Finally, we also discovered that PGE2 improved the clearance of Y. enterocolitica. The fact that Y. enterocolitica hampers PGE2 secretion in a type 3 secretion system (T3SS)-dependent manner and because PGE2 appears to assist macrophage in the clearance of this bacterium indicates that targeting of the eicosanoid pathway by Yersinia might be an adaption used to counteract host defenses. Our study identified a mechanism used by Yersinia that obstructs PGE2 biosynthesis in human macrophages. We showed that Y. pseudotuberculosis interferes with PGE2 biosynthesis by using one of its T3SS effectors, YopJ. Specifically, YopJ targets the host COX-2 enzyme responsible for PGE2 biosynthesis, which happens in a MAPK/ER-dependent manner. Moreover, in a shotgun proteomics study, we also discovered other pathways that catalytically active YopJ targets in the infected macrophages. YopJ was revealed to play a role in limiting host LPS responses, including repression of EGR1 and JUN proteins, which control transcriptional activation of proinflammatory cytokine production such as interleukin-1β. Since YopJ has homologs in other bacterial species, there are likely other pathogens that target and inhibit PGE2 biosynthesis. In summary, our study's unique contribution was to determine a bacterial virulence factor that targets COX-2 transcription. Future studies should investigate whether PGE2 or its stable synthetic derivatives could serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Austin E. F. Sheppe
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida, USA
| | - John Santelices
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida, USA
| | - Daniel M. Czyz
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida, USA
| | - Mariola J. Edelmann
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
80
|
Brandenburg J, Marwitz S, Tazoll SC, Waldow F, Kalsdorf B, Vierbuchen T, Scholzen T, Gross A, Goldenbaum S, Hölscher A, Hein M, Linnemann L, Reimann M, Kispert A, Leitges M, Rupp J, Lange C, Niemann S, Behrends J, Goldmann T, Heine H, Schaible UE, Hölscher C, Schwudke D, Reiling N. WNT6/ACC2-induced storage of triacylglycerols in macrophages is exploited by Mycobacterium tuberculosis. J Clin Invest 2021; 131:e141833. [PMID: 34255743 DOI: 10.1172/jci141833] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 07/06/2021] [Indexed: 11/17/2022] Open
Abstract
In view of emerging drug-resistant tuberculosis (TB), host-directed adjunct therapies are urgently needed to improve treatment outcomes with currently available anti-TB therapies. One approach is to interfere with the formation of lipid-laden "foamy" macrophages in the host, as they provide a nutrient-rich host cell environment for Mycobacterium tuberculosis (Mtb). Here, we provide evidence that Wnt family member 6 (WNT6), a ligand of the evolutionarily conserved Wingless/Integrase 1 (WNT) signaling pathway, promotes foam cell formation by regulating key lipid metabolic genes including acetyl-CoA carboxylase 2 (ACC2) during pulmonary TB. Using genetic and pharmacological approaches, we demonstrated that lack of functional WNT6 or ACC2 significantly reduced intracellular triacylglycerol (TAG) levels and Mtb survival in macrophages. Moreover, treatment of Mtb-infected mice with a combination of a pharmacological ACC2 inhibitor and the anti-TB drug isoniazid (INH) reduced lung TAG and cytokine levels, as well as lung weights, compared with treatment with INH alone. This combination also reduced Mtb bacterial numbers and the size of mononuclear cell infiltrates in livers of infected mice. In summary, our findings demonstrate that Mtb exploits WNT6/ACC2-induced storage of TAGs in macrophages to facilitate its intracellular survival, a finding that opens new perspectives for host-directed adjunctive treatment of pulmonary TB.
Collapse
Affiliation(s)
- Julius Brandenburg
- Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany.,German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Sebastian Marwitz
- Pathology, Research Center Borstel, Borstel, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Simone C Tazoll
- Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Franziska Waldow
- German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.,Bioanalytical Chemistry
| | - Barbara Kalsdorf
- German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.,Clinical Infectious Diseases
| | | | | | - Annette Gross
- Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Svenja Goldenbaum
- Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | | | | | - Lara Linnemann
- Cellular Microbiology, Research Center Borstel, Borstel, Germany
| | | | - Andreas Kispert
- Institute for Molecular Biology, Hannover Medical School, Hannover, Germany
| | - Michael Leitges
- Division of BioMedical Sciences/Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Jan Rupp
- German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.,Department of Infectious Diseases and Microbiology and
| | - Christoph Lange
- German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.,Clinical Infectious Diseases.,Respiratory Medicine & International Health, University of Lübeck, Lübeck, Germany.,Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Stefan Niemann
- German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.,Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | | | - Torsten Goldmann
- Pathology, Research Center Borstel, Borstel, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany
| | | | - Ulrich E Schaible
- German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.,Cellular Microbiology, Research Center Borstel, Borstel, Germany
| | - Christoph Hölscher
- German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.,Infection Immunology, and
| | - Dominik Schwudke
- German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany.,Bioanalytical Chemistry
| | - Norbert Reiling
- Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany.,German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| |
Collapse
|
81
|
Bosch M, Sweet MJ, Parton RG, Pol A. Lipid droplets and the host-pathogen dynamic: FATal attraction? J Cell Biol 2021; 220:e202104005. [PMID: 34165498 PMCID: PMC8240858 DOI: 10.1083/jcb.202104005] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
In the ongoing conflict between eukaryotic cells and pathogens, lipid droplets (LDs) emerge as a choke point in the battle for nutrients. While many pathogens seek the lipids stored in LDs to fuel an expensive lifestyle, innate immunity rewires lipid metabolism and weaponizes LDs to defend cells and animals. Viruses, bacteria, and parasites directly and remotely manipulate LDs to obtain substrates for metabolic energy, replication compartments, assembly platforms, membrane blocks, and tools for host colonization and/or evasion such as anti-inflammatory mediators, lipoviroparticles, and even exosomes. Host LDs counterattack such advances by synthesizing bioactive lipids and toxic nucleotides, organizing immune signaling platforms, and recruiting a plethora of antimicrobial proteins to provide a front-line defense against the invader. Here, we review the current state of this conflict. We will discuss why, when, and how LDs efficiently coordinate and precisely execute a plethora of immune defenses. In the age of antimicrobial resistance and viral pandemics, understanding innate immune strategies developed by eukaryotic cells to fight and defeat dangerous microorganisms may inform future anti-infective strategies.
Collapse
Affiliation(s)
- Marta Bosch
- Lipid Trafficking and Disease Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Matthew J. Sweet
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Australia
| | - Robert G. Parton
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
- Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Australia
| | - Albert Pol
- Lipid Trafficking and Disease Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
82
|
Zhang X, Xie Q, Ye Z, Li Y, Che Z, Huang M, Zeng J. Mesenchymal Stem Cells and Tuberculosis: Clinical Challenges and Opportunities. Front Immunol 2021; 12:695278. [PMID: 34367155 PMCID: PMC8340780 DOI: 10.3389/fimmu.2021.695278] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/30/2021] [Indexed: 12/22/2022] Open
Abstract
Tuberculosis (TB) is one of the communicable diseases caused by Mycobacterium tuberculosis (Mtb) infection, affecting nearly one-third of the world's population. However, because the pathogenesis of TB is still not fully understood and the development of anti-TB drug is slow, TB remains a global public health problem. In recent years, with the gradual discovery and confirmation of the immunomodulatory properties of mesenchymal stem cells (MSCs), more and more studies, including our team's research, have shown that MSCs seem to be closely related to the growth status of Mtb and the occurrence and development of TB, which is expected to bring new hope for the clinical treatment of TB. This article reviews the relationship between MSCs and the occurrence and development of TB and the potential application of MSCs in the treatment of TB.
Collapse
Affiliation(s)
- Xueying Zhang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Qi Xie
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Ziyu Ye
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Yanyun Li
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Zhengping Che
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Mingyuan Huang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Jincheng Zeng
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Key Laboratory of Medical Bioactive Molecular Research for Department of Education of Guangdong Province, School of Basic Medicine, Guangdong Medical University, Dongguan, China
- Collaborative Innovation Center for Antitumor Active Substance Research and Development, School of Basic Medicine, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
83
|
Simmons JD, Van PT, Stein CM, Chihota V, Ntshiqa T, Maenetje P, Peterson GJ, Reynolds A, Benchek P, Velen K, Fielding KL, Grant AD, Graustein AD, Nguyen FK, Seshadri C, Gottardo R, Mayanja-Kizza H, Wallis RS, Churchyard G, Boom WH, Hawn TR. Monocyte metabolic transcriptional programs associate with resistance to tuberculin skin test/interferon-γ release assay conversion. J Clin Invest 2021; 131:e140073. [PMID: 34111032 DOI: 10.1172/jci140073] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
After extensive exposure to Mycobacterium tuberculosis (Mtb), most individuals acquire latent Mtb infection (LTBI) defined by a positive tuberculin skin test (TST) or interferon-γ release assay (IGRA). To identify mechanisms of resistance to Mtb infection, we compared transcriptional profiles from highly exposed contacts who resist TST/IGRA conversion (resisters, RSTRs) and controls with LTBI using RNAseq. Gene sets related to carbon metabolism and free fatty acid (FFA) transcriptional responses enriched across 2 independent cohorts suggesting RSTR and LTBI monocytes have distinct activation states. We compared intracellular Mtb replication in macrophages treated with FFAs and found that palmitic acid (PA), but not oleic acid (OA), enhanced Mtb intracellular growth. This PA activity correlated with its inhibition of proinflammatory cytokines in Mtb-infected cells. Mtb growth restriction in PA-treated macrophages was restored by activation of AMP kinase (AMPK), a central host metabolic regulator known to be inhibited by PA. Finally, we genotyped AMPK variants and found 7 SNPs in PRKAG2, which encodes the AMPK-γ subunit, that strongly associated with RSTR status. Taken together, RSTR and LTBI phenotypes are distinguished by FFA transcriptional programs and by genetic variation in a central metabolic regulator, which suggests immunometabolic pathways regulate TST/IGRA conversion.
Collapse
Affiliation(s)
- Jason D Simmons
- TB Research and Training Center, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Phu T Van
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Catherine M Stein
- Department of Population & Quantitative Health Sciences and.,Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Violet Chihota
- School of Public Health, University of Witwatersrand, Johannesburg, South Africa.,The Aurum Institute, Parktown, South Africa
| | | | | | - Glenna J Peterson
- TB Research and Training Center, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Anthony Reynolds
- TB Research and Training Center, Department of Medicine, University of Washington, Seattle, Washington, USA
| | | | | | - Katherine L Fielding
- School of Public Health, University of Witwatersrand, Johannesburg, South Africa.,TB Centre, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Alison D Grant
- School of Public Health, University of Witwatersrand, Johannesburg, South Africa.,TB Centre, London School of Hygiene and Tropical Medicine, London, United Kingdom.,Africa Health Research Institute, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Andrew D Graustein
- TB Research and Training Center, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Felicia K Nguyen
- TB Research and Training Center, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Chetan Seshadri
- TB Research and Training Center, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Raphael Gottardo
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | | | | | - W Henry Boom
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Thomas R Hawn
- TB Research and Training Center, Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
84
|
Roles of Eicosanoids in Regulating Inflammation and Neutrophil Migration as an Innate Host Response to Bacterial Infections. Infect Immun 2021; 89:e0009521. [PMID: 34031130 DOI: 10.1128/iai.00095-21] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Eicosanoids are lipid-based signaling molecules that play a unique role in innate immune responses. The multiple types of eicosanoids, such as prostaglandins (PGs) and leukotrienes (LTs), allow the innate immune cells to respond rapidly to bacterial invaders. Bacterial pathogens alter cyclooxygenase (COX)-derived prostaglandins (PGs) in macrophages, such as PGE2 15d-PGJ2, and lipoxygenase (LOX)-derived leukotriene LTB4, which has chemotactic functions. The PG synthesis and secretion are regulated by substrate availability of arachidonic acid and by the COX-2 enzyme, and the expression of this protein is regulated at multiple levels, both transcriptionally and posttranscriptionally. Bacterial pathogens use virulence strategies such as type three secretion systems (T3SSs) to deliver virulence factors altering the expression of eicosanoid-specific biosynthetic enzymes, thereby modulating the host response to bacterial lipopolysaccharides (LPS). Recent advances have identified a novel role of eicosanoids in inflammasome activation during intracellular infection with bacterial pathogens. Specifically, PGE2 was found to enhance inflammasome activation, driving the formation of pore-induced intracellular traps (PITs), thus trapping bacteria from escaping the dying cell. Finally, eicosanoids and IL-1β released from macrophages are implicated in the efferocytosis of neighboring neutrophils. Neutrophils play an essential role in phagocytosing and degrading PITs and associated bacteria to restore homeostasis. This review focuses on the novel functions of host-derived eicosanoids in the host-pathogen interactions.
Collapse
|
85
|
Intracellular lipid droplet accumulation occurs early following viral infection and is required for an efficient interferon response. Nat Commun 2021; 12:4303. [PMID: 34262037 PMCID: PMC8280141 DOI: 10.1038/s41467-021-24632-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/25/2021] [Indexed: 02/06/2023] Open
Abstract
Lipid droplets (LDs) are increasingly recognized as critical organelles in signalling events, transient protein sequestration and inter-organelle interactions. However, the role LDs play in antiviral innate immune pathways remains unknown. Here we demonstrate that induction of LDs occurs as early as 2 h post-viral infection, is transient and returns to basal levels by 72 h. This phenomenon occurs following viral infections, both in vitro and in vivo. Virally driven in vitro LD induction is type-I interferon (IFN) independent, and dependent on Epidermal Growth Factor Receptor (EGFR) engagement, offering an alternate mechanism of LD induction in comparison to our traditional understanding of their biogenesis. Additionally, LD induction corresponds with enhanced cellular type-I and -III IFN production in infected cells, with enhanced LD accumulation decreasing viral replication of both Herpes Simplex virus 1 (HSV-1) and Zika virus (ZIKV). Here, we demonstrate, that LDs play vital roles in facilitating the magnitude of the early antiviral immune response specifically through the enhanced modulation of IFN following viral infection, and control of viral replication. By identifying LDs as a critical signalling organelle, this data represents a paradigm shift in our understanding of the molecular mechanisms which coordinate an effective antiviral response.
Collapse
|
86
|
Brink JTR, Fourie R, Sebolai O, Albertyn J, Pohl CH. The role of lipid droplets in microbial pathogenesis. J Med Microbiol 2021; 70. [PMID: 34184983 DOI: 10.1099/jmm.0.001383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The nonpolar lipids present in cells are mainly triacylglycerols and steryl esters. When cells are provided with an abundance of nutrients, these storage lipids accumulate. As large quantities of nonpolar lipids cannot be integrated into membranes, they are isolated from the cytosolic environment in lipid droplets. As specialized, inducible cytoplasmic organelles, lipid droplets have functions beyond the regulation of lipid metabolism, in cell signalling and activation, membrane trafficking and control of inflammatory mediator synthesis and secretion. Pathogens, including fungi, viruses, parasites, or intracellular bacteria can induce and may benefit from lipid droplets in infected cells. Here we review biogenesis of lipid droplets as well as the role of lipid droplets in the pathogenesis of selected viruses, bacteria, protists and yeasts.
Collapse
Affiliation(s)
- Jacobus T R Brink
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Ruan Fourie
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Olihile Sebolai
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Jacobus Albertyn
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Carolina H Pohl
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
87
|
Optimized protocol for the identification of lipid droplet proteomes using proximity labeling proteomics in cultured human cells. STAR Protoc 2021; 2:100579. [PMID: 34151299 PMCID: PMC8190507 DOI: 10.1016/j.xpro.2021.100579] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Lipid droplets are endoplasmic reticulum-derived neutral lipid storage organelles that play critical roles in cellular lipid and energy homeostasis. Here, we present a protocol for the identification of high-confidence lipid droplet proteomes in a cell culture model. This approach overcomes limitations associated with standard biochemical fractionation techniques, employing an engineered ascorbate peroxidase (APEX2) to biotinylate endogenous lipid droplet proteins in living cells for subsequent purification and identification by proteomics. For complete details on the use and execution of this protocol, please refer to Bersuker et al. (2018). Protocol for the identification of high-confidence lipid droplet proteomes Biotinylation of lipid droplet proteins using APEX2 targeted to lipid droplets Purification of biotinylated lipid droplet proteins from buoyant fractions Label-free quantitative proteomics to define lipid droplet proteomes
Collapse
|
88
|
Souza-Almeida G, Palhinha L, Liechocki S, da Silva Pereira JA, Reis PA, Dib PRB, Hottz ED, Gameiro J, Vallochi AL, de Almeida CJ, Castro-Faria-Neto H, Bozza PT, Maya-Monteiro CM. Peripheral leptin signaling persists in innate immune cells during diet-induced obesity. J Leukoc Biol 2021; 109:1131-1138. [PMID: 33070353 DOI: 10.1002/jlb.3ab0820-092rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 01/13/2023] Open
Abstract
Leptin is a pleiotropic adipokine that regulates immunometabolism centrally and peripherally. Obese individuals present increased levels of leptin in the blood and develop hypothalamic resistance to this adipokine. Here we investigated whether leptin effects on the periphery are maintained despite the hypothalamic resistance. We previously reported that leptin injection induces in vivo neutrophil migration and peritoneal macrophage activation in lean mice through TNF-α- and CXCL1-dependent mechanisms. However, leptin effects on leukocyte biology during obesity remain unclear. In this study, we investigated the in vivo responsiveness of leukocytes to i.p. injected leptin in mice with diet-induced obesity (DIO). After 14-16 wk, high-sucrose, high-fat diet (HFD)-fed mice showed hyperglycemia, hyperleptinemia, and dyslipidemia compared to normal-sucrose, normal-fat diet (ND). Exogenous leptin did not reduce food intake in DIO mice in contrast to control mice, indicating that DIO mice were centrally resistant to leptin. Regardless of the diet, we found increased levels of TNF-α and CXCL1 in the animals injected with leptin, alongside a pronounced neutrophil migration to the peritoneal cavity and enhanced biogenesis of lipid droplets in peritoneal macrophages. Supporting our in vivo results, data from ex vivo leptin stimulation experiments confirmed hypothalamic resistance in DIO mice, whereas bone marrow cells responded to leptin stimulation through mTOR signaling despite obesity. Altogether, our results show that leukocytes responded equally to leptin in ND- or HFD-fed mice. These results support a role for leptin in the innate immune response also in obesity, contributing to the inflammatory status that leads to the development of metabolic disease.
Collapse
Affiliation(s)
- Glaucia Souza-Almeida
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
- Current address: Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, Sao Paulo, Brazil
| | - Lohanna Palhinha
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sally Liechocki
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Patrícia Alves Reis
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paula Ribeiro Braga Dib
- Laboratory of Immunothrombosis, Department of Biochemistry, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
- Laboratory of Immunology, Infectious Disease and Obesity, Department of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Eugenio D Hottz
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Immunothrombosis, Department of Biochemistry, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Jacy Gameiro
- Laboratory of Immunology, Infectious Disease and Obesity, Department of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Adriana Lima Vallochi
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cecília Jacques de Almeida
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hugo Castro-Faria-Neto
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia T Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Clarissa Menezes Maya-Monteiro
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
89
|
Mallick I, Santucci P, Poncin I, Point V, Kremer L, Cavalier JF, Canaan S. Intrabacterial lipid inclusions in mycobacteria: unexpected key players in survival and pathogenesis? FEMS Microbiol Rev 2021; 45:6283747. [PMID: 34036305 DOI: 10.1093/femsre/fuab029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
Mycobacterial species, including Mycobacterium tuberculosis, rely on lipids to survive and chronically persist within their hosts. Upon infection, opportunistic and strict pathogenic mycobacteria exploit metabolic pathways to import and process host-derived free fatty acids, subsequently stored as triacylglycerols under the form of intrabacterial lipid inclusions (ILI). Under nutrient-limiting conditions, ILI constitute a critical source of energy that fuels the carbon requirements and maintain redox homeostasis, promoting bacterial survival for extensive periods of time. In addition to their basic metabolic functions, these organelles display multiple other biological properties, emphasizing their central role in the mycobacterial lifecycle. However, despite of their importance, the dynamics of ILI metabolism and their contribution to mycobacterial adaptation/survival in the context of infection has not been thoroughly documented. Herein, we provide an overview of the historical ILI discoveries, their characterization, and current knowledge regarding the micro-environmental stimuli conveying ILI formation, storage and degradation. We also review new biological systems to monitor the dynamics of ILI metabolism in extra- and intracellular mycobacteria and describe major molecular actors in triacylglycerol biosynthesis, maintenance and breakdown. Finally, emerging concepts regarding to the role of ILI in mycobacterial survival, persistence, reactivation, antibiotic susceptibility and inter-individual transmission are also discuss.
Collapse
Affiliation(s)
- Ivy Mallick
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France.,IHU Méditerranée Infection, Aix-Marseille Univ., Marseille, France
| | - Pierre Santucci
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France
| | - Isabelle Poncin
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France
| | - Vanessa Point
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France
| | - Laurent Kremer
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, Montpellier, France.,IRIM, INSERM, Montpellier, France
| | | | - Stéphane Canaan
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France
| |
Collapse
|
90
|
Müller SJ, Schurz H, Tromp G, van der Spuy GD, Hoal EG, van Helden PD, Owusu-Dabo E, Meyer CG, Muntau B, Thye T, Niemann S, Warren RM, Streicher E, Möller M, Kinnear C. A multi-phenotype genome-wide association study of clades causing tuberculosis in a Ghanaian- and South African cohort. Genomics 2021; 113:1802-1815. [PMID: 33862184 DOI: 10.1016/j.ygeno.2021.04.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 03/26/2021] [Accepted: 04/11/2021] [Indexed: 01/31/2023]
Abstract
Despite decades of research and advancements in diagnostics and treatment, tuberculosis remains a major public health concern. New computational methods are needed to interrogate the intersection of host- and bacterial genomes. Paired host genotype datum and infecting bacterial isolate information were analysed for associations using a multinomial logistic regression framework implemented in SNPTest. A cohort of 853 admixed South African participants and a Ghanaian cohort of 1359 participants were included. Two directly genotyped variants, namely rs529920 and rs41472447, were identified in the Ghanaian cohort as being statistically significantly associated with risk for infection with strains of different members of the MTBC. Thus, a multinomial logistic regression using paired host-pathogen data may prove valuable for investigating the complex relationships driving infectious disease.
Collapse
Affiliation(s)
- Stephanie J Müller
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; South African Tuberculosis Bioinformatics Initiative (SATBBI), Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Haiko Schurz
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; South African Tuberculosis Bioinformatics Initiative (SATBBI), Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Gerard Tromp
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; South African Tuberculosis Bioinformatics Initiative (SATBBI), Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Gian D van der Spuy
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; South African Tuberculosis Bioinformatics Initiative (SATBBI), Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Eileen G Hoal
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Paul D van Helden
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Ellis Owusu-Dabo
- School of Public Health, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Christian G Meyer
- Institute of Tropical Medicine, Eberhard-Karls University, Tübingen, Germany; Faculty of Medicine, Duy Tan University, Da Nang, Vietnam
| | - Birgit Muntau
- National Reference Centre for Tropical Pathogens, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Thorsten Thye
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Stefan Niemann
- German Centre for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel, Borstel, Germany
| | - Robin M Warren
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Elizabeth Streicher
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Marlo Möller
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Craig Kinnear
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
91
|
Taurine-Mediated IDOL Contributes to Resolution of Streptococcus uberis Infection. Infect Immun 2021; 89:IAI.00788-20. [PMID: 33593888 DOI: 10.1128/iai.00788-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/01/2021] [Indexed: 12/17/2022] Open
Abstract
Metabolic alterations occur in pathogenic infections, but the role of lipid metabolism in the progression of bacterial mastitis is unclear. Cross talk between lipid droplets (LDs) and invading bacteria occurs, and targeting of de novo lipogenesis inhibits pathogen reproduction. In this study, we investigate the role(s) of lipid metabolism in mammary cells during Streptococcus uberis infection. Our results indicate that S. uberis induces the synthesis of fatty acids and production of LDs. Importantly, taurine reduces fatty acid synthesis, the abundance of LDs and the in vitro bacterial load of S. uberis These changes are mediated, at least partly, by the E3 ubiquitin ligase IDOL, which is associated with the degradation of low-density lipoprotein receptors (LDLRs). We have identified a critical role for IDOL-mediated fatty acid synthesis in bacterial infection, and we suggest that taurine may be an effective prophylactic or therapeutic strategy for preventing S. uberis mastitis.
Collapse
|
92
|
Park JH, Shim D, Kim KES, Lee W, Shin SJ. Understanding Metabolic Regulation Between Host and Pathogens: New Opportunities for the Development of Improved Therapeutic Strategies Against Mycobacterium tuberculosis Infection. Front Cell Infect Microbiol 2021; 11:635335. [PMID: 33796480 PMCID: PMC8007978 DOI: 10.3389/fcimb.2021.635335] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/01/2021] [Indexed: 12/21/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) causes chronic granulomatous lung disease in humans. Recently, novel strategies such as host-directed therapeutics and adjunctive therapies that enhance the effect of existing antibiotics have emerged to better control Mtb infection. Recent advances in understanding the metabolic interplay between host immune cells and pathogens have provided new insights into how their interactions ultimately influence disease outcomes and antibiotic-treatment efficacy. In this review, we describe how metabolic cascades in immune environments and relevant metabolites produced from immune cells during Mtb infection play critical roles in the progression of diseases and induction of anti-Mtb protective immunity. In addition, we introduce how metabolic alterations in Mtb itself can lead to the development of persister cells that are resistant to host immunity and can eventually evade antibiotic attacks. Further understanding of the metabolic link between host cells and Mtb may contribute to not only the prevention of Mtb persister development but also the optimization of host anti-Mtb immunity together with enhanced efficacy of existing antibiotics. Overall, this review highlights novel approaches to improve and develop host-mediated therapeutic strategies against Mtb infection by restoring and switching pathogen-favoring metabolic conditions with host-favoring conditions.
Collapse
Affiliation(s)
- Ji-Hae Park
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Dahee Shim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Keu Eun San Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Wonsik Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
93
|
Ariel O, Brouard JS, Marete A, Miglior F, Ibeagha-Awemu E, Bissonnette N. Genome-wide association analysis identified both RNA-seq and DNA variants associated to paratuberculosis in Canadian Holstein cattle 'in vitro' experimentally infected macrophages. BMC Genomics 2021; 22:162. [PMID: 33678157 PMCID: PMC7938594 DOI: 10.1186/s12864-021-07487-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 02/26/2021] [Indexed: 12/22/2022] Open
Abstract
Background Mycobacterium avium ssp. paratuberculosis (MAP) is the causative agent of paratuberculosis, or Johne’s disease (JD), an incurable bovine disease. The evidence for susceptibility to MAP disease points to multiple interacting factors, including the genetic predisposition to a dysregulation of the immune system. The endemic situation in cattle populations can be in part explained by a genetic susceptibility to MAP infection. In order to identify the best genetic improvement strategy that will lead to a significant reduction of JD in the population, we need to understand the link between genetic variability and the biological systems that MAP targets in its assault to dominate macrophages. MAP survives in macrophages where it disseminates. We used next-generation RNA (RNA-Seq) sequencing to study of the transcriptome in response to MAP infection of the macrophages from cows that have been naturally infected and identified as positive for JD (JD (+); n = 22) or negative for JD (healthy/resistant, JD (−); n = 28). In addition to identifying genetic variants from RNA-seq data, SNP variants were also identified using the Bovine SNP50 DNA chip. Results The complementary strategy allowed the identification of 1,356,248 genetic variants, including 814,168 RNA-seq and 591,220 DNA chip variants. Annotation using SnpEff predicted that the 2435 RNA-seq genetic variants would produce high functional effect on known genes in comparison to the 33 DNA chip variants. Significant variants from JD(+/−) macrophages were identified by genome-wide association study and revealed two quantitative traits loci: BTA4 and 11 at (P < 5 × 10− 7). Using BovineMine, gene expression levels together with significant genomic variants revealed pathways that potentially influence JD susceptibility, notably the energy-dependent regulation of mTOR by LKB1-AMPK and the metabolism of lipids. Conclusion In the present study, we succeeded in identifying genetic variants in regulatory pathways of the macrophages that may affect the susceptibility of cows that are healthy/resistant to MAP infection. RNA-seq provides an unprecedented opportunity to investigate gene expression and to link the genetic variations to biological pathways that MAP normally manipulate during the process of killing macrophages. A strategy incorporating functional markers into genetic selection may have a considerable impact in improving resistance to an incurable disease. Integrating the findings of this research into the conventional genetic selection program may allow faster and more lasting improvement in resistance to bovine paratuberculosis in dairy cattle. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07487-4.
Collapse
Affiliation(s)
- Olivier Ariel
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, J1M 0C8, Canada
| | - Jean-Simon Brouard
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, J1M 0C8, Canada
| | - Andrew Marete
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, J1M 0C8, Canada
| | - Filippo Miglior
- Center of Genetic Improvement of Livestock, University of Guelph, Guelph, ON, N1G 2W1, Canada.,Canadian Dairy Network, Guelph, ON, N1K 1E5, Canada
| | - Eveline Ibeagha-Awemu
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, J1M 0C8, Canada
| | - Nathalie Bissonnette
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, J1M 0C8, Canada.
| |
Collapse
|
94
|
Laval T, Chaumont L, Demangel C. Not too fat to fight: The emerging role of macrophage fatty acid metabolism in immunity to Mycobacterium tuberculosis. Immunol Rev 2021; 301:84-97. [PMID: 33559209 DOI: 10.1111/imr.12952] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/23/2022]
Abstract
While the existence of a special relationship between Mycobacterium tuberculosis (Mtb) and host lipids has long been known, it remains a challenging enigma. It was clearly established that Mtb requires host fatty acids (FAs) and cholesterol to produce energy, build its distinctive lipid-rich cell wall, and produce lipid virulence factors. It was also observed that in infected hosts, Mtb constantly resides in a FA-rich environment that the pathogen contributes to generate by inducing a lipid-laden "foamy" phenotype in host macrophages. These observations and the proximity between lipid droplets and phagosomes containing bacteria within infected macrophages gave rise to the hypothesis that Mtb reprograms host cell lipid metabolism to ensure a continuous supply of essential nutrients and its long-term persistence in vivo. However, recent studies question this principle by indicating that in Mtb-infected macrophages, lipid droplet formation prevents bacterial acquisition of host FAs while supporting the production of FA-derived protective lipid mediators. Further, in vivo investigations reveal discrete macrophage phenotypes linking the FA metabolisms of host cell and intracellular pathogen. Notably, FA storage within lipid droplets characterizes both macrophages controlling Mtb infection and dormant intracellular Mtb. In this review, we integrate findings from immunological and microbiological studies illustrating the new concept that cytoplasmic accumulation of FAs is a metabolic adaptation of macrophages to Mtb infection, which potentiates their antimycobacterial responses and forces the intracellular pathogen to shift into fat-saving, survival mode.
Collapse
Affiliation(s)
- Thomas Laval
- Immunobiology of Infection Unit, Institut Pasteur, INSERM U1221, Paris, France.,Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Lise Chaumont
- Immunobiology of Infection Unit, Institut Pasteur, INSERM U1221, Paris, France
| | - Caroline Demangel
- Immunobiology of Infection Unit, Institut Pasteur, INSERM U1221, Paris, France
| |
Collapse
|
95
|
Herker E, Vieyres G, Beller M, Krahmer N, Bohnert M. Lipid Droplet Contact Sites in Health and Disease. Trends Cell Biol 2021; 31:345-358. [PMID: 33546922 DOI: 10.1016/j.tcb.2021.01.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 01/04/2023]
Abstract
After having been disregarded for a long time as inert fat drops, lipid droplets (LDs) are now recognized as ubiquitous cellular organelles with key functions in lipid biology and beyond. The identification of abundant LD contact sites, places at which LDs are physically attached to other organelles, has uncovered an unexpected level of communication between LDs and the rest of the cell. In recent years, many disease factors mutated in hereditary disorders have been recognized as LD contact site proteins. Furthermore, LD contact sites are dramatically rearranged in response to infections with intracellular pathogens, as well as under pathological metabolic conditions such as hepatic steatosis. Collectively, it is emerging that LD-organelle contacts are important players in development and progression of disease.
Collapse
Affiliation(s)
- Eva Herker
- Institute of Virology, Philipps-University Marburg, 35043 Marburg, Germany.
| | - Gabrielle Vieyres
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany; Leibniz ScienceCampus InterACt, Hamburg, Germany.
| | - Mathias Beller
- Institute for Mathematical Modeling of Biological Systems, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; Systems Biology of Lipid Metabolism, Heinrich Heine University Düsseldorf, Germany.
| | - Natalie Krahmer
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.
| | - Maria Bohnert
- Institute of Cell Dynamics and Imaging, University of Münster, 48149 Münster, Germany; Cells in Motion Interfaculty Centre (CiM), University of Münster, Münster, Germany.
| |
Collapse
|
96
|
Sheedy FJ, Divangahi M. Targeting immunometabolism in host defence against Mycobacterium tuberculosis. Immunology 2021; 162:145-159. [PMID: 33020911 PMCID: PMC7808148 DOI: 10.1111/imm.13276] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
In the face of ineffective vaccines, increasing antibiotic resistance and the decline in new antibacterial drugs in the pipeline, tuberculosis (TB) still remains pandemic. Exposure to Mycobacterium tuberculosis (Mtb), which causes TB, results in either direct elimination of the pathogen, most likely by the innate immune system, or infection and containment that requires both innate and adaptive immunity to form the granuloma. Host defence strategies against infectious diseases are comprised of both host resistance, which is the ability of the host to prevent invasion or to eliminate the pathogen, and disease tolerance, which is defined by limiting the collateral tissue damage. In this review, we aim to examine the metabolic demands of the immune cells involved in both host resistance and disease tolerance, chiefly the macrophage and T-lymphocyte. We will further discuss how baseline metabolic heterogeneity and inflammation-driven metabolic reprogramming during infection are linked to their key immune functions containing mycobacterial growth and instructing protective immunity. Targeting key players in immune cellular metabolism may provide a novel opportunity for treatments at different stages of TB disease.
Collapse
Affiliation(s)
- Frederick J. Sheedy
- School of Biochemistry & ImmunologyTrinity Biomedical Sciences InstituteTrinity College DublinDublinIreland
| | - Maziar Divangahi
- Meakins‐Christie LaboratoriesDepartment of MedicineDepartment of PathologyDepartment of Microbiology & ImmunologyMcGill University Health CentreMcGill International TB CentreMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
97
|
Kinsella RL, Zhu DX, Harrison GA, Mayer Bridwell AE, Prusa J, Chavez SM, Stallings CL. Perspectives and Advances in the Understanding of Tuberculosis. ANNUAL REVIEW OF PATHOLOGY 2021; 16:377-408. [PMID: 33497258 DOI: 10.1146/annurev-pathol-042120-032916] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), remains a leading cause of death due to infection in humans. To more effectively combat this pandemic, many aspects of TB control must be developed, including better point of care diagnostics, shorter and safer drug regimens, and a protective vaccine. To address all these areas of need, better understanding of the pathogen, host responses, and clinical manifestations of the disease is required. Recently, the application of cutting-edge technologies to the study of Mtb pathogenesis has resulted in significant advances in basic biology, vaccine development, and antibiotic discovery. This leaves us in an exciting era of Mtb research in which our understanding of this deadly infection is improving at a faster rate than ever, and renews hope in our fight to end TB. In this review, we reflect on what is known regarding Mtb pathogenesis, highlighting recent breakthroughs that will provide leverage for the next leaps forward in the field.
Collapse
Affiliation(s)
- Rachel L Kinsella
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Dennis X Zhu
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Gregory A Harrison
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Anne E Mayer Bridwell
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Jerome Prusa
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Sthefany M Chavez
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Christina L Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| |
Collapse
|
98
|
Mycobacterium tuberculosis Limits Host Glycolysis and IL-1β by Restriction of PFK-M via MicroRNA-21. Cell Rep 2021; 30:124-136.e4. [PMID: 31914380 DOI: 10.1016/j.celrep.2019.12.015] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 11/06/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022] Open
Abstract
Increased glycolytic metabolism recently emerged as an essential process driving host defense against Mycobacterium tuberculosis (Mtb), but little is known about how this process is regulated during infection. Here, we observe repression of host glycolysis in Mtb-infected macrophages, which is dependent on sustained upregulation of anti-inflammatory microRNA-21 (miR-21) by proliferating mycobacteria. The dampening of glycolysis by miR-21 is mediated through targeting of phosphofructokinase muscle (PFK-M) isoform at the committed step of glycolysis, which facilitates bacterial growth by limiting pro-inflammatory mediators, chiefly interleukin-1β (IL-1β). Unlike other glycolytic genes, PFK-M expression and activity is repressed during Mtb infection through miR-21-mediated regulation, while other less-active isoenzymes dominate. Notably, interferon-γ (IFN-γ), which drives Mtb host defense, inhibits miR-21 expression, forcing an isoenzyme switch in the PFK complex, augmenting PFK-M expression and macrophage glycolysis. These findings place the targeting of PFK-M by miR-21 as a key node controlling macrophage immunometabolic function.
Collapse
|
99
|
Scheuermann L, Pei G, Domaszewska T, Zyla J, Oberbeck-Müller D, Bandermann S, Feng Y, Ruiz Moreno JS, Opitz B, Mollenkopf HJ, Kaufmann SHE, Dorhoi A. Platelets Restrict the Oxidative Burst in Phagocytes and Facilitate Primary Progressive Tuberculosis. Am J Respir Crit Care Med 2020; 202:730-744. [PMID: 32421376 DOI: 10.1164/rccm.201910-2063oc] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Rationale: Platelets are generated in the capillaries of the lung, control hemostasis, and display immunological functions. Tuberculosis primarily affects the lung, and patients show platelet changes and hemoptysis. A role of platelets in immunopathology of pulmonary tuberculosis requires careful assessment.Objectives: To identify the dynamics and interaction partners of platelets in the respiratory tissue and establish their impact on the outcome of pulmonary tuberculosis.Methods: Investigations were primarily performed in murine models of primary progressive pulmonary tuberculosis, by analysis of mouse strains with variable susceptibility to Mycobacterium tuberculosis infection using platelet depletion and delivery of antiplatelet drugs.Measurements and Main Results: Platelets were present at the site of infection and formed aggregates with different myeloid subsets during experimental tuberculosis. Such aggregates were also detected in patients with tuberculosis. Platelets were detrimental during the early phase of infection, and this effect was uncoupled from their canonical activation. Platelets left lung cell dynamics and patterns of antimycobacterial T-cell responses unchanged but hampered antimicrobial defense by restricting production of reactive oxygen species in lung-residing myeloid cells.Conclusions: Platelets are detrimental in primary progressive pulmonary tuberculosis, orchestrate lung immunity by modulating innate immune responsiveness, and may be amenable to new interventions for this deadly disease.
Collapse
Affiliation(s)
| | - Gang Pei
- Immunology Department and.,Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | | | - Joanna Zyla
- Immunology Department and.,Department of Data Science and Engineering, Silesian University of Technology, Gliwice, Poland
| | | | | | - Yonghong Feng
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Juan Sebastian Ruiz Moreno
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Bastian Opitz
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Stefan H E Kaufmann
- Immunology Department and.,Hagler Institute for Advanced Study at Texas A&M University, College Station, Texas; and
| | - Anca Dorhoi
- Immunology Department and.,Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany.,Faculty of Mathematics and Natural Sciences, University of Greifswald, Greifswald, Germany
| |
Collapse
|
100
|
Bosch M, Sánchez-Álvarez M, Fajardo A, Kapetanovic R, Steiner B, Dutra F, Moreira L, López JA, Campo R, Marí M, Morales-Paytuví F, Tort O, Gubern A, Templin RM, Curson JEB, Martel N, Català C, Lozano F, Tebar F, Enrich C, Vázquez J, Del Pozo MA, Sweet MJ, Bozza PT, Gross SP, Parton RG, Pol A. Mammalian lipid droplets are innate immune hubs integrating cell metabolism and host defense. Science 2020; 370:370/6514/eaay8085. [PMID: 33060333 DOI: 10.1126/science.aay8085] [Citation(s) in RCA: 259] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 04/29/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022]
Abstract
Lipid droplets (LDs) are the major lipid storage organelles of eukaryotic cells and a source of nutrients for intracellular pathogens. We demonstrate that mammalian LDs are endowed with a protein-mediated antimicrobial capacity, which is up-regulated by danger signals. In response to lipopolysaccharide (LPS), multiple host defense proteins, including interferon-inducible guanosine triphosphatases and the antimicrobial cathelicidin, assemble into complex clusters on LDs. LPS additionally promotes the physical and functional uncoupling of LDs from mitochondria, reducing fatty acid metabolism while increasing LD-bacterial contacts. Thus, LDs actively participate in mammalian innate immunity at two levels: They are both cell-autonomous organelles that organize and use immune proteins to kill intracellular pathogens as well as central players in the local and systemic metabolic adaptation to infection.
Collapse
Affiliation(s)
- Marta Bosch
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain. .,Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, 08036, Barcelona, Spain
| | - Miguel Sánchez-Álvarez
- Mechanoadaptation and Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC). 28029, Madrid, Spain
| | - Alba Fajardo
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Ronan Kapetanovic
- Institute for Molecular Bioscience (IMB), University of Queensland, Brisbane, Queensland 4072, Australia.,IMB Centre for Inflammation and Disease Research, University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Bernhard Steiner
- Institute for Molecular Bioscience (IMB), University of Queensland, Brisbane, Queensland 4072, Australia
| | - Filipe Dutra
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, CEP 21.040-900, Brazil
| | - Luciana Moreira
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, CEP 21.040-900, Brazil
| | - Juan Antonio López
- Cardiovascular Proteomics Laboratory, Vascular Pathophysiology Area, CNIC, Instituto de Salud Carlos III 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III 28029, Madrid, Spain
| | - Rocío Campo
- Cardiovascular Proteomics Laboratory, Vascular Pathophysiology Area, CNIC, Instituto de Salud Carlos III 28029, Madrid, Spain
| | - Montserrat Marí
- Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-CSIC, Barcelona, Spain.,Hepatocellular Signaling and Cancer Team, IDIBAPS, 08036, Barcelona, Spain
| | - Frederic Morales-Paytuví
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Olivia Tort
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Albert Gubern
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Rachel M Templin
- Institute for Molecular Bioscience (IMB), University of Queensland, Brisbane, Queensland 4072, Australia.,Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Queensland 4072, Australia
| | - James E B Curson
- Institute for Molecular Bioscience (IMB), University of Queensland, Brisbane, Queensland 4072, Australia.,IMB Centre for Inflammation and Disease Research, University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Nick Martel
- Institute for Molecular Bioscience (IMB), University of Queensland, Brisbane, Queensland 4072, Australia
| | - Cristina Català
- Immunoreceptors of the Innate and Adaptive System Team, IDIBAPS, 08036, Barcelona, Spain
| | - Francisco Lozano
- Immunoreceptors of the Innate and Adaptive System Team, IDIBAPS, 08036, Barcelona, Spain
| | - Francesc Tebar
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain.,Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, 08036, Barcelona, Spain
| | - Carlos Enrich
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain.,Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, 08036, Barcelona, Spain
| | - Jesús Vázquez
- Cardiovascular Proteomics Laboratory, Vascular Pathophysiology Area, CNIC, Instituto de Salud Carlos III 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III 28029, Madrid, Spain
| | - Miguel A Del Pozo
- Mechanoadaptation and Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC). 28029, Madrid, Spain
| | - Matthew J Sweet
- Institute for Molecular Bioscience (IMB), University of Queensland, Brisbane, Queensland 4072, Australia.,IMB Centre for Inflammation and Disease Research, University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Patricia T Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, CEP 21.040-900, Brazil
| | - Steven P Gross
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Robert G Parton
- Institute for Molecular Bioscience (IMB), University of Queensland, Brisbane, Queensland 4072, Australia. .,Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Albert Pol
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain. .,Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, 08036, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona
| |
Collapse
|