51
|
DiNicolantonio JJ, Bhutani J, McCarty MF, O'Keefe JH. Coenzyme Q10 for the treatment of heart failure: a review of the literature. Open Heart 2015; 2:e000326. [PMID: 26512330 PMCID: PMC4620231 DOI: 10.1136/openhrt-2015-000326] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/23/2015] [Accepted: 09/29/2015] [Indexed: 12/30/2022] Open
Abstract
Coenzyme Q10 (CoQ10) is an endogenously synthesised and diet-supplied lipid-soluble cofactor that functions in the mitochondrial inner membrane to transfer electrons from complexes I and II to complex III. In addition, its redox activity enables CoQ10 to act as a membrane antioxidant. In patients with congestive heart failure, myocardial CoQ10 content tends to decline as the degree of heart failure worsens. A number of controlled pilot trials with supplemental CoQ10 in heart failure found improvements in functional parameters such as ejection fraction, stroke volume and cardiac output, without side effects. Subsequent meta-analyses have confirmed these findings, although the magnitude of benefit tends to be less notable in patients with severe heart failure, or within the context of ACE inhibitor therapy. The multicentre randomised placebo-controlled Q-SYMBIO trial has assessed the impact of supplemental CoQ10 on hard endpoints in heart failure. A total of 420 patients received either CoQ10 (100 mg three times daily) or placebo and were followed for 2 years. Although short-term functional endpoints were not statistically different in the two groups, CoQ10 significantly reduced the primary long-term endpoint-a major adverse cardiovascular event-which was observed in 15% of the treated participants compared to 26% of those receiving placebo (HR=0.50, CI 0.32 to 0.80, p=0.003). Particularly in light of the excellent tolerance and affordability of this natural physiological compound, supplemental CoQ10 has emerged as an attractive option in the management of heart failure, and merits evaluation in additional large studies.
Collapse
Affiliation(s)
| | | | | | - James H O'Keefe
- Saint Luke's Mid America Heart Institute , Kansas City, Missouri , USA
| |
Collapse
|
52
|
Abdollahzad H, Aghdashi MA, Asghari Jafarabadi M, Alipour B. Effects of Coenzyme Q10 Supplementation on Inflammatory Cytokines (TNF-α, IL-6) and Oxidative Stress in Rheumatoid Arthritis Patients: A Randomized Controlled Trial. Arch Med Res 2015; 46:527-33. [DOI: 10.1016/j.arcmed.2015.08.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 08/25/2015] [Indexed: 12/26/2022]
|
53
|
Mohseni M, Vafa M, Zarrati M, Shidfar F, Hajimiresmail SJ, Rahimi Forushani A. Beneficial Effects of Coenzyme Q10 Supplementation on Lipid Profile and Intereukin-6 and Intercellular Adhesion Molecule-1 Reduction, Preliminary Results of a Double-blind Trial in Acute Myocardial Infarction. Int J Prev Med 2015; 6:73. [PMID: 26330989 PMCID: PMC4542328 DOI: 10.4103/2008-7802.162461] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 04/05/2015] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The present investigation was aimed to improve the inflammatory factors and lipoproteins concentration in patients with myocardial infarction (MI) by supplementation with coenzyme Q10 (CoQ10). METHODS In a double-blind, placebo-controlled study, we measured serum concentrations of one soluble cell adhesion molecules (intercellular adhesion molecule-1 [ICAM-1]), serum concentration of intereukin-6 (IL-6) and lipid profiles (high-density lipoprotein-cholesterol [HDL-C], low-density lipoprotein-cholesterol [LDL-C], total cholesterol and triglyceride [TG]) in CoQ10 supplementation group (n = 26) compared with placebo group (n = 26) in hyperlipidemic patients with MI. Fifty-two patients were randomized to receive 200 mg/day of CoQ10 or placebo for 12 weeks. RESULTS There were no significant differences for serum LDL-C, total cholesterol, and TG between two mentioned groups after the intervention. A significant enhancement in serum HDL-C level was observed between groups after the intervention (55.46 ± 6.87 and 44.07 ± 6.99 mg/dl in CoQ10 and placebo groups, respectively P < 0.001). Concentrations of ICAM-1 (415.03 ± 96.89 and 453.38 ± 0.7 ng/dl CoQ10 and placebo groups, respectively, P = 0.001) and IL-6 (11 ± 9.57 and 12.55 ± 8.76 pg/ml CoQ10 and placebo groups, respectively P = 0.001) in serum were significantly decreased in CoQ10 group. CONCLUSIONS Supplementation with CoQ10 in hyperlipidemic patients with MI that have statin therapy has beneficial effects on their aspects of health.
Collapse
Affiliation(s)
- Mona Mohseni
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Vafa
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mitra Zarrati
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Shidfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Javad Hajimiresmail
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Department of Internal Medicine (Cardiology Division), School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Rahimi Forushani
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
54
|
Ayer A, Macdonald P, Stocker R. CoQ10Function and Role in Heart Failure and Ischemic Heart Disease. Annu Rev Nutr 2015; 35:175-213. [DOI: 10.1146/annurev-nutr-071714-034258] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Peter Macdonald
- Cardiac Physiology and Transplantation Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia;
| | - Roland Stocker
- Vascular Biology and
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
55
|
Silva FBDF, Medeiros HCDD, Guelfi M, Santana ATD, Mingatto FE. Efeito da coenzima Q10 nos danos oxidativos induzidos pela L-tiroxina no músculo sóleo de ratos. REV BRAS MED ESPORTE 2015. [DOI: 10.1590/1517-86922015210202158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
INTRODUÇÃO: os músculoesqueléticos são tecidos dinâmicos que podem alterar suas características fenotípicas proporcionando melhor adaptação funcional com estímulos variados. A L-tiroxina é um hormônio produzido pela glândula tireoide e tem sido utilizada como modelo experimental para estimulação de estresse oxidativo no músculo esquelético. A coenzima Q10 é uma provitamina lipossolúvel sintetizada endogenamente e naturalmente encontrada em alimentos como carne vermelha, peixes, cereais, brócolis e espinafre. Apresenta propriedade antioxidante e tem potencial no tratamento de doenças degenerativas e neuromusculares.OBJETIVO: avaliar o efeito protetor da coenzima Q10 no músculo sóleo de ratos frente aos danos oxidativos provocados pela L-tiroxina.MÉTODOS: os ratos foram distribuídos em quatro grupos de seis animais cada: Grupo 1 controle; Grupo 2 coenzima Q10; Grupo 3 L-tiroxina e Grupo 4 coenzima Q10 e L-tiroxina. Após a eutanásia, o sangue dos animais foi colhido e foi analisada a atividade sérica das enzimas creatina quinase CK e aspartato aminotransferase AST. No homogenato do músculo sóleo foram avaliados fatores relacionados ao estresse oxidativo.RESULTADOS: a coenzima Q10 protegeu o músculo sóleo dos danos provocados pela L-tiroxina e favoreceu a manutenção da atividade das enzimas antioxidantes glutationa redutase e glutationa peroxidase, da concentração de glutationa reduzida e oxidada, além de evitar a lipoperoxidação.CONCLUSÃO: os resultados indicam que a coenzima Q10 protege o músculo sóleo de ratos dos danos oxidativos provocados pela L-tiroxina.
Collapse
|
56
|
Abstract
Coenzyme Q10 (CoQ10), also known as ubiquinone or ubidecarenone, is a powerful, endogenously produced, intracellularly existing lipophilic antioxidant. It combats reactive oxygen species (ROS) known to be responsible for a variety of human pathological conditions. Its target site is the inner mitochondrial membrane (IMM) of each cell. In case of deficiency and/or aging, CoQ10 oral supplementation is warranted. However, CoQ10 has low oral bioavailability due to its lipophilic nature, large molecular weight, regional differences in its gastrointestinal permeability and involvement of multitransporters. Intracellular delivery and mitochondrial target ability issues pose additional hurdles. To maximize CoQ10 delivery to its biopharmaceutical target, numerous approaches have been undertaken. The review summaries the current research on CoQ10 bioavailability and highlights the headways to obtain a satisfactory intracellular and targeted mitochondrial delivery. Unresolved questions and research gaps were identified to bring this promising natural product to the forefront of therapeutic agents for treatment of different pathologies.
Collapse
Affiliation(s)
- Noha M Zaki
- a Toronto Health Economics and Technology Assessment (THETA) Collaborative Leslie Dan Faculty of Pharmacy, University of Toronto , Toronto , Ontario , Canada
| |
Collapse
|
57
|
Swerdlow RH. Bioenergetic medicine. Br J Pharmacol 2014; 171:1854-69. [PMID: 24004341 DOI: 10.1111/bph.12394] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 08/17/2013] [Accepted: 08/22/2013] [Indexed: 12/12/2022] Open
Abstract
Here we discuss a specific therapeutic strategy we call 'bioenergetic medicine'. Bioenergetic medicine refers to the manipulation of bioenergetic fluxes to positively affect health. Bioenergetic medicine approaches rely heavily on the law of mass action, and impact systems that monitor and respond to the manipulated flux. Since classically defined energy metabolism pathways intersect and intertwine, targeting one flux also tends to change other fluxes, which complicates treatment design. Such indirect effects, fortunately, are to some extent predictable, and from a therapeutic perspective may also be desirable. Bioenergetic medicine-based interventions already exist for some diseases, and because bioenergetic medicine interventions are presently feasible, new approaches to treat certain conditions, including some neurodegenerative conditions and cancers, are beginning to transition from the laboratory to the clinic.
Collapse
Affiliation(s)
- Russell H Swerdlow
- Departments of Neurology, Molecular and Integrative Physiology, Biochemistry and Molecular Biology, University of Kansas School of Medicine, Kansas City, KS, USA; Alzheimer's Disease Center, University of Kansas Medical Center, Fairway, KS, USA
| |
Collapse
|
58
|
Coenzyme Q10 protects human endothelial cells from β-amyloid uptake and oxidative stress-induced injury. PLoS One 2014; 9:e109223. [PMID: 25272163 PMCID: PMC4182835 DOI: 10.1371/journal.pone.0109223] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 08/31/2014] [Indexed: 01/30/2023] Open
Abstract
Neuropathological symptoms of Alzheimer's disease appear in advances stages, once neuronal damage arises. Nevertheless, recent studies demonstrate that in early asymptomatic stages, ß-amyloid peptide damages the cerebral microvasculature through mechanisms that involve an increase in reactive oxygen species and calcium, which induces necrosis and apoptosis of endothelial cells, leading to cerebrovascular dysfunction. The goal of our work is to study the potential preventive effect of the lipophilic antioxidant coenzyme Q (CoQ) against ß-amyloid-induced damage on human endothelial cells. We analyzed the protective effect of CoQ against Aβ-induced injury in human umbilical vein endothelial cells (HUVECs) using fluorescence and confocal microscopy, biochemical techniques and RMN-based metabolomics. Our results show that CoQ pretreatment of HUVECs delayed Aβ incorporation into the plasma membrane and mitochondria. Moreover, CoQ reduced the influx of extracellular Ca2+, and Ca2+ release from mitochondria due to opening the mitochondrial transition pore after β-amyloid administration, in addition to decreasing O2.− and H2O2 levels. Pretreatment with CoQ also prevented ß-amyloid-induced HUVECs necrosis and apoptosis, restored their ability to proliferate, migrate and form tube-like structures in vitro, which is mirrored by a restoration of the cell metabolic profile to control levels. CoQ protected endothelial cells from Aβ-induced injury at physiological concentrations in human plasma after oral CoQ supplementation and thus could be a promising molecule to protect endothelial cells against amyloid angiopathy.
Collapse
|
59
|
Garrido-Maraver J, Cordero MD, Oropesa-Ávila M, Fernández Vega A, de la Mata M, Delgado Pavón A, de Miguel M, Pérez Calero C, Villanueva Paz M, Cotán D, Sánchez-Alcázar JA. Coenzyme q10 therapy. Mol Syndromol 2014; 5:187-97. [PMID: 25126052 DOI: 10.1159/000360101] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
For a number of years, coenzyme Q10 (CoQ10) was known for its key role in mitochondrial bioenergetics; later studies demonstrated its presence in other subcellular fractions and in blood plasma, and extensively investigated its antioxidant role. These 2 functions constitute the basis for supporting the clinical use of CoQ10. Also, at the inner mitochondrial membrane level, CoQ10 is recognized as an obligatory cofactor for the function of uncoupling proteins and a modulator of the mitochondrial transition pore. Furthermore, recent data indicate that CoQ10 affects the expression of genes involved in human cell signaling, metabolism and transport, and some of the effects of CoQ10 supplementation may be due to this property. CoQ10 deficiencies are due to autosomal recessive mutations, mitochondrial diseases, aging-related oxidative stress and carcinogenesis processes, and also statin treatment. Many neurodegenerative disorders, diabetes, cancer, and muscular and cardiovascular diseases have been associated with low CoQ10 levels as well as different ataxias and encephalomyopathies. CoQ10 treatment does not cause serious adverse effects in humans and new formulations have been developed that increase CoQ10 absorption and tissue distribution. Oral administration of CoQ10 is a frequent antioxidant strategy in many diseases that may provide a significant symptomatic benefit.
Collapse
Affiliation(s)
- Juan Garrido-Maraver
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Mario D Cordero
- Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla, Spain ; Departamento de Citología e Histología Normal y Patológica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Manuel Oropesa-Ávila
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Alejandro Fernández Vega
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Mario de la Mata
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Ana Delgado Pavón
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Manuel de Miguel
- Departamento de Citología e Histología Normal y Patológica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Carmen Pérez Calero
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Marina Villanueva Paz
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - David Cotán
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - José A Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla, Spain ; Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| |
Collapse
|
60
|
Idebenone loaded solid lipid nanoparticles: Calorimetric studies on surfactant and drug loading effects. Int J Pharm 2014; 471:69-74. [DOI: 10.1016/j.ijpharm.2014.05.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/12/2014] [Accepted: 05/13/2014] [Indexed: 12/20/2022]
|
61
|
Rochette L, Zeller M, Cottin Y, Vergely C. Diabetes, oxidative stress and therapeutic strategies. Biochim Biophys Acta Gen Subj 2014; 1840:2709-29. [PMID: 24905298 DOI: 10.1016/j.bbagen.2014.05.017] [Citation(s) in RCA: 341] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/12/2014] [Accepted: 05/27/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Diabetes has emerged as a major threat to health worldwide. SCOPE OF REVIEW The exact mechanisms underlying the disease are unknown; however, there is growing evidence that excess generation of reactive oxygen species (ROS), largely due to hyperglycemia, causes oxidative stress in a variety of tissues. Oxidative stress results from either an increase in free radical production, or a decrease in endogenous antioxidant defenses, or both. ROS and reactive nitrogen species (RNS) are products of cellular metabolism and are well recognized for their dual role as both deleterious and beneficial species. In type 2 diabetic patients, oxidative stress is closely associated with chronic inflammation. Multiple signaling pathways contribute to the adverse effects of glucotoxicity on cellular functions. There are many endogenous factors (antioxidants, vitamins, antioxidant enzymes, metal ion chelators) that can serve as endogenous modulators of the production and action of ROS. Clinical trials that investigated the effect of antioxidant vitamins on the progression of diabetic complications gave negative or inconclusive results. This lack of efficacy might also result from the fact that they were administered at a time when irreversible alterations in the redox status are already under way. Another strategy to modulate oxidative stress is to exploit the pleiotropic properties of drugs directed primarily at other targets and thus acting as indirect antioxidants. MAJOR CONCLUSIONS It appears important to develop new compounds that target key vascular ROS producing enzymes and mimic endogenous antioxidants. GENERAL SIGNIFICANCE This strategy might prove clinically relevant in preventing the development and/or retarding the progression of diabetes associated with vascular diseases.
Collapse
Affiliation(s)
- Luc Rochette
- Laboratoire de Physiopathologie et Pharmacologie Cardio-Métaboliques, INSERM UMR866, Université de Bourgogne, Facultés de Médecine et Pharmacie, 7 Boulevard Jeanne d'Arc, 21079 Dijon, France.
| | - Marianne Zeller
- Laboratoire de Physiopathologie et Pharmacologie Cardio-Métaboliques, INSERM UMR866, Université de Bourgogne, Facultés de Médecine et Pharmacie, 7 Boulevard Jeanne d'Arc, 21079 Dijon, France
| | - Yves Cottin
- Laboratoire de Physiopathologie et Pharmacologie Cardio-Métaboliques, INSERM UMR866, Université de Bourgogne, Facultés de Médecine et Pharmacie, 7 Boulevard Jeanne d'Arc, 21079 Dijon, France
| | - Catherine Vergely
- Laboratoire de Physiopathologie et Pharmacologie Cardio-Métaboliques, INSERM UMR866, Université de Bourgogne, Facultés de Médecine et Pharmacie, 7 Boulevard Jeanne d'Arc, 21079 Dijon, France
| |
Collapse
|
62
|
Bennetts P, Shen Q, Thimmesch AR, Diaz FJ, Clancy RL, Pierce JD. Effects of ubiquinol with fluid resuscitation following haemorrhagic shock on rat lungs, diaphragm, heart and kidneys. Exp Physiol 2014; 99:1007-15. [PMID: 24860150 DOI: 10.1113/expphysiol.2014.078600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Haemorrhagic shock (HS) and fluid resuscitation can lead to increased reactive oxygen species (ROS), contributing to ischaemia-reperfusion injury and organ damage. Ubiquinol is a potent antioxidant that decreases ROS. This study examined the effects of ubiquinol administered with fluid resuscitation following controlled HS. Adult male Sprague-Dawley rats were randomly assigned to treatment [ubiquinol, 1 mg (100 g body weight)(-1)] or control groups. Rats were subjected to 60 min of HS by removing 40% of the total blood volume to a mean arterial pressure ∼45-55 mmHg. The animals were resuscitated with blood and lactated Ringer solution, with or without ubiquinol, and monitored for 120 min. At the end of the experiments, the rats were killed and the lungs, diaphragm, heart and kidneys harvested. Leucocytes were analysed for mitochondrial superoxide at baseline, end of shock and 120 min following fluid resuscitation using MitoSOX Red. Diaphragms were examined for hydrogen peroxide using dihydrofluorescein diacetate and confocal microscopy. The apoptosis in lungs, diaphragm, heart and kidneys was measured using fluorescence microscopy with acridine orange and ethidium bromide. Leucocyte mitochondrial superoxide levels were significantly lower in rats that received ubiquinol than in the control animals. Production of hydrogen peroxide and apoptosis were significantly reduced in the organs of rats treated with ubiquinol. These findings suggest that ubiquinol, administered with fluid resuscitation after HS, attenuates ROS production and apoptosis. Thus, ubiquinol is a potent antioxidant that may be used as a potential treatment to reduce organ injury following haemorrhagic events.
Collapse
Affiliation(s)
- Paul Bennetts
- Department of Nurse Anesthesia Education, University of Kansas, Kansas City, KS, 66160, USA
| | - Qiuhua Shen
- School of Nursing, University of Kansas, Kansas City, KS, 66160, USA
| | | | - Francisco J Diaz
- Department of Biostatistics, University of Kansas, Kansas City, KS, 66160, USA
| | - Richard L Clancy
- Department of Molecular and Integrative Physiology, University of Kansas, Kansas City, KS, 66160, USA
| | - Janet D Pierce
- School of Nursing, University of Kansas, Kansas City, KS, 66160, USA
| |
Collapse
|
63
|
Sikorska M, Lanthier P, Miller H, Beyers M, Sodja C, Zurakowski B, Gangaraju S, Pandey S, Sandhu JK. Nanomicellar formulation of coenzyme Q10 (Ubisol-Q10) effectively blocks ongoing neurodegeneration in the mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model: potential use as an adjuvant treatment in Parkinson's disease. Neurobiol Aging 2014; 35:2329-46. [PMID: 24775711 DOI: 10.1016/j.neurobiolaging.2014.03.032] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 03/25/2014] [Accepted: 03/28/2014] [Indexed: 12/13/2022]
Abstract
Although the support for the use of antioxidants, such as coenzyme Q(10) (CoQ(10)), to treat Parkinson's disease (PD) comes from the extensive scientific evidence, the results of conducted thus far clinical trials are inconclusive. It is assumed that the efficacy of CoQ(10) is hindered by insolubility, poor bioavailability, and lack of brain penetration. We have developed a nanomicellar formulation of CoQ(10) (Ubisol-Q(10)) with improved properties, including the brain penetration, and tested its effectiveness in mouse MPTP (1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine) model with the objectives to assess its potential use as an adjuvant therapy for PD. We used a subchronic MPTP model (5-daily MPTP injections), characterized by 50% loss of dopamine neurons over a period of 28 days. Ubisol-Q(10) was delivered in drinking water. Prophylactic application of Ubisol-Q(10), started 2 weeks before the MPTP exposure, significantly offset the neurotoxicity (approximately 50% neurons died in MPTP group vs. 17% in MPTP+ Ubisol-Q(10) group by day 28). Therapeutic application of Ubisol-Q(10), given after the last MPTP injection, was equally effective. At the time of intervention on day 5 nearly 25% of dopamine neurons were already lost, but the treatment saved the remaining 25% of cells, which otherwise would have died by day 28. This was confirmed by cell counts, analyses of striatal dopamine levels, and improved animals' motor skill on a beam walk test. Similar levels of neuroprotection were obtained with 3 different Ubisol-Q(10) concentrations tested, that is, 30 mg, 6 mg, or 3 mg CoQ(10)/kg body weight/day, showing clearly that high doses of CoQ(10) were not required to deliver these effects. Furthermore, the Ubisol-Q(10) treatments brought about a robust astrocytic activation in the brain parenchyma, indicating that astroglia played an active role in this neuroprotection. Thus, we have shown for the first time that Ubisol-Q(10) was capable of halting the neurodegeneration already in progress; however, to maintain it a continuous supplementation of Ubisol-Q(10) was required. The pathologic processes initiated by MPTP resumed if supplementation was withdrawn. We suggest that in addition to brain delivery of powerful antioxidants, Ubisol-Q(10) might have also supported subcellular oxidoreductase systems allowing them to maintain a favorable cellular redox status, especially in astroglia, facilitating their role in neuroprotection. Based on this data further clinical testing of this formulation in PD patients might be justifiable.
Collapse
Affiliation(s)
- Marianna Sikorska
- Department of Translational Bioscience, Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa, Ontario, Canada
| | - Patricia Lanthier
- Department of Translational Bioscience, Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa, Ontario, Canada
| | - Harvey Miller
- Department of Translational Bioscience, Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa, Ontario, Canada
| | - Melissa Beyers
- Department of Translational Bioscience, Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa, Ontario, Canada
| | - Caroline Sodja
- Department of Translational Bioscience, Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa, Ontario, Canada
| | - Bogdan Zurakowski
- Department of Translational Bioscience, Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa, Ontario, Canada
| | - Sandhya Gangaraju
- Department of Translational Bioscience, Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa, Ontario, Canada
| | - Siyaram Pandey
- Department of Chemistry and Biochemistry, University of Windsor Essex Hall, Windsor, Ontario, Canada
| | - Jagdeep K Sandhu
- Department of Translational Bioscience, Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa, Ontario, Canada.
| |
Collapse
|
64
|
Amin MM, Asaad GF, Abdel Salam RM, El-Abhar HS, Arbid MS. Novel CoQ10 antidiabetic mechanisms underlie its positive effect: modulation of insulin and adiponectine receptors, Tyrosine kinase, PI3K, glucose transporters, sRAGE and visfatin in insulin resistant/diabetic rats. PLoS One 2014; 9:e89169. [PMID: 24586567 PMCID: PMC3930675 DOI: 10.1371/journal.pone.0089169] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 01/16/2014] [Indexed: 11/19/2022] Open
Abstract
As a nutritional supplement, coenzyme Q10 (CoQ10) was tested previously in several models of diabetes and/or insulin resistance (IR); however, its exact mechanisms have not been profoundly explicated. Hence, the objective of this work is to verify some of the possible mechanisms that underlie its therapeutic efficacy. Moreover, the study aimed to assess the potential modulatory effect of CoQ10 on the antidiabetic action of glimebiride. An insulin resistance/type 2 diabetic model was adopted, in which rats were fed high fat/high fructose diet (HFFD) for 6 weeks followed by a single sub-diabetogenic dose of streptozotocin (35 mg/kg, i.p.). At the end of the 7th week animals were treated with CoQ10 (20 mg/kg, p.o) and/or glimebiride (0.5 mg/kg, p.o) for 2 weeks. CoQ10 alone opposed the HFFD effect and increased the hepatic/muscular content/activity of tyrosine kinase (TK), phosphatidylinositol kinase (PI3K), and adiponectin receptors. Conversely, it decreased the content/activity of insulin receptor isoforms, myeloperoxidase and glucose transporters (GLUT4; 2). Besides, it lowered significantly the serum levels of glucose, insulin, fructosamine and HOMA index, improved the serum lipid panel and elevated the levels of glutathione, sRAGE and adiponectin. On the other hand, CoQ10 lowered the serum levels of malondialdehyde, visfatin, ALT and AST. Surprisingly, CoQ10 effect surpassed that of glimepiride in almost all the assessed parameters, except for glucose, fructosamine, TK, PI3K, and GLUT4. Combining CoQ10 with glimepiride enhanced the effect of the latter on the aforementioned parameters. Conclusion: These results provided a new insight into the possible mechanisms by which CoQ10 improves insulin sensitivity and adjusts type 2 diabetic disorder. These mechanisms involve modulation of insulin and adiponectin receptors, as well as TK, PI3K, glucose transporters, besides improving lipid profile, redox system, sRAGE, and adipocytokines. The study also points to the potential positive effect of CoQ10 as an adds- on to conventional antidiabetic therapies.
Collapse
MESH Headings
- Animals
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Experimental/metabolism
- Drug Interactions
- Glucose Transport Proteins, Facilitative/metabolism
- Hypoglycemic Agents/pharmacology
- Hypoglycemic Agents/therapeutic use
- Insulin Resistance
- Liver/drug effects
- Liver/metabolism
- Male
- Membrane Proteins/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Nicotinamide Phosphoribosyltransferase/metabolism
- Peroxidase/metabolism
- Phosphatidylinositol 3-Kinases/metabolism
- Protein-Tyrosine Kinases/metabolism
- Rats
- Receptor for Advanced Glycation End Products
- Receptor, Insulin/metabolism
- Receptors, Adiponectin/metabolism
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/metabolism
- Transferases/metabolism
- Ubiquinone/analogs & derivatives
- Ubiquinone/pharmacology
- Ubiquinone/therapeutic use
Collapse
Affiliation(s)
- Mohamed M. Amin
- Department of Pharmacology, Medical Division, National Research Center, Cairo, Egypt
| | - Gihan F. Asaad
- Department of Pharmacology, Medical Division, National Research Center, Cairo, Egypt
| | - Rania M. Abdel Salam
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hanan S. El-Abhar
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- * E-mail:
| | - Mahmoud S. Arbid
- Department of Pharmacology, Medical Division, National Research Center, Cairo, Egypt
| |
Collapse
|
65
|
Biswas S, Torchilin VP. Nanopreparations for organelle-specific delivery in cancer. Adv Drug Deliv Rev 2014; 66:26-41. [PMID: 24270008 DOI: 10.1016/j.addr.2013.11.004] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 10/30/2013] [Accepted: 11/13/2013] [Indexed: 01/07/2023]
Abstract
To efficiently deliver therapeutics into cancer cells, a number of strategies have been recently investigated. The toxicity associated with the administration of chemotherapeutic drugs due to their random interactions throughout the body necessitates the development of drug-encapsulating nanopreparations that significantly mask, or reduce, the toxic side effects of the drugs. In addition to reduced side effects associated with drug encapsulation, nanocarriers preferentially accumulate in tumors as a result of its abnormally leaky vasculature via the Enhanced Permeability and Retention (EPR) effect. However, simple passive nanocarrier delivery to the tumor site is unlikely to be enough to elicit a maximum therapeutic response as the drug-loaded carriers must reach the intracellular target sites. Therefore, efficient translocation of the nanocarrier through the cell membrane is necessary for cytosolic delivery of the cargo. However, crossing the cell membrane barrier and reaching cytosol might still not be enough for achieving maximum therapeutic benefit, which necessitates the delivery of drugs directly to intracellular targets, such as bringing pro-apoptotic drugs to mitochondria, nucleic acid therapeutics to nuclei, and lysosomal enzymes to defective lysosomes. In this review, we discuss the strategies developed for tumor targeting, cytosolic delivery via cell membrane translocation, and finally organelle-specific targeting, which may be applied for developing highly efficacious, truly multifunctional, cancer-targeted nanopreparations.
Collapse
Affiliation(s)
- Swati Biswas
- Center for Pharmaceutical Biotechnology and Nanomedicine, 360 Huntington Avenue, 140 The Fenway, Northeastern University, Boston, 02115, USA; Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Andhra Pradesh 500078, India
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, 360 Huntington Avenue, 140 The Fenway, Northeastern University, Boston, 02115, USA.
| |
Collapse
|
66
|
Del Pozo-Cruz J, Rodríguez-Bies E, Ballesteros-Simarro M, Navas-Enamorado I, Tung BT, Navas P, López-Lluch G. Physical activity affects plasma coenzyme Q10 levels differently in young and old humans. Biogerontology 2014; 15:199-211. [PMID: 24384733 DOI: 10.1007/s10522-013-9491-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/29/2013] [Indexed: 01/11/2023]
Abstract
Coenzyme Q (Q) is a key lipidic compound for cell bioenergetics and membrane antioxidant activities. It has been shown that also has a central role in the prevention of oxidation of plasma lipoproteins. Q has been associated with the prevention of cholesterol oxidation and several aging-related diseases. However, to date no clear data on the levels of plasma Q during aging are available. We have measured the levels of plasmatic Q10 and cholesterol in young and old individuals showing different degrees of physical activity. Our results indicate that plasma Q10 levels in old people are higher that the levels found in young people. Our analysis also indicates that there is no a relationship between the degree of physical activity and Q10 levels when the general population is studied. However, very interestingly, we have found a different tendency between Q10 levels and physical activity depending on the age of individuals. In young people, higher activity correlates with lower Q10 levels in plasma whereas in older adults this ratio changes and higher activity is related to higher plasma Q10 levels and higher Q10/Chol ratios. Higher Q10 levels in plasma are related to lower lipoperoxidation and oxidized LDL levels in elderly people. Our results highlight the importance of life habits in the analysis of Q10 in plasma and indicate that the practice of physical activity at old age can improve antioxidant capacity in plasma and help to prevent cardiovascular diseases.
Collapse
Affiliation(s)
- Jesús Del Pozo-Cruz
- Dpto. Fisiología, Anatomía y Biología Celular, Centro Andaluz de Biología del Desarrollo, CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide-CSIC-JA, Carretera de Utrera km. 1, 41013, Seville, Spain
| | | | | | | | | | | | | |
Collapse
|
67
|
Menezo Y, Evenson D, Cohen M, Dale B. Effect of antioxidants on sperm genetic damage. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 791:173-89. [PMID: 23955679 DOI: 10.1007/978-1-4614-7783-9_11] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
According to worldwide statistics, between one in four and one in five couples have fertility problems. These problems are equally distributed between males and females. Modern lifestyle has obviously increased these problems: endocrine-disrupting chemicals, such as plastic polymer catalysts, alkylphenols, phthalates and so on, and cosmetic additives seem to be strongly involved in this fertility problem. Many of these compounds increase oxidative stress (OS) and thus impair spermatogenesis. The oocyte has only a finite capacity, decreasing with maternal age, to repair sperm-borne decays. To decrease this DNA repair burden, reducing the sperm DNA damages linked to OS is tempting. Antioxidant vitamins are often given haphazardly; they are not very efficient and potentially detrimental. A detailed analysis of the sperm nucleus is mandatory (DNA fragmentation or lack of nuclear condensation) prior to any treatment. Here we discuss new concepts in OS and the corresponding therapeutic approaches.
Collapse
Affiliation(s)
- Yves Menezo
- London Fertility Associates, 104 Harley Street, London, UK,
| | | | | | | |
Collapse
|
68
|
Peerapanyasut W, Thamprasert K, Wongmekiat O. Ubiquinol supplementation protects against renal ischemia and reperfusion injury in rats. Free Radic Res 2013; 48:180-9. [PMID: 24151980 DOI: 10.3109/10715762.2013.858148] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Generation of toxic oxygen metabolites followed by oxidant- and inflammatory-mediated tissue injury plays a crucial role in the pathogenesis of ischemia and reperfusion (IR). Ubiquinol, the reduced form of coenzyme Q10, is recognized for its potent antioxidant and anti-inflammatory properties in biological membranes. The present study was established to examine the possible protective effect of ubiquinol against renal IR injury. Groups of male Wistar rats were assigned into sham, ubiquinol, IR (45-min bilateral renal ischemia followed by 24-h reperfusion), and ubiquinol+ IR (ubiquinol 300 mg/kg given orally for 7 consecutive days before IR induction). Renal morphology, function, oxidative stress, and inflammatory markers were evaluated at the end of reperfusion. IR caused renal dysfunction as shown by significant increases in blood urea nitrogen, plasma creatinine, and a decrease in creatinine clearance. Light and electron microscopic examinations exhibited severe tubular damages and abnormal mitochondrial structure. IR-induced renal injuries were associated with significant increases in malondialdehyde, nitric oxide, tumor necrosis factor-α, but decreases in antioxidant thiols and superoxide dismutase. Pretreatment with ubiquinol obviously attenuated all the changes caused by IR, whereas it had no considerable effect in the sham-operated rats. These findings indicate that supplementation of ubiquinol prior to IR incidence confers functional and morphological protection to the ischemic kidney by maintaining the redox balance and regulating the generation of inflammatory mediator. The outcomes suggest that ubiquinol may be a potential candidate to counteract organ dysfunction in conditions involving IR injury.
Collapse
Affiliation(s)
- W Peerapanyasut
- Department of Physiology, Renal Physiology Unit, Faculty of Medicine, Chiang Mai University , Chiang Mai , Thailand
| | | | | |
Collapse
|
69
|
Barakat A, Shegokar R, Dittgen M, Müller RH. Coenzyme Q10 oral bioavailability: effect of formulation type. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2013. [DOI: 10.1007/s40005-013-0101-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
70
|
Avti PK, Maysinger D, Kakkar A. Alkyne-azide "click" chemistry in designing nanocarriers for applications in biology. Molecules 2013; 18:9531-49. [PMID: 23966076 PMCID: PMC6270461 DOI: 10.3390/molecules18089531] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/03/2013] [Accepted: 08/05/2013] [Indexed: 12/11/2022] Open
Abstract
The alkyne-azide cycloaddition, popularly known as the "click" reaction, has been extensively exploited in molecule/macromolecule build-up, and has offered tremendous potential in the design of nanomaterials for applications in a diverse range of disciplines, including biology. Some advantageous characteristics of this coupling include high efficiency, and adaptability to the environment in which the desired covalent linking of the alkyne and azide terminated moieties needs to be carried out. The efficient delivery of active pharmaceutical agents to specific organelles, employing nanocarriers developed through the use of "click" chemistry, constitutes a continuing topical area of research. In this review, we highlight important contributions click chemistry has made in the design of macromolecule-based nanomaterials for therapeutic intervention in mitochondria and lipid droplets.
Collapse
Affiliation(s)
- Pramod K. Avti
- Montreal Heart Institute, Research Center, 5000 Bélanger Est, Montréal, QC H1T 1C8, Canada
- Institute of Biomedical Engineering, École Polytechnique de Montréal, Montreal, QC H3C 3A7, Canada
- Department of Chemistry, McGill University, 801 Sherbrooke St. W. Montréal, QC H3A 0B8 Canada
| | - Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, QC H3G 1Y6, Canada
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke St. W. Montréal, QC H3A 0B8 Canada
| |
Collapse
|
71
|
Madeo J, Zubair A, Marianne F. A review on the role of quinones in renal disorders. SPRINGERPLUS 2013; 2:139. [PMID: 23577302 PMCID: PMC3618882 DOI: 10.1186/2193-1801-2-139] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 03/10/2013] [Indexed: 12/12/2022]
Abstract
Quinones are electron and proton carriers that play a primary role in the aerobic metabolism of virtually every cell in nature. Most physiological quinones are benzoquinones. They undergo highly regulated redox reactions in the mitochondria, Golgi apparatus, plasma membrane and endoplasmic reticulum. Important consequences of these electron transfer reactions are the production of and protection against reactive oxygen species (ROS). Quinones have been extensively studied for both their cytotoxic as well as cellular protective properties and they have been particularly useful in rational drug design. The role of quinones in medicine is explored in this literature review with a particular focus on renal diseases. Due to their high basal metabolism and detoxification role, the kidneys are particularly sensitive to oxidative stress. Regardless of the underlying etiology, ROS plays an important role in both acute kidney injury (AKI) and chronic kidney diseases (CKD). Depending on the oxidative state of the kidney, quinones can be nephrotoxoic or nephro-protective. Many factors play a role in the interaction between quinones and the kidney and the consequences of this are just beginning to be explored.
Collapse
Affiliation(s)
- Jennifer Madeo
- Department of Medicine, Nassau University Medical Center, 2201 Hempstead Turnpike, East Meadow, NY 11554 USA
| | | | | |
Collapse
|
72
|
Tsuneki H, Tokai E, Suzuki T, Seki T, Okubo K, Wada T, Okamoto T, Koya S, Kimura I, Sasaoka T. Protective effects of coenzyme Q10 against angiotensin II-induced oxidative stress in human umbilical vein endothelial cells. Eur J Pharmacol 2013; 701:218-27. [PMID: 23348709 DOI: 10.1016/j.ejphar.2012.12.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 12/04/2012] [Accepted: 12/18/2012] [Indexed: 01/04/2023]
Abstract
Angiotensin II is the major effector in the renin-angiotensin system, and angiotensin II-induced oxidative stress and endothelial dysfunction are profoundly implicated in the pathogenesis of hypertension and cardiovascular disease. In the present study, we investigated the effect of an antioxidant reagent, coenzyme Q10, on angiotensin II-induced oxidative stress in human umbilical vein endothelial cells (HUVEC) to assess its potential usefulness for antioxidant therapy. Treatment of HUVEC with coenzyme Q10 (1-10μM) increased its intracellular levels in a concentration-dependent manner. Coenzyme Q10 (10μM) prevented the actions of angiotensin II (100nM): overproduction of reactive oxygen species, increases in expression of p22(phox) and Nox2 subunits of NADPH oxidase, and inhibition of insulin-induced nitric oxide production. In addition, coenzyme Q10 prevented angiotensin II-induced upregulation of intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) in HUVEC, and inhibited their adhesion to U937 monocytic cells. Moreover, treatment of HUVEC with coenzyme Q10 effectively ameliorated angiotensin II-induced increases in expression of Nox2 subunit of NADPH oxidase, ICAM-1, and VCAM-1. These results provide the first in vitro evidence that coenzyme Q10 is an efficient antioxidant reagent to improve angiotensin II-induced oxidative stress and endothelial dysfunction, possibly relevant to the causes of cardiovascular disease.
Collapse
Affiliation(s)
- Hiroshi Tsuneki
- Department of Clinical Pharmacology, University of Toyama, Toyama, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Souto EB, Severino P, Basso R, Santana MHA. Encapsulation of antioxidants in gastrointestinal-resistant nanoparticulate carriers. Methods Mol Biol 2013; 1028:37-46. [PMID: 23740112 DOI: 10.1007/978-1-62703-475-3_3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Reactive oxygen species (ROS) are known to cause several human pathologies. For this reason, antioxidants have gained utmost importance because of their potential as prophylactic and therapeutic agents in many diseases. Examples of their application include their use in diabetic patients, as aging drugs, in cancer diseases, Parkinson's, Alzheimer's, autoimmune disorders, and also in inflammation. Antioxidants have limited absorption profiles, therefore low bioavailability and low concentrations at the target site. Efforts have been done towards loading antioxidant molecules in advanced nanoparticulate carriers, e.g., liposomes, polymeric nanoparticles, solid lipid nanoparticles, self-emulsifying drug delivery system. Examples of -successful achievements include the encapsulation of drugs and other active ingredients, e.g., coenzyme Q10, vitamin E and vitamin A, resveratrol and polyphenols, curcumin, lycopene, silymarin, and superoxide dismutase. This review focuses on the comprehensive analysis of using nanoparticulate carriers for loading these molecules for oral administration.
Collapse
Affiliation(s)
- Eliana B Souto
- Faculty of Health Sciences, Centre of Genetics and Biotechnology, Institute of Biotechnology and Bioengineering, Fernando Pessoa University, Porto, Portugal
| | | | | | | |
Collapse
|
74
|
Coenzyme Q10 prevents peripheral neuropathy and attenuates neuron loss in the db-/db- mouse, a type 2 diabetes model. Proc Natl Acad Sci U S A 2012; 110:690-5. [PMID: 23267110 DOI: 10.1073/pnas.1220794110] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Diabetic peripheral neuropathy (DPN) is the most common complication in both type 1 and type 2 diabetes. Here we studied some phenotypic features of a well-established animal model of type 2 diabetes, the leptin receptor-deficient db(-)/db(-) mouse, and also the effect of long-term (6 mo) treatment with coenzyme Q10 (CoQ10), an endogenous antioxidant. Diabetic mice at 8 mo of age exhibited loss of sensation, hypoalgesia (an increase in mechanical threshold), and decreases in mechanical hyperalgesia, cold allodynia, and sciatic nerve conduction velocity. All these changes were virtually completely absent after the 6-mo, daily CoQ10 treatment in db(-)/db(-) mice when started at 7 wk of age. There was a 33% neuronal loss in the lumbar 5 dorsal root ganglia (DRGs) of the db(-)/db(-) mouse versus controls at 8 mo of age, which was significantly attenuated by CoQ10. There was no difference in neuron number in 5/6-wk-old mice between diabetic and control mice. We observed a strong down-regulation of phospholipase C (PLC) β3 in the DRGs of diabetic mice at 8 mo of age, a key molecule in pain signaling, and this effect was also blocked by the 6-mo CoQ10 treatment. Many of the phenotypic, neurochemical regulations encountered in lumbar DRGs in standard models of peripheral nerve injury were not observed in diabetic mice at 8 mo of age. These results suggest that reactive oxygen species and reduced PLCβ3 expression may contribute to the sensory deficits in the late-stage diabetic db(-)/db(-) mouse, and that early long-term administration of the antioxidant CoQ10 may represent a promising therapeutic strategy for type 2 diabetes neuropathy.
Collapse
|
75
|
Effect of coenzyme-q10 on Doxorubicin-induced nephrotoxicity in rats. Adv Pharmacol Sci 2012; 2012:981461. [PMID: 23346106 PMCID: PMC3533995 DOI: 10.1155/2012/981461] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Revised: 11/09/2012] [Accepted: 11/12/2012] [Indexed: 11/18/2022] Open
Abstract
Nephrotoxicity is one of the limiting factors for using doxorubicin (Dox) as an anticancer chemotherapeutic. Here, we investigated possible protective effect of coenzyme-Q10 (CoQ10) on Dox-induced nephrotoxicity and the mechanisms involved. Two doses (10 and 100 mg/kg) of CoQ10 were administered orally to rats for 8 days, in the presence or absence of nephrotoxicity induced by a single intraperitoneal injection of Dox (15 mg/kg) at day 4 of the experiment. Our results showed that the low dose of CoQ10 succeeded in reversing Dox-induced nephrotoxicity to control levels (e.g., levels of blood urea nitrogen and serum creatinine, concentrations of renal reduced glutathione (GSH) and malondialdehyde, catalase activity and caspase 3 expression, and renal histopathology). Alternatively, the high dose of CoQ10 showed no superior nephroprotection over the low dose, as there were no significant improvements in renal histopathology, catalase activity, or caspase 3 expression compared to the Dox-treated group. Interestingly, the high dose of CoQ10 alone significantly decreased renal GSH level as well as catalase activity and caused a mild induction of caspase 3 expression compared to control, probably due to a prooxidant effect at this dose of CoQ10. We conclude that CoQ10 protects from Dox-induced nephrotoxicity with a precaution to dosage adjustment.
Collapse
|
76
|
|
77
|
Mezawa M, Takemoto M, Onishi S, Ishibashi R, Ishikawa T, Yamaga M, Fujimoto M, Okabe E, He P, Kobayashi K, Yokote K. The reduced form of coenzyme Q10 improves glycemic control in patients with type 2 diabetes: an open label pilot study. Biofactors 2012; 38:416-21. [PMID: 22887051 DOI: 10.1002/biof.1038] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 07/16/2012] [Indexed: 01/15/2023]
Abstract
Coenzyme Q10 (CoQ10) provides the energy for vital cellular functions and is known to act as an antioxidant. We conducted an open label study to examine the clinical effects of supplementation of the reduced form of CoQ10, ubiquinol, in addition to conventional glucose-lowering agents in patients with type 2 diabetes. Nine subjects (3 males and 6 females) with type 2 diabetes and receiving conventional medication were recruited. The subjects were assigned to receive an oral dose of 200 mg ubiquinol daily for 12 weeks. The effect of ubiquinol on blood pressure, lipid profile, glycemic control, oxidative stress, and inflammation were examined before and after ubiquinol supplementation. In addition, five healthy volunteers were also assigned to receive an oral dose of 200 mg ubiquinol daily for 4 weeks to examine the effects of ubiquinol on insulin secretion. In patients with diabetes, there were no differences with respect to blood pressure, lipid profile, oxidative stress marker, and inflammatory markers. However, there were significant improvements in glycosylated hemoglobin (53.0 ± 4.3 to 50.5 ± 3.7 mmol/mol, P = 0.01) (7.1 ± 0.4 to 6.8 ± 0.4%, P = 0.03). In healthy volunteers, the insulinogenic index (0.65 ± 0.29 to 1.23 ± 0.56, P = 0.02) and the ratio of proinsulin to insulin were significantly improved (3.4 ± 1.8 to 2.1 ± 0.6, P = 0.03). The results of our study are consistent with the suggestion that the supplementation of ubiquinol in subjects with type 2 diabetes, in addition to conventional antihyperglycemic medications, improves glycemic control by improving insulin secretion without any adverse effects
Collapse
Affiliation(s)
- Morito Mezawa
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-Ku, Chiba-Shi, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Switonski PM, Szlachcic WJ, Gabka A, Krzyzosiak WJ, Figiel M. Mouse models of polyglutamine diseases in therapeutic approaches: review and data table. Part II. Mol Neurobiol 2012; 46:430-66. [PMID: 22944909 PMCID: PMC3461214 DOI: 10.1007/s12035-012-8316-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 07/29/2012] [Indexed: 12/13/2022]
Abstract
Mouse models of human diseases are created both to understand the pathogenesis of the disorders and to find successful therapies for them. This work is the second part in a series of reviews of mouse models of polyglutamine (polyQ) hereditary disorders and focuses on in vivo experimental therapeutic approaches. Like part I of the polyQ mouse model review, this work is supplemented with a table that contains data from experimental studies of therapeutic approaches in polyQ mouse models. The aim of this review was to characterize the benefits and outcomes of various therapeutic strategies in mouse models. We examine whether the therapeutic strategies are specific to a single disease or are applicable to more than one polyQ disorder in mouse models. In addition, we discuss the suitability of mouse models in therapeutic approaches. Although the majority of therapeutic studies were performed in mouse models of Huntington disease, similar strategies were also used in other disease models.
Collapse
Affiliation(s)
- Pawel M Switonski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | | | | | | | | |
Collapse
|
79
|
Bruin JE, Woynillowicz AK, Hettinga BP, Tarnopolsky MA, Morrison KM, Gerstein HC, Holloway AC. Maternal antioxidants prevent β-cell apoptosis and promote formation of dual hormone-expressing endocrine cells in male offspring following fetal and neonatal nicotine exposure. J Diabetes 2012; 4:297-306. [PMID: 22385833 PMCID: PMC3620564 DOI: 10.1111/j.1753-0407.2012.00195.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Fetal and neonatal nicotine exposure causes β-cell oxidative stress and apoptosis in neonates, leading to adult-onset dysglycemia. The aim of the present study was to determine whether an antioxidant intervention could prevent nicotine-induced β-cell loss. METHODS Nulliparous female Wistar rats received daily subcutaneous injections of either saline or nicotine bitartrate (1.0 mg/kg per day) for 2 weeks prior to mating until weaning. Nicotine-exposed dams received either normal chow or diet containing antioxidants (1000 IU/kg vitamin E, 0.25% w/w coenzyme Q10, and 0.1% w/w α-lipoic acid) during mating, pregnancy, and lactation; saline-exposed dams received normal chow. Pancreatic tissue was collected from male offspring at 3 weeks of age to measure β-cell fraction, apoptosis, proliferation, and the presence of cells coexpressing insulin and glucagon. RESULTS The birth weight of offspring born to nicotine-exposed dams was significantly reduced in those receiving dietary antioxidants compared with those fed normal chow. Most interestingly, the antioxidant intervention to nicotine-exposed dams prevented the β-cell loss and apoptosis observed in nicotine-exposed male offspring whose mothers did not receive antioxidants. Male pups born to nicotine-treated mothers receiving antioxidants also had a tendency for increased β-cell proliferation and a significant increase in islets containing insulin/glucagon bihormonal cells compared with the other two treatment groups. CONCLUSION The present study demonstrates that exposure to maternal antioxidants protects developing β-cells from the damaging effects of nicotine, thus preserving β-cell mass.
Collapse
Affiliation(s)
- Jennifer E Bruin
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
80
|
Zhi L, Ustyugova IV, Chen X, Zhang Q, Wu MX. Enhanced Th17 differentiation and aggravated arthritis in IEX-1-deficient mice by mitochondrial reactive oxygen species-mediated signaling. THE JOURNAL OF IMMUNOLOGY 2012; 189:1639-47. [PMID: 22798682 DOI: 10.4049/jimmunol.1200528] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD4(+) Th1 and Th17 cells both can cause autoimmune diseases, either alone or collaboratively, if left unchecked. However, what determines the dominant Th effector phenotype in a specific autoimmune disease remains poorly understood. Our present investigation shows that null mutation of IEX-1 promotes differentiation of Th17 cells but compromises the survival of Th1 cells. The differential effect gave rise to a greater number of Th17 cells, a higher level of IL-17 production, and more severe arthritis in IEX-1 knockout mice than in wild-type mice after immunizations with collagen. IEX-1 deficiency-facilitated Th17 cell differentiation was mediated by the increased formation of reactive oxygen species (ROS) at mitochondria following T cell activation, as suggested by marked inhibition of Th17 induction with ROS scavenger N-acetylcysteine or mitoquinone, a specific inhibitor for mitochondrial ROS production. Mitochondrial ROS augmented the expression of B cell-activating transcription factor, which may contribute to increased IL-17 production in the absence of IEX-1, in light of its importance in IL-17 transcription. The results demonstrate that mitochondrial ROS contribute significantly to the dominant Th effector phenotype in autoimmunity in addition to the cytokine milieu.
Collapse
Affiliation(s)
- Liang Zhi
- Department of Dermatology, Wellman Center for Photomedicine, Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
81
|
Abstract
SummaryOne of the most important concerns in assisted reproduction (ART), and in particular ICSI, is the quality of sperm DNA. Oxidative stress is one of the major causes of damage to DNA and attempting to reduce generation of DNA damage related to reactive oxygen species (ROS) through consumption of antioxidants is often tempting. However, current antioxidant treatments, given irrespectively of clinically quantified deficiencies, are poorly efficient, potentially detrimental and over-exposure is risky. Here we discuss new treatments in relation to present day concepts on oxidative stress. This discussion includes stimulation of endogenous anti-ROS defense i.e. glutathione synthesis and recycling of homocysteine, the epicentre of multiple ROS-linked pathologies.
Collapse
|
82
|
Mitochondrial dysfunction in antiphospholipid syndrome: implications in the pathogenesis of the disease and effects of coenzyme Q(10) treatment. Blood 2012; 119:5859-70. [PMID: 22529290 DOI: 10.1182/blood-2011-12-400986] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The exact mechanisms underlying the role of oxidative stress in the pathogenesis and the prothrombotic or proinflammatory status of antiphospholipid syndrome (APS) remain unknown. Here, we investigate the role of oxidative stress and mitochondrial dysfunction in the proatherothrombotic status of APS patients induced by IgG-antiphospholipid antibodies and the beneficial effects of supplementing cells with coenzyme Q(10) (CoQ(10)). A significant increase in relevant prothrombotic and inflammatory parameters in 43 APS patients was found compared with 38 healthy donors. Increased peroxide production, nuclear abundance of Nrf2, antioxidant enzymatic activity, decreased intracellular glutathione, and altered mitochondrial membrane potential were found in monocytes and neutrophils from APS patients. Accelerated atherosclerosis in APS patients was found associated with their inflammatory or oxidative status. CoQ(10) preincubation of healthy monocytes before IgG-antiphospholipid antibody treatment decreased oxidative stress, the percentage of cells with altered mitochondrial membrane potential, and the induced expression of tissue factor, VEGF, and Flt1. In addition, CoQ(10) significantly improved the ultrastructural preservation of mitochondria and prevented IgG-APS-induced fission mediated by Drp-1 and Fis-1 proteins. In conclusion, the oxidative perturbation in APS patient leukocytes, which is directly related to an inflammatory and pro-atherothrombotic status, relies on alterations in mitochondrial dynamics and metabolism that may be prevented, reverted, or both by treatment with CoQ(10).
Collapse
|
83
|
Bergamini C, Moruzzi N, Sblendido A, Lenaz G, Fato R. A water soluble CoQ10 formulation improves intracellular distribution and promotes mitochondrial respiration in cultured cells. PLoS One 2012; 7:e33712. [PMID: 22432044 PMCID: PMC3303850 DOI: 10.1371/journal.pone.0033712] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 02/15/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mitochondria are both the cellular powerhouse and the major source of reactive oxygen species. Coenzyme Q(10) plays a key role in mitochondrial energy production and is recognized as a powerful antioxidant. For these reasons it can be argued that higher mitochondrial ubiquinone levels may enhance the energy state and protect from oxidative stress. Despite the large number of clinical studies on the effect of CoQ(10) supplementation, there are very few experimental data about the mitochondrial ubiquinone content and the cellular bioenergetic state after supplementation. Controversial clinical and in vitro results are mainly due to the high hydrophobicity of this compound, which reduces its bioavailability. PRINCIPAL FINDINGS We measured the cellular and mitochondrial ubiquinone content in two cell lines (T67 and H9c2) after supplementation with a hydrophilic CoQ(10) formulation (Qter®) and native CoQ(10). Our results show that the water soluble formulation is more efficient in increasing ubiquinone levels. We have evaluated the bioenergetics effect of ubiquinone treatment, demonstrating that intracellular CoQ(10) content after Qter supplementation positively correlates with an improved mitochondrial functionality (increased oxygen consumption rate, transmembrane potential, ATP synthesis) and resistance to oxidative stress. CONCLUSIONS The improved cellular energy metabolism related to increased CoQ(10) content represents a strong rationale for the clinical use of coenzyme Q(10) and highlights the biological effects of Qter®, that make it the eligible CoQ(10) formulation for the ubiquinone supplementation.
Collapse
Affiliation(s)
- Christian Bergamini
- Department of Biochemistry “G. Moruzzi”, University of Bologna, Bologna, Italy
| | - Noah Moruzzi
- Department of Biochemistry “G. Moruzzi”, University of Bologna, Bologna, Italy
| | | | - Giorgio Lenaz
- Department of Biochemistry “G. Moruzzi”, University of Bologna, Bologna, Italy
| | - Romana Fato
- Department of Biochemistry “G. Moruzzi”, University of Bologna, Bologna, Italy
- * E-mail:
| |
Collapse
|
84
|
Mancuso M, Orsucci D, Filosto M, Simoncini C, Siciliano G. Drugs and mitochondrial diseases: 40 queries and answers. Expert Opin Pharmacother 2012; 13:527-43. [DOI: 10.1517/14656566.2012.657177] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
85
|
Sharma A, Soliman GM, Al-Hajaj N, Sharma R, Maysinger D, Kakkar A. Design and evaluation of multifunctional nanocarriers for selective delivery of coenzyme Q10 to mitochondria. Biomacromolecules 2012; 13:239-52. [PMID: 22148549 PMCID: PMC4911219 DOI: 10.1021/bm201538j] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Impairments of mitochondrial functions have been associated with failure of cellular functions in different tissues, leading to various pathologies. We report here a mitochondria-targeted nanodelivery system for coenzyme Q10 (CoQ10) that can reach mitochondria and deliver CoQ10 in adequate quantities. Multifunctional nanocarriers based on ABC miktoarm polymers (A = poly(ethylene glycol (PEG), B = polycaprolactone (PCL), and C = triphenylphosphonium bromide (TPPBr)) were synthesized using a combination of click chemistry with ring-opening polymerization, self-assembled into nanosized micelles, and were employed for CoQ10 loading. Drug loading capacity (60 wt %), micelle size (25-60 nm), and stability were determined using a variety of techniques. The micelles had a small critical association concentration and were colloidally stable in solution for more than 3 months. The extraordinarily high CoQ10 loading capacity in the micelles is attributed to good compatibility between CoQ10 and PCL, as indicated by the low Flory-Huggins interaction parameter. Confocal microscopy studies of the fluorescently labeled polymer analog together with the mitochondria-specific vital dye label indicated that the carrier did indeed reach mitochondria. The high CoQ10 loading efficiency allowed testing of micelles within a broad concentration range and provided evidence for CoQ10 effectiveness in two different experimental paradigms: oxidative stress and inflammation. Combined results from chemical, analytical, and biological experiments suggest that the new miktoarm-based carrier provides a suitable means of CoQ10 delivery to mitochondria without loss of drug effectiveness. The versatility of the click chemistry used to prepare this new mitochondria-targeting nanocarrier offers a widely applicable, simple, and easily reproducible procedure to deliver drugs to mitochondria or other intracellular organelles.
Collapse
Affiliation(s)
- Anjali Sharma
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 2K6, Canada
| | - Ghareb M. Soliman
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 2K6, Canada
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec, H3G 1Y6, Canada
| | - Noura Al-Hajaj
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec, H3G 1Y6, Canada
| | - Rishi Sharma
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 2K6, Canada
| | - Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec, H3G 1Y6, Canada
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 2K6, Canada
| |
Collapse
|
86
|
Tang PH, Miles MV. Measurement of oxidized and reduced coenzyme Q in biological fluids, cells, and tissues: an HPLC-EC method. Methods Mol Biol 2012; 837:149-168. [PMID: 22215546 DOI: 10.1007/978-1-61779-504-6_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Direct measure of coenzyme Q (CoQ) in biological specimens may provide important advantages. Precise and selective high-performance liquid chromatography (HPLC) methods with electrochemical (EC) detection have been developed for the measurement of reduced (ubiquinol) and oxidized (ubiquinone) CoQ in biological fluids, cells, and tissues. EC detection is preferred for measurement of CoQ because of its high sensitivity. Reduced and oxidized CoQ are first extracted from biological specimens using 1-propanol. After centrifugation, the 1-propanol supernatant is directly injected into HPLC and monitored at a dual-electrode. The EC reactions occur at the electrode surface. The first electrode transforms ubiquinone into ubiquinol, and the second electrode measures the current produced by the oxidation of the hydroquinone group of ubiquinol. The methods described provide rapid, precise, and simple procedures for determination of reduced and oxidized CoQ in biological fluids, cells, and tissues. The methods have been successfully adapted to meet regulatory requirements for clinical laboratories, and have been proven reliable for analysis of clinical and research samples for clinical trials and animal studies involving large numbers of specimens.
Collapse
Affiliation(s)
- Peter H Tang
- Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | |
Collapse
|
87
|
Effect of Coenzyme Q10 on Proteomic Profile of Rat Plasma under Conditions of Metabolic Stress. Bull Exp Biol Med 2011; 151:680-2. [DOI: 10.1007/s10517-011-1414-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
88
|
Genova ML, Lenaz G. New developments on the functions of coenzyme Q in mitochondria. Biofactors 2011; 37:330-54. [PMID: 21989973 DOI: 10.1002/biof.168] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 04/06/2011] [Indexed: 12/12/2022]
Abstract
The notion of a mobile pool of coenzyme Q (CoQ) in the lipid bilayer has changed with the discovery of respiratory supramolecular units, in particular the supercomplex comprising complexes I and III; in this model, the electron transfer is thought to be mediated by tunneling or microdiffusion, with a clear kinetic advantage on the transfer based on random collisions. The CoQ pool, however, has a fundamental function in establishing a dissociation equilibrium with bound quinone, besides being required for electron transfer from other dehydrogenases to complex III. The mechanism of CoQ reduction by complex I is analyzed regarding recent developments on the crystallographic structure of the enzyme, also in relation to the capacity of complex I to generate superoxide. Although the mechanism of the Q-cycle is well established for complex III, involvement of CoQ in proton translocation by complex I is still debated. Some additional roles of CoQ are also examined, such as the antioxidant effect of its reduced form and the capacity to bind the permeability transition pore and the mitochondrial uncoupling proteins. Finally, a working hypothesis is advanced on the establishment of a vicious circle of oxidative stress and supercomplex disorganization in pathological states, as in neurodegeneration and cancer.
Collapse
|
89
|
Parrado C, López-Lluch G, Rodríguez-Bies E, Santa-Cruz S, Navas P, Ramsey JJ, Villalba JM. Calorie restriction modifies ubiquinone and COQ transcript levels in mouse tissues. Free Radic Biol Med 2011; 50:1728-36. [PMID: 21447381 PMCID: PMC3096745 DOI: 10.1016/j.freeradbiomed.2011.03.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 03/04/2011] [Accepted: 03/22/2011] [Indexed: 12/22/2022]
Abstract
We studied ubiquinone (Q), Q homologue ratio, and steady-state levels of mCOQ transcripts in tissues from mice fed ad libitum or under calorie restriction. Maximum ubiquinone levels on a protein basis were found in kidney and heart, followed by liver, brain, and skeletal muscle. Liver and skeletal muscle showed the highest Q(9)/Q(10) ratios with significant interindividual variability. Heart, kidney, and particularly brain exhibited lower Q(9)/Q(10) ratios and interindividual variability. In skeletal muscle and heart, the most abundant mCOQ transcript was mCOQ7, followed by mCOQ8, mCOQ2, mPDSS2, mPDSS1, and mCOQ3. In nonmuscular tissues (liver, kidney, and brain) the most abundant mCOQ transcript was mCOQ2, followed by mCOQ7, mCOQ8, mPDSS1, mPDSS2, and mCOQ3. Calorie restriction increased both ubiquinone homologues and mPDSS2 mRNA in skeletal muscle, but mCOQ7 was decreased. In contrast, Q(9) and most mCOQ transcripts were decreased in heart. Calorie restriction also modified the Q(9)/Q(10) ratio, which was increased in kidney and decreased in heart without alterations in mPDSS1 or mPDSS2 transcripts. We demonstrate for the first time that unique patterns of mCOQ transcripts exist in muscular and nonmuscular tissues and that Q and COQ genes are targets of calorie restriction in a tissue-specific way.
Collapse
Affiliation(s)
- Cristina Parrado
- Departamento de Biología Celular, Fisiología e Inmunología, Facultad de Ciencias, Universidad de Córdoba, E-14014, Córdoba, Spain
- Centro Andaluz de Biología del Desarrollo,Universidad Pablo de Olavide-CSIC, CIBERER, Instituto de Salud Carlos III, E-41013, Sevilla, Spain
| | - Guillermo López-Lluch
- Centro Andaluz de Biología del Desarrollo,Universidad Pablo de Olavide-CSIC, CIBERER, Instituto de Salud Carlos III, E-41013, Sevilla, Spain
| | - Elisabet Rodríguez-Bies
- Centro Andaluz de Biología del Desarrollo,Universidad Pablo de Olavide-CSIC, CIBERER, Instituto de Salud Carlos III, E-41013, Sevilla, Spain
| | - Sara Santa-Cruz
- Centro Andaluz de Biología del Desarrollo,Universidad Pablo de Olavide-CSIC, CIBERER, Instituto de Salud Carlos III, E-41013, Sevilla, Spain
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo,Universidad Pablo de Olavide-CSIC, CIBERER, Instituto de Salud Carlos III, E-41013, Sevilla, Spain
| | - Jon J. Ramsey
- VM Molecular Biosciences, University of California, Davis, CA 95616 USA
| | - José M. Villalba
- Departamento de Biología Celular, Fisiología e Inmunología, Facultad de Ciencias, Universidad de Córdoba, E-14014, Córdoba, Spain
- Correspondence to: Departamento de Biología Celular, Fisiología e Inmunología Facultad de Ciencias, Universidad de Córdoba; Campus Rabanales, Edificio Severo Ochoa, 3a planta; 14014 Córdoba, Spain; Phone: +34-957-218595; Fax: +34-957-218634;
| |
Collapse
|
90
|
Haefeli RH, Erb M, Gemperli AC, Robay D, Courdier Fruh I, Anklin C, Dallmann R, Gueven N. NQO1-dependent redox cycling of idebenone: effects on cellular redox potential and energy levels. PLoS One 2011; 6:e17963. [PMID: 21483849 PMCID: PMC3069029 DOI: 10.1371/journal.pone.0017963] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 02/21/2011] [Indexed: 11/25/2022] Open
Abstract
Short-chain quinones are described as potent antioxidants and in the case of idebenone have already been under clinical investigation for the treatment of neuromuscular disorders. Due to their analogy to coenzyme Q10 (CoQ10), a long-chain quinone, they are widely regarded as a substitute for CoQ10. However, apart from their antioxidant function, this provides no clear rationale for their use in disorders with normal CoQ10 levels. Using recombinant NAD(P)H:quinone oxidoreductase (NQO) enzymes, we observed that contrary to CoQ10 short-chain quinones such as idebenone are good substrates for both NQO1 and NQO2. Furthermore, the reduction of short-chain quinones by NQOs enabled an antimycin A-sensitive transfer of electrons from cytosolic NAD(P)H to the mitochondrial respiratory chain in both human hepatoma cells (HepG2) and freshly isolated mouse hepatocytes. Consistent with the substrate selectivity of NQOs, both idebenone and CoQ1, but not CoQ10, partially restored cellular ATP levels under conditions of impaired complex I function. The observed cytosolic-mitochondrial shuttling of idebenone and CoQ1 was also associated with reduced lactate production by cybrid cells from mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS) patients. Thus, the observed activities separate the effectiveness of short-chain quinones from the related long-chain CoQ10 and provide the rationale for the use of short-chain quinones such as idebenone for the treatment of mitochondrial disorders.
Collapse
Affiliation(s)
- Roman H. Haefeli
- Santhera Pharmaceuticals, Liestal, Switzerland
- Biozentrum, University of Basel, Basel, Switzerland
| | - Michael Erb
- Santhera Pharmaceuticals, Liestal, Switzerland
| | | | | | | | | | - Robert Dallmann
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Nuri Gueven
- Santhera Pharmaceuticals, Liestal, Switzerland
| |
Collapse
|
91
|
Abstract
Statins lower cholesterol by inhibiting 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, the rate-limiting enzyme in the biosynthesis of cholesterol. However, severe adverse events, including myalgias and rhabdomyolysis, have been reported with statin treatment. Different mechanisms have been proposed to explain statin-induced myopathy, including reduction of mevalonate pathway products, induction of apoptosis, mitochondrial dysfunction, and genetic predisposition. A decrease in coenzyme Q(10) (CoQ), a product of the mevalonate pathway, could contribute to statin induced myopathy. This article reviews the clinical and biochemical features of statin-induced myopathy, the inter-relationship between statins and the concentration of CoQ in plasma and tissues, and whether there is a role for supplementation with CoQ to attenuate statin-induced myopathy.
Collapse
Affiliation(s)
- Emilie Mas
- School of Medicine and Pharmacology, Royal Perth Hospital Unit, University of Western Australia, Medical Research Foundation Building Level 4, Rear 50, Murray Street, Perth, WA, 6847, Australia.
| | | |
Collapse
|
92
|
Bulua AC, Simon A, Maddipati R, Pelletier M, Park H, Kim KY, Sack MN, Kastner DL, Siegel RM. Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). ACTA ACUST UNITED AC 2011; 208:519-33. [PMID: 21282379 PMCID: PMC3058571 DOI: 10.1084/jem.20102049] [Citation(s) in RCA: 666] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
ROS generated by mitochondrial respiration are needed for optimal proinflammatory cytokine production in healthy cells, and are elevated in cells from patients with an autoinflammatory disorder. Reactive oxygen species (ROS) have an established role in inflammation and host defense, as they kill intracellular bacteria and have been shown to activate the NLRP3 inflammasome. Here, we find that ROS generated by mitochondrial respiration are important for normal lipopolysaccharide (LPS)-driven production of several proinflammatory cytokines and for the enhanced responsiveness to LPS seen in cells from patients with tumor necrosis factor receptor-associated periodic syndrome (TRAPS), an autoinflammatory disorder caused by missense mutations in the type 1 TNF receptor (TNFR1). We find elevated baseline ROS in both mouse embryonic fibroblasts and human immune cells harboring TRAPS-associated TNFR1 mutations. A variety of antioxidants dampen LPS-induced MAPK phosphorylation and inflammatory cytokine production. However, gp91phox and p22phox reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits are dispensable for inflammatory cytokine production, indicating that NADPH oxidases are not the source of proinflammatory ROS. TNFR1 mutant cells exhibit altered mitochondrial function with enhanced oxidative capacity and mitochondrial ROS generation, and pharmacological blockade of mitochondrial ROS efficiently reduces inflammatory cytokine production after LPS stimulation in cells from TRAPS patients and healthy controls. These findings suggest that mitochondrial ROS may be a novel therapeutic target for TRAPS and other inflammatory diseases.
Collapse
Affiliation(s)
- Ariel C Bulua
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutesof Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Becker C, Bray-French K, Drewe J. Pharmacokinetic evaluation of idebenone. Expert Opin Drug Metab Toxicol 2011; 6:1437-44. [PMID: 20955109 DOI: 10.1517/17425255.2010.530656] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Idebenone is a synthetic short chain benzoquinone that acts as an electron carrier in the mitochondrial electron transport chain, thereby, facilitating the production of ATP. In addition, idebenone is an antioxidant and can inhibit lipid peroxidation and may protect cell membranes and mitochondria from oxidative damage. High dose idebenone (Catena(®)) is approved in Canada for the symptomatic treatment of Friedreich's ataxia and is currently under clinical investigation for use in a number of mitochondrial and neuromuscular diseases. AREAS COVERED IN THIS REVIEW This review summarizes the pharmacology, pharmacokinetic and clinical efficacy/safety data of idebenone and its metabolites and provides an update of the clinical trials completed and in progress. WHAT THE READER WILL GAIN Following oral administration, idebenone is rapidly metabolized via oxidative shortening by a number CYP isoenzymes (CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4) to yield QS10, QS8, QS6 and QS4. Idebenone and these metabolites concomitantly undergo conjugation via glucuronidation and sulfatation to yield conjugated moieties represented as idebenone-C, QS10-C, QS8-C, QS6-C and QS4-C. Previous reports in the literature were only able to quantify plasma concentrations of idebenone measured together with its conjugates. More recently, highly sensitive and specific liquid chromatography method with tandem mass spectrometric methods have been developed, allowing the quantification of the parent molecule idebenone and its main metabolite QS10, separately. TAKE HOME MESSAGE After absorption, idebenone is rapidly metabolized by first pass metabolism and shows dose-proportional pharmacokinetics in healthy subjects in daily doses up to 2250 mg. The recent development of advanced analytical techniques allows the detection of idebenone and unconjugated metabolites in plasma and consequently opens the possibility for evaluation of pharmacokinetic/pharmacodynamic relationships which will be helpful to further understand the metabolism and therapeutic potential of idebenone. In clinical studies, idebenone was safe and well tolerated at doses up to 2250 mg/day.
Collapse
Affiliation(s)
- Claudia Becker
- Basel Pharmacoepidemiology Unit, University Hospital Basel, Switzerland
| | | | | |
Collapse
|