51
|
Chow T, Wutami I, Lucarelli E, Choong PF, Duchi S, Di Bella C. Creating In Vitro Three-Dimensional Tumor Models: A Guide for the Biofabrication of a Primary Osteosarcoma Model. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:514-529. [PMID: 33138724 DOI: 10.1089/ten.teb.2020.0254] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Osteosarcoma (OS) is a highly aggressive primary bone tumor. The mainstay for its treatment is multiagent chemotherapy and surgical resection, with a 50-70% 5-year survival rate. Despite the huge effort made by clinicians and researchers in the past 30 years, limited progress has been made to improve patient outcomes. As novel therapeutic approaches for OS become available, such as monoclonal antibodies, small molecules, and immunotherapies, the need for OS preclinical model development becomes equally pressing. Three-dimensional (3D) OS models represent an alternative system to study this tumor: In contrast to two-dimensional monolayers, 3D matrices can recapitulate key elements of the tumor microenvironment (TME), such as the cellular interaction with the bone mineralized matrix. The advancement of tissue engineering and biofabrication techniques enables the incorporation of specific TME aspects into 3D models, to investigate the contribution of individual components to tumor progression and enhance understanding of basic OS biology. The use of biomaterials that mimic the extracellular matrix could also facilitate the testing of drugs targeting the TME itself, allowing a larger range of therapeutics to be tested, while averting the ethical implications and high cost associated with in vivo preclinical models. This review aims at serving as a practical guide by delineating the OS TME ("what it is like") and, in turn, propose various biofabrication strategies to create a 3D model ("how to recreate it"), to improve the in vitro representation of the OS tumor and ultimately generate more accurate drug response profiles.
Collapse
Affiliation(s)
- Thomas Chow
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Australia.,BioFab3D-ACMD, St Vincent's Hospital Melbourne, Fitzroy, Australia
| | - Ilycia Wutami
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Australia.,BioFab3D-ACMD, St Vincent's Hospital Melbourne, Fitzroy, Australia
| | - Enrico Lucarelli
- Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Peter F Choong
- BioFab3D-ACMD, St Vincent's Hospital Melbourne, Fitzroy, Australia.,Department of Surgery, The University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, Australia.,Department of Orthopaedics, St Vincent's Hospital Melbourne, Fitzroy, Australia
| | - Serena Duchi
- BioFab3D-ACMD, St Vincent's Hospital Melbourne, Fitzroy, Australia.,Department of Surgery, The University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, Australia
| | - Claudia Di Bella
- BioFab3D-ACMD, St Vincent's Hospital Melbourne, Fitzroy, Australia.,Department of Surgery, The University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, Australia.,Department of Orthopaedics, St Vincent's Hospital Melbourne, Fitzroy, Australia
| |
Collapse
|
52
|
Fu J, Li XB, Wang LX, Lv XH, Lu Z, Wang F, Xia Q, Yu L, Li CM. One-Step Dip-Coating-Fabricated Core-Shell Silk Fibroin Rice Paper Fibrous Scaffolds for 3D Tumor Spheroid Formation. ACS APPLIED BIO MATERIALS 2020; 3:7462-7471. [PMID: 35019488 DOI: 10.1021/acsabm.0c00679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bioscaffolds are important substrates for supporting three-dimensional (3D) cell cultures. Silk fibroin (SF) is an attractive biomaterial in tissue engineering because of its good biocompatibility and mechanical properties. Electrospinning is one of the most often used approaches to fabricate SF fibrous scaffolds; yet, this technique still faces many challenges, such as low yield, residual organic solvents, limited extensibility of fibers, and a lack of spatial control over pore size. To circumvent these limitations, a core-shell SF on rice paper (SF@RP) fibrous scaffold was fabricated using a mild one-step dip-coating method. The cellulose fiber matrix of RP is the physical basis of the 3D scaffold, whereas the SF coating on the cellulose fiber controls the adhesion/spreading of the cells. The results indicated that by tuning the secondary structure of SF on the surface of a SF@RP scaffold, the cell behavior on SF@RP could be tuned. Tumor spheroids can be formed on SF@RP scaffolds with a dominant random secondary structure, in contrast to cells adhering and spreading on SF@RP scaffolds with a higher ratio of β-sheet secondary structures. Direct culturing of breast cancer MDA-MB-231 and MCF-7, lung cancer A549, prostate cancer DU145, and liver cancer HepG2 cells could spontaneously lead to corresponding tumor spheroids on SF@RP. In addition, the physiological characteristics of HepG2 tumor spheroids were investigated, and the results showed that compared with HepG2 monolayer cells, CYP3A4, CYP1A1, and albumin gene expression levels in HepG2 cell spheres formed on SF@RP scaffolds were significantly higher. Moreover, these spheroids showed higher drug resistance. In summary, these SF@RP scaffolds prepared by the dip-coating method are biocompatible substrates for cell culture, especially for tumor cell spheroid formation.
Collapse
Affiliation(s)
- Jingjing Fu
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, 1 Tiansheng Road, Chongqing 400715, P. R. China
| | - Xiao Bai Li
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, 1 Tiansheng Road, Chongqing 400715, P. R. China
| | - Lin Xiang Wang
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, 1 Tiansheng Road, Chongqing 400715, P. R. China
| | - Xiao Hui Lv
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, 1 Tiansheng Road, Chongqing 400715, P. R. China
| | - Zhisong Lu
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, 1 Tiansheng Road, Chongqing 400715, P. R. China
| | - Feng Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 1 Tiansheng Road, Chongqing 400715, P. R. China.,Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, 1 Tiansheng Road, Chongqing 400715, P. R. China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 1 Tiansheng Road, Chongqing 400715, P. R. China.,Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, 1 Tiansheng Road, Chongqing 400715, P. R. China
| | - Ling Yu
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, 1 Tiansheng Road, Chongqing 400715, P. R. China
| | - Chang Ming Li
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, 1 Tiansheng Road, Chongqing 400715, P. R. China.,Institute of Advanced Cross-field Science, Qingdao University, Qingdao 266071, P. R. China
| |
Collapse
|
53
|
Toia F, Di Stefano AB, Muscolino E, Sabatino MA, Giacomazza D, Moschella F, Cordova A, Dispenza C. In-situ gelling xyloglucan formulations as 3D artificial niche for adipose stem cell spheroids. Int J Biol Macromol 2020; 165:2886-2899. [PMID: 33470202 DOI: 10.1016/j.ijbiomac.2020.10.158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022]
Abstract
Three-dimensional spheroidal cell aggregates of adipose stem cells (SASCs) are a distinct upstream population of stem cells present in adipose tissue, with enhanced regeneration properties in vivo. The preservation of the 3D structure of the cells, from extraction to administration, can be a promising strategy to ensure optimal conditions for cell viability and maintenance of stemness potential. With this aim, an artificial niche was created by incorporating the spheroids into an injectable, in-situ gelling solution of partially degalactosylated xyloglucan (dXG) and an ad hoc formulated culture medium for the preservation of stem cell spheroid features. The evolution of the mechanical properties and the morphological structure of this artificial niche was investigated by small amplitude rheological analysis and scanning electron microscopy, respectively. Comparatively, systems produced with the same polymer and the typical culture medium (DMEM) used for adipose stem cell (ASC) growth in adherent cell culture conditions were also characterised. Cell viability of both SASCs and ASCs incorporated inside the hydrogel or seeded on top of the hydrogel were investigated as well as the preservation of SASC stemness conditions when embedded in the hydrogel.
Collapse
Affiliation(s)
- F Toia
- Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università degli Studi di Palermo, via del Vespro 129, 90127 Palermo, Italy; BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università degli Studi di Palermo, via del Vespro 129, 90127 Palermo, Italy
| | - A B Di Stefano
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università degli Studi di Palermo, via del Vespro 129, 90127 Palermo, Italy
| | - E Muscolino
- Dipartimento di Ingegneria, Università degli Studi di Palermo, Viale delle Scienze 6, 90128 Palermo, Italy
| | - M A Sabatino
- Dipartimento di Ingegneria, Università degli Studi di Palermo, Viale delle Scienze 6, 90128 Palermo, Italy
| | - D Giacomazza
- Istituto di BioFisica, Consiglio Nazionale delle Ricerche, Via U. La Malfa 153, 90146 Palermo, Italy
| | - F Moschella
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università degli Studi di Palermo, via del Vespro 129, 90127 Palermo, Italy
| | - A Cordova
- Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università degli Studi di Palermo, via del Vespro 129, 90127 Palermo, Italy; BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università degli Studi di Palermo, via del Vespro 129, 90127 Palermo, Italy
| | - C Dispenza
- Dipartimento di Ingegneria, Università degli Studi di Palermo, Viale delle Scienze 6, 90128 Palermo, Italy; Istituto di BioFisica, Consiglio Nazionale delle Ricerche, Via U. La Malfa 153, 90146 Palermo, Italy.
| |
Collapse
|
54
|
Özdemir E, Emet A, Hashemihesar R, Yürüker ACS, Kılıç E, Uçkan Çetinkaya D, Turhan E. Articular Cartilage Regeneration Utilizing Decellularized Human Placental Scaffold, Mesenchymal Stem Cells and Platelet Rich Plasma. Tissue Eng Regen Med 2020; 17:901-908. [PMID: 33030679 DOI: 10.1007/s13770-020-00298-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/10/2020] [Accepted: 08/26/2020] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND Articular cartilage repair has been a challenge in orthopedic practice due to the limited self-regenerative capability. Optimal treatment method for cartilage defects has not been defined. We investigated the effect of decellularized human placental (DHP) scaffold, mesenchymal stem cells (MSC) and platelet-rich plasma (PRP) on hyaline cartilage regeneration in a rat model. METHODS An osteochondral defect was created in trochlea region of the femur in all groups, bilaterally. No additional procedure was performed in control group (n = 14). Only the DHP scaffold was applied to the P group (n = 14). The DHP scaffold and 1 × 106 MSCs were applied to the PS group (n = 14). The DHP scaffold and PRP were applied to the PP group (n = 14). The DHP scaffold, 1 × 106 MSCs and PRP were applied to the PSP group (n = 14). Outcome measures at 12 weeks included Pineda histology score and qualitative histology. RESULTS The mean Pineda scores of P, PS, PP, and PSP groups were significantly better than the control group (p = 0.031, p = 0.002, p < 0.001, p < 0001, respectively). There was no statistically difference in mean Pineda scores of P, PS, PP, and PSP groups (p > 0.05). CONCLUSION In conclusion, the DHP scaffold appears to be a promising scaffold on hyaline cartilage regeneration. The augmentation of DHP scaffold with MSCs and PRP combinations did not enhance its efficacy on articular cartilage regeneration.
Collapse
Affiliation(s)
- Erdi Özdemir
- Department of Orthopedics and Traumatology, Faculty of Medicine, Hacettepe University, 06230, Ankara, Turkey.
| | - Abdülsamet Emet
- Department of Orthopedics and Traumatology, Faculty of Medicine, Hacettepe University, 06230, Ankara, Turkey
| | - Ramin Hashemihesar
- Department of Histology and Embryology, Faculty of Medicine, Istanbul Aydin University, 34295, Istanbul, Turkey
| | | | - Emine Kılıç
- Center for Stem Cell Research and Development, Hacettepe University, 06100, Ankara, Turkey
| | - Duygu Uçkan Çetinkaya
- Center for Stem Cell Research and Development, Hacettepe University, 06100, Ankara, Turkey
| | - Egemen Turhan
- Department of Orthopedics and Traumatology, Faculty of Medicine, Hacettepe University, 06230, Ankara, Turkey
| |
Collapse
|
55
|
Mahdavi SS, Abdekhodaie MJ, Mashayekhan S, Baradaran-Rafii A, Djalilian AR. Bioengineering Approaches for Corneal Regenerative Medicine. Tissue Eng Regen Med 2020; 17:567-593. [PMID: 32696417 PMCID: PMC7373337 DOI: 10.1007/s13770-020-00262-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Since the cornea is responsible for transmitting and focusing light into the eye, injury or pathology affecting any layer of the cornea can cause a detrimental effect on visual acuity. Aging is also a reason for corneal degeneration. Depending on the level of the injury, conservative therapies and donor tissue transplantation are the most common treatments for corneal diseases. Not only is there a lack of donor tissue and risk of infection/rejection, but the inherent ability of corneal cells and layers to regenerate has led to research in regenerative approaches and treatments. METHODS In this review, we first discussed the anatomy of the cornea and the required properties for reconstructing layers of the cornea. Regenerative approaches are divided into two main categories; using direct cell/growth factor delivery or using scaffold-based cell delivery. It is expected delivered cells migrate and integrate into the host tissue and restore its structure and function to restore vision. Growth factor delivery also has shown promising results for corneal surface regeneration. Scaffold-based approaches are categorized based on the type of scaffold, since it has a significant impact on the efficiency of regeneration, into the hydrogel and non-hydrogel based scaffolds. Various types of cells, biomaterials, and techniques are well covered. RESULTS The most important characteristics to be considered for biomaterials in corneal regeneration are suitable mechanical properties, biocompatibility, biodegradability, and transparency. Moreover, a curved shape structure and spatial arrangement of the fibrils have been shown to mimic the corneal extracellular matrix for cells and enhance cell differentiation. CONCLUSION Tissue engineering and regenerative medicine approaches showed to have promising outcomes for corneal regeneration. However, besides proper mechanical and optical properties, other factors such as appropriate sterilization method, storage, shelf life and etc. should be taken into account in order to develop an engineered cornea for clinical trials.
Collapse
Affiliation(s)
- S Sharareh Mahdavi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, 1393 Azadi Ave., Tehran, 11365-11155, Iran
| | - Mohammad J Abdekhodaie
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, 1393 Azadi Ave., Tehran, 11365-11155, Iran.
| | - Shohreh Mashayekhan
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, 1393 Azadi Ave., Tehran, 11365-11155, Iran
| | - Alireza Baradaran-Rafii
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, SBUMS, Arabi Ave, Daneshjoo Blvd, Velenjak, Tehran, 19839-63113, Iran
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1200 W Harrison St, Chicago, IL, 60607, USA
| |
Collapse
|
56
|
He Z, Liu G, Ma X, Yang D, Li Q, Li N. Comparison of small-diameter decellularized scaffolds from the aorta and carotid artery of pigs. Int J Artif Organs 2020; 44:350-360. [PMID: 32988264 DOI: 10.1177/0391398820959350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
AIM Tissue-specific extracellular matrix promotes tissue regeneration and repair. We aimed to identify the optimal decellularized matrices for tissue-engineered vascular graft (TEVG). METHODS Decellularized aorta of fetal pigs (DAFP, n = 6, group A), decellularized aorta of adult pigs (DAAP, n = 6, group B), and decellularized carotid artery of adult pigs (DCAP, n = 6, group C) were prepared. Scaffolds were compared using histology and ultrastructure. Endothelial cell (EC) and myofibroblast (MFB) infiltration assessments were performed in vitro. Cell infiltration was measured in vivo. Biomechanical properties were also determined. RESULTS Almost original cells were removed by the acellularization procedure, while the construction of the matrix basically remained. In vitro, monolayer ECs and multi-layer MFBs were formed onto the internal surface of the specimens after 3 weeks. In vivo, cell infiltration in group A significantly increased at the 6th and 8th week when compared with groups B and C (p < 0.01). The infiltrated cells were mainly MFBs and a few CD4+ T-lymphocytes/macrophages in the specimens. Groups A and B showed greater axial compliance than group C (p < 0.01). CONCLUSION DAFP was the most suitable for use as a small-caliber vascular graft.
Collapse
Affiliation(s)
- Zhijuan He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Guofeng Liu
- Department of Plastic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xu Ma
- Department of Plastic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Daping Yang
- Department of Plastic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Qingchun Li
- Department of Plastic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ning Li
- Department of Plastic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
57
|
Frazier T, Alarcon A, Wu X, Mohiuddin OA, Motherwell JM, Carlsson AH, Christy RJ, Edwards JV, Mackin RT, Prevost N, Gloster E, Zhang Q, Wang G, Hayes DJ, Gimble JM. Clinical Translational Potential in Skin Wound Regeneration for Adipose-Derived, Blood-Derived, and Cellulose Materials: Cells, Exosomes, and Hydrogels. Biomolecules 2020; 10:E1373. [PMID: 32992554 PMCID: PMC7650547 DOI: 10.3390/biom10101373] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
Acute and chronic skin wounds due to burns, pressure injuries, and trauma represent a substantial challenge to healthcare delivery with particular impacts on geriatric, paraplegic, and quadriplegic demographics worldwide. Nevertheless, the current standard of care relies extensively on preventive measures to mitigate pressure injury, surgical debridement, skin flap procedures, and negative pressure wound vacuum measures. This article highlights the potential of adipose-, blood-, and cellulose-derived products (cells, decellularized matrices and scaffolds, and exosome and secretome factors) as a means to address this unmet medical need. The current status of this research area is evaluated and discussed in the context of promising avenues for future discovery.
Collapse
Affiliation(s)
- Trivia Frazier
- Obatala Sciences Inc., New Orleans, LA 70148, USA; (A.A.); (X.W.)
| | - Andrea Alarcon
- Obatala Sciences Inc., New Orleans, LA 70148, USA; (A.A.); (X.W.)
| | - Xiying Wu
- Obatala Sciences Inc., New Orleans, LA 70148, USA; (A.A.); (X.W.)
- LaCell LLC, New Orleans, LA 70148, USA
| | - Omair A. Mohiuddin
- Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Science, University of Karachi, Karachi 75270, Pakistan;
| | | | - Anders H. Carlsson
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, TX 78234, USA; (A.H.C.); (R.J.C.)
| | - Robert J. Christy
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, TX 78234, USA; (A.H.C.); (R.J.C.)
| | - Judson V. Edwards
- Southern Regional Research Center-USDA-ARS, New Orleans, LA 70124, USA; (J.V.E.); (R.T.M.); (N.P.)
| | - Robert T. Mackin
- Southern Regional Research Center-USDA-ARS, New Orleans, LA 70124, USA; (J.V.E.); (R.T.M.); (N.P.)
| | - Nicolette Prevost
- Southern Regional Research Center-USDA-ARS, New Orleans, LA 70124, USA; (J.V.E.); (R.T.M.); (N.P.)
| | - Elena Gloster
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA; (E.G.); (Q.Z.); (G.W.)
| | - Qiang Zhang
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA; (E.G.); (Q.Z.); (G.W.)
| | - Guangdi Wang
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA; (E.G.); (Q.Z.); (G.W.)
| | - Daniel J. Hayes
- Department of Biomedical Engineering, State College, Pennsylvania State University, Centre County, PA 16802, USA;
| | - Jeffrey M. Gimble
- Obatala Sciences Inc., New Orleans, LA 70148, USA; (A.A.); (X.W.)
- LaCell LLC, New Orleans, LA 70148, USA
| |
Collapse
|
58
|
Abstract
The extracellular matrix (ECM) is needed to maintain the structural integrity of tissues and to mediate cellular dynamics. Its main components are fibrous proteins and glycosaminoglycans, which provide a suitable environment for biological functions. Thus, biomaterials with ECM-like properties have been extensively developed by modulating their key components and properties. In the field of cardiac tissue engineering, the use of biomaterials offers several advantages in that biophysical and biochemical cues can be designed to mediate cardiac cells, which is critical for maturation and regeneration. This suggests that understanding biomaterials and their use in vivo and in vitro is beneficial in terms of advancing cardiac engineering. The current review provides an overview of both natural and synthetic biomaterials and their use in cardiac engineering. In addition, we focus on different strategies to recapitulate the cardiac tissue in 2D and 3D approaches, which is an important step for the maturation of cardiac tissues toward regeneration of the adult heart.
Collapse
|
59
|
Chen XT, Fang WH, Vangsness CT. Efficacy of Biologics for Ligamentous and Tendon Healing. OPER TECHN SPORT MED 2020. [DOI: 10.1016/j.otsm.2020.150755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
60
|
Shelah O, Wertheimer S, Haj-Ali R, Lesman A. Coral-Derived Collagen Fibers for Engineering Aligned Tissues. Tissue Eng Part A 2020; 27:187-200. [PMID: 32524890 DOI: 10.1089/ten.tea.2020.0116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
There is a growing need for biomaterial scaffolds that support engineering of soft tissue substitutes featuring structure and mechanical properties similar to those of the native tissue. This work introduces a new biomaterial system that is based on centimeter-long collagen fibers extracted from Sarcophyton soft corals, wrapped around frames to create aligned fiber arrays. The collagen arrays displayed hyperelastic and viscoelastic mechanical properties that resembled those of collagenous-rich tissues. Cytotoxicity tests demonstrated that the collagen arrays were nontoxic to fibroblast cells. In addition, fibroblast cells seeded on the collagen arrays demonstrated spreading and increased growth for up to 40 days, and their orientation followed that of the aligned fibers. The possibility to combine the collagen cellular arrays with poly(ethylene glycol) diacrylate (PEG-DA) hydrogel, to create integrated biocomposites, was also demonstrated. This study showed that coral collagen fibers in combination with a hydrogel can support biological tissue-like growth, with predefined orientation over a long period of time in culture. As such, it is an attractive scaffold for the construction of various engineered tissues to match their native oriented morphology.
Collapse
Affiliation(s)
- Ortal Shelah
- School of Mechanical Engineering, The Fleischman Faculty of Engineering, Tel-Aviv University, Israel
| | - Shir Wertheimer
- School of Mechanical Engineering, The Fleischman Faculty of Engineering, Tel-Aviv University, Israel
| | - Rami Haj-Ali
- School of Mechanical Engineering, The Fleischman Faculty of Engineering, Tel-Aviv University, Israel
| | - Ayelet Lesman
- School of Mechanical Engineering, The Fleischman Faculty of Engineering, Tel-Aviv University, Israel
| |
Collapse
|
61
|
|
62
|
Shrestha S, McFadden MJ, Gramolini AO, Santerre JP. Proteome analysis of secretions from human monocyte-derived macrophages post-exposure to biomaterials and the effect of secretions on cardiac fibroblast fibrotic character. Acta Biomater 2020; 111:80-90. [PMID: 32428683 DOI: 10.1016/j.actbio.2020.04.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/31/2020] [Accepted: 04/23/2020] [Indexed: 12/27/2022]
Abstract
The use of exogenous biomolecules (BM) for the purpose of repairing and regenerating damaged cardiac tissue can yield serious side effects if used for prolonged periods. As well, such strategies can be cost prohibitive depending on the regiment and period of time applied. Alternatively, autologous monocytes/monocyte-derived macrophages (MDM) can provide a viable path towards generating an endogenous source of stimulatory BM. Biomaterials are often considered as delivery vehicles to generate unique profiles of such BM in tissues or to deliver autologous cells, that can influence the nature of BM produced by the cells. MDM cultured on a degradable polar hydrophobic ionic (D-PHI) polyurethane has previously demonstrated a propensity to increase select anti-inflammatory cytokines, and therefore there is good rationale to further investigate a broader spectrum of the cells' BM in order to provide a more complete proteomic analysis of human MDM secretions induced by D-PHI. Further, it is of interest to assess the potential of such BM to influence cells involved in the reparative state of vital tissues such as those that affect cardiac cell function. Hence, this current study examines the proteomic profile of MDM secretions using mass spectrometry for the first time, along with ELISA, following their culture on D-PHI, and compares them to two important reference materials, poly(lactic-co-glycolic acid) (PLGA) and tissue culture polystyrene (TCPS). Secretions collected from D-PHI cultured MDM led to higher levels of regenerative BM, AGRN, TGFBI and ANXA5, but lower levels of pro-fibrotic BM, MMP7, IL-1β, IL-6 and TNFα, when compared to MDM secretions collected from PLGA and TCPS. In the application to cardiac cell function, the secretion collected from D-PHI cultured MDM led to more human cardiac fibroblast (HCFs) migration. A lower collagen gel contraction induced by MDM secretions collected from D-PHI was supported by gene array analysis for human fibrosis-related genes. The implication of these findings is that more tailored biomaterials such as D-PHI, may lead to a lower pro-inflammatory phenotype of macrophages when used in cardiac tissue constructs, thereby enabling the development of vehicles for the delivery of interventional therapies, or be applied as coatings for sensor implants in cardiac tissue that minimize fibrosis. The general approach of using synthetic biomaterials in order to induce MDM secretions in a manner that will guide favorable regeneration will be critical in making the choice of biomaterials for tissue regeneration work in the future. STATEMENT OF SIGNIFICANCE: Immune modulation strategies currently applied in cardiac tissue repair are mainly based on the delivery of defined exogenous biomolecules. However, the use of such biomolecules may pose wide ranging systemic effects, thereby rendering them clinically less practical. The chemistry of biomaterials (used as a potential targeted delivery modality to circumvent the broad systemic effects of biomolecules) can not only affect acute and chronic toxicity but also alters the timeframe of the wound healing cascade. In this context, monocytes/monocyte-derive macrophages (MDM) can be harnessed as an immune modulating strategy to promote wound healing by an appropriate choice of the biomaterial. However, there are limited reports on the complete proteome analysis of MDM and their reaction of biomaterial related interventions on cardiac tissues and cells. No studies to date have demonstrated the complete proteome of MDM secretions when these cells were cultured on a non-traditional immune modulatory ionomeric polyurethane D-PHI film. This study demonstrated that MDM cultured on D-PHI expressed significantly higher levels of AGRN, TGFBI and ANXA5 but lower levels of MMP7, IL-1β, IL-6 and TNFα when compared to MDM cultured on a well-established degradable biomaterials in the medical field, e.g. PLGA and TCPS, which are often used as the relative standards for cell culture work in the biomaterials field. The implications of these findings have relevance to the repair of cardiac tissues. In another aspect of the work, human cardiac fibroblasts showed significantly lower contractility (low collagen gel contraction and low levels of ACTA2) when cultured in the presence of MDM secretions collected after culturing them on D-PHI compared to PLGA and TCPS. The findings place emphasis on the importance of making the choice of biomaterials for tissue engineering and regenerative medicine applied to their use in cardiac tissue repair.
Collapse
Affiliation(s)
- Suja Shrestha
- Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada; Translational Biology and Engineering Program and Ted Rogers Centre for Heart Research, Toronto, Ontario M5G 1M1, Canada
| | - Meghan J McFadden
- Translational Biology and Engineering Program and Ted Rogers Centre for Heart Research, Toronto, Ontario M5G 1M1, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Anthony O Gramolini
- Translational Biology and Engineering Program and Ted Rogers Centre for Heart Research, Toronto, Ontario M5G 1M1, Canada; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1M8, Canada
| | - J Paul Santerre
- Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada; Translational Biology and Engineering Program and Ted Rogers Centre for Heart Research, Toronto, Ontario M5G 1M1, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada.
| |
Collapse
|
63
|
Makuloluwa AK, Stewart RMK, Kaye SB, Williams RL, Hamill KJ. Mass Spectrometry Reveals α-2-HS-Glycoprotein as a Key Early Extracellular Matrix Protein for Conjunctival Cells. Invest Ophthalmol Vis Sci 2020; 61:44. [PMID: 32232343 PMCID: PMC7401837 DOI: 10.1167/iovs.61.3.44] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Purpose To determine the composition of extracellular matrix (ECM) proteins secreted by a conjunctival epithelial cell line and to identify components that aid conjunctival epithelial cell culture. Methods Human conjunctival epithelial cell line (HCjE-Gi) cells were cultured in serum-free media and their ECM isolated using ammonium hydroxide. Growth characteristics were evaluated for fresh HCjE-Gi cells plated onto ECMs obtained from 3- to 28-day cell cultures. Mass spectrometry was used to characterize the ECM composition over 42 culture days. Cell adhesion and growth on pre-adsorbed fibronectin and α-2-HS-glycoprotein (α-2-HS-GP) were investigated. Results Day 3 ECM provided the best substrate for cell growth compared to ECM obtained from 5- to 28-day cell cultures. Mass spectrometry identified a predominantly laminin 332 matrix throughout the time course, with progressive changes to matrix composition over time: proportional decreases in matrix-bound growth factors and increases in proteases. Fibronectin and α-2-HS-GP were 5- and 200-fold enriched as a proportion of the early ECM relative to the late ECM, respectively. Experiments on these proteins in isolation demonstrated that fibronectin supported rapid cell adhesion, whereas fibronectin and α-2-HS-GP both supported enhanced cell growth compared to tissue culture polystyrene. Conclusions These data reveal α-2-HS-GP as a candidate protein to enhance the growth of conjunctival epithelial cells and raise the possibility of exploiting these findings for targeted improvement to synthetic tissue engineered conjunctival substrates.
Collapse
|
64
|
Wang B, Johnson A, Li W. Development of an extracellular matrix‐enriched gelatin sponge for liver wound dressing. J Biomed Mater Res A 2020; 108:2057-2068. [DOI: 10.1002/jbm.a.36965] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 03/22/2020] [Accepted: 03/28/2020] [Indexed: 11/12/2022]
Affiliation(s)
- Bo Wang
- Joint Department of Biomedical Engineering Marquette University and Medical College of Wisconsin Milwaukee Wisconsin USA
| | - Alexia Johnson
- Department of Biology Alabama State University Montgomery Alabama USA
| | - Wuwei Li
- Department of Oral and maxillofacial surgery, School of Stomatology Dalian Medical University Dalian Liaoning China
| |
Collapse
|
65
|
Boso D, Maghin E, Carraro E, Giagante M, Pavan P, Piccoli M. Extracellular Matrix-Derived Hydrogels as Biomaterial for Different Skeletal Muscle Tissue Replacements. MATERIALS 2020; 13:ma13112483. [PMID: 32486040 PMCID: PMC7321144 DOI: 10.3390/ma13112483] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/13/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022]
Abstract
Recently, skeletal muscle represents a complex and challenging tissue to be generated in vitro for tissue engineering purposes. Several attempts have been pursued to develop hydrogels with different formulations resembling in vitro the characteristics of skeletal muscle tissue in vivo. This review article describes how different types of cell-laden hydrogels recapitulate the multiple interactions occurring between extracellular matrix (ECM) and muscle cells. A special attention is focused on the biochemical cues that affect myocytes morphology, adhesion, proliferation, and phenotype maintenance, underlining the importance of topographical cues exerted on the hydrogels to guide cellular orientation and facilitate myogenic differentiation and maturation. Moreover, we highlight the crucial role of 3D printing and bioreactors as useful platforms to finely control spatial deposition of cells into ECM based hydrogels and provide the skeletal muscle native-like tissue microenvironment, respectively.
Collapse
Affiliation(s)
- Daniele Boso
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, 35127 Padova, Italy; (E.M.); (E.C.); (M.G.); (P.P.)
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
- Correspondence: (D.B.); (M.P.)
| | - Edoardo Maghin
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, 35127 Padova, Italy; (E.M.); (E.C.); (M.G.); (P.P.)
- Department of Women and Children Health, University of Padova, 35128 Padova, Italy
| | - Eugenia Carraro
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, 35127 Padova, Italy; (E.M.); (E.C.); (M.G.); (P.P.)
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Mattia Giagante
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, 35127 Padova, Italy; (E.M.); (E.C.); (M.G.); (P.P.)
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Piero Pavan
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, 35127 Padova, Italy; (E.M.); (E.C.); (M.G.); (P.P.)
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Martina Piccoli
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, 35127 Padova, Italy; (E.M.); (E.C.); (M.G.); (P.P.)
- Correspondence: (D.B.); (M.P.)
| |
Collapse
|
66
|
Liguori GR, Liguori TTA, de Moraes SR, Sinkunas V, Terlizzi V, van Dongen JA, Sharma PK, Moreira LFP, Harmsen MC. Molecular and Biomechanical Clues From Cardiac Tissue Decellularized Extracellular Matrix Drive Stromal Cell Plasticity. Front Bioeng Biotechnol 2020; 8:520. [PMID: 32548106 PMCID: PMC7273975 DOI: 10.3389/fbioe.2020.00520] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 05/01/2020] [Indexed: 01/09/2023] Open
Abstract
Decellularized-organ-derived extracellular matrix (dECM) has been used for many years in tissue engineering and regenerative medicine. The manufacturing of hydrogels from dECM allows to make use of the pro-regenerative properties of the ECM and, simultaneously, to shape the material in any necessary way. The objective of the present project was to investigate differences between cardiovascular tissues (left ventricle, mitral valve, and aorta) with respect to generating dECM hydrogels and their interaction with cells in 2D and 3D. The left ventricle, mitral valve, and aorta of porcine hearts were decellularized using a series of detergent treatments (SDS, Triton-X 100 and deoxycholate). Mass spectrometry-based proteomics yielded the ECM proteins composition of the dECM. The dECM was digested with pepsin and resuspended in PBS (pH 7.4). Upon warming to 37°C, the suspension turns into a gel. Hydrogel stiffness was determined for samples with a dECM concentration of 20 mg/mL. Adipose tissue-derived stromal cells (ASC) and a combination of ASC with human pulmonary microvascular endothelial cells (HPMVEC) were cultured, respectively, on and in hydrogels to analyze cellular plasticity in 2D and vascular network formation in 3D. Differentiation of ASC was induced with 10 ng/mL of TGF-β1 and SM22α used as differentiation marker. 3D vascular network formation was evaluated with confocal microscopy after immunofluorescent staining of PECAM-1. In dECM, the most abundant protein was collagen VI for the left ventricle and mitral valve and elastin for the aorta. The stiffness of the hydrogel derived from the aorta (6,998 ± 895 Pa) was significantly higher than those derived from the left ventricle (3,384 ± 698 Pa) and the mitral valve (3,233 ± 323 Pa) (One-way ANOVA, p = 0.0008). Aorta-derived dECM hydrogel drove non-induced (without TGF-β1) differentiation, while hydrogels derived from the left ventricle and mitral valve inhibited TGF-β1-induced differentiation. All hydrogels supported vascular network formation within 7 days of culture, but ventricular dECM hydrogel demonstrated more robust vascular networks, with thicker and longer vascular structures. All the three main cardiovascular tissues, myocardium, valves, and large arteries, could be used to fabricate hydrogels from dECM, and these showed an origin-dependent influence on ASC differentiation and vascular network formation.
Collapse
Affiliation(s)
- Gabriel Romero Liguori
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Tácia Tavares Aquinas Liguori
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Sérgio Rodrigues de Moraes
- Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Viktor Sinkunas
- Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Vincenzo Terlizzi
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Joris A van Dongen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Prashant K Sharma
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Luiz Felipe Pinho Moreira
- Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Martin Conrad Harmsen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
67
|
Debnath T, Mallarpu CS, Chelluri LK. Development of Bioengineered Organ Using Biological Acellular Rat Liver Scaffold and Hepatocytes. Organogenesis 2020; 16:61-72. [PMID: 32362216 DOI: 10.1080/15476278.2020.1742534] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The increasing demand for organs for transplantation necessitates the development of substitutes to meet the structural and physiological functions. Tissue decellularization and recellularization aids in retaining the three-dimensional integrity, biochemical composition, tissue ultra-structure, and mechanical behavior, which makes them functionally suitable for organ transplantation. Herein, we attempted to rebuild functional liver grafts in small animal model (Wistar rat) with a potential of translation. A soft approach was adopted using 0.1% SDS (Sodium Dodecyl Sulfate) for decellularization and primary hepatocytes were used as a potential cell source for recellularization. The decellularization process was evaluated and confirmed using histology, DNA content, ultra-structure analysis. The resultant scaffold was re-seeded with the rat hepatocytes and their biocompatibility was assessed by its metabolic functions and gene expression. The structural components of the Extracellular matrix (ECM) (Laminins, Collagen type I, Reticulins) were conserved and the liver cell-specific proteins like CK-18, alpha-fetoprotein, albumin were expressed in the recellularized scaffold. The functionality and metabolic activity of the repopulated scaffold were evident from the albumin and urea production. Expression of Cytokeratin-19 (CK-19), Glucose 6-Phosphatase (G6P), Albumin, Gamma Glutamyl Transferase (GGT) genes has distinctly confirmed the translational signals after the repopulation process. Our study clearly elucidates that the native extracellular matrix of rat liver can be utilized as a scaffold for effective recellularization for whole organ regeneration.
Collapse
Affiliation(s)
- Tanya Debnath
- Stem Cell Unit, Global Medical Education & Research Foundation , Hyderabad, India
| | | | | |
Collapse
|
68
|
Paredes J, Marvin JC, Vaughn B, Andarawis-Puri N. Innate tissue properties drive improved tendon healing in MRL/MpJ and harness cues that enhance behavior of canonical healing cells. FASEB J 2020; 34:8341-8356. [PMID: 32350938 DOI: 10.1096/fj.201902825rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/03/2020] [Accepted: 04/10/2020] [Indexed: 12/21/2022]
Abstract
Development of tendon therapeutics has been hindered by the lack of informative adult mammalian models of regeneration. Murphy Roth's Large (MRL/MpJ) mice exhibit improved healing following acute tendon injuries, but the driver of this regenerative healing response remains unknown. The tissue-specific attributes of this healing response, despite a shared systemic environment within the mouse, support the hypothesis of a tissue-driven mechanism for scarless healing. Our objective was to investigate the potential of MRL/MpJ tendon extracellular matrix (ECM)-derived coatings to regulate scar-mediated healing. We found that deviations in the composition of key structural proteins within MRL/MpJ vs C57Bl/6 tendons occur synergistically to mediate the improvements in structure and mechanics following a 1-mm midsubstance injury. Improvement in mechanical properties of healing MRL/MpJ vs C57Bl/6 tendons that were isolated from systemic contributions via organ culture, highlighted the innate tendon environment as the driver of scarless healing. Finally, we established that decellularized coatings derived from early-deposited MRL/MpJ tendon provisional extracellular matrix (provisional-ECM), can modulate canonical healing B6 tendon cell behavior by inducing morphological changes and increasing proliferation in vitro. This study supports that the unique compositional cues in MRL/MpJ provisional-ECM have the therapeutic capability to motivate canonically healing cells toward improved behavior; enhancing our ability to develop effective therapeutics.
Collapse
Affiliation(s)
- Juan Paredes
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Jason C Marvin
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Brenna Vaughn
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Nelly Andarawis-Puri
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA.,Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
69
|
Reginensi D, Ortiz D, Pravia A, Burillo A, Morales F, Morgan C, Jimenez L, Dave KR, Perez-Pinzon MA, Gittens RA. Role of Region-Specific Brain Decellularized Extracellular Matrix on In Vitro Neuronal Maturation. Tissue Eng Part A 2020; 26:964-978. [PMID: 32103711 DOI: 10.1089/ten.tea.2019.0277] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Recent advancements in tissue engineering suggest that biomaterials, such as decellularized extracellular matrix (ECM), could serve to potentiate the localization and efficacy of regenerative therapies in the central nervous system. Still, what factors and which mechanisms are required from these ECM-based biomaterials to exert their effect are not entirely understood. In this study, we use the brain as a novel model to test the effects of particular biochemical and structural properties by evaluating, for the first time, three different sections of the brain (i.e., cortex, cerebellum, and remaining areas) side-by-side and their corresponding decellularized counterparts using mechanical (4-day) and chemical (1-day) decellularization protocols. The three different brain subregions had considerably different initial conditions in terms of cell number and growth factor content, and some of these differences were maintained after decellularization. Decellularized ECM from both protocols was used as a substrate or as soluble factor, in both cases showing good cell attachment and growth capabilities. Interestingly, the 1-day protocol was capable of promoting greater differentiation than the 4-day protocol, probably due to its capacity to remove a similar amount of cell nuclei, while better conserving the biochemical and structural components of the cerebral ECM. Still, some limitations of this study include the need to evaluate the response in other biologically relevant cell types, as well as a more detailed characterization of the components in the decellularized ECM of the different brain subregions. In conclusion, our results show differences in neuronal maturation depending on the region of the brain used to produce the scaffolds. Complex organs such as the brain have subregions with very different initial cellular and biochemical conditions that should be considered for decellularization to minimize exposure to immunogenic components, while retaining bioactive factors conducive to regeneration. [Figure: see text] Impact statement The present study offers new knowledge about the production of decellularized extracellular matrix scaffolds from specific regions of the porcine brain, with a direct comparison of their effect on in vitro neuronal maturation. Our results show differences in neuronal maturation depending on the region of the brain used to produce the scaffolds, suggesting that it is necessary to consider the initial cellular content of the source tissue and its bioactive capacity for the production of an effective regenerative therapy for stroke.
Collapse
Affiliation(s)
- Diego Reginensi
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama, Republic of Panama.,School of Medicine, Universidad de Panamá, Panama, Republic of Panama.,Biomedical Engineering Program, Universidad Latina de Panamá, Panama, Republic of Panama
| | - Didio Ortiz
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama, Republic of Panama
| | - Andrea Pravia
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama, Republic of Panama.,Biotechnology Program, Universidad Latina de Panamá, Panama, Republic of Panama
| | - Andrea Burillo
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama, Republic of Panama
| | - Félix Morales
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama, Republic of Panama
| | - Carly Morgan
- CREO-MIHRT Program, University of California, Santa Cruz, California.,Materials Science & Engineering Program, University of Washington, Seattle, Washington
| | - Lindsay Jimenez
- CREO-MIHRT Program, University of California, Santa Cruz, California.,Biomedical Engineering Program, University of Connecticut, Storrs, Connecticut
| | - Kunjan R Dave
- The Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, Neurology Department, University of Miami Miller School of Medicine, Miami, Florida.,Neuroscience Program, University of Miami Miller School of Medicine, Miami, Florida
| | - Miguel A Perez-Pinzon
- The Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, Neurology Department, University of Miami Miller School of Medicine, Miami, Florida.,Neuroscience Program, University of Miami Miller School of Medicine, Miami, Florida
| | - Rolando A Gittens
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama, Republic of Panama.,Centro de Biodiversidad y Descubrimiento de Drogas, INDICASAT AIP, City of Knowledge, Panama, Republic of Panama
| |
Collapse
|
70
|
Morse J, Harris J, Owen S, Sowder J, Stephan S. Outcomes of Nasal Septal Perforation Repair Using Combined Temporoparietal Fascia Graft and Polydioxanone Plate Construct. JAMA FACIAL PLAST SU 2020; 21:319-326. [PMID: 30973580 DOI: 10.1001/jamafacial.2019.0020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance Numerous techniques are used for septal perforation repair, yet success rates remain variable. Few studies have evaluated the effectiveness of interposition grafts of polydioxanone plates combined with a temporoparietal fascia graft for septal perforation repair. Objective To investigate and describe the use of interposition grafts of polydioxanone plates combined with a temporoparietal fascia graft for septal perforation repair and the expansion of this technique to patients with more challenging comorbidities, including granulomatosis with polyangiitis. Design, Setting, and Participants A retrospective medical record review was performed of patients who underwent septal perforation repair using interposition grafts of polydioxanone plates combined with a temporoparietal fascia graft from January 1, 2015, to July 1, 2018, at Vanderbilt University Medical Center and from January 1, 2017, to July 1, 2018, at the University of Iowa. Intervention All patients underwent septal perforation repair with interposition grafts of polydioxanone plates and a temporoparietal fascia graft. Main Outcomes and Measures Assessing closure of septal perforation was the primary outcome. Secondary outcomes were resolution of presenting symptoms of septal perforation, area of perforation, length of postoperative stent and silastic sheeting placement, postoperative complications and resolution, and duration of follow-up. Preoperative and postoperative Nasal Obstruction Symptom Evaluation (NOSE) scores were assessed. Results A total of 17 patients (12 women and 5 men; mean [SD] age, 45 [15] years) were included. The causes of perforations were iatrogenic (9 [53%]), rheumatologic (2 [12%]), and unknown or idiopathic (6 [35%]). Patients most commonly presented with nasal crusting (12 [71%]), whistling (9 [53%]), nasal obstruction (9 [53%]), and epistaxis (5 [29%]). Mean (SD) perforation size was 0.99 (1.04) cm2. Mean (SD) postoperative follow-up was 6.1 (4.1) months. A total of 15 patients (88%) had complete resolution of presenting symptoms at last follow-up. All perforations were closed with overlying mucosa at the most recent follow-up examination. Nine of 17 patients completed both preoperative and postoperative NOSE. There was a significant difference between the mean (SD) preoperative and postoperative NOSE scores (62.78 [27.74] vs 17.78 [15.83]; P = .004). Conclusions and Relevance Repair of symptomatic nasal septal perforations using a temporoparietal fascia graft combined with a polydioxanone plate was associated with positive outcomes. Repair of septal perforations caused by rheumatologic disease, including granulomatosis with polyangiitis, can be considered for repair using this technique. Resolution of symptoms appeared to be clinically more meaningful in evaluation of septal perforation repair than rate of perforation closure, and the NOSE scale has the potential to serve as an objective corroboration to patient-reported postoperative outcomes. Level of Evidence 4.
Collapse
Affiliation(s)
- Justin Morse
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jacqueline Harris
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Scott Owen
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City
| | - Justin Sowder
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Scott Stephan
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
71
|
Silva JC, Carvalho MS, Udangawa RN, Moura CS, Cabral JMS, L da Silva C, Ferreira FC, Vashishth D, Linhardt RJ. Extracellular matrix decorated polycaprolactone scaffolds for improved mesenchymal stem/stromal cell osteogenesis towards a patient-tailored bone tissue engineering approach. J Biomed Mater Res B Appl Biomater 2020; 108:2153-2166. [PMID: 31916699 DOI: 10.1002/jbm.b.34554] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/05/2019] [Accepted: 12/20/2019] [Indexed: 01/20/2023]
Abstract
The clinical demand for tissue-engineered bone is growing due to the increase of non-union fractures and delayed healing in an aging population. Herein, we present a method combining additive manufacturing (AM) techniques with cell-derived extracellular matrix (ECM) to generate structurally well-defined bioactive scaffolds for bone tissue engineering (BTE). In this work, highly porous three-dimensional polycaprolactone (PCL) scaffolds with desired size and architecture were fabricated by fused deposition modeling and subsequently decorated with human mesenchymal stem/stromal cell (MSC)-derived ECM produced in situ. The successful deposition of MSC-derived ECM onto PCL scaffolds (PCL-MSC ECM) was confirmed after decellularization using scanning electron microscopy, elemental analysis, and immunofluorescence. The presence of cell-derived ECM within the PCL scaffolds significantly enhanced MSC attachment and proliferation, with and without osteogenic supplementation. Additionally, under osteogenic induction, PCL-MSC ECM scaffolds promoted significantly higher calcium deposition and elevated relative expression of bone-specific genes, particularly the gene encoding osteopontin, when compared to pristine scaffolds. Overall, our results demonstrated the favorable effects of combining MSC-derived ECM and AM-based scaffolds on the osteogenic differentiation of MSC, resulting from a closer mimicry of the native bone niche. This strategy is highly promising for the development of novel personalized BTE approaches enabling the fabrication of patient defect-tailored scaffolds with enhanced biological performance and osteoinductive properties.
Collapse
Affiliation(s)
- João C Silva
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Department of Chemistry and Chemical Biology, Biological Sciences and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| | - Marta S Carvalho
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| | - Ranodhi N Udangawa
- Department of Chemistry and Chemical Biology, Biological Sciences and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| | - Carla S Moura
- CDRSP-Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, Rua de Portugal-Zona Industrial, Marinha Grande, Portugal
| | - Joaquim M S Cabral
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Frederico Castelo Ferreira
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Deepak Vashishth
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Biological Sciences and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York.,Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| |
Collapse
|
72
|
Topuz B, Günal G, Guler S, Aydin HM. Use of supercritical CO2 in soft tissue decellularization. Methods Cell Biol 2020; 157:49-79. [DOI: 10.1016/bs.mcb.2019.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
73
|
Sharma D, Ferguson M, Zhao F. A step-by-step protocol for generating human fibroblast cell-derived completely biological extracellular matrix scaffolds. Methods Cell Biol 2020; 156:3-13. [DOI: 10.1016/bs.mcb.2019.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
74
|
Shridhar A, Amsden BG, Gillies ER, Flynn LE. Investigating the Effects of Tissue-Specific Extracellular Matrix on the Adipogenic and Osteogenic Differentiation of Human Adipose-Derived Stromal Cells Within Composite Hydrogel Scaffolds. Front Bioeng Biotechnol 2019; 7:402. [PMID: 31921807 PMCID: PMC6917659 DOI: 10.3389/fbioe.2019.00402] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022] Open
Abstract
While it has been postulated that tissue-specific bioscaffolds derived from the extracellular matrix (ECM) can direct stem cell differentiation, systematic comparisons of multiple ECM sources are needed to more fully assess the benefits of incorporating tissue-specific ECM in stem cell culture and delivery platforms. To probe the effects of ECM sourced from decellularized adipose tissue (DAT) or decellularized trabecular bone (DTB) on the adipogenic and osteogenic differentiation of human adipose-derived stem/stromal cells (ASCs), a novel detergent-free decellularization protocol was developed for bovine trabecular bone that complemented our established detergent-free decellularization protocol for human adipose tissue and did not require specialized equipment or prolonged incubation times. Immunohistochemical and biochemical characterization revealed enhanced sulphated glycosaminoglycan content in the DTB, while the DAT contained higher levels of collagen IV, collagen VI and laminin. To generate platforms with similar structural and biomechanical properties to enable assessment of the compositional effects of the ECM on ASC differentiation, micronized DAT and DTB were encapsulated with human ASCs within methacrylated chondroitin sulfate (MCS) hydrogels through UV-initiated crosslinking. High ASC viability (>90%) was observed over 14 days in culture. Adipogenic differentiation was enhanced in the MCS+DAT composites relative to the MCS+DTB composites and MCS controls after 14 days of culture in adipogenic medium. Osteogenic differentiation studies revealed a peak in alkaline phosphatase (ALP) enzyme activity at 7 days in the MCS+DTB group cultured in osteogenic medium, suggesting that the DTB had bioactive effects on osteogenic protein expression. Overall, the current study suggests that tissue-specific ECM sourced from DAT or DTB can act synergistically with soluble differentiation factors to enhance the lineage-specific differentiation of human ASCs within 3-D hydrogel systems.
Collapse
Affiliation(s)
- Arthi Shridhar
- Department of Chemical and Biochemical Engineering, Thompson Engineering Building, The University of Western Ontario, London, ON, Canada
- Bone and Joint Institute, The University of Western Ontario, London, ON, Canada
| | - Brian G. Amsden
- Department of Chemical Engineering, Queen's University, Kingston, ON, Canada
| | - Elizabeth R. Gillies
- Department of Chemical and Biochemical Engineering, Thompson Engineering Building, The University of Western Ontario, London, ON, Canada
- Bone and Joint Institute, The University of Western Ontario, London, ON, Canada
- Department of Chemistry, The University of Western Ontario, London, ON, Canada
| | - Lauren E. Flynn
- Department of Chemical and Biochemical Engineering, Thompson Engineering Building, The University of Western Ontario, London, ON, Canada
- Bone and Joint Institute, The University of Western Ontario, London, ON, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
75
|
Li N, Xue F, Zhang H, Sanyour HJ, Rickel AP, Uttecht A, Fanta B, Hu J, Hong Z. Fabrication and Characterization of Pectin Hydrogel Nanofiber Scaffolds for Differentiation of Mesenchymal Stem Cells into Vascular Cells. ACS Biomater Sci Eng 2019; 5:6511-6519. [PMID: 33417803 PMCID: PMC11268401 DOI: 10.1021/acsbiomaterials.9b01178] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite significant progress over the past few decades, creating a tissue-engineered vascular graft with replicated functions of native blood vessels remains a challenge due to the mismatch in mechanical properties, low biological function, and rapid occlusion caused by restenosis of small diameter vessel grafts (<6 mm diameter). A scaffold with similar mechanical properties and biocompatibility to the host tissue is ideally needed for the attachment and proliferation of cells to support the building of engineered tissue. In this study, pectin hydrogel nanofiber scaffolds with two different oxidation degrees (25 and 50%) were prepared by a multistep methodology including periodate oxidation, electrospinning, and adipic acid dihydrazide crosslinking. Scanning electron microscopy (SEM) images showed that the obtained pectin nanofiber mats have a nano-sized fibrous structure with 300-400 nm fiber diameter. Physicochemical property testing using Fourier transform infrared (FTIR) spectra, atomic force microscopy (AFM) nanoindentations, and contact angle measurements demonstrated that the stiffness and hydrophobicity of the fiber mat could be manipulated by adjusting the oxidation and crosslinking levels of the pectin hydrogels. Live/Dead staining showed high viability of the mesenchymal stem cells (MSCs) cultured on the pectin hydrogel fiber scaffold for 14 days. In addition, the potential application of pectin hydrogel nanofiber scaffolds of different stiffness in stem cell differentiation into vascular cells was assessed by gene expression analysis. Real-time polymerase chain reaction (RT-PCR) results showed that the stiffer scaffold facilitated the differentiation of MSCs into vascular smooth muscle cells, while the softer fiber mat promoted MSC differentiation into endothelial cells. Altogether, our results indicate that the pectin hydrogel nanofibers have the capability of providing mechanical cues that induce MSC differentiation into vascular cells and can be potentially applied in stem cell-based tissue engineering.
Collapse
Affiliation(s)
- Na Li
- Department of Biomedical Engineering, University of South Dakota, Sioux Falls, South Dakota 57107, United States
| | - Fuxin Xue
- Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, Jilin 130024, P. R. China
| | - Hui Zhang
- Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, Jilin 130024, P. R. China
| | - Hanna J. Sanyour
- Department of Biomedical Engineering, University of South Dakota, Sioux Falls, South Dakota 57107, United States
| | - Alex P. Rickel
- Department of Biomedical Engineering, University of South Dakota, Sioux Falls, South Dakota 57107, United States
| | - Andrew Uttecht
- Department of Biomedical Engineering, University of South Dakota, Sioux Falls, South Dakota 57107, United States
| | - Betty Fanta
- Department of Biomedical Engineering, University of South Dakota, Sioux Falls, South Dakota 57107, United States
- BioSNTR, Sioux Falls, South Dakota 57107, United States
| | - Junli Hu
- Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, Jilin 130024, P. R. China
| | - Zhongkui Hong
- Department of Biomedical Engineering, University of South Dakota, Sioux Falls, South Dakota 57107, United States
- BioSNTR, Sioux Falls, South Dakota 57107, United States
| |
Collapse
|
76
|
Ryan CNM, Zeugolis DI. Engineering the Tenogenic Niche In Vitro with Microenvironmental Tools. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Christina N. M. Ryan
- Regenerative, Modular and Developmental Engineering LaboratoryBiomedical Sciences BuildingNational University of Ireland Galway Galway H91 W2TY Ireland
- Science Foundation Ireland, Centre for Research in Medical DevicesBiomedical Sciences BuildingNational University of Ireland Galway Galway H91 W2TY Ireland
| | - Dimitrios I. Zeugolis
- Regenerative, Modular and Developmental Engineering LaboratoryBiomedical Sciences BuildingNational University of Ireland Galway Galway H91 W2TY Ireland
- Science Foundation Ireland, Centre for Research in Medical DevicesBiomedical Sciences BuildingNational University of Ireland Galway Galway H91 W2TY Ireland
| |
Collapse
|
77
|
Decellularized Lymph Node Scaffolding as a Carrier for Dendritic Cells to Induce Anti-Tumor Immunity. Pharmaceutics 2019; 11:pharmaceutics11110553. [PMID: 31717826 PMCID: PMC6920996 DOI: 10.3390/pharmaceutics11110553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/20/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022] Open
Abstract
In recent decades, the decellularized extracellular matrix (ECM) has shown potential as a promising scaffold for tissue regeneration. In this study, an organic acid decellularized lymph node (dLN) was developed as a carrier for dendritic cells (DCs) to induce antitumor immunity. The dLNs were prepared by formic acid, acetic acid, or citric acid treatment. The results showed highly efficient removal of cell debris from the lymph node and great preservation of ECM architecture and biomolecules. In addition, bone marrow dendritic cells (BMDCs) grown preferably inside the dLN displayed the maturation markers CD80, CD86, and major histocompatibility complex (MHC)-II, and they produced high levels of interleukin (IL)-1β, IL-6, and IL-12 cytokines when stimulated with ovalbumin (OVA) and CpG oligodeoxynucleotides (CPG-ODN). In an animal model, the BMDC-dLN completely rejected the E.G7-OVA tumor. Furthermore, the splenocytes from BMDC-dLN-immunized mice produced more interferon gamma, IL-4, IL-6, and IL-2, and they had a higher proliferation rate than other groups when re-stimulated with OVA. Hence, BMDC-dLN could be a promising DC-based scaffold for in vivo delivery to induce potent antitumor immunity.
Collapse
|
78
|
Dzobo K, Motaung KSCM, Adesida A. Recent Trends in Decellularized Extracellular Matrix Bioinks for 3D Printing: An Updated Review. Int J Mol Sci 2019; 20:E4628. [PMID: 31540457 PMCID: PMC6788195 DOI: 10.3390/ijms20184628] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/01/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023] Open
Abstract
The promise of regenerative medicine and tissue engineering is founded on the ability to regenerate diseased or damaged tissues and organs into functional tissues and organs or the creation of new tissues and organs altogether. In theory, damaged and diseased tissues and organs can be regenerated or created using different configurations and combinations of extracellular matrix (ECM), cells, and inductive biomolecules. Regenerative medicine and tissue engineering can allow the improvement of patients' quality of life through availing novel treatment options. The coupling of regenerative medicine and tissue engineering with 3D printing, big data, and computational algorithms is revolutionizing the treatment of patients in a huge way. 3D bioprinting allows the proper placement of cells and ECMs, allowing the recapitulation of native microenvironments of tissues and organs. 3D bioprinting utilizes different bioinks made up of different formulations of ECM/biomaterials, biomolecules, and even cells. The choice of the bioink used during 3D bioprinting is very important as properties such as printability, compatibility, and physical strength influence the final construct printed. The extracellular matrix (ECM) provides both physical and mechanical microenvironment needed by cells to survive and proliferate. Decellularized ECM bioink contains biochemical cues from the original native ECM and also the right proportions of ECM proteins. Different techniques and characterization methods are used to derive bioinks from several tissues and organs and to evaluate their quality. This review discusses the uses of decellularized ECM bioinks and argues that they represent the most biomimetic bioinks available. In addition, we briefly discuss some polymer-based bioinks utilized in 3D bioprinting.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), UCT Medical Campus, Anzio Road, Observatory, Cape Town 7925, South Africa.
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | | | - Adetola Adesida
- Department of Surgery, Faculty of Medicine and Dentistry, Li Ka Shing Centre for Health Research Innovation, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| |
Collapse
|
79
|
Padhi A, Nain AS. ECM in Differentiation: A Review of Matrix Structure, Composition and Mechanical Properties. Ann Biomed Eng 2019; 48:1071-1089. [PMID: 31485876 DOI: 10.1007/s10439-019-02337-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/30/2019] [Indexed: 12/22/2022]
Abstract
Stem cell regenerative potential owing to the capacity to self-renew as well as differentiate into other cell types is a promising avenue in regenerative medicine. Stem cell niche not only provides physical scaffolding but also possess instructional capacity as it provides a milieu of biophysical and biochemical cues. Extracellular matrix (ECM) has been identified as a major dictator of stem cell lineage, thus understanding the structure of in vivo ECM pertaining to specific tissue differentiation will aid in devising in vitro strategies to improve the differentiation efficiency. In this review, we summarize details about the native architecture, composition and mechanical properties of in vivo ECM of the early embryonic stages and the later adult stages. Native ECM from adult tissues categorized on their origin from respective germ layers are discussed while engineering techniques employed to facilitate differentiation of stem cells into particular lineages are noted. Overall, we emphasize that in vitro strategies need to integrate tissue specific ECM biophysical cues for developing accurate artificial environments for optimizing stem cell differentiation.
Collapse
Affiliation(s)
- Abinash Padhi
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Amrinder S Nain
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
80
|
Hong KH, Kim Y, Song S. Fine-Tunable and Injectable 3D Hydrogel for On-Demand Stem Cell Niche. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900597. [PMID: 31508277 PMCID: PMC6724362 DOI: 10.1002/advs.201900597] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/22/2019] [Indexed: 06/10/2023]
Abstract
Stem-cell-based tissue engineering requires increased stem cell retention, viability, and control of differentiation. The use of biocompatible scaffolds encapsulating stem cells typically addresses the first two problems. To achieve control of stem cell fate, fine-tuned biocompatible scaffolds with bioactive molecules are necessary. However, given that the fine-tuning of stem cell scaffolds is associated with UV irradiation and in situ scaffold gelation, this process is in conflict with injectability. Herein, a fine-tunable and injectable 3D hydrogel system is developed with the use of thermosensitive poly(organophosphazene) bearing β-cyclodextrin (β-CD PPZ) and two types of adamantane-peptides (Ad-peptides) that are associated with mesenchymal stem cell (MSC) differentiation and that serve as stoichiometrically controlled pendants for fine-tuning. Given that complexation of hosts and guests subject to strict stoichiometric control is achieved with simple mixing, these fabricated hydrogels exhibit well-aligned, fine-tuning responses, even in living animals. Injection of MSCs in fine-tuned hydrogels also results in various chondrogenic differentiation levels at three weeks postinjection. This is attributed to the differential controls of Ad-peptides, if MSC preconditioning is excluded. Eventually, the fine-tunable and injectable 3D hydrogel could be applied as platform technology by simply switching the types of peptides bearing adamantane and their stoichiometry.
Collapse
Affiliation(s)
- Ki Hyun Hong
- Center for BiomaterialsBiomedical research InstituteKorea Institute of Science and TechnologySeoul02792Republic of Korea
- Division of Bio‐Medical Science and TechnologyKIST SchoolKorea University of Science and TechnologySeoul02792Republic of Korea
| | - Young‐Min Kim
- Center for BiomaterialsBiomedical research InstituteKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Soo‐Chang Song
- Center for BiomaterialsBiomedical research InstituteKorea Institute of Science and TechnologySeoul02792Republic of Korea
- Division of Bio‐Medical Science and TechnologyKIST SchoolKorea University of Science and TechnologySeoul02792Republic of Korea
| |
Collapse
|
81
|
Li M, Xi N, Wang Y, Liu L. Nanotopographical Surfaces for Regulating Cellular Mechanical Behaviors Investigated by Atomic Force Microscopy. ACS Biomater Sci Eng 2019; 5:5036-5050. [DOI: 10.1021/acsbiomaterials.9b00991] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | - Ning Xi
- Department of Industrial and Manufacturing Systems Engineering, The University of Hong Kong, Kowloon 999077, Hong Kong, China
| | | | | |
Collapse
|
82
|
Goldbloom-Helzner L, Hao D, Wang A. Developing Regenerative Treatments for Developmental Defects, Injuries, and Diseases Using Extracellular Matrix Collagen-Targeting Peptides. Int J Mol Sci 2019; 20:4072. [PMID: 31438477 PMCID: PMC6747276 DOI: 10.3390/ijms20174072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/11/2022] Open
Abstract
Collagen is the most widespread extracellular matrix (ECM) protein in the body and is important in maintaining the functionality of organs and tissues. Studies have explored interventions using collagen-targeting tissue engineered techniques, using collagen hybridizing or collagen binding peptides, to target or treat dysregulated or injured collagen in developmental defects, injuries, and diseases. Researchers have used collagen-targeting peptides to deliver growth factors, drugs, and genetic materials, to develop bioactive surfaces, and to detect the distribution and status of collagen. All of these approaches have been used for various regenerative medicine applications, including neovascularization, wound healing, and tissue regeneration. In this review, we describe in depth the collagen-targeting approaches for regenerative therapeutics and compare the benefits of using the different molecules for various present and future applications.
Collapse
Affiliation(s)
- Leora Goldbloom-Helzner
- Surgical Bioengineering Laboratory, Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Dake Hao
- Surgical Bioengineering Laboratory, Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Aijun Wang
- Surgical Bioengineering Laboratory, Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA.
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA.
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA.
| |
Collapse
|
83
|
KC P, Hong Y, Zhang G. Cardiac tissue-derived extracellular matrix scaffolds for myocardial repair: advantages and challenges. Regen Biomater 2019; 6:185-199. [PMID: 31404421 PMCID: PMC6683951 DOI: 10.1093/rb/rbz017] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 03/04/2019] [Accepted: 03/14/2019] [Indexed: 12/12/2022] Open
Abstract
Decellularized extracellular matrix (dECM) derived from myocardium has been widely explored as a nature scaffold for cardiac tissue engineering applications. Cardiac dECM offers many unique advantages such as preservation of organ-specific ECM microstructure and composition, demonstration of tissue-mimetic mechanical properties and retention of biochemical cues in favor of subsequent recellularization. However, current processes of dECM decellularization and recellularization still face many challenges including the need for balance between cell removal and extracellular matrix preservation, efficient recellularization of dECM for obtaining homogenous cell distribution, tailoring material properties of dECM for enhancing bioactivity and prevascularization of thick dECM. This review summarizes the recent progresses of using dECM scaffold for cardiac repair and discusses its major advantages and challenges for producing biomimetic cardiac patch.
Collapse
Affiliation(s)
- Pawan KC
- Department of Biomedical Engineering, The University of Akron, Olson Research Center, Room 301L, 260 S Forge Street, Akron, OH, USA
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd, Room 240, Arlington, TX, USA
| | - Ge Zhang
- Department of Biomedical Engineering, The University of Akron, Olson Research Center, Room 301L, 260 S Forge Street, Akron, OH, USA
| |
Collapse
|
84
|
Carvalho MS, Silva JC, Cabral JMS, da Silva CL, Vashishth D. Cultured cell-derived extracellular matrices to enhance the osteogenic differentiation and angiogenic properties of human mesenchymal stem/stromal cells. J Tissue Eng Regen Med 2019; 13:1544-1558. [PMID: 31151132 DOI: 10.1002/term.2907] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/02/2019] [Accepted: 02/13/2019] [Indexed: 12/20/2022]
Abstract
Cell-derived extracellular matrix (ECM) consists of a complex assembly of fibrillary proteins, matrix macromolecules, and associated growth factors that mimic the composition and organization of native ECM micro-environment. Therefore, cultured cell-derived ECM has been used as a scaffold for tissue engineering settings to create a biomimetic micro-environment, providing physical, chemical, and mechanical cues to cells, and support cell adhesion, proliferation, migration, and differentiation. Here, we present a new strategy to produce different combinations of decellularized cultured cell-derived ECM (dECM) obtained from different cultured cell types, namely, mesenchymal stem/stromal cells (MSCs) and human umbilical vein endothelial cells (HUVECs), as well as the coculture of MSC:HUVEC and investigate the effects of its various compositions on cell metabolic activity, osteogenic differentiation, and angiogenic properties of human bone marrow (BM)-derived MSCs, vital features for adult bone tissue regeneration and repair. Our findings demonstrate that dECM presented higher cell metabolic activity compared with tissue culture polystyrene. More importantly, we show that MSC:HUVEC ECM enhanced the osteogenic and angiogenic potential of BM MSCs, as assessed by in vitro assays. Interestingly, MSC:HUVEC (1:3) ECM demonstrated the best angiogenic response of MSCs in the conditions tested. To the best of our knowledge, this is the first study that demonstrates that dECM derived from a coculture of MSC:HUVEC impacts the osteogenic and angiogenic capabilities of BM MSCs, suggesting the potential use of MSC:HUVEC ECM as a therapeutic product to improve clinical outcomes in bone regeneration.
Collapse
Affiliation(s)
- Marta S Carvalho
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.,Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - João C Silva
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.,Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Joaquim M S Cabral
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Deepak Vashishth
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
85
|
Luong D, Yergeshov AA, Zoughaib M, Sadykova FR, Gareev BI, Savina IN, Abdullin TI. Transition metal-doped cryogels as bioactive materials for wound healing applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109759. [PMID: 31349449 DOI: 10.1016/j.msec.2019.109759] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/22/2019] [Accepted: 05/14/2019] [Indexed: 12/11/2022]
Abstract
Transition metals (TM) are essential microelements with various biological functions demanded in tissue regeneration applications. Little is known about therapeutic potential of TM within soft hydrogel biomaterials. The soluble divalent TM, such as Zn, Cu, Mn and Co, were stably incorporated into gelatin network during cryogelation. TM content in the resultant cryogels varied from 0.1 × 103 to 11.8 × 103 ppm, depending on the TM type and concentration in the reaction solution. Zn component was uniformly complexed with the gelatin scaffold according to elemental imaging, increasing the swelling of polymer walls and the G'/G″ values and also decreasing the size of cryogel macro-pores. Zn-doped cryogels supported migration of human skin fibroblasts (HSF); only upper Zn content of 11.8 × 103 ppm in the scaffold caused c.a. 50% inhibition of cell growth. Zn ions solubilized in culture medium were more active towards HSF (IC50 ≈ 0.3 mM). Treatment of splinted full-skin excisional wounds in rats with the Zn-doped and non-doped cryogels showed that Zn considerably promoted passing inflammatory/proliferation phases of healing process, inducing more intense dermis formation and structuration. The results show the feasibility of development of cryogel based formulations with different TM and support high phase-specific ability of the Zn-gelatin cryogels to repair acute wounds.
Collapse
Affiliation(s)
- Duong Luong
- Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Abdulla A Yergeshov
- Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Mohamed Zoughaib
- Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Farida R Sadykova
- Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Bulat I Gareev
- Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Irina N Savina
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK
| | - Timur I Abdullin
- Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia.
| |
Collapse
|
86
|
Hoshiba T. Decellularized Extracellular Matrix for Cancer Research. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1311. [PMID: 31013621 PMCID: PMC6515435 DOI: 10.3390/ma12081311] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/19/2019] [Accepted: 04/20/2019] [Indexed: 12/11/2022]
Abstract
Genetic mutation and alterations of intracellular signaling have been focused on to understand the mechanisms of oncogenesis and cancer progression. Currently, it is pointed out to consider cancer as tissues. The extracellular microenvironment, including the extracellular matrix (ECM), is important for the regulation of cancer cell behavior. To comprehensively investigate ECM roles in the regulation of cancer cell behavior, decellularized ECM (dECM) is now used as an in vitro ECM model. In this review, I classify dECM with respect to its sources and summarize the preparation and characterization methods for dECM. Additionally, the examples of cancer research using the dECM were introduced. Finally, future perspectives of cancer studies with dECM are described in the conclusions.
Collapse
Affiliation(s)
- Takashi Hoshiba
- Biotechnology Group, Tokyo Metropolitan Industrial Technology Research Institute, Koto-ku, Tokyo 135-0064, Japan.
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba 305-0044, Ibaraki, Japan.
| |
Collapse
|
87
|
Ali M, PR AK, Yoo JJ, Zahran F, Atala A, Lee SJ. A Photo-Crosslinkable Kidney ECM-Derived Bioink Accelerates Renal Tissue Formation. Adv Healthc Mater 2019; 8:e1800992. [PMID: 30725520 DOI: 10.1002/adhm.201800992] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 01/20/2019] [Indexed: 11/10/2022]
Abstract
3D bioprinting strategies in tissue engineering aim to fabricate clinically applicable tissue constructs that can replace the damaged or diseased tissues and organs. One of the main prerequisites in 3D bioprinting is finding an appropriate bioink that provides a tissue-specific microenvironment supporting the cellular growth and maturation. In this respect, decellularized extracellular matrix (dECM)-derived hydrogels have been considered as bioinks for the cell-based bioprinting due to their capability to inherit the intrinsic cues from native ECM. Herein, a photo-crosslinkable kidney ECM-derived bioink (KdECMMA) is developed that could provide a kidney-specific microenvironment for renal tissue bioprinting. Porcine whole kidneys are decellularized through a perfusion method, dissolved in an acid solution, and chemically modified by methacrylation. A KdECMMA-based bioink is formulated and evaluated for rheological properties and printability for the printing process. The results show that the bioprinted human kidney cells in the KdECMMA bioink are highly viable and mature with time. Moreover, the bioprinted renal constructs exhibit the structural and functional characteristics of the native renal tissue. The potential of the tissue-specific ECM-derived bioink is demonstrated for cell-based bioprinting that could enhance the cellular maturation and eventually tissue formation.
Collapse
Affiliation(s)
- Mohamed Ali
- Wake Forest Institute for Regenerative MedicineWake Forest School of MedicineMedical Center Boulevard Winston‐Salem NC 27157 USA
- Department of ChemistryFaculty of ScienceZagazig University Zagazig Sharkia 44519 Egypt
| | - Anil Kumar PR
- Wake Forest Institute for Regenerative MedicineWake Forest School of MedicineMedical Center Boulevard Winston‐Salem NC 27157 USA
| | - James J. Yoo
- Wake Forest Institute for Regenerative MedicineWake Forest School of MedicineMedical Center Boulevard Winston‐Salem NC 27157 USA
- School of Biomedical Engineering and SciencesWake Forest University‐Virginia Tech Winston‐Salem NC 27157 USA
| | - Faten Zahran
- Department of ChemistryFaculty of ScienceZagazig University Zagazig Sharkia 44519 Egypt
| | - Anthony Atala
- Wake Forest Institute for Regenerative MedicineWake Forest School of MedicineMedical Center Boulevard Winston‐Salem NC 27157 USA
- School of Biomedical Engineering and SciencesWake Forest University‐Virginia Tech Winston‐Salem NC 27157 USA
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative MedicineWake Forest School of MedicineMedical Center Boulevard Winston‐Salem NC 27157 USA
- School of Biomedical Engineering and SciencesWake Forest University‐Virginia Tech Winston‐Salem NC 27157 USA
| |
Collapse
|
88
|
Heath DE. A Review of Decellularized Extracellular Matrix Biomaterials for Regenerative Engineering Applications. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019. [DOI: 10.1007/s40883-018-0080-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
89
|
Novoseletskaya ES, Grigorieva OA, Efimenko AY, Kalinina NI. Extracellular Matrix in the Regulation of Stem Cell Differentiation. BIOCHEMISTRY (MOSCOW) 2019; 84:232-240. [DOI: 10.1134/s0006297919030052] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
90
|
Dempsey SG, Miller CH, Hill RC, Hansen KC, May BCH. Functional Insights from the Proteomic Inventory of Ovine Forestomach Matrix. J Proteome Res 2019; 18:1657-1668. [DOI: 10.1021/acs.jproteome.8b00908] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sandi G. Dempsey
- Aroa Biosurgery Limited, Airport Oaks, Auckland 2022, New Zealand
| | | | - Ryan C. Hill
- Omix Technologies LLC, Bioscience 1, 12635 E. Montview Blvd. Suite 100, Aurora, Colorado 80045, United States
| | - Kirk C. Hansen
- Omix Technologies LLC, Bioscience 1, 12635 E. Montview Blvd. Suite 100, Aurora, Colorado 80045, United States
| | | |
Collapse
|
91
|
Baroncelli M, Fuhler GM, van de Peppel J, Zambuzzi WF, van Leeuwen JP, van der Eerden BCJ, Peppelenbosch MP. Human mesenchymal stromal cells in adhesion to cell-derived extracellular matrix and titanium: Comparative kinome profile analysis. J Cell Physiol 2019; 234:2984-2996. [PMID: 30058720 PMCID: PMC6585805 DOI: 10.1002/jcp.27116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 07/02/2018] [Indexed: 12/28/2022]
Abstract
The extracellular matrix (ECM) physically supports cells and influences stem cell behaviour, modulating kinase-mediated signalling cascades. Cell-derived ECMs have emerged in bone regeneration as they reproduce physiological tissue-architecture and ameliorate mesenchymal stromal cell (MSC) properties. Titanium scaffolds show good mechanical properties, facilitate cell adhesion, and have been routinely used for bone tissue engineering (BTE). We analyzed the kinomic signature of human MSCs in adhesion to an osteopromotive osteoblast-derived ECM, and compared it to MSCs on titanium. PamChip kinase-array analysis revealed 63 phosphorylated peptides on ECM and 59 on titanium, with MSCs on ECM exhibiting significantly higher kinase activity than on titanium. MSCs on the two substrates showed overlapping kinome profiles, with activation of similar signalling pathways (FAK, ERK, and PI3K signalling). Inhibition of PI3K signalling in cells significantly reduced adhesion to ECM and increased the number of nonadherent cells on both substrates. In summary, this study comprehensively characterized the kinase activity in MSCs on cell-derived ECM and titanium, highlighting the role of PI3K signalling in kinomic changes regulating osteoblast viability and adhesion. Kinome profile analysis represents a powerful tool to select pathways to better understand cell behaviour. Osteoblast-derived ECM could be further investigated as titanium scaffold-coating to improve BTE.
Collapse
Affiliation(s)
- Marta Baroncelli
- Department of Internal Medicine, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Gwenny M. Fuhler
- Department of Gastroenterology and Hepatology, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Jeroen van de Peppel
- Department of Internal Medicine, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Willian F. Zambuzzi
- Laboratorio de Bioensaios e Dinâmica Celular, Departamento de Quimica e BioquimicaInstituto de Biociências, Universidade Estadual Paulista‐UNESPSão PauloBrazil
| | - Johannes P. van Leeuwen
- Department of Internal Medicine, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Bram C. J. van der Eerden
- Department of Internal Medicine, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Maikel P. Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| |
Collapse
|
92
|
Karnik T, Dempsey SG, Jerram MJ, Nagarajan A, Rajam R, May BCH, Miller CH. Ionic silver functionalized ovine forestomach matrix - a non-cytotoxic antimicrobial biomaterial for tissue regeneration applications. Biomater Res 2019; 23:6. [PMID: 30834142 PMCID: PMC6387525 DOI: 10.1186/s40824-019-0155-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/06/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Antimicrobial technologies, including silver-containing medical devices, are increasingly utilized in clinical regimens to mitigate risks of microbial colonization. Silver-functionalized resorbable biomaterials for use in wound management and tissue regeneration applications have a narrow therapeutic index where antimicrobial effectiveness may be outweighed by adverse cytotoxicity. We examined the effects of ionic silver functionalization of an extracellular matrix (ECM) biomaterial derived from ovine forestomach (OFM-Ag) in terms of material properties, antimicrobial effectiveness and cytotoxicity profile. METHODS Material properties of OFM-Ag were assessed by via biochemical analysis, microscopy, atomic absorption spectroscopy (AAS) and differential scanning calorimetry. The silver release profile of OFM-Ag was profiled by AAS and antimicrobial effectiveness testing utilized to determine the minimum effective concentration of silver in OFM-Ag in addition to the antimicrobial spectrum and wear time. Biofilm prevention properties of OFM-Ag in comparison to silver containing collagen dressing materials was quantified via in vitro crystal violet assay using a polymicrobial model. Toxicity of ionic silver, OFM-Ag and silver containing collagen dressing materials was assessed toward mammalian fibroblasts using elution cytoxicity testing. RESULTS OFM-Ag retained the native ECM compositional and structural characteristic of non-silver functionalized ECM material while imparting broad spectrum antimicrobial effectiveness toward 11 clinically relevant microbial species including fungi and drug resistant strains, maintaining effectiveness over a wear time duration of 7-days. OFM-Ag demonstrated significant prevention of polymicrobial biofilm formation compared to non-antimicrobial and silver-containing collagen dressing materials. Where silver-containing collagen dressing materials exhibited cytotoxic effects toward mammalian fibroblasts, OFM-Ag was determined to be non-cytotoxic, silver elution studies indicated sustained retention of silver in OFM-Ag as a possible mechanism for the attenuated cytotoxicity. CONCLUSIONS This work demonstrates ECM biomaterials may be functionalized with silver to favourably shift the balance between detrimental cytotoxic potential and beneficial antimicrobial effects, while preserving the ECM structure and function of utility in tissue regeneration applications.
Collapse
Affiliation(s)
- Tanvi Karnik
- Aroa Biosurgery, 2 Kingsford Smith Place, PO Box 107111, Auckland Airport, Auckland, 2150 New Zealand
| | - Sandi G. Dempsey
- Aroa Biosurgery, 2 Kingsford Smith Place, PO Box 107111, Auckland Airport, Auckland, 2150 New Zealand
| | - Micheal J. Jerram
- Aroa Biosurgery, 2 Kingsford Smith Place, PO Box 107111, Auckland Airport, Auckland, 2150 New Zealand
| | - Arun Nagarajan
- Aroa Biosurgery, 2 Kingsford Smith Place, PO Box 107111, Auckland Airport, Auckland, 2150 New Zealand
| | - Ravindra Rajam
- Aroa Biosurgery, 2 Kingsford Smith Place, PO Box 107111, Auckland Airport, Auckland, 2150 New Zealand
| | - Barnaby C. H. May
- Aroa Biosurgery, 2 Kingsford Smith Place, PO Box 107111, Auckland Airport, Auckland, 2150 New Zealand
| | - Christopher H. Miller
- Aroa Biosurgery, 2 Kingsford Smith Place, PO Box 107111, Auckland Airport, Auckland, 2150 New Zealand
| |
Collapse
|
93
|
Compositional and structural analysis of glycosaminoglycans in cell-derived extracellular matrices. Glycoconj J 2019; 36:141-154. [PMID: 30637588 DOI: 10.1007/s10719-019-09858-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/27/2018] [Accepted: 01/03/2019] [Indexed: 02/07/2023]
Abstract
The extracellular matrix (ECM) is a highly dynamic and complex meshwork of proteins and glycosaminoglycans (GAGs) with a crucial role in tissue homeostasis and organization not only by defining tissue architecture and mechanical properties, but also by providing chemical cues that regulate major biological processes. GAGs are associated with important physiological functions, acting as modulators of signaling pathways regulating several cellular processes such as cell growth and differentiation. Recently, in vitro fabricated cell-derived ECM have emerged as promising materials for regenerative medicine due to their ability of better recapitulate the native ECM-like composition and structure, without the limitations of availability and pathogen transfer risks of tissue-derived ECM scaffolds. However, little is known about the molecular and more specifically, GAG composition of these cell-derived ECM. In this study, three different cell-derived ECM were produced in vitro and characterized in terms of their GAG content, composition and sulfation patterns using a highly sensitive liquid chromatography-tandem mass spectrometry technique. Distinct GAG compositions and disaccharide sulfation patterns were verified for the different cell-derived ECM. Additionally, the effect of decellularization method on the GAG and disaccharide relative composition was also assessed. In summary, the method presented here offers a novel approach to determine the GAG composition of cell-derived ECM, which we believe is critical for a better understanding of ECM role in directing cellular responses and has the potential for generating important knowledge to use in the development of novel ECM-like biomaterials for tissue engineering applications.
Collapse
|
94
|
Decellularization Concept in Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1212:71-85. [DOI: 10.1007/5584_2019_338] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
95
|
Duru LN, Quan Z, Qazi TJ, Qing H. Stem cells technology: a powerful tool behind new brain treatments. Drug Deliv Transl Res 2018; 8:1564-1591. [PMID: 29916013 DOI: 10.1007/s13346-018-0548-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Stem cell research has recently become a hot research topic in biomedical research due to the foreseen unlimited potential of stem cells in tissue engineering and regenerative medicine. For many years, medicine has been facing intense challenges, such as an insufficient number of organ donations that is preventing clinicians to fulfill the increasing needs. To try and overcome this regrettable matter, research has been aiming at developing strategies to facilitate the in vitro culture and study of stem cells as a tool for tissue regeneration. Meanwhile, new developments in the microfluidics technology brought forward emerging cell culture applications that are currently allowing for a better chemical and physical control of cellular microenvironment. This review presents the latest developments in stem cell research that brought new therapies to the clinics and how the convergence of the microfluidics technology with stem cell research can have positive outcomes on the fields of regenerative medicine and high-throughput screening. These advances will bring new translational solutions for drug discovery and will upgrade in vitro cell culture to a new level of accuracy and performance. We hope this review will provide new insights into the understanding of new brain treatments from the perspective of stem cell technology especially regarding regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Lucienne N Duru
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhenzhen Quan
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Talal Jamil Qazi
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Hong Qing
- School of Life Science, Beijing Institute of Technology, Beijing, China. .,Beijing Key Laboratory of Separation and Analysis in Biomedical and Pharmaceuticals, Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China.
| |
Collapse
|
96
|
Sesli M, Akbay E, Onur MA. Decellularization of rat adipose tissue, diaphragm, and heart: a comparison of two decellularization methods. Turk J Biol 2018; 42:537-547. [PMID: 30983872 PMCID: PMC6451849 DOI: 10.3906/biy-1807-109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Decellularization is a process that involves the removal of cellular material from the tissues and organs while maintaining the structural, functional, and mechanical properties of extracellular matrix. The purpose of this study was to carry out decellularization of rat adipose tissue, diaphragm, and heart by using two different methods in order to compare their efficiency and investigate proliferation profiles of rat adipose-tissue-derived mesenchymal stem cells (AdMSCs) on these scaffolds. Tissues were treated with an optimized detergent-based decellularization (Method A) and a freeze-and-thaw-based decellularization (Method B). AdMSCs were then seeded on scaffolds having a density of 2 × 105 cells/scaffold and AO/PI double-staining and MTT assays were performed in order to determine cell viability. In this study, which is the first research comparing two methods of decellularization of an adipose tissue, diaphragm, and heart scaffolds with AdMSCs, Method A provided efficient decellularization in these three tissues and it was shown that these porous scaffolds were cyto-compatible for the cells. Method B caused severe tissue damage in diaphragm and insufficient decellularization in heart whereas it also resulted in cyto-compatible adipose tissue scaffolds.
Collapse
Affiliation(s)
- Melis Sesli
- Department of Biology, Faculty of Science, Hacettepe University , Ankara , Turkey
| | - Esin Akbay
- Department of Biology, Faculty of Science, Hacettepe University , Ankara , Turkey
| | - Mehmet Ali Onur
- Department of Biology, Faculty of Science, Hacettepe University , Ankara , Turkey
| |
Collapse
|
97
|
Monteiro CF, Custódio CA, Mano JF. Three-Dimensional Osteosarcoma Models for Advancing Drug Discovery and Development. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Cátia F. Monteiro
- Department of Chemistry, CICECO; University of Aveiro, Campus Universitário de Santiago; 3810-193 Aveiro Portugal
| | - Catarina A. Custódio
- Department of Chemistry, CICECO; University of Aveiro, Campus Universitário de Santiago; 3810-193 Aveiro Portugal
| | - João F. Mano
- Department of Chemistry, CICECO; University of Aveiro, Campus Universitário de Santiago; 3810-193 Aveiro Portugal
| |
Collapse
|
98
|
da Palma RK, Fratini P, Schiavo Matias GS, Cereta AD, Guimarães LL, Anunciação ARDA, de Oliveira LVF, Farre R, Miglino MA. Equine lung decellularization: a potential approach for in vitro modeling the role of the extracellular matrix in asthma. J Tissue Eng 2018; 9:2041731418810164. [PMID: 30450188 PMCID: PMC6236489 DOI: 10.1177/2041731418810164] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/10/2018] [Indexed: 12/22/2022] Open
Abstract
Contrary to conventional research animals, horses naturally develop asthma, a
disease in which the extracellular matrix of the lung plays a significant role.
Hence, the horse lung extracellular matrix appears to be an ideal candidate
model for in vitro studying the mechanisms and potential treatments for asthma.
However, so far, such model to study cell–extracellular matrix interactions in
asthma has not been developed. The aim of this study was to establish a protocol
for equine lung decellularization that maintains the architecture of the
extracellular matrix and could be used in the future as an in vitro model for
therapeutic treatment in asthma. For this the equine lungs were decellularized
by sodium dodecyl sulfate detergent perfusion at constant gravitational pressure
of 30 cmH2O. Lung scaffolds were assessed by immunohistochemistry
(collagen I, III, IV, laminin, and fibronectin), scanning electron microscopy,
and DNA quantification. Their mechanical property was assessed by measuring lung
compliance using the super-syringe technique. The optimized protocol of lung
equine decellularization was effective to remove cells (19.8 ng/mg) and to
preserve collagen I, III, IV, laminin, and fibronectin. Moreover, scanning
electron microscopy analysis demonstrated maintained microscopic lung
structures. The decellularized lungs presented lower compliance compared to
native lung. In conclusion we described a reproducible decellularization
protocol that can produce an acellular equine lung feasible for the future
development of novel treatment strategies in asthma.
Collapse
Affiliation(s)
- Renata Kelly da Palma
- Post Graduate Program in Science of Rehabilitation, University Nove de Julho (UNINOVE), São Paulo, Brazil.,Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Paula Fratini
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Gustavo Sá Schiavo Matias
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Andressa Daronco Cereta
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Leticia Lopes Guimarães
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | | | | | - Ramon Farre
- Unitat Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Maria Angelica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
99
|
Shakouri-Motlagh A, O'Connor AJ, Kalionis B, Heath DE. Improved ex vivo expansion of mesenchymal stem cells on solubilized acellular fetal membranes. J Biomed Mater Res A 2018; 107:232-242. [PMID: 30378728 DOI: 10.1002/jbm.a.36557] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/17/2018] [Accepted: 09/28/2018] [Indexed: 01/01/2023]
Abstract
Coatings produced from extracellular matrixes (ECMs) have emerged as promising surfaces for the improved ex vivo expansion of mesenchymal stem cells (MSCs). However, identifying a readily available source of ECM to generate these coatings is currently the bottleneck of this technology. In this study, we assessed if ECM coatings derived from decellularized fetal membranes were a suitable substrate for MSC expansion. We separated and decellularized the two main components of the fetal membranes, the amnion and the chorion. Characterization of the decellularized membranes revealed that each membrane component has a distinct composition, implying that coatings produced from these materials would have unique biological properties. The membranes were processed further to produce solubilized forms of the decellularized amniotic membrane (s-dAM) and decellularized chorionic membrane (s-dCM). On s-dAM coatings decidual MSCs (DMSC) were more proliferative than those cultured on tissue culture plastic alone or on Matrigel coatings; were smaller in size (a measure of MSC potency); exhibited greater adipogenic differentiation capacity; and improved osteogenic capacity. Additionally, long term culture studies showed late passage DMSCs (passage 8) cultured on s-dAM showed a decrease in cell diameter over three passages. These data support the use of s-dAM as a substrate for improved MSC expansion. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 232-242, 2019.
Collapse
Affiliation(s)
- Aida Shakouri-Motlagh
- Department of Biomedical Engineering, Particulate Fluids Processing Centre, The University of Melbourne, Parkville, Victoria, Australia.,Department of Maternal-Fetal Medicine Pregnancy Research Centre, Royal Women's Hospital, Parkville, Victoria, Australia
| | - Andrea J O'Connor
- Department of Biomedical Engineering, Particulate Fluids Processing Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Bill Kalionis
- Department of Maternal-Fetal Medicine Pregnancy Research Centre, Royal Women's Hospital, Parkville, Victoria, Australia.,University of Melbourne Department of Obstetrics and Gynaecology, Royal Women's Hospital, Parkville, Victoria, Australia
| | - Daniel E Heath
- Department of Biomedical Engineering, Particulate Fluids Processing Centre, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
100
|
Correia CR, Reis RL, Mano JF. Design Principles and Multifunctionality in Cell Encapsulation Systems for Tissue Regeneration. Adv Healthc Mater 2018; 7:e1701444. [PMID: 30102458 DOI: 10.1002/adhm.201701444] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 07/16/2018] [Indexed: 12/12/2022]
Abstract
Cell encapsulation systems are being increasingly applied as multifunctional strategies to regenerate tissues. Lessons afforded with encapsulation systems aiming to treat endocrine diseases seem to be highly valuable for the tissue engineering and regenerative medicine (TERM) systems of today, in which tissue regeneration and biomaterial integration are key components. Innumerous multifunctional systems for cell compartmentalization are being proposed to meet the specific needs required in the TERM field. Herein is reviewed the variable geometries proposed to produce cell encapsulation strategies toward tissue regeneration, including spherical and fiber-shaped systems, and other complex shapes and arrangements that better mimic the highly hierarchical organization of native tissues. The application of such principles in the TERM field brings new possibilities for the development of highly complex systems, which holds tremendous promise for tissue regeneration. The complex systems aim to recreate adequate environmental signals found in native tissue (in particular during the regenerative process) to control the cellular outcome, and conferring multifunctional properties, namely the incorporation of bioactive molecules and the ability to create smart and adaptative systems in response to different stimuli. The new multifunctional properties of such systems that are being employed to fulfill the requirements of the TERM field are also discussed.
Collapse
Affiliation(s)
- Clara R. Correia
- 3B's Research Group – Biomaterials, Biodegradables, and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark 4805‐017 Barco Guimarães Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Rui L. Reis
- 3B's Research Group – Biomaterials, Biodegradables, and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark 4805‐017 Barco Guimarães Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| | - João F. Mano
- 3B's Research Group – Biomaterials, Biodegradables, and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark 4805‐017 Barco Guimarães Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| |
Collapse
|