51
|
Girish V, Pazzi J, Li A, Subramaniam AB. Fabrics of Diverse Chemistries Promote the Formation of Giant Vesicles from Phospholipids and Amphiphilic Block Copolymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9264-9273. [PMID: 31276413 DOI: 10.1021/acs.langmuir.9b01621] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Giant vesicles composed of phospholipids and amphiphilic block copolymers are useful for biomimetic drug delivery, for biophysical experiments, and for creating synthetic cells. Here, we report that large numbers of giant unilamellar vesicles (GUVs) can be formed on a broad range of fabrics composed of entangled cylindrical fibers. We show that fabrics woven from fibers of silk, wool, rayon, nylon, polyester, and fiberglass promote the formation of GUVs and giant polymer vesicles (polymersomes) in aqueous solutions. The result extends significantly previous reports on the formation of GUVs on cellulose paper and cotton fabric. Giant vesicles formed on all the fabrics from lipids with various headgroup charges, chains lengths, and chain saturations. Giant vesicles could be formed from multicomponent lipid mixtures, from extracts of plasma membranes, and from amphiphilic diblock and triblock copolymers, in both low ionic strength and high ionic strength solutions. Intriguingly, statistical characterization using a model lipid, 1,2-dioleoyl-sn-glycero-3-phosphocholine, revealed that the majority of the fabrics yielded similar average counts of vesicles. Additionally, the vesicle populations obtained from the different fabrics had similar distributions of sizes. Fabrics are ubiquitous in society in consumer, technical, and biomedical applications. The discovery herein that biomimetic GUVs grow on fabrics opens promising new avenues in vesicle-based smart materials design.
Collapse
Affiliation(s)
- Vaishnavi Girish
- Department of Bioengineering , University of California, Merced , Merced , California 95343 , United States
| | - Joseph Pazzi
- Department of Bioengineering , University of California, Merced , Merced , California 95343 , United States
| | - Alexander Li
- Department of Bioengineering , University of California, Merced , Merced , California 95343 , United States
| | - Anand Bala Subramaniam
- Department of Bioengineering , University of California, Merced , Merced , California 95343 , United States
| |
Collapse
|
52
|
Pazzi J, Xu M, Subramaniam AB. Size Distributions and Yields of Giant Vesicles Assembled on Cellulose Papers and Cotton Fabric. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7798-7804. [PMID: 30444125 DOI: 10.1021/acs.langmuir.8b03076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Lamellar phospholipid stacks on cellulose paper vesiculate to form cell-like giant unilamellar vesicles (GUVs) in aqueous solutions. The sizes and yields of the GUVs that result and their relationship to the properties of the cellulose fibers are unknown. Here, we report the characteristics of GUVs produced on four different cellulose substrates, three disordered porous media consisting of randomly entangled cellulose fibers (high-purity cellulose filter papers of different effective porosities), and an ordered network of weaved cellulose fibers (cotton fabric). Large numbers of GUVs formed on all four substrates. This result demonstrates for the first time that GUVs form on cotton fabric. Despite differences in the effective porosities and the configuration of the cellulose fibers, all four substrates yielded populations of GUVs with similar distribution of diameters. The distribution of diameters of the GUVs had a single well-defined peak and a right tail. Ninety-eight percent of the GUVs had diameters less than the average diameter of the cellulose fibers (∼20 micrometers). Cotton fabric produced the highest yield of GUVs with the lowest sample-to-sample variation. Moreover, cotton fabric is reusable. Fabric used sequentially produced similar crops of GUVs at each cycle. At the end of the sequence, there was no apparent change in the cellulose fibers. Cellulose fibers thus promote the vesiculation of lamellar phospholipid stacks in aqueous solutions.
Collapse
Affiliation(s)
- Joseph Pazzi
- Department of Bioengineering , University of California, Merced , Merced , California 95343 , United States
| | - Melissa Xu
- Department of Bioengineering , University of California, Merced , Merced , California 95343 , United States
| | - Anand Bala Subramaniam
- Department of Bioengineering , University of California, Merced , Merced , California 95343 , United States
| |
Collapse
|
53
|
Bacteriophage gene products as potential antimicrobials against tuberculosis. Biochem Soc Trans 2019; 47:847-860. [PMID: 31085613 DOI: 10.1042/bst20180506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/02/2019] [Accepted: 04/08/2019] [Indexed: 01/20/2023]
Abstract
Tuberculosis (TB) is recognised as one of the most pressing global health threats among infectious diseases. Bacteriophages are adapted for killing of their host, and they were exploited in antibacterial therapy already before the discovery of antibiotics. Antibiotics as broadly active drugs overshadowed phage therapy for a long time. However, owing to the rapid spread of antibiotic resistance and the increasing complexity of treatment of drug-resistant TB, mycobacteriophages are being studied for their antimicrobial potential. Besides phage therapy, which is the administration of live phages to infected patients, the development of drugs of phage origin is gaining interest. This path of medical research might provide us with a new pool of previously undiscovered inhibition mechanisms and molecular interactions which are also of interest in basic research of cellular processes, such as transcription. The current state of research on mycobacteriophage-derived anti-TB treatment is reviewed in comparison with inhibitors from other phages, and with focus on transcription as the host target process.
Collapse
|
54
|
Rideau E, Wurm FR, Landfester K. Self‐Assembly of Giant Unilamellar Vesicles by Film Hydration Methodologies. ACTA ACUST UNITED AC 2019; 3:e1800324. [DOI: 10.1002/adbi.201800324] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/01/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Emeline Rideau
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Frederik R. Wurm
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | | |
Collapse
|
55
|
O'Sullivan L, Bolton D, McAuliffe O, Coffey A. Bacteriophages in Food Applications: From Foe to Friend. Annu Rev Food Sci Technol 2019; 10:151-172. [PMID: 30633564 DOI: 10.1146/annurev-food-032818-121747] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteriophages (phages) have traditionally been considered troublesome in food fermentations, as they are an important cause of starter-culture failure and trigger significant financial losses. In addition, from an evolutionary perspective, phages have contributed to the pathogenicity of many bacteria through transduction of virulence genes. In contrast, phages have played an important positive role in molecular biology. Moreover, these agents are increasingly being recognized as a potential solution to the detection and biocontrol of various undesirable bacteria, which cause either spoilage of food materials, decreased microbiological safety of foods, or infectious diseases in food animals and crops. The documented successful applications of phages and various phage-derived molecules are discussed in this review, as are many promising new uses that are currently under development.
Collapse
Affiliation(s)
- Lisa O'Sullivan
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Ireland;
| | | | | | - Aidan Coffey
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Ireland; .,APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
56
|
Cinquerrui S, Mancuso F, Vladisavljević GT, Bakker SE, Malik DJ. Nanoencapsulation of Bacteriophages in Liposomes Prepared Using Microfluidic Hydrodynamic Flow Focusing. Front Microbiol 2018; 9:2172. [PMID: 30258426 PMCID: PMC6144953 DOI: 10.3389/fmicb.2018.02172] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 08/23/2018] [Indexed: 12/19/2022] Open
Abstract
Increasing antibiotic resistance in pathogenic microorganisms has led to renewed interest in bacteriophage therapy in both humans and animals. A “Trojan Horse” approach utilizing liposome encapsulated phages may facilitate access to phagocytic cells infected with intracellular pathogens residing therein, e.g., to treat infections caused by Mycobacterium tuberculosis, Listeria, Salmonella, and Staphylococcus sp. Additionally, liposome encapsulated phages may adhere to and diffuse within mucosa harboring resistant bacteria which are challenges in treating respiratory and gastrointestinal infections. Orally delivered phages tend to have short residence times in the gastrointestinal tract due to clinical symptoms such as diarrhea; this may be addressed through mucoadhesion of liposomes. In the present study we have evaluated the use of a microfluidic based technique for the encapsulation of bacteriophages in liposomes having mean sizes between 100 and 300 nm. Encapsulation of two model phages was undertaken, an Escherichia coli T3 podovirus (size ~65 nm) and a myovirus Staphylococcus aureus phage K (capsid head ~80 nm and phage tail length ~200 nm). The yield of encapsulated T3 phages was 109 PFU/ml and for phage K was much lower at 105 PFU/ml. The encapsulation yield for E. coli T3 phages was affected by aggregation of T3 phages. S. aureus phage K was found to interact with the liposome lipid bilayer resulting in large numbers of phages bound to the outside of the formed liposomes instead of being trapped inside them. We were able to inactivate the liposome bound S. aureus K phages whilst retaining the activity of the encapsulated phages in order to estimate the yield of microfluidic encapsulation of large tailed phages. Previous published studies on phage encapsulation in liposomes may have overestimated the yield of encapsulated tailed phages. This overestimation may affect the efficacy of phage dose delivered at the site of infection. Externally bound phages would be inactivated in the stomach acid resulting in low doses of phages delivered at the site of infection further downstream in the gastrointestinal tract.
Collapse
Affiliation(s)
- Salvatore Cinquerrui
- Chemical Engineering Department, Loughborough University, Loughborough, United Kingdom
| | - Francesco Mancuso
- Chemical Engineering Department, Loughborough University, Loughborough, United Kingdom
| | | | - Saskia E Bakker
- Advanced Bioimaging Research Technology Platform, University of Warwick, Coventry, United Kingdom
| | - Danish J Malik
- Chemical Engineering Department, Loughborough University, Loughborough, United Kingdom
| |
Collapse
|
57
|
Chang RYK, Wallin M, Lin Y, Leung SSY, Wang H, Morales S, Chan HK. Phage therapy for respiratory infections. Adv Drug Deliv Rev 2018; 133:76-86. [PMID: 30096336 PMCID: PMC6226339 DOI: 10.1016/j.addr.2018.08.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/06/2018] [Accepted: 08/01/2018] [Indexed: 01/12/2023]
Abstract
A respiratory infection caused by antibiotic-resistant bacteria can be life-threatening. In recent years, there has been tremendous effort put towards therapeutic application of bacteriophages (phages) as an alternative or supplementary treatment option over conventional antibiotics. Phages are natural parasitic viruses of bacteria that can kill the bacterial host, including antibiotic-resistant bacteria. Inhaled phage therapy involves the development of stable phage formulations suitable for inhalation delivery followed by preclinical and clinical studies for assessment of efficacy, pharmacokinetics and safety. We presented an overview of recent advances in phage formulation for inhalation delivery and their efficacy in acute and chronic rodent respiratory infection models. We have reviewed and presented on the prospects of inhaled phage therapy as a complementary treatment option with current antibiotics and as a preventative means. Inhaled phage therapy has the potential to transform the prevention and treatment of bacterial respiratory infections, including those caused by antibiotic-resistant bacteria.
Collapse
Affiliation(s)
| | - Martin Wallin
- Faculty of Pharmaceutical Sciences, University of Copenhagen, Denmark
| | - Yu Lin
- Advanced Drug Delivery Group, School of Pharmacy, University of Sydney, Sydney, Australia
| | - Sharon Sui Yee Leung
- Advanced Drug Delivery Group, School of Pharmacy, University of Sydney, Sydney, Australia; Faculty of Pharmacy, The Chinese University of Hong Kong, Hong Kong, China
| | - Hui Wang
- Advanced Drug Delivery Group, School of Pharmacy, University of Sydney, Sydney, Australia
| | - Sandra Morales
- AmpliPhi Biosciences AU, Brookvale, Sydney, NSW, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, School of Pharmacy, University of Sydney, Sydney, Australia.
| |
Collapse
|
58
|
Leung SS, Morales S, Britton W, Kutter E, Chan HK. Microfluidic-assisted bacteriophage encapsulation into liposomes. Int J Pharm 2018; 545:176-182. [DOI: 10.1016/j.ijpharm.2018.04.063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/24/2018] [Accepted: 04/28/2018] [Indexed: 12/30/2022]
|
59
|
Chhibber S, Kaur J, Kaur S. Liposome Entrapment of Bacteriophages Improves Wound Healing in a Diabetic Mouse MRSA Infection. Front Microbiol 2018; 9:561. [PMID: 29651276 PMCID: PMC5884882 DOI: 10.3389/fmicb.2018.00561] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 03/12/2018] [Indexed: 01/21/2023] Open
Abstract
Diabetic populations are more prone to developing wound infections which results in poor and delayed wound healing. Infection with drug resistant organisms further worsen the situation, driving searches for alternative treatment approaches such as phage therapy. Major drawback of phage therapy, however, is low phage persistence in situ, suggesting further refinement of the approach. In the present work we address this issue by employing liposomes as delivery vehicles. A liposome entrapped phage cocktail was evaluated for its ability to resolve a Staphylococcus aureus-induced diabetic excission wound infection. Two characterized S. aureus specific lytic phages, MR-5 and MR-10 alone, in combination (cocktail), or entrapped in liposomes (versus as free phages) were assesed for their therapeutic efficacy in resolving diabetic wound infection. Mice treated with free phage cocktail showed significant reduction in wound bioburden, greater wound contraction and faster tissue healing than with free monophage therapy. However, to further enhance the availability of viable phages the encapsulation of phage cocktail in the liposomes was done. Results of in vitro stability studies and in vivo phage titer determination, suggests that liposomal entrapment of phage cocktail can lead to better phage persistence at the wound site. A 2 log increase in phage titre, however, was observed at the wound site with liposome entrapped as compared to the free phage cocktail, and this was associaed with increased rates of infection resolution and wound healing. Entrapment of phage cocktails within liposomes thus could represent an attractive approach for treatment of bacterial infections, not responding to antibiotis as increased phage persistence in vitro and in vivo at the wound site was observed.
Collapse
Affiliation(s)
- Sanjay Chhibber
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Jasjeet Kaur
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Sandeep Kaur
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
60
|
Furfaro LL, Chang BJ, Payne MS. Applications for Bacteriophage Therapy during Pregnancy and the Perinatal Period. Front Microbiol 2018; 8:2660. [PMID: 29375525 PMCID: PMC5768649 DOI: 10.3389/fmicb.2017.02660] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/20/2017] [Indexed: 12/19/2022] Open
Abstract
Pregnant women and their unborn children are a population that is particularly vulnerable to bacterial infection. Physiological changes that occur during pregnancy affect the way women respond to such infections and the options that clinicians have for treatment. Antibiotics are still considered the best option for active infections and a suitable prophylaxis for prevention of potential infections, such as vaginal/rectal Streptococcus agalactiae colonization prior to birth. The effect of such antibiotic use on the developing fetus, however, is still largely unknown. Recent research has suggested that the fetal gut microbiota plays a critical role in fetal immunologic programming. Hence, even minor alterations in this microbiota may have potentially significant downstream effects. An ideal antibacterial therapeutic for administration during pregnancy would be one that is highly specific for its target, leaving the surrounding microbiota intact. This review first provides a basic overview of the challenges a clinician faces when administering therapeutics to a pregnant patient and then goes on to explore common bacterial infections in pregnancy, use of antibiotics for treatment/prevention of such infections and the consequences of such treatment for the mother and infant. With this background established, the review then explores the potential for use of bacteriophage (phage) therapy as an alternative to antibiotics during the antenatal period. Many previous reviews have highlighted the revitalization of and potential for phage therapy for treatment of a range of bacterial infections, particularly in the context of the increasing threat of widespread antibiotic resistance. However, information on the potential for the use of phage therapeutics in pregnancy is lacking. This review aims to provide a thorough overview of studies of this nature and discuss the feasibility of bacteriophage use during pregnancy to treat and/or prevent bacterial infections.
Collapse
Affiliation(s)
- Lucy L. Furfaro
- Division of Obstetrics and Gynecology, School of Medicine, The University of Western Australia, Crawley, WA, Australia
| | - Barbara J. Chang
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Matthew S. Payne
- Division of Obstetrics and Gynecology, School of Medicine, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
61
|
Lapenkova MB, Smirnova NS, Rutkevich PN, Vladimirsky MA. Evaluation of the Efficiency of Lytic Mycobacteriophage D29 on the Model of M. tuberculosis-Infected Macrophage RAW 264 Cell Line. Bull Exp Biol Med 2018; 164:344-346. [PMID: 29313233 DOI: 10.1007/s10517-018-3986-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Indexed: 11/25/2022]
Abstract
Culture of mouse macrophages (RAW 264.7 ATCC strain) in wells of a 6-well plate was infected with M. tuberculosis in proportion of 15 mycobacteria per one macrophage and then treated with a lytic strain of mycobacteriophage D29. Antibacterial efficacy of mycobacteriophages was studied using D29 phage (activity 108 plaque-forming units/ml) previously purified by ion exchange chromatography. After single and double 24-h treatment, the lysed cultures of macrophages were inoculated onto Middlebrook 7H10 agar medium. The number of mycobacterial colonies in control and test wells (at least 3 wells in each group) was 300.178±12.500 and 36.0±5.4, respectively (p<0.01).
Collapse
Affiliation(s)
- M B Lapenkova
- Research Institute of Phthisiopulmonology, I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - N S Smirnova
- Research Institute of Phthisiopulmonology, I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - P N Rutkevich
- Research Institute of Experimental Cardiology, Russian Cardiology Research and Production Complex, Ministry of Health of the Russian Federation, Moscow, Russia
| | - M A Vladimirsky
- Research Institute of Phthisiopulmonology, I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia.
| |
Collapse
|
62
|
Malik DJ, Sokolov IJ, Vinner GK, Mancuso F, Cinquerrui S, Vladisavljevic GT, Clokie MR, Garton NJ, Stapley AG, Kirpichnikova A. Formulation, stabilisation and encapsulation of bacteriophage for phage therapy. Adv Colloid Interface Sci 2017; 249:100-133. [PMID: 28688779 DOI: 10.1016/j.cis.2017.05.014] [Citation(s) in RCA: 325] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/11/2017] [Accepted: 05/11/2017] [Indexed: 02/08/2023]
Abstract
Against a backdrop of global antibiotic resistance and increasing awareness of the importance of the human microbiota, there has been resurgent interest in the potential use of bacteriophages for therapeutic purposes, known as phage therapy. A number of phage therapy phase I and II clinical trials have concluded, and shown phages don't present significant adverse safety concerns. These clinical trials used simple phage suspensions without any formulation and phage stability was of secondary concern. Phages have a limited stability in solution, and undergo a significant drop in phage titre during processing and storage which is unacceptable if phages are to become regulated pharmaceuticals, where stable dosage and well defined pharmacokinetics and pharmacodynamics are de rigueur. Animal studies have shown that the efficacy of phage therapy outcomes depend on the phage concentration (i.e. the dose) delivered at the site of infection, and their ability to target and kill bacteria, arresting bacterial growth and clearing the infection. In addition, in vitro and animal studies have shown the importance of using phage cocktails rather than single phage preparations to achieve better therapy outcomes. The in vivo reduction of phage concentration due to interactions with host antibodies or other clearance mechanisms may necessitate repeated dosing of phages, or sustained release approaches. Modelling of phage-bacterium population dynamics reinforces these points. Surprisingly little attention has been devoted to the effect of formulation on phage therapy outcomes, given the need for phage cocktails, where each phage within a cocktail may require significantly different formulation to retain a high enough infective dose. This review firstly looks at the clinical needs and challenges (informed through a review of key animal studies evaluating phage therapy) associated with treatment of acute and chronic infections and the drivers for phage encapsulation. An important driver for formulation and encapsulation is shelf life and storage of phage to ensure reproducible dosages. Other drivers include formulation of phage for encapsulation in micro- and nanoparticles for effective delivery, encapsulation in stimuli responsive systems for triggered controlled or sustained release at the targeted site of infection. Encapsulation of phage (e.g. in liposomes) may also be used to increase the circulation time of phage for treating systemic infections, for prophylactic treatment or to treat intracellular infections. We then proceed to document approaches used in the published literature on the formulation and stabilisation of phage for storage and encapsulation of bacteriophage in micro- and nanostructured materials using freeze drying (lyophilization), spray drying, in emulsions e.g. ointments, polymeric microparticles, nanoparticles and liposomes. As phage therapy moves forward towards Phase III clinical trials, the review concludes by looking at promising new approaches for micro- and nanoencapsulation of phages and how these may address gaps in the field.
Collapse
|
63
|
Abedon ST. Bacteriophage Clinical Use as Antibacterial "Drugs": Utility and Precedent. Microbiol Spectr 2017; 5:10.1128/microbiolspec.bad-0003-2016. [PMID: 28840811 PMCID: PMC11687515 DOI: 10.1128/microbiolspec.bad-0003-2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Indexed: 12/25/2022] Open
Abstract
For phage therapy-the treatment of bacterial infections using bacterial viruses-a key issue is the conflict between apparent ease of clinical application, on the one hand, and on the other hand, numerous difficulties that can be associated with undertaking preclinical development. These conflicts between achieving efficacy in the real world versus rigorously understanding that efficacy should not be surprising because equivalent conflicts have been observed in applied biology for millennia: exploiting the inherent, holistic tendencies of useful systems, e.g., of dairy cows, inevitably is easier than modeling those systems or maintaining effectiveness while reducing such systems to isolated parts. Trial and error alone, in other words, can be a powerful means toward technological development. Undertaking trial and error-based programs, especially in the clinic, nonetheless is highly dependent on those technologies possessing both inherent safety and intrinsic tendencies toward effectiveness, but in this modern era we tend to forget that ideally there would exist antibacterials which could be thus developed, that is, with tendencies toward both safety and effectiveness, and which are even relatively inexpensive. Consequently, we tend to demand rigor as well as expense of development even to the point of potentially squandering such utility, were it to exist. In this review I lay out evidence that in phage therapy such potential, in fact, does exist. Advancement of phage therapy unquestionably requires effective regulation as well as rigorous demonstration of efficacy, but after nearly 100 years of clinical practice, perhaps not as much emphasis on strictly laboratory-based proof of principle.
Collapse
Affiliation(s)
- Stephen T Abedon
- Department of Microbiology, The Ohio State University, Mansfield, OH 44906
| |
Collapse
|
64
|
Recent advances in therapeutic delivery systems of bacteriophage and bacteriophage-encoded endolysins. Ther Deliv 2017. [DOI: 10.4155/tde-2017-0040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Antibiotics have been the cornerstone of clinical management of bacterial infection since their discovery in the early 20th century. However, their widespread and often indiscriminate use has now led to reports of multidrug resistance becoming globally commonplace. Bacteriophage therapy has undergone a recent revival in battle against pathogenic bacteria, as the self-replicating and co-evolutionary features of these predatory virions offer several advantages over conventional therapeutic agents. In particular, the use of targeted bacteriophage therapy from specialized delivery platforms has shown particular promise owing to the control of delivery location, administration conditions and dosage of the therapeutic cargo. This review presents an overview of the recent formulations and applications of such delivery vehicles as an innovative and elegant tool for bacterial control.
Collapse
|
65
|
Long H, Li X, Sang Z, Mei L, Yang T, Li Z, Zhou L, Zheng Y, He G, Guo G, Wang Z, Deng Y, Luo Y. Improving the pharmacokinetics and tissue distribution of pyrinezolid by self-assembled polymeric micelles. Colloids Surf B Biointerfaces 2017; 156:149-156. [PMID: 28527358 DOI: 10.1016/j.colsurfb.2017.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 05/04/2017] [Accepted: 05/06/2017] [Indexed: 02/05/2023]
Abstract
Antibiotic-resistance by bacteria is a growing global concern within the healthcare field, and it has provided an impetus for continued antimicrobial development. Pyrinezolid (PZ), a novel oxazolidinone compound, can effectively inhibit most gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE). Though PZ is a promising antimicrobial candidate, the druggability of PZ is limited by its poor water solubility. Therefore, the amphipathic mPEG-PLLA copolymer was used to prepare the pyrinezolid micelles (PZ-M). Herein, we described the preparation, pharmacokinetic properties, tissue distribution, efficacy and toxicity of PZ-M. In vivo studies show that PZ-M possess prolonged blood circulation time and increased oral bioavailability compared with free PZ. Meanwhile, PZ-M increase lung PZ exposure and reduce liver and kidney exposure, which indicates that PZ-M may enhance the efficacy in vivo in MRSA-related pneumonia patients and decrease potential renal and hepatic toxicities.
Collapse
Affiliation(s)
- Haiyue Long
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Xiaoling Li
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Zitai Sang
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Lan Mei
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Tao Yang
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Zicheng Li
- Department of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, PR China
| | - Liangxue Zhou
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Yu Zheng
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Gu He
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Gang Guo
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China.
| | - Zhenling Wang
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Yong Deng
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China.
| |
Collapse
|
66
|
Intracellular Staphylococcus aureus Control by Virulent Bacteriophages within MAC-T Bovine Mammary Epithelial Cells. Antimicrob Agents Chemother 2017; 61:AAC.01990-16. [PMID: 27919889 DOI: 10.1128/aac.01990-16] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/20/2016] [Indexed: 11/20/2022] Open
Abstract
Bacteriophages (phages) are known to effectively kill extracellular multiplying bacteria. The present study demonstrated that phages penetrated bovine mammary epithelial cells and cleared intracellular Staphylococcus aureus in a time-dependent manner. In particular, phage vB_SauM_JS25 reached the nucleus within 3 h postincubation. The phages had an endocytotic efficiency of 12%. This ability to kill intracellular host bacteria suggests the utility of phage-based therapies and may protect patients from recurrent infection and treatment failure.
Collapse
|
67
|
Brüssow H. Targeting the gut to protect the bladder: Oral Phage therapy approaches against urinaryEscherichia coliinfections? Environ Microbiol 2016; 18:2084-8. [DOI: 10.1111/1462-2920.13310] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Harald Brüssow
- Nestlé Research Center, Nutrition and Health Research Department, Host-Microbe Interaction; CH-1000 Lausanne 26 Switzerland
| |
Collapse
|