51
|
Ubago-Jiménez JL, Zurita-Ortega F, Puertas-Molero P, González-Valero G. Spanish Costaleros' Physical Activity and Their Quality of Life. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5641. [PMID: 33023151 PMCID: PMC7582451 DOI: 10.3390/s20195641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/25/2020] [Accepted: 09/30/2020] [Indexed: 11/20/2022]
Abstract
(1) Physical activity is one of the most influencing factors in people' quality of life. Likewise, the costaleros of the Holy Week of Andalusia (Spain) carry out an important effort with high intensity during an extended time without any preparation. This study was the aim of knowing the intensity of the physical activity practiced by the costaleros in relation to their quality of life. (2) A transversal study was carried out with 1057 costaleros in Andalusia (Spain), where 930 were male and 127 female, between the ages of 18-61 years old (31.26 ± 7.60). For this purpose, descriptive, inferential, and correlative analyses were developed. Accelerometers (ActiGraph) were used during the procession to know the intensity of physical activity and the SF-36 test to know the self-perceived state of health and quality of life. (3) The intensity of physical activity practiced by costaleros is moderate, and it is related with their quality of life. In addition, positive associations are found between general health and physical activity. (4) Participants' quality of life is associated with physical activity and freedom from injury. In addition, the measurement by accelerometry provides real data on the intensity of the effort made.
Collapse
Affiliation(s)
| | | | - Pilar Puertas-Molero
- Department of Didactics of Musical, Plastic and Corporal Expression, University of Granada, 18071 Granada, Spain; (J.L.U.-J.); (F.Z.-O.); (G.G.-V.)
| | | |
Collapse
|
52
|
Helland C, Midttun M, Saeland F, Haugvad L, Schäfer Olstad D, Solberg PA, Paulsen G. A strength-oriented exercise session required more recovery time than a power-oriented exercise session with equal work. PeerJ 2020; 8:e10044. [PMID: 33062443 PMCID: PMC7532781 DOI: 10.7717/peerj.10044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/04/2020] [Indexed: 01/25/2023] Open
Abstract
The present randomized cross-over controlled study aimed to compare the rate of recovery from a strength-oriented exercise session vs. a power-oriented session with equal work. Sixteen strength-trained individuals conducted one strength-oriented session (five repetitions maximum (RM)) and one power-oriented session (50% of 5RM) in randomized order. Squat jump (SJ), countermovement jump (CMJ), 20-m sprint, and squat and bench press peak power and estimated 1RMs were combined with measures of rate of perceived exertion (RPE) and perceived recovery status (PRS), before, immediately after and 24 and 48 h after exercise. Both sessions induced trivial to moderate performance decrements in all variables. Small reductions in CMJ height were observed immediately after both the strength-oriented session (7 ± 6%) and power-oriented session (5 ± 5%). Between 24 and 48 h after both sessions CMJ and SJ heights and 20 m sprint were back to baseline. However, in contrast to the power-oriented session, recovery was not complete 48 h after the strength-oriented session, as indicated by greater impairments in CMJ eccentric and concentric peak forces, SJ rate of force development (RFD) and squat peak power. In agreement with the objective performance measurements, RPE and PRS ratings demonstrated that the strength-oriented session was experienced more strenuous than the power-oriented session. However, these subjective measurements agreed poorly with performance measurements at the individual level. In conclusion, we observed a larger degree of neuromuscular impairment and longer recovery times after a strength-oriented session than after a power-oriented session with equal total work, measured by both objective and subjective assessments. Nonetheless, most differences were small or trivial after either session. It appears necessary to combine several tests and within-test analyses (e.g., CMJ height, power and force) to reveal such differences. Objective and subjective assessments of fatigue and recovery cannot be used interchangeably; rather they should be combined to give a meaningful status for an individual in the days after a resistance exercise session.
Collapse
Affiliation(s)
- Christian Helland
- Norwegian Olympic and Paralympic Committee and Confederation of Sports, Oslo, Norway
| | - Magnus Midttun
- Norwegian Olympic and Paralympic Committee and Confederation of Sports, Oslo, Norway
| | - Fredrik Saeland
- Norwegian Olympic and Paralympic Committee and Confederation of Sports, Oslo, Norway
| | - Lars Haugvad
- Norwegian Olympic and Paralympic Committee and Confederation of Sports, Oslo, Norway
| | | | - Paul Andre Solberg
- Norwegian Olympic and Paralympic Committee and Confederation of Sports, Oslo, Norway
| | - Gøran Paulsen
- Norwegian Olympic and Paralympic Committee and Confederation of Sports, Oslo, Norway
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
53
|
Acute Effects of Cluster and Rest Redistribution Set Structures on Mechanical, Metabolic, and Perceptual Fatigue During and After Resistance Training: A Systematic Review and Meta-analysis. Sports Med 2020; 50:2209-2236. [DOI: 10.1007/s40279-020-01344-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
54
|
Survey of Barbell Trajectory and Kinematics of the Snatch Lift from the 2015 World and 2017 Pan-American Weightlifting Championships. Sports (Basel) 2020; 8:sports8090118. [PMID: 32854406 PMCID: PMC7552656 DOI: 10.3390/sports8090118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 11/17/2022] Open
Abstract
Analysis of elite performances is important to elucidate the characteristics of effective weightlifting technique contributing to the highest level of achievement. The general technique of the weightlifting movements is well established. However, it is also apparent that weightlifting technique can differ based on athlete characteristics. Thus, existing technical models may not accurately reflect current technique of top performers or be applied generically to athletes of different skill, size, sex, or ability. Therefore, the purpose of this descriptive study was to update the scientific knowledge of snatch technique of top international weightlifters. This study used video analysis to determine barbell trajectory and kinematics of 319 successful snatch attempts from two major international competitions. Relative frequencies of barbell trajectory types differed based on competition, sex, category, and ranking. No statistical differences were observed among the top-three performers for either sex for most kinematic variables, and there were no overall discernible patterns of effect size differences for individual or clusters of kinematic variables. The results of this study indicate that weightlifting success can be achieved with a variety of technique profiles.
Collapse
|
55
|
Duggan JD, Moody J, Byrne PJ, Ryan L. Strength and Conditioning Recommendations for Female GAA Athletes: The Camogie Player. Strength Cond J 2020. [DOI: 10.1519/ssc.0000000000000577] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
56
|
Maestroni L, Read P, Bishop C, Turner A. Strength and Power Training in Rehabilitation: Underpinning Principles and Practical Strategies to Return Athletes to High Performance. Sports Med 2020; 50:239-252. [PMID: 31559567 DOI: 10.1007/s40279-019-01195-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Injuries have a detrimental impact on team and individual athletic performance. Deficits in maximal strength, rate of force development (RFD), and reactive strength are commonly reported following several musculoskeletal injuries. This article first examines the available literature to identify common deficits in fundamental physical qualities following injury, specifically strength, rate of force development and reactive strength. Secondly, evidence-based strategies to target a resolution of these residual deficits will be discussed to reduce the risk of future injury. Examples to enhance practical application and training programmes have also been provided to show how these can be addressed.
Collapse
Affiliation(s)
- Luca Maestroni
- Smuoviti, Viale Giulio Cesare, 29, 24121, Bergamo, BG, Italy.
- StudioErre, Via della Badia, 18, 25127, Brescia, BS, Italy.
| | - Paul Read
- Athlete Health and Performance Research Center, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | - Chris Bishop
- London Sport Institute, School of Science and Technology, Middlesex University, Greenlands Lane, London, UK
| | - Anthony Turner
- London Sport Institute, School of Science and Technology, Middlesex University, Greenlands Lane, London, UK
| |
Collapse
|
57
|
Effects of the Barbell Load on the Acceleration Phase during the Snatch in Elite Olympic Weightlifting. Sports (Basel) 2020; 8:sports8050059. [PMID: 32397110 PMCID: PMC7281229 DOI: 10.3390/sports8050059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 11/25/2022] Open
Abstract
The load-depended loss of vertical barbell velocity at the end of the acceleration phase limits the maximum weight that can be lifted. Thus, the purpose of this study was to analyze how increased barbell loads affect the vertical barbell velocity in the sub-phases of the acceleration phase during the snatch. It was hypothesized that the load-dependent velocity loss at the end of the acceleration phase is primarily associated with a velocity loss during the 1st pull. For this purpose, 14 male elite weightlifters lifted seven load-stages from 70–100% of their personal best in the snatch. The load–velocity relationship was calculated using linear regression analysis to determine the velocity loss at 1st pull, transition, and 2nd pull. A group mean data contrast analysis revealed the highest load-dependent velocity loss for the 1st pull (t = 1.85, p = 0.044, g = 0.49 [−0.05, 1.04]) which confirmed our study hypothesis. In contrast to the group mean data, the individual athlete showed a unique response to increased loads during the acceleration sub-phases of the snatch. With the proposed method, individualized training recommendations on exercise selection and loading schemes can be derived to specifically improve the sub-phases of the snatch acceleration phase. Furthermore, the results highlight the importance of single-subject assessment when working with elite athletes in Olympic weightlifting.
Collapse
|
58
|
Suchomel TJ, McKeever SM, McMahon JJ, Comfort P. The Effect of Training with Weightlifting Catching or Pulling Derivatives on Squat Jump and Countermovement Jump Force-Time Adaptations. J Funct Morphol Kinesiol 2020; 5:E28. [PMID: 33467244 PMCID: PMC7739439 DOI: 10.3390/jfmk5020028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 11/17/2022] Open
Abstract
The purpose of this study was to examine the changes in squat jump (SJ) and countermovement jump (CMJ) force-time curve characteristics following 10 weeks of training with either load-matched weightlifting catching (CATCH) or pulling derivatives (PULL) or pulling derivatives that included force- and velocity-specific loading (OL). Twenty-five resistance-trained men were randomly assigned to the CATCH, PULL, or OL groups. Participants completed a 10 week, group-specific training program. SJ and CMJ height, propulsion mean force, and propulsion time were compared at baseline and after 3, 7, and 10 weeks. In addition, time-normalized SJ and CMJ force-time curves were compared between baseline and after 10 weeks. No between-group differences were present for any of the examined variables, and only trivial to small changes existed within each group. The greatest improvements in SJ and CMJ height were produced by the OL and PULL groups, respectively, while only trivial changes were present for the CATCH group. These changes were underpinned by greater propulsion forces and reduced propulsion times. The OL group displayed significantly greater relative force during the SJ and CMJ compared to the PULL and CATCH groups, respectively. Training with weightlifting pulling derivatives may produce greater vertical jump adaptations compared to training with catching derivatives.
Collapse
Affiliation(s)
- Timothy J. Suchomel
- Department of Human Movement Sciences, Carroll University, Waukesha, WI 53186, USA;
- Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Salford, Greater Manchester M6 6PU, UK; (J.J.M.); (P.C.)
| | - Shana M. McKeever
- Department of Human Movement Sciences, Carroll University, Waukesha, WI 53186, USA;
| | - John J. McMahon
- Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Salford, Greater Manchester M6 6PU, UK; (J.J.M.); (P.C.)
| | - Paul Comfort
- Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Salford, Greater Manchester M6 6PU, UK; (J.J.M.); (P.C.)
- Centre for Exercise and Sports Science Research, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|
59
|
Soriano MA, Kipp K, Lake JP, Suchomel TJ, Marín PJ, Sainz De Baranda MP, Comfort P. Mechanical power production assessment during weightlifting exercises. A systematic review. Sports Biomech 2020; 22:633-659. [PMID: 32336212 DOI: 10.1080/14763141.2020.1747529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The assessment of the mechanical power production is of great importance for researchers and practitioners. The purpose of this review was to compare the differences in ground reaction force (GRF), kinematic, and combined (bar velocity x GRF) methods to assess mechanical power production during weightlifting exercises. A search of electronic databases was conducted to identify all publications up to 31 May 2019. The peak power output (PPO) was selected as the key variable. The exercises included in this review were clean variations, which includes the hang power clean (HPC), power clean (PC) and clean. A total of 26 articles met the inclusion criteria with 53.9% using the GRF, 38.5% combined, and 30.8% the kinematic method. Articles were evaluated and descriptively analysed to enable comparison between methods. The three methods have inherent methodological differences in the data analysis and measurement systems, which suggests that these methods should not be used interchangeably to assess PPO in Watts during weightlifting exercises. In addition, this review provides evidence and rationale for the use of the GRF to assess power production applied to the system mass while the kinematic method may be more appropriate when looking to assess only the power applied to the barbell.
Collapse
Affiliation(s)
- Marcos A Soriano
- Physical Activity and Sport Department, University of Murcia, Murcia, Spain.,Camilo José Cela University. Laboratory of Exercise Physiology, Madrid, Spain.,Directorate of Sport, Exercise and Physiotherapy, University of Salford, Salford UK
| | - Kristof Kipp
- Department of Exercise Science and Physical Therapy, Marquette University, Milwaukee, USA
| | - Jason P Lake
- Department of Sport and Exercise Sciences, University of Chichester, Chichester, UK
| | - Timothy J Suchomel
- Department of Human Movement Sciences, Carroll University, Waukesha, USA
| | | | | | - Paul Comfort
- Directorate of Sport, Exercise and Physiotherapy, University of Salford, Salford UK
| |
Collapse
|
60
|
Jukic I, Tufano JJ. Acute effects of shorter but more frequent rest periods on mechanical and perceptual fatigue during a weightlifting derivative at different loads in strength-trained men. Sports Biomech 2020; 21:1122-1135. [PMID: 32336216 DOI: 10.1080/14763141.2020.1747530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Traditional sets can be fatiguing, but redistributing rest periods to be shorter and more frequent may help maintain peak vertical barbell displacement (DISP) and reduce concentric repetition duration (CRDI), peak velocity decline (PVD) and perceptual exertion (RPE) across multiple repetitions, sets and loads during clean pulls. Fifteen strength-trained men performed: 3 traditional sets of 6 clean pulls using 80% (TS80), 100% (TS100) and 120% (TS120) of power clean 1RM with 180 seconds of inter-set rest; and 3 'rest redistribution' protocols of 9 sets of 2 clean pulls using 80% (RR80), 100% (RR100) and 120% (RR120) of power clean 1RM with 45 seconds of inter-set rest. DISP was greater during RR100 (g = 0.39) and RR120 (g = 0.56) compared to TS100 and TS120, respectively. In addition, PVD was less during RR120 than TS120 (g = 1.18), while CRDI was greater during TS100 (g = 0.98) and TS120 (g = 0.89) compared to RR100 and RR120, respectively. Also, RR protocols resulted in lower RPE across the sets at all loads (g = 1.11-1.24). Therefore, RR generally resulted in lower perceptual and mechanical fatigue, evidenced by lower RPE, PVD, CRDI and greater DISP than TS, and these differences became even more exaggerated as the barbell load and the number of sets performed increased.
Collapse
Affiliation(s)
- Ivan Jukic
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand.,Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - James J Tufano
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| |
Collapse
|
61
|
Abstract
This review examines the literature on weightlifting overhead pressing derivatives (WOPDs) and provides information regarding historical, technical, kinetic and kinematic mechanisms as well as potential benefits and guidelines to implement the use of WOPDs as training tools for sports populations. Only 13 articles were found in a search of electronic databases, which was employed to gather empirical evidence to provide an insight into the kinetic and kinematic mechanisms underpinning WOPDs. Practitioners may implement WOPDs such as push press, push jerk or split jerk from the back as well as the front rack position to provide an adequate stimulus to improve not only weightlifting performance but also sports performance as: (1) the use of WOPDs is an additional strategy to improve weightlifting performance; (2) WOPDs require the ability to develop high forces rapidly by an impulsive triple extension of the hips, knees and ankles, which is mechanically similar to many sporting tasks; (3) WOPDs may be beneficial for enhancing power development and maximal strength in the sport population; and, finally, (4) WOPDs may provide a variation in training stimulus for the sports population due to the technical demands, need for balance and coordination. The potential benefits highlighted in the literature provide a justification for the implementation of WOPDs in sports training. However, there is a lack of information regarding the longitudinal training effects that may result from implementing WOPDs.
Collapse
Affiliation(s)
- Marcos A Soriano
- Department of Physical Activity and Sport Sciences, University of Murcia, San Javier, Spain.
- Directorate of Sport, Exercise and Physiotherapy, University of Salford, Frederick Road Campus, Statham St, Salford, Manchester, M6 6NY, UK.
| | - Timothy J Suchomel
- Directorate of Sport, Exercise and Physiotherapy, University of Salford, Frederick Road Campus, Statham St, Salford, Manchester, M6 6NY, UK
- Department of Human Movement Sciences, Carroll University, Waukesha, WI, USA
| | - Paul Comfort
- Directorate of Sport, Exercise and Physiotherapy, University of Salford, Frederick Road Campus, Statham St, Salford, Manchester, M6 6NY, UK
| |
Collapse
|
62
|
Joffe SA, Tallent J. Neuromuscular predictors of competition performance in advanced international female weightlifters: a cross-sectional and longitudinal analysis. J Sports Sci 2020; 38:985-993. [PMID: 32175825 DOI: 10.1080/02640414.2020.1737396] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The aim of this study was to investigate the physical determinants of weightlifting competition performance based on Isometric Mid-Thigh Pull (IMTP) and Countermovement Jump (CMJ) force-time variables, in a cross-sectional and longitudinal analysis. Ten British advanced international female weightlifters' competition results and neuromuscular assessment data collected as part of the British Weight Lifting World Class Programme were utilised for the purpose of this study. All data were averaged for two consecutive 1-year periods. The cross-sectional analysis utilised the second year of data, whereas the longitudinal analysis assessed the mean change between the two years. The cross-sectional analysis results reveal IMTP Net Isometric Peak Force (PF) and CMJ Peak Power (PP) predict 94.2%, 95.1% and 91.8% of the variance in Total, Snatch and Clean & Jerk competition performance, respectively (p = <0.5). The longitudinal analysis results revealed that ∆IMTP PF was the only predicting factor of longitudinal change in weightlifting competition performance predicting 41.5%, 41.7% and 42.5% of ∆Total, ∆Snatch and ∆Clean & Jerk, respectively (p = <0.5). The assessments and equations may be utilised by coaches or sports scientists to inform the prescription of training and help predict competition performance.
Collapse
Affiliation(s)
- Shaun A Joffe
- School of Sport, Health and Applied Sciences, St Mary's University, Twickenham, UK.,British Weight Lifting, Leeds, UK
| | - Jamie Tallent
- School of Sport, Health and Applied Sciences, St Mary's University, Twickenham, UK
| |
Collapse
|
63
|
Comfort P, Jones PA, Thomas C, DosʼSantos T, McMahon JJ, Suchomel TJ. Changes in Early and Maximal Isometric Force Production in Response to Moderate- and High-Load Strength and Power Training. J Strength Cond Res 2020; 36:593-599. [PMID: 32187146 DOI: 10.1519/jsc.0000000000003544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Comfort, P, Jones, PA, Thomas, C, Dos'Santos, T, McMahon, JJ, and Suchomel, TJ. Changes in early and maximal isometric force production in response to moderate- and high-load strength and power training. J Strength Cond Res XX(X): 000-000, 2020-The aims of this study were to determine the changes in early (50-, 100-, 150-, 200-, 250 ms) and maximal isometric force production, in response to a 4-week period of moderate-load resistance training (60-82.5% 1 repetition maximum [1RM]), followed by a 4-week period of high-load (80-90% 1RM) resistance training. Thirty-four subjects (age 19.5 ± 2.8 years; height 1.72 ± 0.08 m; body mass 69.9 ± 11.4 kg; maximal power clean 0.92 ± 0.03 kg·kg) participated in this study. Only trivial-to-moderate (0.2-2.7%, d = 0.00-0.88) and nonsignificant (p > 0.05) changes in early isometric force production were observed in response to the moderate-load training period, whereas very large (9.2-14.6%, d = 2.71-4.16), significant (p ≤ 0.001) increases in early isometric force production were observed in response to high-load training. In contrast, there was a very large, significant increase in peak force (PF) across the moderate-load phase (7.7 ± 11.8%, d = 2.02, p = 0.003), but only a moderate significant increase in PF (3.8 ± 10.6%, d = 1.16, p = 0.001) across the high-load phase. The results of this study indicate that high-load multijoint resistance training, that follows moderate-load training, results in superior increases in early multi-joint force production, compared with the changes observed after moderate-load resistance training.
Collapse
Affiliation(s)
- Paul Comfort
- Directorate of Psychology and Sport, University of Salford, Salford, United Kingdom.,Institute for Sport, Physical Activity and Leisure, Carnegie School of Sport, Leeds Beckett University, Leeds, United Kingdom.,Center for Exercise and Sport Science Research, Edith Cowan University, Joondalup, Australia
| | - Paul A Jones
- Directorate of Psychology and Sport, University of Salford, Salford, United Kingdom
| | - Christopher Thomas
- Directorate of Psychology and Sport, University of Salford, Salford, United Kingdom
| | - Thomas DosʼSantos
- Directorate of Psychology and Sport, University of Salford, Salford, United Kingdom
| | - John J McMahon
- Directorate of Psychology and Sport, University of Salford, Salford, United Kingdom
| | - Timothy J Suchomel
- Directorate of Psychology and Sport, University of Salford, Salford, United Kingdom.,Department of Human Movement Sciences, Carroll University, Waukesha, Wisconsin
| |
Collapse
|
64
|
Shattock K, Tee JC. Autoregulation in Resistance Training: A Comparison of Subjective Versus Objective Methods. J Strength Cond Res 2020; 36:641-648. [PMID: 32058357 DOI: 10.1519/jsc.0000000000003530] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Shattock, K and Tee, JC. Autoregulation in resistance training: A comparison of subjective versus objective methods. J Strength Cond Res XX(X): 000-000, 2020-Autoregulation (AR) is a resistance training periodization approach that adjusts training prescription in response to individual rates of athlete adaptation. AR training prescription can make use of either subjective (rating of perceived exertion [RPE]) or objective (barbell velocity) intensity descriptors. The aim of this research was to compare the efficacy of these 2 approaches in improving sport-specific physical performance measures. Using a randomized crossover design, 20 amateur rugby union players completed two 6-week blocks of training with training intensity prescribed using either objective velocity-based (VB) (measured using a wearable accelerometer device) or objective RPE-based intensity prescriptions. Training volume was matched for both groups while training intensity was equivalent but prescribed using either VB or RPE measures. Performance measurements were countermovement jump (CMJ), 1 repetition maximum back squat and bench press, and 10-, 20-, and 40-m sprint. Testing was conducted before and immediately after each training block. The likelihood that observed changes in performance measures were meaningful was assessed using magnitude-based decisions. Both training programs induced practically meaningful improvements in CMJ (VB most likely +8.2, ±1.1%; RPE likely +3.8, ±0.9%), back squat (VB most likely +7.5, ±1.5%; RPE possibly +3.5, ±1.8%), and bench press (VB most likely +7.7, ±2.1%; RPE possibly +3.8, ±0.9%). Changes in sprint test performance were very likely trivial for both programs. Objective AR programming resulted in larger improvements in CMJ (likely 4.2, ±1.2%), squat (likely 3.7, ±1.5%) performance, and bench press (possibly 3.7, ±1.5%) performance. Autoregulation periodization improved strength and CMJ, but not sprint performance. Autoregulation effects are augmented through the use of objective intensity prescription.
Collapse
Affiliation(s)
- Kevin Shattock
- Carnegie Applied Rugby Research (CARR) Center, Institute for Sport, Physical Activity and Leisure, Carnegie School of Sport, Leeds Beckett University, Leeds, United Kingdom
| | - Jason C Tee
- Carnegie Applied Rugby Research (CARR) Center, Institute for Sport, Physical Activity and Leisure, Carnegie School of Sport, Leeds Beckett University, Leeds, United Kingdom.,Department of Sport Studies, Faculty of Applied Sciences, Durban University of Technology, South Africa
| |
Collapse
|
65
|
James LP, Comfort P, Suchomel TJ, Kelly VG, Beckman EM, Haff GG. Influence of Power Clean Ability and Training Age on Adaptations to Weightlifting-Style Training. J Strength Cond Res 2020; 33:2936-2944. [PMID: 29547489 DOI: 10.1519/jsc.0000000000002534] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
James, LP, Comfort, P, Suchomel, TJ, Kelly, VG, Beckman, EM, and Haff, GG. Influence of power clean ability and training age on adaptations to weightlifting-style training. J Strength Cond Res 33(11): 2936-2944, 2019-The purpose of this investigation was to determine whether weightlifting actions are a viable method for improving athletic performance among weaker, inexperienced lifters when compared with individuals with a greater power clean (PC) result, and hence weightlifting ability and experience. Two groups of males with distinctly different PC performances (higher performance [HP]: N = 8; body mass [BM] = 78.1 ± 4.0 kg; 1 repetition maximum [1RM] PC = 1.08 ± 0.09 kg·BM; lower performance [LP]: N = 8; BM = 82.6 ± 14.0 kg; 1RM PC = 0.78 ± 0.1 kg·BM) and resistance training age (HP: resistance training experience = 3.5 ± 1.2 years; LP: resistance training experience = 1.44 ± 1.50 years) undertook 10 weeks of training involving weightlifting derivatives, in addition to supplemental ballistic and plyometric exercises. Testing of athletic performance (represented by measures derived from the countermovement jump) occurred at baseline, after 5 weeks of training, and after 10 weeks of training. Both groups significantly improved across the majority of outcome variables after training (Hedges' g = 0.98-2.55, p ≤ 0.01-0.05). Only the HP participants experienced significant changes at midtest (g = 0.99-1.27, p ≤ 0.01-0.05), whereas no significant changes were revealed between midtest and posttest in this group. In contrast to this, the LP participants displayed a significant improvement in relative impulse (g = 1.39, p < 0.01) and rate of force development (g = 1.91, p < 0.01) during this final period (p < 0.01). As weaker, inexperienced lifters underwent a significant and meaningful enhancement in maximal neuromuscular measures after weightlifting derivative-focused training, practitioners should consider early implementation of such exercises. However, it is important for coaches to note that a delayed training effect might be present in weaker, less experienced lifters.
Collapse
Affiliation(s)
- Lachlan P James
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia.,Discipline of Human Movement and Sports Science, Federation University, Ballarat, Victoria, Australia
| | - Paul Comfort
- Directorate of Sport, Exercise and Physiotherapy, University of Salford, Salford, Greater Manchester, United Kingdom
| | - Timothy J Suchomel
- Department of Human Movement Sciences, Carroll University, Waukesha, Wisconsin
| | - Vincent G Kelly
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia.,Brisbane Broncos Rugby League Football Club, Brisbane, Queensland, Australia
| | - Emma M Beckman
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - G Gregory Haff
- Center for Sports and Exercise Science Research, Edith Cowan University, Perth, Western Australia, Australia
| |
Collapse
|
66
|
Takei S, Hirayama K, Okada J. Is the Optimal Load for Maximal Power Output During Hang Power Cleans Submaximal? Int J Sports Physiol Perform 2020; 15:18-24. [PMID: 30958042 DOI: 10.1123/ijspp.2018-0894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/10/2019] [Accepted: 03/03/2019] [Indexed: 10/27/2023]
Abstract
PURPOSE The optimal load for maximal power output during hang power cleans (HPCs) from a mechanical perspective is the 1-repetition-maximum (1RM) load; however, previous research has reported otherwise. The present study thus aimed to investigate the underlying factors that determine optimal load during HPCs. METHODS Eight competitive Olympic weight lifters performed HPCs at 40%, 60%, 70%, 80%, 90%, 95%, and 100% of their 1RM while the ground-reaction force and bar/body kinematics were simultaneously recorded. The success criterion during HPC was set above parallel squat at the receiving position. RESULTS Both peak power and relative peak power were maximized at 80% 1RM (3975.7 [439.1] W, 50.4 [6.6] W/kg, respectively). Peak force, force at peak power, and relative values tended to increase with heavier loads (P < .001), while peak system velocity and system velocity at peak power decreased significantly above 80% 1RM (P = .005 and .011, respectively). There were also significant decreases in peak bar velocity (P < .001) and bar displacement (P < .001) toward heavier loads. There was a strong positive correlation between peak bar velocity and bar displacement in 7 of 8 subjects (r > .90, P < .01). The knee joint angle at the receiving position fell below the quarter-squat position above 70% 1RM. CONCLUSIONS Submaximal loads were indeed optimal for maximal power output for HPC when the success criterion was set above the parallel-squat position. However, when the success criterion was defined as the quarter-squat position, the optimal load became the 1RM load.
Collapse
|
67
|
Rest Redistribution Functions as a Free and Ad-Hoc Equivalent to Commonly used Velocity-Based Training Thresholds During Clean Pulls at Different Loads. J Hum Kinet 2019; 68:5-16. [PMID: 31531129 PMCID: PMC6724594 DOI: 10.2478/hukin-2019-0052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study determined whether redistributing total rest time into shorter, but more frequent rest periods could maintain velocity and power output during 3 traditional sets of 6 clean pulls using 80% (TS80), 100% (TS100) and 120% (TS120) of power clean 1RM with 180 seconds of inter-set rest and during 3 “rest redistribution” protocols of 9 sets of 2 clean pulls using 80% (RR80), 100% (RR100) and 120% (RR120) of power clean 1RM with 45 seconds of inter-set rest. The total number of repetitions performed above 10 and 20% velocity loss thresholds, mean and peak velocity maintenance (the average of all 18 repetitions relative to the best repetition; MVM, PVM), and decline (the worst repetition relative to the best repetition; MVD, PVD) were calculated. For MVM, PVM, MVD, and PVD, there were small-to-moderate effect sizes in favour of RR80 and RR100, but large effects favouring RR120, compared to their respective TS protocols. The number of repetitions within a 20% velocity loss threshold was 17.7 ± 0.6 during RR and 16.5 ± 2.4 during TS (effect size 0.69); and the number of repetitions within a 10% velocity loss threshold was about 13.1 ± 3.7 during RR and 10.7 ± 3.6 during TS (effect size 0.66). Therefore, RR generally allowed for a better overall maintenance of velocity and power, especially at heavy loads. Coaches who wish to implement velocity-based training, but who do not wish to purchase or use the associated equipment, may consider rest-redistribution to encourage similar training stimuli.
Collapse
|
68
|
James LP, Suchomel TJ, McMahon JJ, Chavda S, Comfort P. Effect of Onset Threshold on Kinetic and Kinematic Variables of a Weightlifting Derivative Containing a First and Second Pull. J Strength Cond Res 2019; 34:298-307. [PMID: 31373974 DOI: 10.1519/jsc.0000000000003316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
James, LP, Suchomel, TJ, McMahon, JJ, Chavda, S, and Comfort, P. Effect of onset threshold on kinetic and kinematic variables of a weightlifting derivative containing a first and second pull. J Strength Cond Res 34(2): 298-307, 2020-This study sought to determine the effect of different movement onset thresholds on both the reliability and absolute values of performance variables during a weightlifting derivative containing both a first and second pull. Fourteen men (age: 25.21 ± 4.14 years; body mass: 81.1 ± 11.4 kg; and 1 repetition maximum [1RM] power clean: 1.0 ± 0.2 kg·kg) participated in this study. Subjects performed the snatch-grip pull with 70% of their power clean 1RM, commencing from the mid-shank, while isolated on a force platform. Two trials were performed enabling within-session reliability of dependent variables to be determined. Three onset methods were used to identify the initiation of the lift (5% above system weight [SW], the first sample above SW, or 10 N above SW), from which a series of variables were extracted. The first peak phase peak force and all second peak phase kinetic variables were unaffected by the method of determining movement onset; however, several remaining second peak phase variables were significantly different between methods. First peak phase peak force and average force achieved excellent reliability regardless of the onset method used (coefficient of variation [CV] < 5%; intraclass correlation coefficient [ICC] > 0.90). Similarly, during the second peak phase, peak force, average force, and peak velocity achieved either excellent or acceptable reliability (CV < 10%; ICC > 0.80) in all 3 onset conditions. The reliability was generally reduced to unacceptable levels at the first sample and 10 N method across all first peak measures except peak force. When analyzing a weightlifting derivative containing both a first and second pull, the 5% method is recommended as the preferred option of those investigated.
Collapse
Affiliation(s)
- Lachlan P James
- Department of Rehabilitation, Nutrition and Sport, School of Allied Health, La Trobe University, Victoria, Australia
| | - Timothy J Suchomel
- Department of Human Movement Sciences, Carroll University, Waukesha, Wisconsin
| | - John J McMahon
- Directorate of Sport, Exercise and Physiotherapy, University of Salford, Salford, Greater Manchester, United Kingdom; and
| | - Shyam Chavda
- London Sport Institute, School of Science and Technology, Middlesex University, Hendon, United Kingdom
| | - Paul Comfort
- Directorate of Sport, Exercise and Physiotherapy, University of Salford, Salford, Greater Manchester, United Kingdom; and
| |
Collapse
|
69
|
Suarez DG, Wagle JP, Cunanan AJ, Sausaman RW, Stone MH. Dynamic Correspondence of Resistance Training to Sport: A Brief Review. Strength Cond J 2019. [DOI: 10.1519/ssc.0000000000000458] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
70
|
Suchomel TJ, McKeever SM, Sijuwade O, Carpenter L, McMahon JJ, Loturco I, Comfort P. The Effect of Load Placement on the Power Production Characteristics of Three Lower Extremity Jumping Exercises. J Hum Kinet 2019; 68:109-122. [PMID: 31531137 PMCID: PMC6724584 DOI: 10.2478/hukin-2019-0060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The purpose of this study was to compare the power production characteristics of the jump squat (JS), hexagonal barbell jump (HEXJ), and jump shrug (JShrug) across a spectrum of relative loads. Fifteen resistance-trained men completed three testing sessions where they performed repetitions of either the JS, HEXJ, or JShrug at body mass (BM) or with 20, 40, 60, 80, or 100% of their BM. Relative peak power (PPRel), relative force at PP (FPP), and velocity at PP (VPP) were compared between exercises and loads. In addition, power-time curves at each load were compared between exercises. Load-averaged HEXJ and JShrug PPRel were statistically greater than the JS (both p < 0.01), while no difference existed between the HEXJ and the JShrug (p = 1.000). Load-averaged JShrug FPP was statistically greater than both the JS and the HEXJ (both p < 0.001), while no statistical difference existed between the JS and the HEXJ (p = 0.111). Load-averaged JS and HEXJ VPP were statistically greater than the JShrug (both p < 0.01). In addition, HEXJ VPP was statistically greater than the JS (p = 0.009). PPRel was maximized at 40, 40, and 20% BM for the JS, HEXJ, and JShrug, respectively. The JShrug possessed statistically different power-time characteristics compared to both the JS and the HEXJ during the countermovement and propulsion phases. The HEXJ and the JShrug appear to be superior exercises for PPRel compared to the JS. The HEXJ may be considered a more velocity-dominant exercise, while the JShrug may be a more force-dominant one.
Collapse
Affiliation(s)
- Timothy J. Suchomel
- Department of Human Movement Sciences, Carroll University, Waukesha, WI, USA
- Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Greater Manchester, UK
| | - Shana M. McKeever
- Department of Human Movement Sciences, Carroll University, Waukesha, WI, USA
| | - Olusegun Sijuwade
- Department of Human Movement Sciences, Carroll University, Waukesha, WI, USA
| | - Logan Carpenter
- Department of Human Movement Sciences, Carroll University, Waukesha, WI, USA
| | - John J. McMahon
- Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Greater Manchester, UK
| | - Irineu Loturco
- NAR-Nucleus of High Performance in Sport, São Paulo, Brazil
| | - Paul Comfort
- Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Greater Manchester, UK
| |
Collapse
|
71
|
Harris DM, Foulds S, Latella C. Evidence-Based Training Recommendations for the Elite Judoka. Strength Cond J 2019. [DOI: 10.1519/ssc.0000000000000426] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
72
|
The Multimodal Nature of High-Intensity Functional Training: Potential Applications to Improve Sport Performance. Sports (Basel) 2019; 7:sports7020033. [PMID: 30699906 PMCID: PMC6409553 DOI: 10.3390/sports7020033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 01/05/2023] Open
Abstract
Training for sports performance requires the development of multiple fitness components within the same program. In this context, training strategies that have the potential to concomitantly enhance metabolic and musculoskeletal fitness are of great value for athletes and coaches. The purpose of this manuscript is to review the current studies on high-intensity functional training (HIFT) and to assess how HIFT could be utilized in order to improve sport-specific performance. Studies on untrained and recreationally-active participants have led to positive results on aerobic power and anaerobic capacity, and muscular endurance, while results on muscular strength and power are less clear. Still, HIFT sessions can elicit high levels of metabolic stress and resistance training exercises are prescribed with parameters that can lead to improvements in muscular endurance, hypertrophy, strength, and power. As similar training interventions have been shown to be effective in the athletic population, it is possible that HIFT could be a time-efficient training intervention that can positively impact athletes’ performances. While the potential for improvements in fitness and performance with HIFT is promising, there is a clear need for controlled studies that employ this training strategy in athletes in order to assess its effectiveness in this population.
Collapse
|
73
|
Abstract
This review covers underlying physiological characteristics and training considerations that may affect muscular strength including improving maximal force expression and time-limited force expression. Strength is underpinned by a combination of morphological and neural factors including muscle cross-sectional area and architecture, musculotendinous stiffness, motor unit recruitment, rate coding, motor unit synchronization, and neuromuscular inhibition. Although single- and multi-targeted block periodization models may produce the greatest strength-power benefits, concepts within each model must be considered within the limitations of the sport, athletes, and schedules. Bilateral training, eccentric training and accentuated eccentric loading, and variable resistance training may produce the greatest comprehensive strength adaptations. Bodyweight exercise, isolation exercises, plyometric exercise, unilateral exercise, and kettlebell training may be limited in their potential to improve maximal strength but are still relevant to strength development by challenging time-limited force expression and differentially challenging motor demands. Training to failure may not be necessary to improve maximum muscular strength and is likely not necessary for maximum gains in strength. Indeed, programming that combines heavy and light loads may improve strength and underpin other strength-power characteristics. Multiple sets appear to produce superior training benefits compared to single sets; however, an athlete's training status and the dose-response relationship must be considered. While 2- to 5-min interset rest intervals may produce the greatest strength-power benefits, rest interval length may vary based an athlete's training age, fiber type, and genetics. Weaker athletes should focus on developing strength before emphasizing power-type training. Stronger athletes may begin to emphasize power-type training while maintaining/improving their strength. Future research should investigate how best to implement accentuated eccentric loading and variable resistance training and examine how initial strength affects an athlete's ability to improve their performance following various training methods.
Collapse
|
74
|
Comfort P, DosʼSantos T, Thomas C, McMahon JJ, Suchomel TJ. An Investigation Into the Effects of Excluding the Catch Phase of the Power Clean on Force-Time Characteristics During Isometric and Dynamic Tasks: An Intervention Study. J Strength Cond Res 2018; 32:2116-2129. [PMID: 29889775 DOI: 10.1519/jsc.0000000000002656] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Comfort, P, Dos'Santos, T, Thomas, C, McMahon, JJ, and Suchomel, TJ. An investigation into the effects of excluding the catch phase of the power clean on force-time characteristics during isometric and dynamic tasks: an intervention study. J Strength Cond Res 32(8): 2116-2129, 2018-The aims of this study were to compare the effects of the exclusion or inclusion of the catch phase during power clean (PC) derivatives on force-time characteristics during isometric and dynamic tasks, after two 4-week mesocycles of resistance training. Two strength matched groups completed the twice-weekly training sessions either including the catch phase of the PC derivatives (Catch group: n = 16; age 19.3 ± 2.1 years; height 1.79 ± 0.08 m; body mass 71.14 ± 11.79 kg; PC 1 repetition maximum [1RM] 0.93 ± 0.15 kg·kg) or excluding the catch phase (Pull group: n = 18; age 19.8 ± 2.5 years; height 1.73 ± 0.10 m; body mass 66.43 ± 10.13 kg; PC 1RM 0.91 ± 0.18 kg·kg). The Catch and Pull groups both demonstrated significant (p ≤ 0.007, power ≥0.834) and meaningful improvements in countermovement jump height (10.8 ± 12.3%, 5.2 ± 9.2%), isometric mid-thigh pull performance (force [F]100: 14.9 ± 17.2%, 15.5 ± 16.0%, F150: 16.0 ± 17.6%, 16.2 ± 18.4%, F200: 15.8 ± 17.6%, 17.9 ± 18.3%, F250: 10.0 ± 16.1%,10.9 ± 14.4%, peak force: 13.7 ± 18.7%, 9.7 ± 16.3%), and PC 1RM (9.5 ± 6.2%, 8.4 ± 6.1%), before and after intervention, respectively. In contrast to the hypotheses, there were no meaningful or significant differences in the percentage change for any variables between groups. This study clearly demonstrates that neither the inclusion nor exclusion of the catch phase of the PC derivatives results in any preferential adaptations over two 4-week, in-season strength and power, mesocycles.
Collapse
Affiliation(s)
- Paul Comfort
- Directorate of Sport, Exercise and Physiotherapy, University of Salford, Greater Manchester, United Kingdom
| | - Thomas DosʼSantos
- Directorate of Sport, Exercise and Physiotherapy, University of Salford, Greater Manchester, United Kingdom
| | - Christopher Thomas
- Directorate of Sport, Exercise and Physiotherapy, University of Salford, Greater Manchester, United Kingdom.,University of South Wales, Pontypridd, Cardiff, United Kingdom
| | - John J McMahon
- Directorate of Sport, Exercise and Physiotherapy, University of Salford, Greater Manchester, United Kingdom
| | - Timothy J Suchomel
- Department of Human Movement Sciences, Carroll University, Waukesha, Wisconsin
| |
Collapse
|
75
|
Dos'Santos T, Thomas C, Comfort P, Jones PA. The Effect of Angle and Velocity on Change of Direction Biomechanics: An Angle-Velocity Trade-Off. Sports Med 2018; 48:2235-2253. [PMID: 30094799 PMCID: PMC6132493 DOI: 10.1007/s40279-018-0968-3] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Changes of direction (CODs) are key manoeuvres linked to decisive moments in sport and are also key actions associated with lower limb injuries. During sport athletes perform a diverse range of CODs, from various approach velocities and angles, thus the ability to change direction safely and quickly is of great interest. To our knowledge, a comprehensive review examining the influence of angle and velocity on change of direction (COD) biomechanics does not exist. Findings of previous research indicate the biomechanical demands of CODs are 'angle' and 'velocity' dependent and are both critical factors that affect the technical execution of directional changes, deceleration and reacceleration requirements, knee joint loading, and lower limb muscle activity. Thus, these two factors regulate the progression and regression in COD intensity. Specifically, faster and sharper CODs elevate the relative risk of injury due to the greater associative knee joint loading; however, faster and sharper directional changes are key manoeuvres for successful performance in multidirectional sport, which subsequently creates a 'performance-injury conflict' for practitioners and athletes. This conflict, however, may be mediated by an athlete's physical capacity (i.e. ability to rapidly produce force and neuromuscular control). Furthermore, an 'angle-velocity trade-off' exists during CODs, whereby faster approaches compromise the execution of the intended COD; this is influenced by an athlete's physical capacity. Therefore, practitioners and researchers should acknowledge and understand the implications of angle and velocity on COD biomechanics when: (1) interpreting biomechanical research; (2) coaching COD technique; (3) designing and prescribing COD training and injury reduction programs; (4) conditioning athletes to tolerate the physical demands of directional changes; (5) screening COD technique; and (6) progressing and regressing COD intensity, specifically when working with novice or previously injured athletes rehabilitating from an injury.
Collapse
Affiliation(s)
- Thomas Dos'Santos
- Human Performance Laboratory, Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Greater Manchester, UK.
| | - Christopher Thomas
- Human Performance Laboratory, Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Greater Manchester, UK
- School of Health, Sport and Professional Practice, University of South Wales, Pontypridd, Wales, UK
| | - Paul Comfort
- Human Performance Laboratory, Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Greater Manchester, UK
| | - Paul A Jones
- Human Performance Laboratory, Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Greater Manchester, UK
| |
Collapse
|
76
|
Abstract
Velocity strength training requires exercise modalities that allow athletes to reach very high movement velocity, which is limited during vertical movements involving body weight. PURPOSE To quantify the mechanical outputs developed during horizontal squat jumps (HSJs), notably the movement velocity, in comparison with vertical squat jumps (SJs) with and without loads. METHODS Thirteen healthy male athletes performed SJs without additional loads (SJ0) and with a load of ∼60% of body mass (SJ60), and during HSJs performed lying on a roller device with (assisted HSJ [AHSJ]) and without (HSJ) rubber-band assistance. Instantaneous lower-limb extension velocity, force, and power output were measured and averaged over the push-off phase. RESULTS The force was significantly higher during SJ60 than during SJ0, which was higher than during HSJ and AHSJ. Extension velocity was significantly different across all conditions, with 0.86 (0.07), 1.29 (0.10), 1.59 (0.19), and 1.83 (0.19) m·s-1 for SJ60, SJ0, HSJ, and AHSJ conditions, respectively. Differences in force and velocity values between SJ0 and the other conditions were large to extremely large. Differences were observed in power values only between SJ60 and SJ0, SJ60 and AHSJ, and SJ0 and HSJ. CONCLUSIONS HSJ modalities allow athletes to reach very to extremely largely greater lower-limb extension velocities (HSJ +24.0% [16%], AHSJ +42.8% [17.4%]) compared to those achieved during SJ0. HSJ and AHSJ modalities are inexpensive and practical modalities to train limb-extension velocity capabilities, that is, the ability of the neuromuscular system to produce force at high contraction velocities.
Collapse
|
77
|
Berton R, Lixandrão ME, Pinto E Silva CM, Tricoli V. Effects of weightlifting exercise, traditional resistance and plyometric training on countermovement jump performance: a meta-analysis. J Sports Sci 2018; 36:2038-2044. [PMID: 29385904 DOI: 10.1080/02640414.2018.1434746] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Jump performance is considered an important factor in many sports. Thus, strategies such as weightlifting (WL) exercises, traditional resistance training (TRT) and plyometric training (PT) are effective at improving jump performance. However, it is not entirely clear which of these strategies can enable greater improvements on jump height. Thus, the purpose of the meta-analysis was to compare the improvements on countermovement jump (CMJ) performance between training methods which focus on WL exercises, TRT, and PT. Seven studies were included, of which one study performed both comparison. Therefore, four studies comparing WL exercises vs. TRT (total n = 78) and four studies comparing WL exercises vs. PT (total n = 76). The results showed greater improvements on CMJ performance for WL exercises compared to TRT (ESdiff: 0.72 ± 0.23; 95%CI: 0.26, 1.19; P = 0.002; Δ % = 7.5 and 2.1, respectively). The comparison between WL exercises vs. PT revealed no significant difference between protocols (ESdiff: 0.15 ± 0.23; 95%CI: -0.30, 0.60; P = 0.518; Δ % = 8.8 and 8.1, respectively). In conclusion, WL exercises are superior to promote positive changes on CMJ performance compared to TRT; however, WL exercises and PT are equally effective at improving CMJ performance.
Collapse
Affiliation(s)
- Ricardo Berton
- a School of Physical Education and Sport , University of São Paulo , São Paulo , Brazil
| | - Manoel E Lixandrão
- a School of Physical Education and Sport , University of São Paulo , São Paulo , Brazil
| | | | - Valmor Tricoli
- a School of Physical Education and Sport , University of São Paulo , São Paulo , Brazil
| |
Collapse
|
78
|
Marriner CR, Cronin JB, Macadam P, Storey A. Redistributing load using wearable resistance during power clean training improves athletic performance. Eur J Sport Sci 2017; 17:1101-1109. [PMID: 28792857 DOI: 10.1080/17461391.2017.1360396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A popular method to improve athletic performance and lower body power is to train with wearable resistance (WR), for example, weighted vests. However, it is currently unknown what training effect this loading method has on full-body explosive movements such as the power clean. The purpose of this study was to determine what effects WR equivalent to 12% body mass (BM) had on the power clean and countermovement jump (CMJ) performance. Sixteen male subjects (age: 23.2 ± 2.7 years; BM: 90.5 ± 10.3 kg) were randomly assigned to five weeks of traditional (TR) power clean training or training with 12% BM redistributed from the bar to the body using WR. Variables of interest included pre and post CMJ height, power clean one repetition maximum (1RM), peak ground reaction force, power output (PO), and several bar path kinematic variables across loads at 50%, 70%, and 90% of 1RM. The main findings were that WR training: (1) increased CMJ height (8.7%; ES = 0.53) and 1RM power clean (4.2%; ES = 0.2) as compared to the TR group (CMJ height = -1.4%; 1RM power clean = 1.8%); (2) increased PO across all 1RM loads (ES = 0.33-0.62); (3) increased barbell velocity at 90% 1RM (3.5%; ES = 0.74) as compared to the TR group (-4.3%); and (4) several bar path kinematic variables improved at 70% and 90% 1RM loads. WR power clean training with 12% BM can positively influence power clean ability and CMJ performance, as well as improve technique factors.
Collapse
Affiliation(s)
- Caleb R Marriner
- a Sports Performance Research Institute New Zealand (SPRINZ) at AUT Millennium , Auckland University of Technology , Auckland , New Zealand
| | - John B Cronin
- a Sports Performance Research Institute New Zealand (SPRINZ) at AUT Millennium , Auckland University of Technology , Auckland , New Zealand.,b School of Exercise , Biomedical and Health Sciences, Edith Cowan University , Perth , Australia
| | - Paul Macadam
- a Sports Performance Research Institute New Zealand (SPRINZ) at AUT Millennium , Auckland University of Technology , Auckland , New Zealand
| | - Adam Storey
- a Sports Performance Research Institute New Zealand (SPRINZ) at AUT Millennium , Auckland University of Technology , Auckland , New Zealand
| |
Collapse
|