51
|
Yu CJ, Gao Y, Li P, Li L. Synchronizing multiphasic circadian rhythms of rhodopsin promoter expression in rod photoreceptor cells. ACTA ACUST UNITED AC 2007; 210:676-84. [PMID: 17267653 DOI: 10.1242/jeb.02694] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Endogenous circadian clocks regulate day-night rhythms of animal behavior and physiology. In zebrafish, the circadian clocks are located in the pineal gland and the retina. In the retina, each photoreceptor is considered a circadian oscillator. A critical question is whether the individual circadian oscillators are synchronized. If so, the mechanism that underlies the synchronization needs to be elucidated. We generated a transgenic zebrafish line that expresses short half-life GFP under the transcriptional control of the rhodopsin promoter. Time-lapse imaging of rhodopsin promoter-driven GFP expression revealed that during 24 h in constant darkness, rhodopsin promoter expression in rod photoreceptor cells fluctuated rhythmically. However, the pattern of fluctuation differed between individual cells. In some cells, peak expression was seen in the subjective early morning, whereas in other cells, peak expression was seen in the afternoon or at night. Light transiently decreased rhodopsin expression, thereby synchronizing the multiphasic circadian oscillation. The application of dopamine or dopamine D2 receptor agonist also synchronized the circadian rhythms of rhodopsin promoter expression. When the D2 receptors were pharmacologically blocked, light exposure produced no effect. This suggests that the synchronization of the circadian rhythms of rhodopsin promoter expression by light is mediated by dopamine D2 receptors. The mechanism that underlies the synchronization probably involves dopamine-mediated Ca2+ signaling pathways. Light, as well as dopamine, lowered Ca2+ influx into the rod cells, thereby resetting rhodopsin promoter expression to the initial phase.
Collapse
Affiliation(s)
- Chuan-Jiang Yu
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | |
Collapse
|
52
|
Huang L, Li L. Differential expression of voltage-activated calcium currents in zebrafish retinal ganglion cells. J Neurosci Res 2006; 84:497-504. [PMID: 16721759 DOI: 10.1002/jnr.20951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We report a study on the characterization of voltage-activated calcium currents (I(Ca)) in retinal ganglion cells (RGCs) and the topographic distribution of RGCs that express different types of I(Ca) in zebrafish retinas. In acutely isolated zebrafish RGCs, both high-voltage-activated (HVA; peak activation potential +7.4 +/- 1.1 mV) and low-voltage-activated (LVA; peak activation potential -33.0 +/- 1.2 mV) I(Ca) were recorded. HVA I(Ca) were recorded in all of the tested RGCs, whereas LVA I(Ca) were recorded in approximately one-third of the tested cells. In RGCs that expressed both HVA and LVA I(Ca), the two currents were readily separated by depolarizing the cell membrane to different voltages from different holding potentials. Among RGCs that expressed LVA I(Ca), some cells expressed large LVA I(Ca) (up to 130 pA), whereas others expressed small LVA I(Ca) (approximately 20 pA). RGCs that expressed large and small LVA I(Ca) were designated as class I and class II cells, respectively, and RGCs that expressed only HVA I(Ca) were designated as class III cells. The topographic distribution of cell classes was similar in various areas of the retina. In the nasal-ventral retina, for example, class III cells outnumbered class I and class II cells by 10.8- and 2.6-fold, respectively. In the temporal and dorsal retinas, the density of class III cells slightly decreased, whereas the density of class I and class II cells increased. The differential expression of I(Ca) in RGCs may correlate with the development and function of the retina.
Collapse
Affiliation(s)
- Luoxiu Huang
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA.
| | | |
Collapse
|
53
|
Panula P, Sallinen V, Sundvik M, Kolehmainen J, Torkko V, Tiittula A, Moshnyakov M, Podlasz P. Modulatory Neurotransmitter Systems and Behavior: Towards Zebrafish Models of Neurodegenerative Diseases. Zebrafish 2006; 3:235-47. [DOI: 10.1089/zeb.2006.3.235] [Citation(s) in RCA: 199] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Pertti Panula
- Neuroscience Center, Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki, Finland
| | - Ville Sallinen
- Neuroscience Center, Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki, Finland
| | - Maria Sundvik
- Neuroscience Center, Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki, Finland
| | - Juha Kolehmainen
- Neuroscience Center, Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki, Finland
| | - Veera Torkko
- Neuroscience Center, Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki, Finland
| | - Anu Tiittula
- Neuroscience Center, Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki, Finland
| | - Maxim Moshnyakov
- Neuroscience Center, Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki, Finland
| | - Piotr Podlasz
- Neuroscience Center, Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
54
|
Yu CJ, Li L. Dopamine modulates voltage-activated potassium currents in zebrafish retinal on bipolar cells. J Neurosci Res 2006; 82:368-76. [PMID: 16206280 DOI: 10.1002/jnr.20637] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We report a study of the characterization of voltage-activated potassium (K+) currents in retinal ON bipolar cells in zebrafish. At single-channels levels, the open probability of the K+ channels increased when the membrane potential was increased. The maximal open proportion was 0.76+/-0.05 under our testing conditions. In whole-cell recordings, the K+ current displayed two exponential components with the activation time constants of 11-22 msec (tau1) and 0.8-4 msec (tau2). Dopamine modulated the K+ current. Dopamine reduced the time constant tau2 when the membrane potential was depolarized to high voltages. A decrease in K+ current was seen when dopamine D1 receptors were selectively activated by SKF38393 or when the D1 receptor-coupled G-proteins were activated by GTP-gamma-S. The activation of adenylate cyclase by forskolin or the increase of intracellular cAMP concentrations by 8-Br-cAMP or Sp-cAMPS also resulted in a decrease in K+ current. Together, the data suggest that dopamine modulates the K+ current via D1 receptor-coupled G-protein pathways.
Collapse
Affiliation(s)
- Chuan-Jiang Yu
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | |
Collapse
|
55
|
Huang L, Maaswinkel H, Li L. Olfactoretinal centrifugal input modulates zebrafish retinal ganglion cell activity: a possible role for dopamine-mediated Ca2+ signalling pathways. J Physiol 2005; 569:939-48. [PMID: 16239263 PMCID: PMC1464265 DOI: 10.1113/jphysiol.2005.099531] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The vertebrate retina receives centrifugal input from the brain. In zebrafish, the major centrifugal input originates in the terminal nerve (TN). TN cell bodies are located in the olfactory bulb and ventral telencephalon. The TN projects axons to the retina where they branch in the inner plexiform layer (IPL) and synapse onto several inner retinal cell types, including dopaminergic interplexiform cells (DA-IPCs). This olfactoretinal centrifugal input plays a role in modulating retinal ganglion cell (RGC) activity, probably via dopamine-mediated Ca2+ signalling pathways. Normally, dopamine inhibits RGC firing by decreasing the inward Ca2+ current. Olfactory stimulation with amino acids decreases dopamine release in the retina, thereby reducing dopaminergic inhibition of RGCs. This model of olfacto-visual integration was directly tested by recording single-unit RGC activity in response to olfactory stimulation in the presence or absence of dopamine receptor blockers. Stimulation of the olfactory neurones increased RGC activity. However, this effect diminished when the dopamine D1 receptors were pharmacologically blocked. In isolated RGCs, the application of dopamine or a dopamine D1 receptor agonist decreased voltage-activated Ca2+ current and lowered Ca2+ influx. Together, the data suggest that olfactory input has a modulatory effect on RGC firing, and that this effect is mediated by dopamine D1 receptor-coupled Ca2+ signalling pathways.
Collapse
Affiliation(s)
- Luoxiu Huang
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | |
Collapse
|
56
|
Li P, Temple S, Gao Y, Haimberger TJ, Hawryshyn CW, Li L. Circadian rhythms of behavioral cone sensitivity and long wavelength opsin mRNA expression: a correlation study in zebrafish. ACTA ACUST UNITED AC 2005; 208:497-504. [PMID: 15671338 DOI: 10.1242/jeb.01424] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Using a behavioral assay based on visually mediated escape responses, we measured long-wavelength-sensitive red cone (LC) sensitivities in zebrafish. In a 24 h period, the zebrafish were least sensitive to red light in the early morning and most sensitive in the late afternoon. To investigate if the fluctuation of behavioral cone sensitivity correlates with opsin gene expression, we measured LC opsin mRNA expression at different times in the day and night under different lighting conditions. Under a normal light-dark cycle, the expression of LC opsin mRNA determined by real-time RT-PCR was low in the early morning and high in the late afternoon, similar to the fluctuation of behavioral cone sensitivity. This rhythm of LC opsin mRNA expression, however, dampened out gradually in constant conditions. After 24 h of constant light (LL), the expression of LC opsin mRNA dropped to levels similar to those determined in the early morning in control animals. By contrast, when the zebrafish were kept in constant dark (DD), the expression of LC opsin mRNA increased, to levels about 30-fold higher than the expression in the early morning in control animals. This day-night fluctuation in LC opsin mRNA expression was correlated to changes in opsin density in the outer segment of cone photoreceptor cells. Microspectrophotometry (MSP) measurements found significant differences in red cone outer segment optical density with a rhythm following the behavioral sensitivity. Furthermore, dopamine modulated the circadian rhythms in expression of LC opsin mRNA. Administration of dopamine increased LC opsin mRNA expression, but only in the early morning.
Collapse
Affiliation(s)
- Ping Li
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| | | | | | | | | | | |
Collapse
|
57
|
Gao Y, Li P, Li L. Transgenic zebrafish that express tyrosine hydroxylase promoter in inner retinal cells. Dev Dyn 2005; 233:921-9. [PMID: 15895407 DOI: 10.1002/dvdy.20416] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We have generated a transgenic zebrafish line [Tg(Th:GFP)] that expresses green fluorescence proteins (GFP) driven by rat tyrosine hydroxylase (TH) promoter. In zebrafish, the transgene was expressed as early as 16 hr postfertilization (hpf). The first transgene expression was detected in the midbrain. Within a few hours of development, the expression spread to the forebrain and hindbrain. In the retina, the first transgene expression was detected at approximately 40 hpf, at which time a single GFP-positive cell was seen in the ventral-nasal patch of the retina. In late development, GFP spread across the inner retina. GFP was found in retinal cells that expressed TH or phenylethanolamine N-methyl-transferase (PNMT), the first and last enzymes for synthesis of catecholamine, respectively. This suggests that the transgene is expressed in catecholaminergic neurons. Of interest, GFP was also detected in some retinal cells that release gamma-aminobutyric acid. These latter data suggest that the transgene may also be expressed in noncatecholaminergic cells.
Collapse
Affiliation(s)
- Yan Gao
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | |
Collapse
|
58
|
|
59
|
Boehmler W, Obrecht-Pflumio S, Canfield V, Thisse C, Thisse B, Levenson R. Evolution and expression of D2 and D3 dopamine receptor genes in zebrafish. Dev Dyn 2004; 230:481-93. [PMID: 15188433 DOI: 10.1002/dvdy.20075] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We mined the zebrafish genomic sequence database and identified contigs containing segments of several dopamine receptor genes. By using a polymerase chain reaction amplification strategy, we generated full-length cDNAs encoding a single dopamine D3 receptor and three distinct D2 receptor subtypes. Zebrafish dopamine receptor genes were mapped by using the T51 radiation hybrid panel. The D3 receptor gene (drd3) mapped to linkage group (LG) 24. The three D2 receptor genes were localized to LG 15 (drd2a), LG 16, (drd2b), and LG 5 (drd2c). With the exception of the drd2b gene, each of these map positions was syntenic with regions of human chromosomes containing orthologs of the zebrafish dopamine receptor genes. Whole-mount in situ hybridization was used to investigate expression of the D2 and D3 receptor genes. Expression of the drd3 gene was first detected at mid-somitogenesis and was particularly prominent in somites. Thereafter, the drd3 gene was expressed diffusely throughout the brain and spinal cord. The three D2 receptor genes were expressed throughout the central nervous system (CNS) in distinct but overlapping patterns. In early embryos, the drd2a gene was expressed exclusively in the epiphysis, whereas the drd2c gene was localized to the notochord. After 24 hpf, the drd2a, drd2b, and drd2c genes were differentially expressed throughout the CNS. The identification of dopamine receptor genes in zebrafish should allow us to use the power of zebrafish genetics to analyze the functional properties of this important class of neurotransmitter receptors.
Collapse
Affiliation(s)
- Wendy Boehmler
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
60
|
Kao YH, Lassová L, Bar-Yehuda T, Edwards RH, Sterling P, Vardi N. Evidence that certain retinal bipolar cells use both glutamate and GABA. J Comp Neurol 2004; 478:207-18. [PMID: 15368537 DOI: 10.1002/cne.20221] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Retinal bipolar neurons release the excitatory transmitter, glutamate. However, certain bipolar cells contain GABA, raising the question whether a neuron might release both transmitters and, if so, what function might the inhibitory transmitter play in a particular circuit? Here we identify a subset of cone bipolar cells in cat retina that contain glutamate, plus its vesicular transporter (VGLUT1), and GABA, plus its synthetic enzyme (GAD(65)) and its vesicular transporter (VGAT). These cells are negative for a marker of ON bipolar cells and restrict their axons to the OFF strata of the inner synaptic layer. They do not colocalize with the neurokinin 3 receptor that stains a type (or two) of OFF bipolar cells. By "targeted injection," we identified two types of OFF bipolar cell with the machinery to make and package both transmitters. One of these types costratifies with a dopamine plexus.
Collapse
Affiliation(s)
- Yen-Hong Kao
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6058, USA
| | | | | | | | | | | |
Collapse
|
61
|
Page-McCaw PS, Chung SC, Muto A, Roeser T, Staub W, Finger-Baier KC, Korenbrot JI, Baier H. Retinal network adaptation to bright light requires tyrosinase. Nat Neurosci 2004; 7:1329-36. [PMID: 15516923 DOI: 10.1038/nn1344] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Accepted: 08/26/2004] [Indexed: 11/08/2022]
Abstract
The visual system adjusts its sensitivity to a wide range of light intensities. We report here that mutation of the zebrafish sdy gene, which encodes tyrosinase, slows down the onset of adaptation to bright light. When fish larvae were challenged with periods of darkness during the day, the sdy mutants required nearly an hour to recover optokinetic behavior after return to bright light, whereas wild types recovered within minutes. This behavioral deficit was phenocopied in fully pigmented fish by inhibiting tyrosinase and thus does not depend on the absence of melanin pigment in sdy. Electroretinograms showed that the dark-adapted retinal network recovers sensitivity to a pulse of light more slowly in sdy mutants than in wild types. This failure is localized in the retinal neural network, postsynaptic to photoreceptors. We propose that retinal pigment epithelium (which normally expresses tyrosinase) secretes a modulatory factor, possibly L-DOPA, which regulates light adaptation in the retinal circuitry.
Collapse
Affiliation(s)
- Patrick S Page-McCaw
- University of California, San Francisco, Department of Physiology, Program in Neuroscience, 513 Parnassus Ave., San Francisco, California 94143-0444, USA
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Ren JQ, Li L. A circadian clock regulates the process of ERG b- and d-wave dominance transition in dark-adapted zebrafish. Vision Res 2004; 44:2147-52. [PMID: 15183681 DOI: 10.1016/j.visres.2004.03.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2003] [Revised: 03/04/2004] [Indexed: 11/27/2022]
Abstract
In zebrafish, during dark adaptation following bright light adaptation, the dominance of electroretinogram (ERG) b- and d-waves switches. In the early dark adaptation, when visual sensitivity is cone-dominant, both the b- and d-waves are readily recorded. In the late dark adaptation, along with the increase of rod sensitivity, the b-wave becomes dominant whereas the d-wave is gradually lost. The time for the ERG b- and d-wave dominance transition varies between the day and night. The transition requires a longer amount of time in the night and early morning than in the afternoon. This pattern of timing for ERG b- and d-wave dominance transition persists in constant light and can be reversed after exposure to a reversed light-dark cycle. The data suggest that the transition of the dominance of ERG b- and d-waves is regulated by an endogenous circadian clock.
Collapse
Affiliation(s)
- Jason Q Ren
- Department of Physiology, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
| | | |
Collapse
|
63
|
Steffen MA, Seay CA, Amini B, Cai Y, Feigenspan A, Baxter DA, Marshak DW. Spontaneous activity of dopaminergic retinal neurons. Biophys J 2004; 85:2158-69. [PMID: 14507682 PMCID: PMC1303443 DOI: 10.1016/s0006-3495(03)74642-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Dopaminergic local circuit neurons in the retina (DA cells) show robust, spontaneous, tetrodotoxin-sensitive pacemaking. To investigate the mechanism underlying this behavior, we characterized the sodium current and a subset of the potassium currents in the cells in voltage-clamp experiments. We found that there is a persistent component of the sodium current in DA cells which activates at more depolarized potentials than the transient component of the current. The transient component was completely inactivated at -50 mV, but DA cells remained able to fire spontaneous action potentials when potassium channels were partially blocked and the membrane potential remained above -40 mV. Based on these electrophysiological data, we developed a reduced computer model that reproduced the major features of DA cells. In simulations at the physiological resting potential, the persistent component of the sodium current was both necessary and sufficient to account for spontaneous activity, and the major contribution of the transient component of the sodium current was to initiate the depolarization of the model cell during the interspike interval. When tonic inhibition was simulated by lowering the input impedance of the model cell, the transient component played a larger role.
Collapse
Affiliation(s)
- Michael A Steffen
- Department of Neurobiology and Anatomy, University of Texas Medical School, Houston, Texas 77225 USA
| | | | | | | | | | | | | |
Collapse
|
64
|
Fan SF, Yazulla S. Inhibitory interaction of cannabinoid CB1 receptor and dopamine D2 receptor agonists on voltage-gated currents of goldfish cones. Vis Neurosci 2004; 21:69-77. [PMID: 15137583 DOI: 10.1017/s0952523804041070] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Dopamine is a light-adaptive signal that desensitizes the retina, while cannabinoids reportedly increase photosensitivity. The presynaptic membrane of goldfish retinal cones has dopamine D2 receptors and cannabinoid CB1 receptors. This work focused on whether dopamine D2 receptor agonist quinpirole and cannabinoid CB1 receptor agonist WIN 55212-2 (WIN) interacted to modulate voltage-dependent membrane currents of cones. A conventional patch-clamp method was used to record depolarization evoked whole-cell outward currents (Iout) and an inward calcium current (ICa) from the inner segment of cones in goldfish retinal slices. WIN had biphasic actions: low concentrations (<1 μM) increased the currentsviaGs, while higher concentrations (>1 μM) decreased the currentsviaGi/Go. Neither dopamine nor the D2 agonist quinpirole (1–20 μM) had a significant effect on eitherIoutorICa. Quinpirole at 50 μM had a mild suppressive (∼20%) effect onIout. However, quinpirole (<10 μM) completely blocked the enhancement of both currents seen with 0.7 μM WIN. The effect of quinpirole was blocked by sulpiride and by pertussis toxin, indicating that quinpirole was actingviaa D2 receptor-Gi/o coupled mechanism. The suppressive action of 50 μM quinpirole (∼20%) was not additive with the suppressive effect of 3 μM WIN (∼40%). D2 agonistsviaGi/o oppose the action of low concentrations of CB1 agonists actingviaGs to modulate cone membrane currents, suggesting a role in shaping the cone light response and/or sensitivity to changes in ambient light conditions. The nonadditive effect of high concentrations of WIN and quinpirole suggests that both decrease membrane currentsviathe same transduction pathway, Gi/Go protein kinase A (PKA).
Collapse
Affiliation(s)
- Shih-Fang Fan
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794-5230, USA
| | | |
Collapse
|
65
|
Gustincich S, Contini M, Gariboldi M, Puopolo M, Kadota K, Bono H, LeMieux J, Walsh P, Carninci P, Hayashizaki Y, Okazaki Y, Raviola E. Gene discovery in genetically labeled single dopaminergic neurons of the retina. Proc Natl Acad Sci U S A 2004; 101:5069-74. [PMID: 15047890 PMCID: PMC387375 DOI: 10.1073/pnas.0400913101] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the retina, dopamine plays a central role in neural adaptation to light. Progress in the study of dopaminergic amacrine (DA) cells has been limited because they are very few (450 in each mouse retina, 0.005% of retinal neurons). Here, we applied transgenic technology, single-cell global mRNA amplification, and cDNA microarray screening to identify transcripts present in DA cells. To profile gene expression in single neurons, we developed a method (SMART7) that combines a PCR-based initial step (switching mechanism at the 5' end of the RNA transcript or SMART) with T7 RNA polymerase amplification. Single-cell targets were synthesized from genetically labeled DA cells to screen the RIKEN 19k mouse cDNA microarrays. Seven hundred ninety-five transcripts were identified in DA cells at a high level of confidence, and expression of the most interesting genes was confirmed by immunocytochemistry. Twenty-one previously undescribed proteins were found in DA cells, including a chloride channel, receptors and other membrane glycoproteins, kinases, transcription factors, and secreted neuroactive molecules. Thirty-eight percent of transcripts were ESTs or coding for hypothetical proteins, suggesting that a large portion of the DA cell proteome is still uncharacterized. Because cryptochrome-1 mRNA was found in DA cells, immunocytochemistry was extended to other components of the circadian clock machinery. This analysis showed that DA cells contain the most common clock-related proteins.
Collapse
Affiliation(s)
- Stefano Gustincich
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Orger MB, Gahtan E, Muto A, Page-McCaw P, Smear MC, Baier H. Behavioral screening assays in zebrafish. Methods Cell Biol 2004; 77:53-68. [PMID: 15602905 DOI: 10.1016/s0091-679x(04)77003-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Michael B Orger
- Program in Neuroscience, Department of Physiology, University of California, San Francisco, San Francisco, California 94143, USA
| | | | | | | | | | | |
Collapse
|
67
|
Anichtchik OV, Kaslin J, Peitsaro N, Scheinin M, Panula P. Neurochemical and behavioural changes in zebrafish Danio rerio after systemic administration of 6-hydroxydopamine and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J Neurochem 2003; 88:443-53. [PMID: 14690532 DOI: 10.1111/j.1471-4159.2004.02190.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dopaminergic deficiency in the brain of zebrafish was produced by systemic administration of two catecholaminergic neurotoxins, 6-hydroxydopamine (6-OHDA) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and the neurochemical and behavioural changes were characterized. The levels of dopamine and noradrenaline decreased significantly after the injection of MPTP and 6-OHDA. Corresponding to these changes, fish exhibited characteristic changes in locomotor behaviour, i.e. the total distance moved and velocity decreased after both neurotoxins. Tyrosine hydroxylase and caspase 3 protein levels were not altered after MPTP or 6-OHDA injections, as studied by immunohistochemistry and western blotting. The catecholaminergic cell clusters suggested to correspond to the mammalian nigrostriatal cell group displayed normal tyrosine hydroxylase immunoreactivity after the toxin treatment and did not show signs of DNA fragmentation that would indicate activation of cascades that lead to cell death. The results show that single systemic injections of MPTP and 6-OHDA induce both biochemical and behavioural changes in zebrafish, albeit failing to produce any significant morphological alteration in catecholaminergic cell clusters at the tested doses. This approach may be used for the screening of chemicals affecting the dopaminergic system. The model may be especially useful for evaluation of the role of novel genes in neurotoxicity, as a large number of zebrafish mutants are becoming available.
Collapse
Affiliation(s)
- Oleg V Anichtchik
- Neuroscience Center, Biomedicum Helsinki, Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki, Finland
| | | | | | | | | |
Collapse
|
68
|
Maaswinkel H, Li L. Olfactory input increases visual sensitivity in zebrafish: a possible function for the terminal nerve and dopaminergic interplexiform cells. J Exp Biol 2003; 206:2201-9. [PMID: 12771169 DOI: 10.1242/jeb.00397] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Centrifugal innervation of the neural retina has been documented in many species. In zebrafish Danio rerio, the only so-far described centrifugal pathway originates from terminal nerve (TN) cell bodies that are located in the olfactory bulb. Most of the TN axons terminate in the forebrain and midbrain, but some project via the optic nerve to the neural retina, where they synapse onto dopaminergic interplexiform cells (DA-IPCs). While the anatomical pathway between the olfactory and visual organs has been described, it is unknown if and how olfactory signals influence visual system functions. We demonstrate here that olfactory input is involved in the modulation of visual sensitivity in zebrafish. As determined by a behavioral assay and by electroretinographic (ERG) recording, zebrafish visual sensitivity was increased upon presentation of amino acids as olfactory stimuli. This effect, however, was observed only in the early morning hours when zebrafish are least sensitive to light. The effect of olfactory input on vision was eliminated after lesion of the olfactory bulbs or after the destruction of DA-IPCs. Intraocular injections of a dopamine D(2) but not a D(1) receptor antagonist blocked the effect of olfactory input on visual sensitivity. Although we cannot exclude the involvement of other anatomical pathways, our data suggest that the TN and DA-IPCs are the prime candidates for olfactory modulation of visual sensitivity.
Collapse
Affiliation(s)
- Hans Maaswinkel
- Departments of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | | |
Collapse
|
69
|
Zawilska JB, Bednarek A, Berezińska M, Nowak JZ. Rhythmic changes in metabolism of dopamine in the chick retina: the importance of light versus biological clock. J Neurochem 2003; 84:717-24. [PMID: 12562516 DOI: 10.1046/j.1471-4159.2003.01559.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rhythmic changes in dopamine (DA) content and metabolism were studied in retinas of chicks that were adapted to three different lighting conditions: 12-h light : 12-h dark (LD), constant darkness (DD) and continuous light (LL). Retinas of chicks kept under LD conditions exhibited light-dark-dependent variations in the steady-state level of DA and the two metabolites of DA, i.e. 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanilic acid (HVA). Concentrations of DA, DOPAC and HVA were high in light hours and low in dark hours of the LD illumination cycle. In retinas of chicks kept under DD, the content of DA, DOPAC and HVA oscillated in a rhythmic manner for 2 days, with higher values during the subjective light phase than during the subjective dark phase. The amplitudes of the observed oscillations markedly and progressively declined compared with the amplitudes recorded under the LD cycle. In retinas of chicks kept under LL conditions, levels of DA, DOPAC and HVA were similar to those found during the light phase of the LD cycle. Changes in the retinal contents of DA and HVA did not exhibit pronounced daily oscillations, while on the first day of LL the retinal concentrations of DOPAC were significantly higher during the subjective light phase than during the subjective dark phase. Acute exposure of chicks to light during the dark phase of the LD cycle markedly increased DA and DOPAC content in the retina. In contrast, light deprivation during the day decreased the retinal concentrations of DA and DOPAC. It is suggested that of the two regulatory factors controlling the level and metabolism of DA in the retina of chick, i.e. light and biological clock, environmental lighting conditions seem to be of major importance, with light conveying a stimulatory signal for the retinal dopaminergic cells.
Collapse
Affiliation(s)
- Jolanta B Zawilska
- Department of Biogenic Amines, Polish Academy of Sciences, POB-225 Lodz-1, 90-950 Poland.
| | | | | | | |
Collapse
|
70
|
Neuhauss SCF. Behavioral genetic approaches to visual system development and function in zebrafish. JOURNAL OF NEUROBIOLOGY 2003; 54:148-60. [PMID: 12486702 DOI: 10.1002/neu.10165] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The zebrafish is a recent vertebrate model system that shows great potential for a genetic analysis of behavior. Early development is extraordinarily rapid, so that larvae already display a range of behaviors 5 days after fertilization. In particular the visual system develops precociously, supporting a number of visually mediated behaviors in the larva. This provides the opportunity to use these visually mediated behaviors to screen chemically mutagenized strains for defects in vision. Larval optokinetic and optomotor responses have already been successfully employed to screen for mutant strains with defects in the visual system. In the adult zebrafish a visually mediated escape response has proved useful for screening for dominant mutations of the visual system. Here, I summarize visually mediated behaviors of both larval and adult zebrafish and their applicability for genetic screens, and present, the approaches and results of visual behavior carried out to date.
Collapse
Affiliation(s)
- Stephan C F Neuhauss
- Brain Research Institute, University of Zurich and Swiss Federal Institute of Technology (ETH) Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
71
|
Miranda-Anaya M, Bartell PA, Menaker M. Circadian rhythm of iguana electroretinogram: the role of dopamine and melatonin. J Biol Rhythms 2002; 17:526-38. [PMID: 12465886 DOI: 10.1177/0748730402238235] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The amplitude of the b-wave of the electroretinogram (ERG) varies with a circadian rhythm in the green iguana; the amplitude is high during the day(or subjective day) and low during the night (or subjective night). Dopamine and melatonin contents in the eye are robustly rhythmic under constant conditions; dopamine levels are high during the subjective day, and melatonin levels are high during the subjective night. Dopamine and melatonin affect the amplitude of the b-wave in an antagonistic and phase-dependent manner: dopamine D2-receptor agonists injected intraocularly during the subjective night produce high-amplitude b-waves characteristic of the subjective day, whereas melatonin injected intraocularly during the subjective day reduces b-wave amplitude. Sectioning the optic nerve abolishes the circadian rhythms of b-wave amplitude and of dopamine content. The results of this study suggest that in iguana, a negative feedback loop involving dopamine and melatonin regulates the circadian rhythm of the ERG b-wave amplitude that is at least in part generated in the brain.
Collapse
Affiliation(s)
- Manuel Miranda-Anaya
- Department of Biology and National Science Foundation Centerfor Biological Timing, University of Virginia, Charlottesville, VA 22904-4328, USA.
| | | | | |
Collapse
|
72
|
Ren JQ, McCarthy WR, Zhang H, Adolph AR, Li L. Behavioral visual responses of wild-type and hypopigmented zebrafish. Vision Res 2002; 42:293-9. [PMID: 11809482 DOI: 10.1016/s0042-6989(01)00284-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Zebrafish possess three classes of chromatophores that include iridophores, melanophores, and xanthophores. Mutations that lack one or two classes of chromatophores have been isolated or genetically constructed. Using a behavioral assay based on visually mediated escape responses, we measured the visual response of fully and partially pigmented zebrafish. In zebrafish that lack iridophores (roy mutants), the behavioral visual responses were similar to those of wild-type animals except at low contrast stimulation. In the absence of melanophores (albino mutants) or both melanophores and iridophores (ruby mutants), the behavioral visual responses were normal under moderate illumination but reduced when tested under dim or bright conditions or under low contrast stimulation. Together, the data suggest that screening pigments in the retina play a role in the regulation of behavioral visual responses and are necessary for avoiding "scatter" under bright light conditions.
Collapse
Affiliation(s)
- Jason Q Ren
- Department of Physiology, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY 40536, USA
| | | | | | | | | |
Collapse
|
73
|
Abstract
Inventive genetic screens in zebrafish are revealing new genetic pathways that control vertebrate development, disease and behaviour. By exploiting the versatility of zebrafish, biological processes that had been previously obscured can be visualized and many of the responsible genes can be isolated. Coupled with gene knockdown and overexpression technologies, and small-molecule-induced phenotypes, genetic screens in zebrafish provide a powerful system by which to dissect vertebrate gene function and gene networks.
Collapse
Affiliation(s)
- E E Patton
- Howard Hughes Medical Institute, Children's Hospital of Boston, 300 Longwood Avenue, Enders 750, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
74
|
Abstract
The zebrafish has become an important vertebrate model in developmental neuroscience because it is a useful model for embryology, developmental biology, and genetic analysis. The similarities of its visual system to that of other vertebrates also make this animal a valuable model in vision science. The anatomical, physiological, and behavioral components of zebrafish visual processing have been studied in adult and in developing zebrafish. Its retinal anatomy continues to develop following hatching, providing an opportunity to correlate the development of retinal structure with visual physiology and behavior. In addition, a number of genetic mutations have been developed which are used to examine the contributions of genetics to visual development and function. This article will provide an overview of studies of zebrafish anatomical, physiological and behavioral processing, and the effects if genetic and environmental manipulations on visual development.
Collapse
Affiliation(s)
- J Bilotta
- Department of Psychology and Biotechnology Center, Western Kentucky University, 1 Big Red Way, Bowling Green, KY 42101, USA.
| | | |
Collapse
|
75
|
Larkin P, Semple-Rowland SL. A null mutation in guanylate cyclase-1 alters the temporal dynamics and light entrainment properties of the iodopsin rhythm in cone photoreceptor cells. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 92:49-57. [PMID: 11483241 DOI: 10.1016/s0169-328x(01)00136-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Guanylate cyclase-1 (GC1) plays a critical role in visual phototransduction and its absence severely compromises the ability of the photoreceptor cells to transduce light for vision. In this study we sought to determine if the absence of GC1 has any effect on light entrainment of the circadian oscillators located in these cells. We compared the rhythmic changes in transcript levels of iodopsin, a photoreceptor-specific gene whose expression is regulated by circadian oscillators, in retinas of normal chickens and GUCY1*B (*B) chickens that carry a null mutation in GC1. Our results show that iodopsin rhythms are present in *B retinas and that they can be entrained to light; however, the rise and fall of iodopsin transcript levels in *B retina under cyclic light conditions is significantly more rapid than that observed in normal retina, and under constant dark conditions, the phase of the iodopsin rhythm in *B retina is advanced by 6 h relative to that observed in normal retina. In addition, the rate of entrainment of the iodopsin rhythm in *B retina to a reversal of the light cycle is significantly slower than normal. The results of our study show that a functioning visual phototransduction cascade is not essential for light entrainment of the oscillators that drive the iodopsin rhythm in photoreceptor cells. We propose that the abnormal synthesis of cGMP in *B photoreceptors underlies the irregular iodopsin rhythms observed in post-hatch *B retina.
Collapse
Affiliation(s)
- P Larkin
- Department of Neuroscience, McKnight Brain Institute, University of Florida, 100 S. Newell Dr., Gainesville, FL 32610-0244, USA
| | | |
Collapse
|
76
|
Abstract
Zebrafish are a promising model for behavioral and genetic studies of vertebrate visual system development and retinal degeneration. In the past few years, numerous studies on zebrafish vision have been published. While most of the studies focus on the molecular and cellular characterization of mutations that disrupt zebrafish visual system structure in early development, others examine the mechanisms that underlie inherited visual system disorders in adults. Behavioral assays, along with morphologic and electrophysiological methods, are powerful tools for functional analyses of zebrafish visual development and performance.
Collapse
Affiliation(s)
- L Li
- Departments of Physiology and Ophthalmology, University of Kentucky College of Medicine, Lexington, Kentucky 40536, USA.
| |
Collapse
|
77
|
Cohen ED. Synaptic mechanisms shaping the light-response in retinal ganglion cells. PROGRESS IN BRAIN RESEARCH 2001; 131:215-28. [PMID: 11420942 DOI: 10.1016/s0079-6123(01)31018-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- E D Cohen
- Department of Cellular and Molecular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.
| |
Collapse
|
78
|
Barlow R. Circadian and efferent modulation of visual sensitivity. PROGRESS IN BRAIN RESEARCH 2001; 131:487-503. [PMID: 11420965 DOI: 10.1016/s0079-6123(01)31039-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- R Barlow
- Center for Vision Research, Department of Ophthalmology, Upstate Medical University, 750 Adams Street, Syracuse, NY 13210, USA.
| |
Collapse
|
79
|
McMahon DG, Zhang DQ, Ponomareva L, Wagner T. Synaptic mechanisms of network adaptation in horizontal cells. PROGRESS IN BRAIN RESEARCH 2001; 131:419-36. [PMID: 11420960 DOI: 10.1016/s0079-6123(01)31034-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- D G McMahon
- Department of Physiology, University of Kentucky, Lexington, KY 40536-0084, USA.
| | | | | | | |
Collapse
|
80
|
Affiliation(s)
- W H Baldridge
- Retina and Optic Nerve Laboratory, Departments of Anatomy and Neurobiology and Ophthalmology, Dalhousie University, Halifax, NS, Canada B3H 4H7.
| |
Collapse
|
81
|
Li L. Genetic and epigenetic analysis of visual system functions of zebrafish. PROGRESS IN BRAIN RESEARCH 2001; 131:555-63. [PMID: 11420970 DOI: 10.1016/s0079-6123(01)31043-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- L Li
- Department of Physiology, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY 40536, USA.
| |
Collapse
|
82
|
Marshak DW. Synaptic inputs to dopaminergic neurons in mammalian retinas. PROGRESS IN BRAIN RESEARCH 2001; 131:83-91. [PMID: 11420984 DOI: 10.1016/s0079-6123(01)31009-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- D W Marshak
- Department of Neurobiology and Anatomy, University of Texas Medical School, Houston, TX 77225-0708, USA.
| |
Collapse
|
83
|
Yazulla S, Studholme KM, Fan SF, Mora-Ferrer C. Neuromodulation of voltage-dependent K+ channels in bipolar cells: immunocytochemical and electrophysiological studies. PROGRESS IN BRAIN RESEARCH 2001; 131:201-13. [PMID: 11420941 DOI: 10.1016/s0079-6123(01)31017-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- S Yazulla
- Department of Neurobiology and Behavior, SUNY Stony Brook, NY 11794-5230, USA.
| | | | | | | |
Collapse
|
84
|
Bricaud O, Chaar V, Dambly-Chaudière C, Ghysen A. Early efferent innervation of the zebrafish lateral line. J Comp Neurol 2001; 434:253-61. [PMID: 11331527 DOI: 10.1002/cne.1175] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We examined the efferent innervation of the lateral line in zebrafish larvae. Three efferent nuclei were previously reported for the posterior line, two in the hindbrain and one in the ventral hypothalamus. Here we show that the same three nuclei innervate the anterior line as well. The rhombencephalic neurons innervate either the anterior or the posterior line. The diencephalic neurons seem to innervate both lines as well as the ear. The diencephalic efferents are labeled by anti-tyrosine hydroxylase antibodies and probably use dopamine as a transmitter. They are among the very first catecholaminergic neurons to differentiate in the brain and extend branches into the lateral line system almost as soon as the latter forms. We discuss possible functions of the rhombencephalic and diencephalic efferents.
Collapse
Affiliation(s)
- O Bricaud
- Laboratoire de Neurogénétique, INSERM E0012, Université Montpellier II, F-34095 Montpellier cedex 5, France
| | | | | | | |
Collapse
|
85
|
Castrogiovanni P, Pieraccini F, Iapichino S, Pacchierotti C, Bossini L, Truglia E, Malpassi C, Natale B. Electroretinogram B-wave amplitude in panic disorder. CNS Spectr 2001; 6:210-3. [PMID: 16951655 DOI: 10.1017/s1092852900008580] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Abnormal light-related behaviors have been described for patients with panic disorder (PD). The present study was undertaken to investigate the retinal light response in PD using electroretinography (ERG). The authors conducted b-wave ERG measurements with a bright light (after dark adaptation) in 28 patients with PD and 28 control subjects. There were no significant differences in the mean b-wave amplitude between the two groups, but the retinal response to light in PD patients was generally lower than in healthy subjects. A large interindividual variability was found; also noted was a significant difference in the mean b-wave amplitude between the right and left eyes in the control group. The data indicate subtle variation of retinal photosensitivity in a subgroup of patients with PD. Because dopaminergic retinal activity affects b-ERG amplitude, the authors hypothesize that the dopaminergic system is involved in the response to light in PD patients.
Collapse
|
86
|
Abstract
Behavioral screens have uncovered dozens of zebrafish mutants with striking visual defects. In parallel with mutant studies, recent psychophysical experiments indicate that zebrafish are capable of high-level motion processing, previously thought to be restricted to animals with a visual cortex. It should be possible now to devise assays to screen for mutations in visual perception.
Collapse
Affiliation(s)
- H Baier
- University of California at San Francisco, Department of Physiology, 94143-0444, USA.
| |
Collapse
|
87
|
Li L, Dowling JE. Disruption of the olfactoretinal centrifugal pathway may relate to the visual system defect in night blindness b mutant zebrafish. J Neurosci 2000; 20:1883-92. [PMID: 10684889 PMCID: PMC6772933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
We describe here a dominant mutation, night blindness b (nbb), which causes an age-related visual system defect in zebrafish. At 4-5 months of age, dark-adapted nbb(+/-) mutants show abnormal visual threshold fluctuations when measured behaviorally. Light sensitizes the animals; thus early dark adaptation of nbb(+/-) fish is normal. After 2 hr of dark adaptation, however, visual thresholds of nbb(+/-) mutants are raised on average 2-3 log units, and rod system function is not detectable. Electroretinograms recorded from nbb(+/-) mutants are normal, but ganglion cell thresholds are raised in prolonged darkness, suggesting an inner retinal defect. The visual defect of nbb(+/-) mutants may be likely caused by an abnormal olfactoretinal centrifugal innervation; in nbb(+/-) mutants, the olfactoretinal centrifugal projection to the retina is disrupted, and the number of retinal dopaminergic interplexiform cells is reduced. A similar visual defect as shown by nbb(+/-) mutants is observed in zebrafish in which the olfactory epithelium and olfactory bulb have been excised. Homozygous nbb fish display an early onset neural degeneration throughout the CNS and die by 7-8 d of age.
Collapse
Affiliation(s)
- L Li
- Department of Molecular Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | |
Collapse
|