51
|
A molecular brake controls the magnitude of long-term potentiation. Nat Commun 2015; 5:3051. [PMID: 24394804 PMCID: PMC3895372 DOI: 10.1038/ncomms4051] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 12/02/2013] [Indexed: 01/09/2023] Open
Abstract
Overexpression of suprachiasmatic nucleus circadian oscillatory protein (SCOP), a negative ERK regulator, blocks long-term memory encoding. Inhibition of calpain-mediated SCOP degradation also prevents the formation of long-term memory, suggesting rapid SCOP breakdown is necessary for memory encoding. However, whether SCOP levels also control the magnitude of long-term synaptic plasticity is unknown. Here we show that following synaptic activity-induced SCOP degradation, SCOP is rapidly replaced via mTOR-mediated protein synthesis. We further show that early SCOP degradation is specifically catalysed by μ-calpain, whereas late SCOP resynthesis is mediated by m-calpain. We propose that μ-calpain promotes long-term potentiation induction by degrading SCOP and activating ERK, whereas m-calpain activation limits the magnitude of potentiation by terminating the ERK response via enhanced SCOP synthesis. This unique braking mechanism could account for the advantages of spaced versus massed training in the formation of long-term memory.
Collapse
|
52
|
Borovok N, Nesher E, Levin Y, Reichenstein M, Pinhasov A, Michaelevski I. Dynamics of Hippocampal Protein Expression During Long-term Spatial Memory Formation. Mol Cell Proteomics 2015; 15:523-41. [PMID: 26598641 DOI: 10.1074/mcp.m115.051318] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Indexed: 01/08/2023] Open
Abstract
Spatial memory depends on the hippocampus, which is particularly vulnerable to aging. This vulnerability has implications for the impairment of navigation capacities in older people, who may show a marked drop in performance of spatial tasks with advancing age. Contemporary understanding of long-term memory formation relies on molecular mechanisms underlying long-term synaptic plasticity. With memory acquisition, activity-dependent changes occurring in synapses initiate multiple signal transduction pathways enhancing protein turnover. This enhancement facilitates de novo synthesis of plasticity related proteins, crucial factors for establishing persistent long-term synaptic plasticity and forming memory engrams. Extensive studies have been performed to elucidate molecular mechanisms of memory traces formation; however, the identity of plasticity related proteins is still evasive. In this study, we investigated protein turnover in mouse hippocampus during long-term spatial memory formation using the reference memory version of radial arm maze (RAM) paradigm. We identified 1592 proteins, which exhibited a complex picture of expression changes during spatial memory formation. Variable linear decomposition reduced significantly data dimensionality and enriched three principal factors responsible for variance of memory-related protein levels at (1) the initial phase of memory acquisition (165 proteins), (2) during the steep learning improvement (148 proteins), and (3) the final phase of the learning curve (123 proteins). Gene ontology and signaling pathways analysis revealed a clear correlation between memory improvement and learning phase-curbed expression profiles of proteins belonging to specific functional categories. We found differential enrichment of (1) neurotrophic factors signaling pathways, proteins regulating synaptic transmission, and actin microfilament during the first day of the learning curve; (2) transcription and translation machinery, protein trafficking, enhancement of metabolic activity, and Wnt signaling pathway during the steep phase of memory formation; and (3) cytoskeleton organization proteins. Taken together, this study clearly demonstrates dynamic assembly and disassembly of protein-protein interaction networks depending on the stage of memory formation engrams.
Collapse
Affiliation(s)
- Natalia Borovok
- From the ‡Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Elimelech Nesher
- §Department of Molecular Biology, Ariel University, Ariel 4070000, Israel
| | - Yishai Levin
- ¶de Botton Institute for Protein Profiling, The Nancy & Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michal Reichenstein
- From the ‡Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Albert Pinhasov
- §Department of Molecular Biology, Ariel University, Ariel 4070000, Israel
| | - Izhak Michaelevski
- From the ‡Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel-Aviv 6997801, Israel; ‖Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
53
|
The Role of Proteases in Hippocampal Synaptic Plasticity: Putting Together Small Pieces of a Complex Puzzle. Neurochem Res 2015; 41:156-82. [DOI: 10.1007/s11064-015-1752-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 12/17/2022]
|
54
|
Conant K, Allen M, Lim ST. Activity dependent CAM cleavage and neurotransmission. Front Cell Neurosci 2015; 9:305. [PMID: 26321910 PMCID: PMC4531370 DOI: 10.3389/fncel.2015.00305] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/27/2015] [Indexed: 12/13/2022] Open
Abstract
Spatially localized proteolysis represents an elegant means by which neuronal activity dependent changes in synaptic structure, and thus experience dependent learning and memory, can be achieved. In vitro and in vivo studies suggest that matrix metalloproteinase and adamalysin activity is concentrated at the cell surface, and emerging evidence suggests that increased peri-synaptic expression, release and/or activation of these proteinases occurs with enhanced excitatory neurotransmission. Synaptically expressed cell adhesion molecules (CAMs) could therefore represent important targets for neuronal activity-dependent proteolysis. Several CAM subtypes are expressed at the synapse, and their cleavage can influence the efficacy of synaptic transmission through a variety of non-mutually exclusive mechanisms. In the following review, we discuss mechanisms that regulate neuronal activity-dependent synaptic CAM shedding, including those that may be calcium dependent. We also highlight CAM targets of activity-dependent proteolysis including neuroligin and intercellular adhesion molecule-5 (ICAM-5). We include discussion focused on potential consequences of synaptic CAM shedding, with an emphasis on interactions between soluble CAM cleavage products and specific pre- and post-synaptic receptors.
Collapse
Affiliation(s)
- Katherine Conant
- Department of Neuroscience and Interdisciplinary Program in Neuroscience, Georgetown University Medical Center Washington, DC, USA
| | - Megan Allen
- Department of Neuroscience and Interdisciplinary Program in Neuroscience, Georgetown University Medical Center Washington, DC, USA
| | - Seung T Lim
- Department of Neuroscience and Interdisciplinary Program in Neuroscience, Georgetown University Medical Center Washington, DC, USA
| |
Collapse
|
55
|
Varney S, Polston KF, Jessen T, Carneiro AMD. Mice lacking integrin β3 expression exhibit altered response to chronic stress. Neurobiol Stress 2015; 2:51-58. [PMID: 26634222 PMCID: PMC4664197 DOI: 10.1016/j.ynstr.2015.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Recent studies indicate multiple roles for integrin αvβ3 in adult neurons, including response to pharmacological agents such as cocaine and selective serotonin reuptake inhibitors. In this study, we examined the role of the integrin β3 gene (Itgb3) in the response to environmental stimuli by subjecting Itgb3+/+ and Itgb3-/- mice to unpredictable chronic mild stressors. We found that genetic abrogation of integrin β3 expression elicits an exaggerated vulnerability to chronic unpredictable stress in the open field test. In this test, chronic stress elicited significant decreases in stereotypic behavior and horizontal locomotor activity, including increases in anxiety behaviors. Mild chronic stress led to reductions in dopamine turnover in midbrains of Itgb3+/+, but not Itgb3-/- mice, suggesting a disruption of stress-dependent regulation of DA homeostasis. Chronic stress elicited altered synaptic expression of syntaxin and synaptophysin in midbrains of Itgb3-/- mice, when compared to Itgb3+/+. Semi-quantitative Western blot studies revealed that the synaptic expression, but not total tissue expression, of multiple signaling proteins is correlated with integrin αv levels in the midbrain. Moreover, loss of integrin β3 expression modifies this correlation network. Together, these findings demonstrate that Itgb3-/- mice display a pattern of changes indicating disrupted regulation of midbrain synaptic systems involved in conferring resilience to mild stressors.
Collapse
Affiliation(s)
- Seth Varney
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6600, USA
| | - Keith F Polston
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6600, USA
| | - Tammy Jessen
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6600, USA
| | - Ana M D Carneiro
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6600, USA
| |
Collapse
|
56
|
Shi H, Hu X, Leak RK, Shi Y, An C, Suenaga J, Chen J, Gao Y. Demyelination as a rational therapeutic target for ischemic or traumatic brain injury. Exp Neurol 2015; 272:17-25. [PMID: 25819104 DOI: 10.1016/j.expneurol.2015.03.017] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 03/15/2015] [Accepted: 03/18/2015] [Indexed: 12/11/2022]
Abstract
Previous research on stroke and traumatic brain injury (TBI) heavily emphasized pathological alterations in neuronal cells within gray matter. However, recent studies have highlighted the equal importance of white matter integrity in long-term recovery from these conditions. Demyelination is a major component of white matter injury and is characterized by loss of the myelin sheath and oligodendrocyte cell death. Demyelination contributes significantly to long-term sensorimotor and cognitive deficits because the adult brain only has limited capacity for oligodendrocyte regeneration and axonal remyelination. In the current review, we will provide an overview of the major causes of demyelination and oligodendrocyte cell death following acute brain injuries, and discuss the crosstalk between myelin, axons, microglia, and astrocytes during the process of demyelination. Recent discoveries of molecules that regulate the processes of remyelination may provide novel therapeutic targets to restore white matter integrity and improve long-term neurological recovery in stroke or TBI patients.
Collapse
Affiliation(s)
- Hong Shi
- The State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Department of Anesthesiology of Shanghai Pulmonary Hospital, Tongji University, Shanghai 200433, China
| | - Xiaoming Hu
- The State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Yejie Shi
- The State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Chengrui An
- The State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Jun Suenaga
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jun Chen
- The State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA.
| | - Yanqin Gao
- The State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
57
|
Slingshot-Cofilin activation mediates mitochondrial and synaptic dysfunction via Aβ ligation to β1-integrin conformers. Cell Death Differ 2015; 22:921-34. [PMID: 25698445 PMCID: PMC4423195 DOI: 10.1038/cdd.2015.5] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/19/2014] [Accepted: 12/16/2014] [Indexed: 02/08/2023] Open
Abstract
The accumulation of amyloid-β protein (Aβ) is an early event associated with synaptic and mitochondrial damage in Alzheimer's disease (AD). Recent studies have implicated the filamentous actin (F-actin) severing protein, Cofilin, in synaptic remodeling, mitochondrial dysfunction, and AD pathogenesis. However, whether Cofilin is an essential component of the AD pathogenic process and how Aβ impinges its signals to Cofilin from the neuronal surface are unknown. In this study, we found that Aβ42 oligomers (Aβ42O, amyloid-β protein 1–42 oligomers) bind with high affinity to low or intermediate activation conformers of β1-integrin, resulting in the loss of surface β1-integrin and activation of Cofilin via Slingshot homology-1 (SSH1) activation. Specifically, conditional loss of β1-integrin prevented Aβ42O-induced Cofilin activation, and allosteric modulation or activation of β1-integrin significantly reduced Aβ42O binding to neurons while blocking Aβ42O-induced reactive oxygen species (ROS) production, mitochondrial dysfunction, depletion of F-actin/focal Vinculin, and apoptosis. Cofilin, in turn, was required for Aβ42O-induced loss of cell surface β1-integrin, disruption of F-actin/focal Talin–Vinculin, and depletion of F-actin-associated postsynaptic proteins. SSH1 reduction, which mitigated Cofilin activation, prevented Aβ42O-induced mitochondrial Cofilin translocation and apoptosis, while AD brain mitochondria contained significantly increased activated/oxidized Cofilin. In mechanistic support in vivo, AD mouse model (APP (amyloid precursor protein)/PS1) brains contained increased SSH1/Cofilin and decreased SSH1/14-3-3 complexes, indicative of SSH1–Cofilin activation via release of SSH1 from 14-3-3. Finally, genetic reduction in Cofilin rescued APP/Aβ-induced synaptic protein loss and gliosis in vivo as well as deficits in long-term potentiation (LTP) and contextual memory in APP/PS1 mice. These novel findings therefore implicate the essential involvement of the β1-integrin–SSH1–Cofilin pathway in mitochondrial and synaptic dysfunction in AD.
Collapse
|
58
|
Rudy JW. Variation in the persistence of memory: An interplay between actin dynamics and AMPA receptors. Brain Res 2014; 1621:29-37. [PMID: 25511990 DOI: 10.1016/j.brainres.2014.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 10/24/2022]
Abstract
William James noted that memories could persist from minutes to weeks. This essay attempts to explain this variation by situating the explanation in the biochemistry of dendritic spines. Two outcomes are critical to generate the synaptic basis of memory: (1) the actin cytoskeleton in the spine must be degraded to permit (2) additional AMPA receptors (GluA1s) to enter new "hot spots" in the postsynaptic density. These initial outcomes can support short-lasting memories. The threshold for these events is low but the underlying synaptic changes cannot resist the endocytic processes that remove the added AMPA receptors. For the memory to persist the degraded actin cytoskeleton must be rebuilt and the vacated "hot spots" refilled with GluA2 receptors. A primary claim is that it is the stabilization of an enlarged actin cytoskeleton that is the target outcome that consolidates the synaptic basis of memory (see Lynch et al., 2007). The stabilized actin cytoskeleton has properties that enable it to garner the synaptic proteins it needs to self sustain the potentiated state and to benefit from activation of memory modulation systems. This article is part of a Special Issue entitled Brain and Memory.
Collapse
Affiliation(s)
- Jerry W Rudy
- Department of Psychology and Neuroscience University of Colorado, Boulder, CO 80309, United States.
| |
Collapse
|
59
|
Rudy JW. Actin dynamics and the evolution of the memory trace. Brain Res 2014; 1621:17-28. [PMID: 25498985 DOI: 10.1016/j.brainres.2014.12.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 12/24/2022]
Abstract
The goal of this essay is to link the regulation of actin dynamics to the idea that the synaptic changes that support long-term potentiation and memory evolve in temporally overlapping stages-generation, stabilization, and consolidation. Different cellular/molecular processes operate at each stage to change the spine cytoarchitecture and, in doing so, alter its function. Calcium-dependent processes that degrade the actin cytoskeleton network promote a rapid insertion of AMPA receptors into the post synaptic density, which increases a spine's capacity to express a potentiated response to glutamate. Other post-translation events then begin to stabilize and expand the actin cytoskeleton by increasing the filament actin content of the spine and reorganizing it to be resistant to depolymerizing events. Disrupting actin polymerization during this stabilization period is a terminal event-the actin cytoskeleton shrinks and potentiated synapses de-potentiate and memories are lost. Late-arriving, new proteins may consolidate changes in the actin cytoskeleton. However, to do so requires a stabilized actin cytoskeleton. The now enlarged spine has properties that enable it to capture other newly transcribed mRNAs or their protein products and thus enable the synaptic changes that support LTP and memory to be consolidated and maintained. This article is part of a Special Issue entitled SI: Brain and Memory.
Collapse
Affiliation(s)
- Jerry W Rudy
- Department of Psychology and Neuroscience, University of Colorado, 345 UCB, Boulder, CO 80309, USA.
| |
Collapse
|
60
|
Lynch G, Kramár EA, Gall CM. Protein synthesis and consolidation of memory-related synaptic changes. Brain Res 2014; 1621:62-72. [PMID: 25485773 DOI: 10.1016/j.brainres.2014.11.060] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 11/27/2014] [Indexed: 10/24/2022]
Abstract
Although sometimes disputed, it has been assumed for several decades that new proteins synthesized following a learning event are required for consolidation of subsequent memory. Published findings and new results described here challenge this idea. Protein synthesis inhibitors did not prevent Theta Bust Stimulation (TBS) from producing extremely stable long-term potentiation (LTP) in experiments using standard hippocampal slice protocols. However, the inhibitors were effective under conditions that likely depleted protein levels prior to attempts to induce the potentiation effect. Experiments showed that induction of LTP at one input, and thus a prior episode of protein synthesis, eliminated the effects of inhibitors on potentiation of a second input even in depleted slices. These observations suggest that a primary role of translation and transcription processes initiated by learning events is to prepare neurons to support future learning. Other work has provided support for an alternative theory of consolidation. Specifically, if the synaptic changes that support memory are to endure, learning events/TBS must engage a complex set of signaling processes that reorganize and re-stabilize the spine actin cytoskeleton. This is accomplished in fast (10 min) and slow (50 min) stages with the first requiring integrin activation and the second a recovery of integrin functioning. These results align with, and provide mechanisms for, the long-held view that memories are established and consolidated over a set of temporally distinct phases. This article is part of a Special Issue entitled SI: Brain and Memory.
Collapse
Affiliation(s)
- Gary Lynch
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697, USA; Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697, USA.
| | - Enikö A Kramár
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697, USA
| | - Christine M Gall
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697, USA; Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| |
Collapse
|
61
|
Spaced training rescues memory and ERK1/2 signaling in fragile X syndrome model mice. Proc Natl Acad Sci U S A 2014; 111:16907-12. [PMID: 25385607 DOI: 10.1073/pnas.1413335111] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Recent studies have shown that short, spaced trains of afferent stimulation produce much greater long-term potentiation (LTP) than that obtained with a single, prolonged stimulation episode. The present studies demonstrate that spaced training regimens, based on these LTP timing rules, facilitate learning in wild-type (WT) mice and can offset learning and synaptic signaling impairments in the fragile X mental retardation 1 (Fmr1) knockout (KO) model of fragile X syndrome. We determined that 5 min of continuous training supports object location memory (OLM) in WT but not Fmr1 KO mice. However, the same amount of training distributed across three short trials, spaced by one hour, produced robust long-term memory in the KOs. At least three training trials were needed to realize the benefit of spacing, and intertrial intervals shorter or longer than 60 min were ineffective. Multiple short training trials also rescued novel object recognition in Fmr1 KOs. The spacing effect was surprisingly potent: just 1 min of OLM training, distributed across three trials, supported robust memory in both genotypes. Spacing also rescued training-induced activation of synaptic ERK1/2 in dorsal hippocampus of Fmr1 KO mice. These results show that a spaced training regimen designed to maximize synaptic potentiation facilitates recognition memory in WT mice and can offset synaptic signaling and memory impairments in a model of congenital intellectual disability.
Collapse
|
62
|
Heintz TG, Heller JP, Zhao R, Caceres A, Eva R, Fawcett JW. Kinesin KIF4A transports integrin β1 in developing axons of cortical neurons. Mol Cell Neurosci 2014; 63:60-71. [PMID: 25260485 DOI: 10.1016/j.mcn.2014.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 09/22/2014] [Indexed: 11/18/2022] Open
Abstract
CNS axons have poor regenerative ability compared to PNS axons, and mature axons regenerate less well than immature embryonic axons. The loss of regenerative ability with maturity is accompanied by the setting up of a selective transport filter in axons, restricting the types of molecule that are present. We confirm that integrins (represented by subunits β1 and α5) are present in early cortical axons in vitro but are excluded from mature axons. Ribosomal protein and L1 show selective axonal transport through association with kinesin kif4A; we have therefore examined the hypothesis that integrin transport might also be in association with kif4A. Kif4A is present in all processes of immature cortical neurons cultured at E18, then downregulated by 14days in vitro, coinciding with the exclusion of integrin from axons. Kif4a co-localises with β1 integrin in vesicles in neurons and non-neuronal cells, and the two molecules co-immunoprecipitate. Knockdown of KIF4A expression with shRNA reduced the level of integrin β1 in axons of developing neurons and reduced neurite elongation on laminin, an integrin-dependent substrate. Overexpression of kif4A triggered apoptosis in neuronal and non-neuronal cells. In mature neurons expression of kif4A-GFP at a modest level did not kill the cells, and the kif4A was detectable in their axons. However this was not accompanied by an increase in integrin β1 axonal transport, suggesting that kif4A is not the only integrin transporter, and that integrin exclusion from axons is controlled by factors other than the kif4A level.
Collapse
Affiliation(s)
- Tristan G Heintz
- John van Geest Centre for Brain Repair, Dept. Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Janosch P Heller
- John van Geest Centre for Brain Repair, Dept. Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Rongrong Zhao
- John van Geest Centre for Brain Repair, Dept. Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Alfredo Caceres
- Laboratorio de Neurobiología Celular y Molecular, Instituto Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET), Friuli 2434, 5016 Córdoba, Argentina
| | - Richard Eva
- John van Geest Centre for Brain Repair, Dept. Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK.
| | - James W Fawcett
- John van Geest Centre for Brain Repair, Dept. Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK.
| |
Collapse
|
63
|
Ozkan ED, Creson TK, Kramár EA, Rojas C, Seese RR, Babyan AH, Shi Y, Lucero R, Xu X, Noebels JL, Miller CA, Lynch G, Rumbaugh G. Reduced cognition in Syngap1 mutants is caused by isolated damage within developing forebrain excitatory neurons. Neuron 2014; 82:1317-33. [PMID: 24945774 DOI: 10.1016/j.neuron.2014.05.015] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2014] [Indexed: 01/10/2023]
Abstract
Syngap1 haploinsufficiency is a common cause of sporadic intellectual disability. Syngap1 mutations disrupt developing pyramidal neurons, although it remains unclear if this process contributes to cognitive abnormalities. Here, we found that haploinsufficiency restricted to forebrain glutamatergic neurons was sufficient to disrupt cognition and removing mutations from this population prevented cognitive abnormalities. In contrast, manipulating Syngap1 function in GABAergic neurons had no effect on cognition, excitability, or neurotransmission, highlighting the specificity of Syngap1 mutations within forebrain excitatory neurons. Interestingly, cognitive abnormalities were reliably predicted by the emergence of enhanced excitatory synaptic function in mature superficial cortical pyramidal cells, which was a neurophysiological disruption caused by Syngap1 dysfunction in developing, but not adult, forebrain neurons. We conclude that reduced cognition in Syngap1 mutants is caused by isolated damage to developing forebrain glutamatergic neurons. This damage triggers secondary disruptions to synaptic homeostasis in mature cortical pyramidal cells, which perpetuates brain dysfunction into adulthood.
Collapse
Affiliation(s)
- Emin D Ozkan
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Thomas K Creson
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Enikö A Kramár
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92797, USA
| | - Camilo Rojas
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Ron R Seese
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92797, USA
| | - Alex H Babyan
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92797, USA
| | - Yulin Shi
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92797, USA
| | - Rocco Lucero
- Developmental Neurogenetics Laboratory, Departments of Neurology, Neuroscience, and Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92797, USA
| | - Jeffrey L Noebels
- Developmental Neurogenetics Laboratory, Departments of Neurology, Neuroscience, and Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Courtney A Miller
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Gary Lynch
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92797, USA
| | - Gavin Rumbaugh
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
64
|
Long-term potentiation at excitatory synaptic inputs to the intercalated cell masses of the amygdala. Int J Neuropsychopharmacol 2014; 17:1233-42. [PMID: 24556032 DOI: 10.1017/s1461145714000133] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The intercalated cell masses (ITCs) of the amygdala are clusters of GABAergic interneurons that surround the basolateral complex of the amygdala. ITCs have been increasingly implicated in the acquisition and extinction of conditioned fear responses, but the underlying cellular mechanisms remain unexplored. Here, we report that repetitive stimulation of lateral amygdala (LA) afferents with a modified theta burst stimulation (TBS) protocol and induces long-term potentiation (LTP) of excitatory synapses onto medial paracapsular ITC (Imp) neurons. This TBS-induced LTP is; (1) induced and expressed post-synaptically, (2) involves a rise in post-synaptic Ca2+ and the activation of NR2B-containing N-methyl-D-aspartate receptors (NMDARs), (3) dependent on calcium/calmodulin-dependent protein kinase II and cAMP-dependent protein kinase activation, and (4) associated with increased exocytotic delivery of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) to the post-synaptic membrane. Remarkably, auditory fear conditioning led to a persistent increase in AMPAR/NMDAR ratio of glutamatergic synaptic currents and occluded TBS-induced LTP at LA-Imp synapses. Furthermore, extinction training rescued the effect of fear conditioning on AMPAR/NMDAR ratio and LTP induction. These results show that a prominent form of LTP can be elicited at LA-Imp synapses and suggest that this synaptic plasticity may contribute to the expression of fear conditioning.
Collapse
|
65
|
Cao G, Harris KM. Augmenting saturated LTP by broadly spaced episodes of theta-burst stimulation in hippocampal area CA1 of adult rats and mice. J Neurophysiol 2014; 112:1916-24. [PMID: 25057146 DOI: 10.1152/jn.00297.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hippocampal long-term potentiation (LTP) is a model system for studying cellular mechanisms of learning and memory. Recent interest in mechanisms underlying the advantage of spaced over massed learning has prompted investigation into the effects of distributed episodes of LTP induction. The amount of LTP induced in hippocampal area CA1 by one train (1T) of theta-burst stimulation (TBS) in young Sprague-Dawley rats was further enhanced by additional bouts of 1T given at 1-h intervals. However, in young Long-Evans (LE) rats, 1T did not initially saturate LTP. Instead, a stronger LTP induction paradigm using eight trains of TBS (8T) induced saturated LTP in hippocampal slices from both young and adult LE rats as well as adult mice. The saturated LTP induced by 8T could be augmented by another episode of 8T following an interval of at least 90 min. The success rate across animals and slices in augmenting LTP by an additional episode of 8T increased significantly with longer intervals between the first and last episodes, ranging from 0% at 30- and 60-min intervals to 13-66% at 90- to 180-min intervals to 90-100% at 240-min intervals. Augmentation above initially saturated LTP was blocked by the N-methyl-D-aspartate (NMDA) glutamate receptor antagonist D-2-amino-5-phosphonovaleric acid (D-APV). These findings suggest that the strength of induction and interval between episodes of TBS, as well as the strain and age of the animal, are important components in the augmentation of LTP.
Collapse
Affiliation(s)
- Guan Cao
- The Center for Learning and Memory, University of Texas at Austin, Austin, Texas
| | - Kristen M Harris
- The Center for Learning and Memory, University of Texas at Austin, Austin, Texas
| |
Collapse
|
66
|
Lynch G, Cox CD, Gall CM. Pharmacological enhancement of memory or cognition in normal subjects. Front Syst Neurosci 2014; 8:90. [PMID: 24904313 PMCID: PMC4033242 DOI: 10.3389/fnsys.2014.00090] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 04/30/2014] [Indexed: 12/14/2022] Open
Abstract
The possibility of expanding memory or cognitive capabilities above the levels in high functioning individuals is a topic of intense discussion among scientists and in society at large. The majority of animal studies use behavioral endpoint measures; this has produced valuable information but limited predictability for human outcomes. Accordingly, several groups are pursuing a complementary strategy with treatments targeting synaptic events associated with memory encoding or forebrain network operations. Transcription and translation figure prominently in substrate work directed at enhancement. Notably, the question of why new proteins would be needed for a now-forming memory given that learning-driven synthesis presumably occurred throughout the immediate past has been largely ignored. Despite this conceptual problem, and some controversy, recent studies have reinvigorated the idea that selective gene manipulation is a plausible route to enhancement. Efforts to improve memory by facilitating synaptic encoding of information have also progressed, in part due of breakthroughs on mechanisms that stabilize learning-related, long-term potentiation (LTP). These advances point to a reductionistic hypothesis for a diversity of experimental results on enhancement, and identify under-explored possibilities. Cognitive enhancement remains an elusive goal, in part due to the difficulty of defining the target. The popular view of cognition as a collection of definable computations seems to miss the fluid, integrative process experienced by high functioning individuals. The neurobiological approach obviates these psychological issues to directly test the consequences of improving throughput in networks underlying higher order behaviors. The few relevant studies testing drugs that selectively promote excitatory transmission indicate that it is possible to expand cortical networks engaged by complex tasks and that this is accompanied by capabilities not found in normal animals.
Collapse
Affiliation(s)
- Gary Lynch
- Department of Psychiatry and Human Behavior, University of California Irvine, CA, USA ; Department of Anatomy and Neurobiology, University of California Irvine, CA, USA
| | - Conor D Cox
- Department of Anatomy and Neurobiology, University of California Irvine, CA, USA
| | - Christine M Gall
- Department of Anatomy and Neurobiology, University of California Irvine, CA, USA
| |
Collapse
|
67
|
Abstract
Recent work showed that unsupervised learning of a complex environment activates synaptic proteins essential for the stabilization of long-term potentiation (LTP). The present study used automated methods to construct maps of excitatory synapses associated with high concentrations of one of these LTP-related proteins [CaMKII phosphorylated at T286/287, (pCaMKII)]. Labeling patterns across 42 sampling zones covering entire cross sections through rostral hippocampus were assessed for two groups of rats that explored a novel two-room arena for 30 min, with or without a response contingency involving mildly aversive cues. The number of pCaMKII-immunopositive (+) synapses was highly correlated between the two groups for the 21 sampling zones covering the dentate gyrus, CA3c/hilus, and apical dendrites of field CA1, but not for the remainder of the cross section. The distribution of pCaMKII+ synapses in the large uncorrelated segment differed markedly between the groups. Subtracting home-cage values removed high scores (i.e., sampling zones with a high percentage of pCaMKII+ contacts) in the negative contingency group, but not in the free-exploration animals. Three sites in the latter had values that were markedly elevated above other fields. These mapping results suggest that encoding of a form of memory that is dependent upon rostral hippocampus reliably occurs at high levels in discrete anatomical zones, and that this regionally differentiated response is blocked when animals are inhibited from freely exploring the environment by the introduction of a mildly aversive stimulus.
Collapse
|
68
|
Wehrle-Haller B, Bastmeyer M. Intracellular signaling and perception of neuronal scaffold through integrins and their adapter proteins. PROGRESS IN BRAIN RESEARCH 2014; 214:443-60. [DOI: 10.1016/b978-0-444-63486-3.00018-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
69
|
Kerrisk ME, Cingolani LA, Koleske AJ. ECM receptors in neuronal structure, synaptic plasticity, and behavior. PROGRESS IN BRAIN RESEARCH 2014; 214:101-31. [PMID: 25410355 DOI: 10.1016/b978-0-444-63486-3.00005-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During central nervous system development, extracellular matrix (ECM) receptors and their ligands play key roles as guidance molecules, informing neurons where and when to send axonal and dendritic projections, establish connections, and form synapses between pre- and postsynaptic cells. Once stable synapses are formed, many ECM receptors transition in function to control the maintenance of stable connections between neurons and regulate synaptic plasticity. These receptors bind to and are activated by ECM ligands. In turn, ECM receptor activation modulates downstream signaling cascades that control cytoskeletal dynamics and synaptic activity to regulate neuronal structure and function and thereby impact animal behavior. The activities of cell adhesion receptors that mediate interactions between pre- and postsynaptic partners are also strongly influenced by ECM composition. This chapter highlights a number of ECM receptors, their roles in the control of synapse structure and function, and the impact of these receptors on synaptic plasticity and animal behavior.
Collapse
Affiliation(s)
- Meghan E Kerrisk
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Lorenzo A Cingolani
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Anthony J Koleske
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA; Department of Neurobiology, Yale University, New Haven, CT, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA; Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University, New Haven, CT, USA.
| |
Collapse
|
70
|
Babayan AH, Kramár EA. Rapid effects of oestrogen on synaptic plasticity: interactions with actin and its signalling proteins. J Neuroendocrinol 2013; 25:1163-72. [PMID: 24112361 PMCID: PMC3989941 DOI: 10.1111/jne.12108] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 09/09/2013] [Accepted: 09/16/2013] [Indexed: 01/02/2023]
Abstract
Oestrogen rapidly enhances fast excitatory postsynaptic potentials, facilitates long-term potentiation (LTP) and increases spine numbers. Each effect likely contributes to the influence of the steroid on cognition and memory. In the present review, we first describe a model for the substrates of LTP that includes an outline of the synaptic events occurring during induction, expression and consolidation. Briefly, critical signalling pathways involving the small GTPases RhoA and Rac/Cdc42 are activated by theta burst-induced calcium influx and initiate actin filament assembly via phosphorylation (inactivation) of cofilin. Reorganisation of the actin cytoskeleton changes spine and synapse morphology, resulting in increased concentrations of AMPA receptors at stimulated contacts. We then use the synaptic model to develop a specific hypothesis about how oestrogen affects both baseline transmission and plasticity. Brief infusions of 17β-oestradiol (E2 ) reversibly stimulate the RhoA, cofilin phosphorylation and actin polymerisation cascade of the LTP machinery; blocking this eliminates the effects of the steroid on transmission. We accordingly propose that E2 induces a weak form of LTP and thereby increases synaptic responses, a hypothesis that also accounts for how it markedly enhances theta burst induced potentiation. Although the effects of E2 on the cytoskeleton could be a result of the direct activation of small GTPases by oestrogen receptors on the synaptic membrane, the hormone also activates tropomyosin-related kinase B receptors for brain-derived neurotrophic factor, a neurotrophin that engages the RhoA-cofilin sequence and promotes LTP. The latter observations raise the possibility that E2 produces its effects on synaptic physiology via transactivation of neighbouring receptors that have prominent roles in the management of spine actin, synaptic physiology and plasticity.
Collapse
Affiliation(s)
- A H Babayan
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | | |
Collapse
|
71
|
Fields RD, Araque A, Johansen-Berg H, Lim SS, Lynch G, Nave KA, Nedergaard M, Perez R, Sejnowski T, Wake H. Glial biology in learning and cognition. Neuroscientist 2013; 20:426-31. [PMID: 24122821 PMCID: PMC4161624 DOI: 10.1177/1073858413504465] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Neurons are exquisitely specialized for rapid electrical transmission of signals, but some properties of glial cells, which do not communicate with electrical impulses, are well suited for participating in complex cognitive functions requiring broad spatial integration and long-term temporal regulation. Astrocytes, microglia, and oligodendrocytes all have biological properties that could influence learning and cognition. Myelination by oligodendrocytes increases conduction velocity, affecting spike timing and oscillations in neuronal activity. Astrocytes can modulate synaptic transmission and may couple multiple neurons and synapses into functional assemblies. Microglia can remove synapses in an activity-dependent manner altering neural networks. Incorporating glia into a bicellular mechanism of nervous system function may help answer long-standing questions concerning the cellular mechanisms of learning and cognition.
Collapse
Affiliation(s)
| | | | | | | | - Gary Lynch
- University of California, Irvine, CA, USA
| | - Klaus-Armin Nave
- Max-Planck Institute for Experimental Medicine, Gottingen, Germany
| | | | - Ray Perez
- Office of Naval Research, Arlington, VA, USA
| | | | - Hiroaki Wake
- National Institute for Basic Biology, Okazaki, Japan
| |
Collapse
|
72
|
Lynch G, Gall CM. Mechanism based approaches for rescuing and enhancing cognition. Front Neurosci 2013; 7:143. [PMID: 23966908 PMCID: PMC3744010 DOI: 10.3389/fnins.2013.00143] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 05/23/2013] [Indexed: 01/24/2023] Open
Abstract
Progress toward pharmacological means for enhancing memory and cognition has been retarded by the widely discussed failure of behavioral studies in animals to predict human outcomes. As a result, a number of groups have targeted cognition-related neurobiological mechanisms in animal models, with the assumption that these basic processes are highly conserved across mammals. Here we survey one such approach that begins with a form of synaptic plasticity intimately related to memory encoding in animals and likely operative in humans. An initial section will describe a detailed hypothesis concerning the signaling and structural events (a “substrate map”) that convert learning associated patterns of afferent activity into extremely stable increases in fast, excitatory transmission. We next describe results suggesting that all instances of intellectual impairment so far tested in rodent models involve a common endpoint failure in the substrate map. This will be followed by a clinically plausible proposal for obviating the ultimate defect in these models. We then take up the question of whether it is reasonable to expect, from either general principles or a very limited set of experimental results, that enhancing memory will expand the cognitive capabilities of high functioning brains. The final section makes several suggestions about how to improve translation of behavioral results from animals to humans. Collectively, the material covered here points to the following: (1) enhancement, in the sense of rescue, is not an unrealistic possibility for a broad array of neuropsychiatric disorders; (2) serendipity aside, developing means for improving memory in normals will likely require integration of information about mechanisms with new behavioral testing strategies; (3) a shift in emphasis from synapses to networks is a next, logical step in the evolution of the cognition enhancement field.
Collapse
Affiliation(s)
- Gary Lynch
- Department of Psychiatry and Human Behavior, University of California Irvine, CA, USA ; Department of Anatomy and Neurobiology, University of California Irvine, CA, USA
| | | |
Collapse
|
73
|
The neuron-specific chromatin regulatory subunit BAF53b is necessary for synaptic plasticity and memory. Nat Neurosci 2013; 16:552-61. [PMID: 23525042 PMCID: PMC3777648 DOI: 10.1038/nn.3359] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 02/11/2013] [Indexed: 12/13/2022]
Abstract
Recent exome sequencing studies have implicated polymorphic BAF complexes (mammalian SWI/SNF chromatin remodeling complexes) in several human intellectual disabilities and cognitive disorders. However, it is currently unknown how mutations in BAF complexes result in impaired cognitive function. Post mitotic neurons express a neuron specific assembly, nBAF, characterized by the neuron-specific subunit BAF53b. Mice harboring selective genetic manipulations of BAF53b have severe defects in longterm memory and long-lasting forms of hippocampal synaptic plasticity. We rescued memory impairments in BAF53b mutant mice by reintroducing BAF53b in the adult hippocampus, indicating a role for BAF53b beyond neuronal development. The defects in BAF53b mutant mice appear to derive from alterations in gene expression that produce abnormal postsynaptic components, such as spine structure and function, and ultimately lead to deficits in synaptic plasticity. Our studies provide new insight into the role of dominant mutations in subunits of BAF complexes in human intellectual and cognitive disorders.
Collapse
|
74
|
Kramár EA, Babayan AH, Gall CM, Lynch G. Estrogen promotes learning-related plasticity by modifying the synaptic cytoskeleton. Neuroscience 2012; 239:3-16. [PMID: 23103216 DOI: 10.1016/j.neuroscience.2012.10.038] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 10/11/2012] [Accepted: 10/18/2012] [Indexed: 01/04/2023]
Abstract
Estrogen's acute, facilitatory effects on glutamatergic transmission and long-term potentiation (LTP) provide a potential explanation for the steroid's considerable influence on behavior. Recent work has identified mechanisms underlying these synaptic actions. Brief infusion of 17ß-estradiol (E2) into adult male rat hippocampal slices triggers actin polymerization within dendritic spines via a signaling cascade beginning with the GTPase RhoA and ending with inactivation of the filament-severing protein cofilin. Blocking this sequence, or actin polymerization itself, eliminates E2's effects on synaptic physiology. Notably, the theta burst stimulation used to induce LTP activates the same signaling pathway as E2 plus events that stabilize the reorganization of the sub-synaptic cytoskeleton. These observations suggest that E2 elicits a partial form of LTP, resulting in an increase of fast excitatory postsynaptic potentials (EPSPs) and a reduction in the threshold for lasting synaptic changes. While E2's effects on the cytoskeleton could be direct, results described here indicate that the hormone activates synaptic tropomyosin-related kinase B (TrkB) receptors for brain-derived neurotrophic factor (BDNF), a releasable neurotrophin that stimulates the RhoA to cofilin pathway. It is therefore possible that E2 acts via transactivation of neighboring receptors to modify the composition and structure of excitatory contacts. Finally, there is the question of whether a loss of acute synaptic actions contributes to the memory problems associated with estrogen depletion. Initial tests found that ovariectomy in middle-aged rats disrupts RhoA signaling, actin polymerization, and LTP consolidation. Acute applications of E2 reversed these defects, a result consistent with the idea that disturbances to actin management are one cause of behavioral effects that emerge with reductions in steroid levels.
Collapse
Affiliation(s)
- E A Kramár
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697, USA.
| | | | | | | |
Collapse
|