51
|
Dargaei Z, Liang X, Serranilla M, Santos J, Woodin MA. Alterations in Hippocampal Inhibitory Synaptic Transmission in the R6/2 Mouse Model of Huntington's Disease. Neuroscience 2019; 404:130-140. [PMID: 30797895 DOI: 10.1016/j.neuroscience.2019.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 01/05/2023]
Abstract
Huntington's disease (HD) is a genetic neurodegenerative disorder of the central nervous system characterized by choreatic movements, behavioral and psychiatric disturbances and cognitive impairments. Deficits in learning and memory are often the first signs of disease onset in both HD patients and mouse models of HD and are in part regulated by the hippocampus. In the R6/2 mouse model of HD, GABAergic transmission can be excitatory in the hippocampus and restoring inhibition can rescue the associated memory deficits. In the present study we determine that hippocampal GABAergic neurotransmission in the R6/2 mouse is disrupted as early as 4 weeks of age and is accompanied by alterations in the expression of key inhibitory proteins. Specifically, spontaneous inhibitory postsynaptic currents were initially increased in frequency at 4 postnatal weeks and subsequently decreased after the mice displayed the typical R6/2 behavioral phenotype at 10 weeks of age. Symptomatic mice also exhibited a change in the probability of GABA release and changes in the basic membrane properties including neuronal excitability and input resistance. These electrophysiological changes in presymptomatic and symptomatic R6/2 mice were further accompanied by alterations in the protein expression level of pre- and postsynaptic inhibitory markers. Taken together, the present findings demonstrate profound alterations in the inhibitory neurotransmission in the hippocampus across the lifespan of the disease, including prior to neuronal degeneration, which suggests that the inhibitory hippocampal synapses may prove useful as a target for future therapeutic design.
Collapse
Affiliation(s)
- Zahra Dargaei
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, M5S 3G5, Canada
| | - Xinyi Liang
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, M5S 3G5, Canada
| | - Melissa Serranilla
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, M5S 3G5, Canada
| | - Janeane Santos
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, M5S 3G5, Canada
| | - Melanie A Woodin
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, M5S 3G5, Canada.
| |
Collapse
|
52
|
Loss-of-Huntingtin in Medial and Lateral Ganglionic Lineages Differentially Disrupts Regional Interneuron and Projection Neuron Subtypes and Promotes Huntington's Disease-Associated Behavioral, Cellular, and Pathological Hallmarks. J Neurosci 2019; 39:1892-1909. [PMID: 30626701 DOI: 10.1523/jneurosci.2443-18.2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/21/2018] [Accepted: 12/29/2018] [Indexed: 12/23/2022] Open
Abstract
Emerging studies are providing compelling evidence that the pathogenesis of Huntington's disease (HD), a neurodegenerative disorder with frequent midlife onset, encompasses developmental components. Moreover, our previous studies using a hypomorphic model targeting huntingtin during the neurodevelopmental period indicated that loss-of-function mechanisms account for this pathogenic developmental component (Arteaga-Bracho et al., 2016). In the present study, we specifically ascertained the roles of subpallial lineage species in eliciting the previously observed HD-like phenotypes. Accordingly, we used the Cre-loxP system to conditionally ablate the murine huntingtin gene (Httflx) in cells expressing the subpallial patterning markers Gsx2 (Gsx2-Cre) or Nkx2.1 (Nkx2.1-Cre) in Httflx mice of both sexes. These genetic manipulations elicited anxiety-like behaviors, hyperkinetic locomotion, age-dependent motor deficits, and weight loss in both Httflx;Gsx2-Cre and Httflx;Nkx2.1-Cre mice. In addition, these strains displayed unique but complementary spatial patterns of basal ganglia degeneration that are strikingly reminiscent of those seen in human cases of HD. Furthermore, we observed early deficits of somatostatin-positive and Reelin-positive interneurons in both Htt subpallial null strains, as well as early increases of cholinergic interneurons, Foxp2+ arkypallidal neurons, and incipient deficits with age-dependent loss of parvalbumin-positive neurons in Httflx;Nkx2.1-Cre mice. Overall, our findings indicate that selective loss-of-huntingtin function in subpallial lineages differentially disrupts the number, complement, and survival of forebrain interneurons and globus pallidus GABAergic neurons, thereby leading to the development of key neurological hallmarks of HD during adult life. Our findings have important implications for the establishment and deployment of neural circuitries and the integrity of network reserve in health and disease.SIGNIFICANCE STATEMENT Huntington's disease (HD) is a progressive degenerative disorder caused by aberrant trinucleotide expansion in the huntingtin gene. Mechanistically, this mutation involves both loss- and gain-of-function mechanisms affecting a broad array of cellular and molecular processes. Although huntingtin is widely expressed during adult life, the mutant protein only causes the demise of selective neuronal subtypes. The mechanisms accounting for this differential vulnerability remain elusive. In this study, we have demonstrated that loss-of-huntingtin function in subpallial lineages not only differentially disrupts distinct interneuron species early in life, but also leads to a pattern of neurological deficits that are reminiscent of HD. This work suggests that early disruption of selective neuronal subtypes may account for the profiles of enhanced regional cellular vulnerability to death in HD.
Collapse
|
53
|
Worms on a Chip. Bioanalysis 2019. [DOI: 10.1007/978-981-13-6229-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
54
|
Cortico-Striatal Cross-Frequency Coupling and Gamma Genesis Disruptions in Huntington's Disease Mouse and Computational Models. eNeuro 2018; 5:eN-NWR-0210-18. [PMID: 30627632 PMCID: PMC6325534 DOI: 10.1523/eneuro.0210-18.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/19/2018] [Accepted: 11/12/2018] [Indexed: 12/16/2022] Open
Abstract
Abnormal gamma band power across cortex and striatum is an important phenotype of Huntington's disease (HD) in both patients and animal models, but neither the origin nor the functional relevance of this phenotype is well understood. Here, we analyzed local field potential (LFP) activity in freely behaving, symptomatic R6/2 and Q175 mouse models and corresponding wild-type (WT) controls. We focused on periods of quiet rest, which show strong γ activity in HD mice. Simultaneous recording from motor cortex and its target area in dorsal striatum in the R6/2 model revealed exaggerated functional coupling over that observed in WT between the phase of delta frequencies (1-4 Hz) in cortex and striatum and striatal amplitude modulation of low γ frequencies (25-55 Hz; i.e., phase-amplitude coupling, PAC), but no evidence that abnormal cortical activity alone can account for the increase in striatal γ power. Both HD mouse models had stronger coupling of γ amplitude to δ phase and more unimodal phase distributions than their WT counterparts. To assess the possible role of striatal fast-spiking interneurons (FSIs) in these phenomena, we developed a computational model based on additional striatal recordings from Q175 mice. Changes in peak γ frequency and power ratio were readily reproduced by our computational model, accounting for several experimental findings reported in the literature. Our results suggest that HD is characterized by both a reorganization of cortico-striatal drive and specific population changes related to intrastriatal synaptic coupling.
Collapse
|
55
|
Inhibition of Nigrostriatal Dopamine Release by Striatal GABA A and GABA B Receptors. J Neurosci 2018; 39:1058-1065. [PMID: 30541909 PMCID: PMC6363932 DOI: 10.1523/jneurosci.2028-18.2018] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/07/2018] [Accepted: 11/15/2018] [Indexed: 01/22/2023] Open
Abstract
Nigrostriatal dopamine (DA) is critical to action selection and learning. Axonal DA release is locally influenced by striatal neurotransmitters. Striatal neurons are principally GABAergic projection neurons and interneurons, and a small minority of other neurons are cholinergic interneurons (ChIs). ChIs strongly gate striatal DA release via nicotinic receptors (nAChRs) identified on DA axons. Striatal GABA is thought to modulate DA, but GABA receptors have not been documented conclusively on DA axons. However, ChIs express GABA receptors and are therefore candidates for potential mediators of GABA regulation of DA. We addressed whether striatal GABA and its receptors can modulate DA release directly, independently from ChI regulation, by detecting DA in striatal slices from male mice using fast-scan cyclic voltammetry in the absence of nAChR activation. DA release evoked by single electrical pulses in the presence of the nAChR antagonist dihydro-β-erythroidine was reduced by GABA or agonists of GABAA or GABAB receptors, with effects prevented by selective GABA receptor antagonists. GABA agonists slightly modified the frequency sensitivity of DA release during short stimulus trains. GABA agonists also suppressed DA release evoked by optogenetic stimulation of DA axons. Furthermore, antagonists of GABAA and GABAB receptors together, or GABAB receptors alone, significantly enhanced DA release evoked by either optogenetic or electrical stimuli. These results indicate that striatal GABA can inhibit DA release through GABAA and GABAB receptors and that these actions are not mediated by cholinergic circuits. Furthermore, these data reveal that there is a tonic inhibition of DA release by striatal GABA operating through predominantly GABAB receptors.SIGNIFICANCE STATEMENT The principal inhibitory transmitter in the mammalian striatum, GABA, is thought to modulate striatal dopamine (DA) release, but definitive evidence for GABA receptors on DA axons is lacking. Striatal cholinergic interneurons regulate DA release via axonal nicotinic receptors (nAChRs) and also express GABA receptors, but they have not been eliminated as potentially critical mediators of DA regulation by GABA. Here, we found that GABAA and GABAB receptors inhibit DA release without requiring cholinergic interneurons. Furthermore, ambient levels of GABA inhibited DA release predominantly through GABAB receptors. These findings provide further support for direct inhibition of DA release by GABA receptors and reveal that striatal GABA operates a tonic inhibition on DA output that could critically influence striatal output.
Collapse
|
56
|
Holley SM, Galvan L, Kamdjou T, Cepeda C, Levine MS. Striatal GABAergic interneuron dysfunction in the Q175 mouse model of Huntington's disease. Eur J Neurosci 2018; 49:79-93. [PMID: 30472747 DOI: 10.1111/ejn.14283] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/01/2018] [Accepted: 11/13/2018] [Indexed: 01/01/2023]
Abstract
The pathological hallmark of Huntington's disease (HD) is the massive loss of striatal and cortical neurons. Until recently, it was believed that striatal interneurons were spared from degeneration. This view has changed after the demonstration that parvalbumin (PV)-expressing interneurons also are vulnerable in humans. Here we compared morphological and functional changes of striatal fast-spiking interneurons (FSIs) and low-threshold spiking (LTS) interneurons in the Q175 mouse model of HD at presymptomatic (2 months) and symptomatic (12 months) stages of the disease. Electrophysiological intrinsic and synaptic properties of FSIs were significantly altered in symptomatic mice compared to wild-type (WT) littermates. Overall, FSIs became more excitable with disease progression. Sholl analysis also revealed a significant loss of dendritic complexity and excitatory synaptic inputs. The basic membrane and synaptic properties of LTS interneurons were similar in Q175 and WT mice regardless of disease stage. The resilience of LTS interneurons could be related to their sparsity of excitatory synaptic inputs compared with FSIs. However, in symptomatic mice, a subpopulation of LTS interneurons displayed an increase in action potential firing within oscillating bursts. Thus, we conclude that while both FSI and LTS interneurons demonstrate increases in excitability, the HD mutation differentially affects their membrane and synaptic properties as well as their ability to respond to compensatory challenges presented during the late stage of the disease. Alterations in GABAergic interneuron intrinsic activity and responsiveness to incoming signals may significantly affect SPN output thus contributing to abnormal motor movements in patients afflicted with HD.
Collapse
Affiliation(s)
- Sandra M Holley
- Intellectual and Developmental Disabilities Research Center, Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, Brain Research Institute, UCLA, Los Angeles, California
| | - Laurie Galvan
- Intellectual and Developmental Disabilities Research Center, Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, Brain Research Institute, UCLA, Los Angeles, California
| | - Talia Kamdjou
- Intellectual and Developmental Disabilities Research Center, Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, Brain Research Institute, UCLA, Los Angeles, California
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, Brain Research Institute, UCLA, Los Angeles, California
| | - Michael S Levine
- Intellectual and Developmental Disabilities Research Center, Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, Brain Research Institute, UCLA, Los Angeles, California
| |
Collapse
|
57
|
Hsu YT, Chang YG, Chern Y. Insights into GABA Aergic system alteration in Huntington's disease. Open Biol 2018; 8:rsob.180165. [PMID: 30518638 PMCID: PMC6303784 DOI: 10.1098/rsob.180165] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/30/2018] [Indexed: 12/15/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant progressive neurodegenerative disease that is characterized by a triad of motor, psychiatric and cognitive impairments. There is still no effective therapy to delay or halt the disease progress. The striatum and cortex are two particularly affected brain regions that exhibit dense reciprocal excitatory glutamate and inhibitory gamma-amino butyric acid (GABA) connections. Imbalance between excitatory and inhibitory signalling is known to greatly affect motor and cognitive processes. Emerging evidence supports the hypothesis that disrupted GABAergic circuits underlie HD pathogenesis. In the present review, we focused on the multiple defects recently found in the GABAergic inhibitory system, including altered GABA level and synthesis, abnormal subunit composition and distribution of GABAA receptors and aberrant GABAA receptor-mediated signalling. In particular, the important role of cation–chloride cotransporters (i.e. NKCC1 and KCC2) is discussed. Recent studies also suggest that neuroinflammation contributes significantly to the abnormal GABAergic inhibition in HD. Thus, GABAA receptors and cation–chloride cotransporters are potential therapeutic targets for HD. Given the limited availability of therapeutic treatments for HD, a better understanding of GABAergic dysfunction in HD could provide novel therapeutic opportunities.
Collapse
Affiliation(s)
- Yi-Ting Hsu
- PhD Program for Translational Medicine, China Medical University and Academia Sinica, Taiwan, Republic of China.,Department of Neurology, China Medical University Hospital, Taichung, Taiwan, Republic of China
| | - Ya-Gin Chang
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan, Republic of China.,Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei, Taiwan, Republic of China
| | - Yijuang Chern
- PhD Program for Translational Medicine, China Medical University and Academia Sinica, Taiwan, Republic of China .,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
| |
Collapse
|
58
|
Plotkin JL, Goldberg JA. Thinking Outside the Box (and Arrow): Current Themes in Striatal Dysfunction in Movement Disorders. Neuroscientist 2018; 25:359-379. [PMID: 30379121 PMCID: PMC6529282 DOI: 10.1177/1073858418807887] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The basal ganglia are an intricately connected assembly of subcortical nuclei, forming the core of an adaptive network connecting cortical and thalamic circuits. For nearly three decades, researchers and medical practitioners have conceptualized how the basal ganglia circuit works, and how its pathology underlies motor disorders such as Parkinson's and Huntington's diseases, using what is often referred to as the "box-and-arrow model": a circuit diagram showing the broad strokes of basal ganglia connectivity and the pathological increases and decreases in the weights of specific connections that occur in disease. While this model still has great utility and has led to groundbreaking strategies to treat motor disorders, our evolving knowledge of basal ganglia function has made it clear that this classic model has several shortcomings that severely limit its predictive and descriptive abilities. In this review, we will focus on the striatum, the main input nucleus of the basal ganglia. We describe recent advances in our understanding of the rich microcircuitry and plastic capabilities of the striatum, factors not captured by the original box-and-arrow model, and provide examples of how such advances inform our current understanding of the circuit pathologies underlying motor disorders.
Collapse
Affiliation(s)
- Joshua L Plotkin
- Department of Neurobiology and Behavior, Stony Brook University School of Medicine, Stony Brook, NY, USA
| | - Joshua A Goldberg
- Department of Medical Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
59
|
Goodliffe JW, Song H, Rubakovic A, Chang W, Medalla M, Weaver CM, Luebke JI. Differential changes to D1 and D2 medium spiny neurons in the 12-month-old Q175+/- mouse model of Huntington's Disease. PLoS One 2018; 13:e0200626. [PMID: 30118496 PMCID: PMC6097649 DOI: 10.1371/journal.pone.0200626] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/29/2018] [Indexed: 12/04/2022] Open
Abstract
Huntington's Disease (HD) is an autosomal dominant, progressive neurodegenerative disorder caused by deleterious expansion of CAG repeats in the Huntingtin gene and production of neurotoxic mutant Huntingtin protein (mHTT). The key pathological feature of HD is a profound degeneration of the striatum and a loss of cortical volume. The initial loss of indirect pathway (D2) medium spiny neuron (MSN) projections in early stages of HD, followed by a loss of direct pathway (D1) projections in advanced stages has important implications for the trajectory of motor and cognitive dysfunction in HD, but is not yet understood. Mouse models of HD have yielded important information on the effects and mechanisms of mHTT toxicity; however, whether these models recapitulate differential vulnerability of D1 vs. D2 MSNs is unknown. Here, we employed 12-month-old Q175+/- x D2-eGFP mice to examine the detailed structural and functional properties of D1 vs. D2 MSNs. While both D1 and D2 MSNs exhibited increased input resistance, depolarized resting membrane potentials and action potential threshold, only D1 MSNs showed reduced rheobase, action potential amplitude and frequency of spontaneous excitatory postsynaptic currents. Furthermore, D1 but not D2 MSNs showed marked proliferative changes to their dendritic arbors and reductions in spine density. Immunohistochemical assessment showed no loss of glutamatergic afferent inputs from cortical and subcortical sources onto identified D1 and D2 MSNs. Computational models constrained by empirical data predict that the increased dendritic complexity in Q175+/- D1 MSNs likely leads to greater dendritic filtering and attenuation of signals propagating to the soma from the dendrites. Together these findings reveal that, by twelve months, D1 and D2 MSNs exhibit distinctive responses to the presence of mHTT in this important mouse model of HD. This further highlights the need to incorporate findings from D1 and D2 MSNs independently in the context of HD models.
Collapse
Affiliation(s)
- Joseph W. Goodliffe
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts
| | - Hanbing Song
- Department of Mathematics and Computer Science, Franklin & Marshall College, Lancaster, Pennsylvania
| | - Anastasia Rubakovic
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts
| | - Wayne Chang
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts
| | - Maria Medalla
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts
| | - Christina M. Weaver
- Department of Mathematics and Computer Science, Franklin & Marshall College, Lancaster, Pennsylvania
| | - Jennifer I. Luebke
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
60
|
Kirkpatrick DC, McKinney CJ, Manis PB, Wightman RM. Expanding neurochemical investigations with multi-modal recording: simultaneous fast-scan cyclic voltammetry, iontophoresis, and patch clamp measurements. Analyst 2018; 141:4902-11. [PMID: 27314130 DOI: 10.1039/c6an00933f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multi-modal recording describes the simultaneous collection of information across distinct domains. Compared to isolated measurements, such studies can more easily determine relationships between varieties of phenomena. This is useful for neurochemical investigations which examine cellular activity in response to changes in the local chemical environment. In this study, we demonstrate a method to perform simultaneous patch clamp measurements with fast-scan cyclic voltammetry (FSCV) using optically isolated instrumentation. A model circuit simulating concurrent measurements was used to predict the electrical interference between instruments. No significant impact was anticipated between methods, and predictions were largely confirmed experimentally. One exception was due to capacitive coupling of the FSCV potential waveform into the patch clamp amplifier. However, capacitive transients measured in whole-cell current clamp recordings were well below the level of biological signals, which allowed the activity of cells to be easily determined. Next, the activity of medium spiny neurons (MSNs) was examined in the presence of an FSCV electrode to determine how the exogenous potential impacted nearby cells. The activities of both resting and active MSNs were unaffected by the FSCV waveform. Additionally, application of an iontophoretic current, used to locally deliver drugs and other neurochemicals, did not affect neighboring cells. Finally, MSN activity was monitored during iontophoretic delivery of glutamate, an excitatory neurotransmitter. Membrane depolarization and cell firing were observed concurrently with chemical changes around the cell resulting from delivery. In all, we show how combined electrophysiological and electrochemical measurements can relate information between domains and increase the power of neurochemical investigations.
Collapse
Affiliation(s)
- D C Kirkpatrick
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA.
| | - C J McKinney
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA.
| | - P B Manis
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA and The Curriculum of Neurobiology, University of North Carolina, Chapel Hill, NC, USA and Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - R M Wightman
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA. and Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
| |
Collapse
|
61
|
Calcium currents in striatal fast-spiking interneurons: dopaminergic modulation of Ca V1 channels. BMC Neurosci 2018; 19:42. [PMID: 30012109 PMCID: PMC6048700 DOI: 10.1186/s12868-018-0441-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/07/2018] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Striatal fast-spiking interneurons (FSI) are a subset of GABAergic cells that express calcium-binding protein parvalbumin (PV). They provide feed-forward inhibition to striatal projection neurons (SPNs), receive cortical, thalamic and dopaminergic inputs and are coupled together by electrical and chemical synapses, being important components of the striatal circuitry. It is known that dopamine (DA) depolarizes FSI via D1-class DA receptors, but no studies about the ionic mechanism of this action have been reported. Here we ask about the ion channels that are the effectors of DA actions. This work studies their Ca2+ currents. RESULTS Whole-cell recordings in acutely dissociated and identified FSI from PV-Cre transgenic mice were used to show that FSI express an array of voltage gated Ca2+ channel classes: CaV1, CaV2.1, CaV2.2, CaV2.3 and CaV3. However, CaV1 Ca2+ channel carries most of the whole-cell Ca2+ current in FSI. Activation of D1-like class of DA receptors by the D1-receptor selective agonist SKF-81297 (SKF) enhances whole-cell Ca2+ currents through CaV1 channels modulation. A previous block of CaV1 channels with nicardipine occludes the action of the DA-agonist, suggesting that no other Ca2+ channel is modulated by D1-receptor activation. Bath application of SKF in brain slices increases the firing rate and activity of FSI as measured with both whole-cell and Ca2+ imaging recordings. These actions are reduced by nicardipine. CONCLUSIONS The present work discloses one final effector of DA modulation in FSI. We conclude that the facilitatory action of DA in FSI is in part due to CaV1 Ca2+ channels positive modulation.
Collapse
|
62
|
Striatal Direct and Indirect Pathway Output Structures Are Differentially Altered in Mouse Models of Huntington's Disease. J Neurosci 2018; 38:4678-4694. [PMID: 29691329 DOI: 10.1523/jneurosci.0434-18.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/02/2018] [Accepted: 04/18/2018] [Indexed: 11/21/2022] Open
Abstract
The present study examined synaptic communication between direct and indirect output pathway striatal medium-sized spiny neurons (MSNs) and their target structures, the substantia nigra pars reticulata (SNr) and the external globus pallidus (GPe) in two mouse models of Huntington's disease (HD). Cre recombination, optogenetics, and whole-cell patch-clamp recordings were used to determine alterations in intrinsic and synaptic properties of SNr and GPe neurons from both male and female symptomatic R6/2 (>60 d) and presymptomatic (2 months) or symptomatic (10-12 months) YAC128 mice. Cell membrane capacitance was decreased, whereas input resistance was increased in SNr neurons from R6/2, but not YAC128 mice. The amplitude of GABAergic responses evoked by optogenetic stimulation of direct pathway terminals was reduced in SNr neurons of symptomatic mice of both models. A decrease in spontaneous GABA synaptic activity, in particular large-amplitude events, in SNr neurons also was observed. Passive membrane properties of GPe neurons were not different between R6/2 or YAC128 mice and their control littermates. Similarly, the amplitude of GABA responses evoked by activation of indirect pathway MSN terminals and the frequency of spontaneous GABA synaptic activity were similar in HD and control animals. In contrast, the decay time of the evoked GABA response was significantly longer in cells from HD mice. Interestingly, activation of indirect pathway MSNs within the striatum evoked larger-amplitude responses in direct pathway MSNs. Together, these results demonstrate differential alterations in responses evoked by direct and indirect pathway terminals in SNr and GPe leading to striatal output imbalance and motor dysfunction.SIGNIFICANCE STATEMENT Previous work on Huntington's disease (HD) focused on striatal medium-sized spiny neurons (MSNs) almost exclusively. Little is known about the effects that alterations in the striatum have on output structures of the direct and indirect pathways, the substantia nigra pars reticulata (SNr) and the external segment of the globus pallidus (GPe), respectively. We combined electrophysiological and optogenetic methods to examine responses evoked by selective activation of terminals of direct and indirect pathway MSNs in SNr and GPe neurons in two mouse models of HD. We show a differential disruption of synaptic communication between the direct and indirect output pathways of the striatum with their target regions leading to an imbalance of striatal output, which will contribute to motor dysfunction.
Collapse
|
63
|
Reiner A, Deng Y. Disrupted striatal neuron inputs and outputs in Huntington's disease. CNS Neurosci Ther 2018; 24:250-280. [PMID: 29582587 PMCID: PMC5875736 DOI: 10.1111/cns.12844] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 12/22/2022] Open
Abstract
Huntington's disease (HD) is a hereditary progressive neurodegenerative disorder caused by a CAG repeat expansion in the gene coding for the protein huntingtin, resulting in a pathogenic expansion of the polyglutamine tract in the N-terminus of this protein. The HD pathology resulting from the mutation is most prominent in the striatal part of the basal ganglia, and progressive differential dysfunction and loss of striatal projection neurons and interneurons account for the progression of motor deficits seen in this disease. The present review summarizes current understanding regarding the progression in striatal neuron dysfunction and loss, based on studies both in human HD victims and in genetic mouse models of HD. We review evidence on early loss of inputs to striatum from cortex and thalamus, which may be the basis of the mild premanifest bradykinesia in HD, as well as on the subsequent loss of indirect pathway striatal projection neurons and their outputs to the external pallidal segment, which appears to be the basis of the chorea seen in early symptomatic HD. Later loss of direct pathway striatal projection neurons and their output to the internal pallidal segment account for the severe akinesia seen late in HD. Loss of parvalbuminergic striatal interneurons may contribute to the late dystonia and rigidity.
Collapse
Affiliation(s)
- Anton Reiner
- Department of Anatomy & NeurobiologyThe University of Tennessee Health Science CenterMemphisTNUSA
- Department of OphthalmologyThe University of Tennessee Health Science CenterMemphisTNUSA
| | - Yun‐Ping Deng
- Department of Anatomy & NeurobiologyThe University of Tennessee Health Science CenterMemphisTNUSA
| |
Collapse
|
64
|
Garret M, Du Z, Chazalon M, Cho YH, Baufreton J. Alteration of GABAergic neurotransmission in Huntington's disease. CNS Neurosci Ther 2018; 24:292-300. [PMID: 29464851 DOI: 10.1111/cns.12826] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/23/2018] [Accepted: 01/26/2018] [Indexed: 12/16/2022] Open
Abstract
Hereditary Huntington's disease (HD) is characterized by cell dysfunction and death in the brain, leading to progressive cognitive, psychiatric, and motor impairments. Despite molecular and cellular descriptions of the effects of the HD mutation, no effective pharmacological treatment is yet available. In addition to well-established alterations of glutamatergic and dopaminergic neurotransmitter systems, it is becoming clear that the GABAergic systems are also impaired in HD. GABA is the major inhibitory neurotransmitter in the brain, and GABAergic neurotransmission has been postulated to be modified in many neurological and psychiatric diseases. In addition, GABAergic neurotransmission is the target of many drugs that are in wide clinical use. Here, we summarize data demonstrating the occurrence of alterations of GABAergic markers in the brain of HD carriers as well as in rodent models of the disease. In particular, we pinpoint HD-related changes in the expression of GABAA receptors (GABAA Rs). On the basis that a novel GABA pharmacology of GABAA Rs established with more selective drugs is emerging, we argue that clinical treatments acting specifically on GABAergic neurotransmission may be an appropriate strategy for improving symptoms linked to the HD mutation.
Collapse
Affiliation(s)
- Maurice Garret
- Université de Bordeaux, INCIA, UMR 5287, Bordeaux, France.,CNRS, INCIA, UMR 5287, Bordeaux, France
| | - Zhuowei Du
- Université de Bordeaux, INCIA, UMR 5287, Bordeaux, France.,CNRS, INCIA, UMR 5287, Bordeaux, France
| | - Marine Chazalon
- Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293, Bordeaux, France.,Institut des Maladies Neurodégénératives, CNRS, UMR 5293, Bordeaux, France
| | - Yoon H Cho
- Université de Bordeaux, INCIA, UMR 5287, Bordeaux, France.,CNRS, INCIA, UMR 5287, Bordeaux, France
| | - Jérôme Baufreton
- Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293, Bordeaux, France.,Institut des Maladies Neurodégénératives, CNRS, UMR 5293, Bordeaux, France
| |
Collapse
|
65
|
Rosas-Arellano A, Estrada-Mondragón A, Mantellero CA, Tejeda-Guzmán C, Castro MA. The adjustment of γ-aminobutyric acid A tonic subunits in Huntington's disease: from transcription to translation to synaptic levels into the neostriatum. Neural Regen Res 2018; 13:584-590. [PMID: 29722299 PMCID: PMC5950657 DOI: 10.4103/1673-5374.230270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
γ-Aminobutyric acid (GABA), plays a key role in all stages of life, also is considered the main inhibitory neurotransmitter. GABA activates two kind of membrane receptors known as GABAA and GABAB, the first one is responsible to render tonic inhibition by pentameric receptors containing α4−6, β3, δ, or ρ1−3 subunits, they are located at perisynaptic and/or in extrasynaptic regions. The biophysical properties of GABAA tonic inhibition have been related with cellular protection against excitotoxic injury and cell death in presence of excessive excitation. On this basis, GABAA tonic inhibition has been proposed as a potential target for therapeutic intervention of Huntington's disease. Huntington's disease is a neurodegenerative disorder caused by a genetic mutation of the huntingtin protein. For experimental studies of Huntington's disease mouse models have been developed, such as R6/1, R6/2, HdhQ92, HdhQ150, as well as YAC128. In all of them, some key experimental reports are focused on neostriatum. The neostriatum is considered as the most important connection between cerebral cortex and basal ganglia structures, its cytology display two pathways called direct and indirect constituted by medium sized spiny neurons expressing dopamine D1 and D2 receptors respectively, they display strong expression of many types of GABAA receptors, including tonic subunits. The studies about of GABAA tonic subunits and Huntington's disease into the neostriatum are rising in recent years, suggesting interesting changes in their expression and localization which can be used as a strategy to delay the cellular damage caused by the imbalance between excitation and inhibition, a hallmark of Huntington's disease.
Collapse
Affiliation(s)
- Abraham Rosas-Arellano
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile; Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile; Departamento de Fisiología, Biofísica y Neurociencias, Cinvestav del IPN, Ciudad de México, México
| | | | - Carola A Mantellero
- Laboratorio de Neurociencias, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago de Chile, Chile
| | - Carlos Tejeda-Guzmán
- Departamento de Fisiología, Biofísica y Neurociencias, Cinvestav del IPN, Ciudad de México, México
| | - Maite A Castro
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias; Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
66
|
Abstract
Electrophysiological and cell imaging techniques are powerful tools for understanding alterations in neuronal activity in Huntington's disease (HD), a fatal neurological disorder caused by an expansion of CAG repeats in the HTT gene. Changes in neuronal activity often precede the behavioral manifestations of HD, therefore, understanding the electrophysiology of HD is critical for identifying potential prodromal markers and therapeutic targets. This chapter outlines the basic methodology behind four major electrophysiological and imaging techniques used in HD mouse models: patch clamp recordings, optogenetics, in vivo electrophysiology, and Ca2+ imaging, as well as some of the advancements in HD research using each of these techniques.
Collapse
|
67
|
Progress in developing transgenic monkey model for Huntington's disease. J Neural Transm (Vienna) 2017; 125:401-417. [PMID: 29127484 DOI: 10.1007/s00702-017-1803-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 10/17/2017] [Indexed: 12/27/2022]
Abstract
Huntington's disease (HD) is a complex neurodegenerative disorder that has no cure. Although treatments can often be given to relieve symptoms, the neuropathology associated with HD cannot be stopped or reversed. HD is characterized by degeneration of the striatum and associated pathways that leads to impairment in motor and cognitive functions as well as psychiatric disturbances. Although cell and rodent models for HD exist, longitudinal study in a transgenic HD nonhuman primate (i.e., rhesus macaque; HD monkeys) shows high similarity in its progression with human patients. Progressive brain atrophy and changes in white matter integrity examined by magnetic resonance imaging are coherent with the decline in cognitive behaviors related to corticostriatal functions and neuropathology. HD monkeys also express higher anxiety and irritability/aggression similar to human HD patients that other model systems have not yet replicated. While a comparative model approach is critical for advancing our understanding of HD pathogenesis, HD monkeys could provide a unique platform for preclinical studies and long-term assessment of translatable outcome measures. This review summarizes the progress in the development of the transgenic HD monkey model and the opportunities for advancing HD preclinical research.
Collapse
|
68
|
Cabanas M, Bassil F, Mons N, Garret M, Cho YH. Changes in striatal activity and functional connectivity in a mouse model of Huntington's disease. PLoS One 2017; 12:e0184580. [PMID: 28934250 PMCID: PMC5608247 DOI: 10.1371/journal.pone.0184580] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/26/2017] [Indexed: 11/28/2022] Open
Abstract
Hereditary Huntington’s disease (HD) is associated with progressive motor, cognitive and psychiatric symptoms. A primary consequence of the HD mutation is the preferential loss of medium spiny projection cells with relative sparing of local interneurons in the striatum. In addition, among GABAergic striatal projection cells, indirect pathway cells expressing D2 dopamine receptors are lost earlier than direct pathway cells expressing D1 receptors. To test in vivo the functional integrity of direct and indirect pathways as well as interneurons in the striatum of male R6/1 transgenic mice, we assessed their c-Fos expression levels induced by a striatal-dependent cognitive task and compared them with age-matched wild-type littermates. We found a significant increase of c-Fos+ nuclei in the dorsomedial striatum, and this only at 2 months, when our HD mouse model is still pre-motor symptomatic, the increase disappearing with symptom manifestation. Contrary to our expectation, the indirect pathway projection neurons did not undergo any severer changes of c-Fos expression regardless of age in R6/1 mice. We also found a decreased activation of interneurons that express parvalbumin in the dorsomedial striatum at both presymptomatic and symptomatic ages. Finally, analysis of c-Fos expression in extended brain regions involved in the cognitive learning used in our study, demonstrates, throughout ages studied, changes in the functional connectivity between regions in the transgenic mice. Further analysis of the cellular and molecular changes underlying the transient striatal hyperactivity in the HD mice may help to understand the mechanisms involved in the disease onset.
Collapse
Affiliation(s)
- Magali Cabanas
- Institut de Neurosciences Cognitives et Intégratives d’Aquitaine, CNRS UMR 5287, Pessac, France
- University of Bordeaux, Bordeaux, France
| | - Fares Bassil
- Institut de Neurosciences Cognitives et Intégratives d’Aquitaine, CNRS UMR 5287, Pessac, France
- University of Bordeaux, Bordeaux, France
| | - Nicole Mons
- Institut de Neurosciences Cognitives et Intégratives d’Aquitaine, CNRS UMR 5287, Pessac, France
- University of Bordeaux, Bordeaux, France
| | - Maurice Garret
- Institut de Neurosciences Cognitives et Intégratives d’Aquitaine, CNRS UMR 5287, Pessac, France
- University of Bordeaux, Bordeaux, France
- * E-mail: (MG); (YHC)
| | - Yoon H. Cho
- Institut de Neurosciences Cognitives et Intégratives d’Aquitaine, CNRS UMR 5287, Pessac, France
- University of Bordeaux, Bordeaux, France
- * E-mail: (MG); (YHC)
| |
Collapse
|
69
|
Hsu YT, Chang YG, Chang CP, Siew JJ, Chen HM, Tsai CH, Chern Y. Altered behavioral responses to gamma-aminobutyric acid pharmacological agents in a mouse model of Huntington's disease. Mov Disord 2017; 32:1600-1609. [PMID: 28782830 DOI: 10.1002/mds.27107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 06/21/2017] [Accepted: 06/23/2017] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Disruptions in gamma-aminobutyric (GABA) acid signaling are believed to be involved in Huntington's disease pathogenesis, but the regulation of GABAergic signaling remains elusive. Here we evaluated GABAergic signaling by examining the function of GABAergic drugs in Huntington's disease and the expression of GABAergic molecules using mouse models and human brain tissues from Huntington's disease. METHODS We treated wild-type and R6/2 mice (a transgenic Huntington's disease mouse model) acutely with vehicle, diazepam, or gaboxadol (drugs that selectively target synaptic or extrasynaptic GABAA receptors) and monitored their locomotor activity. The expression levels of GABAA receptors and a major neuron-specific chloride extruder (potassium-chloride cotransporter-2) were analyzed by real-time quantitative polymerase chain reaction, Western blot, and immunocytochemistry. RESULTS The R6/2 mice were less sensitive to the sedative effects of both drugs, suggesting reduced function of GABAA receptors. Consistently, the expression levels of α1/α2 and δ subunits were lower in the cortex and striatum of R6/2 mice. Similar results were also found in 2 other mouse models of Huntington's disease and in Huntington's disease patients. Moreover, the interaction and expression levels of potassium-chloride cotransporter-2 and its activator (brain-type creatine kinase) were decreased in Huntington's disease neurons. These findings collectively suggest impaired chloride homeostasis, which further dampens GABAA receptor-mediated inhibitory signaling in Huntington's disease brains. CONCLUSIONS The dysregulated GABAergic responses and altered expression levels of GABAA receptors and potassium-chloride cotransporter-2 in Huntington's disease mice appear to be authentic and may contribute to the clinical manifestations of Huntington's disease patients. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Yi-Ting Hsu
- Ph.D. Program for Translational Medicine, China Medical University and Academia Sinica, Taiwan.,Department of Neurology, China Medical University Hospital, Taichung, Taiwan
| | - Ya-Gin Chang
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan.,Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Ching-Pang Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jian-Jing Siew
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hui-Mei Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chon-Haw Tsai
- Ph.D. Program for Translational Medicine, China Medical University and Academia Sinica, Taiwan.,Department of Neurology, China Medical University Hospital, Taichung, Taiwan
| | - Yijuang Chern
- Ph.D. Program for Translational Medicine, China Medical University and Academia Sinica, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
70
|
Paldino E, Cardinale A, D'Angelo V, Sauve I, Giampà C, Fusco FR. Selective Sparing of Striatal Interneurons after Poly (ADP-Ribose) Polymerase 1 Inhibition in the R6/2 Mouse Model of Huntington's Disease. Front Neuroanat 2017; 11:61. [PMID: 28824383 PMCID: PMC5539174 DOI: 10.3389/fnana.2017.00061] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/07/2017] [Indexed: 01/02/2023] Open
Abstract
Poly (ADP-ribose) polymerases (PARPs) are enzymes that catalyze ADP-ribose units transfer from NAD to their substrate proteins. It has been observed that PARP-1 is able to increase both post-ischemic and excitotoxic neuronal death. In fact, we have previously shown that, INO-1001, a PARP-1 inhibitor, displays a neuroprotective effect in the R6/2 model of Huntington’s disease (HD). In this study, we investigated the effects of PARP-1-inhibition on modulation of phosphorylated c-AMP response element binding protein (pCREB) and CREB-binding protein (CBP) localization in the different striatal neuronal subsets. Moreover, we studied the neurodegeneration of those interneurons that are particularly vulnerable to HD such as parvalbuminergic and calretininergic, and of other subclasses of interneurons that are known to be resistant, such as cholinergic and somatostatinergic interneurons. Transgenic mice were treated with INO-1001 (10 mg/Kg daily) starting from 4 weeks of age. Double-label immunofluorescence was performed to value the distribution of CBP in ubiquitinated Neuronal intranuclear inclusions (NIIs) in the striatum. INO-1001-treated and saline-treated brain sections were incubated with: goat anti-choline acetyl transferase; goat anti-nitric oxide synthase; mouse anti-parvalbumin and mouse anti-calretinin. Morphometric evaluation and cell counts were performed. Our study showed that the PARP inhibitor has a positive effect in sparing parvalbumin and calretinin-containing interneurons of the striatum, where CREB was upregulated. Moreover, INO-1001 promoted CBP localization into the nuclei of the R6/2 mouse. The sum of our data corroborates the previous observations indicating PARP inhibition as a possible therapeutic tool to fight HD.
Collapse
Affiliation(s)
- Emanuela Paldino
- Laboratory of Neuroanatomy, Santa Lucia Foundation IRCCS HospitalRome, Italy
| | - Antonella Cardinale
- Laboratory of Neuroanatomy, Santa Lucia Foundation IRCCS HospitalRome, Italy
| | - Vincenza D'Angelo
- Department of Neuroscience, University of Rome Tor VergataRome, Italy
| | - Ilaria Sauve
- Laboratory of Neuroanatomy, Santa Lucia Foundation IRCCS HospitalRome, Italy
| | - Carmela Giampà
- Laboratory of Neuroanatomy, Santa Lucia Foundation IRCCS HospitalRome, Italy.,Department of Anatomy and Cell Biology, Catholic UniversityRome, Italy
| | - Francesca R Fusco
- Laboratory of Neuroanatomy, Santa Lucia Foundation IRCCS HospitalRome, Italy
| |
Collapse
|
71
|
Zheng P, Kozloski J. Striatal Network Models of Huntington's Disease Dysfunction Phenotypes. Front Comput Neurosci 2017; 11:70. [PMID: 28798680 PMCID: PMC5529396 DOI: 10.3389/fncom.2017.00070] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/13/2017] [Indexed: 11/17/2022] Open
Abstract
We present a network model of striatum, which generates "winnerless" dynamics typical for a network of sparse, unidirectionally connected inhibitory units. We observe that these dynamics, while interesting and a good match to normal striatal electrophysiological recordings, are fragile. Specifically, we find that randomly initialized networks often show dynamics more resembling "winner-take-all," and relate this "unhealthy" model activity to dysfunctional physiological and anatomical phenotypes in the striatum of Huntington's disease animal models. We report plasticity as a potent mechanism to refine randomly initialized networks and create a healthy winnerless dynamic in our model, and we explore perturbations to a healthy network, modeled on changes observed in Huntington's disease, such as neuron cell death and increased bidirectional connectivity. We report the effect of these perturbations on the conversion risk of the network to an unhealthy state. Finally we discuss the relationship between structural and functional phenotypes observed at the level of simulated network dynamics as a promising means to model disease progression in different patient populations.
Collapse
Affiliation(s)
| | - James Kozloski
- Computational Neuroscience and Multiscale Brain Modeling, Computational Biology Center, IBM Research Division, IBM T. J. Watson Research CenterNew York, NY, United States
| |
Collapse
|
72
|
Khakh BS, Beaumont V, Cachope R, Munoz-Sanjuan I, Goldman SA, Grantyn R. Unravelling and Exploiting Astrocyte Dysfunction in Huntington's Disease. Trends Neurosci 2017; 40:422-437. [PMID: 28578789 PMCID: PMC5706770 DOI: 10.1016/j.tins.2017.05.002] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 04/24/2017] [Accepted: 05/01/2017] [Indexed: 01/02/2023]
Abstract
Astrocytes are abundant within mature neural circuits and are involved in brain disorders. Here, we summarize our current understanding of astrocytes and Huntington's disease (HD), with a focus on correlative and causative dysfunctions of ion homeostasis, calcium signaling, and neurotransmitter clearance, as well as on the use of transplanted astrocytes to produce therapeutic benefit in mouse models of HD. Overall, the data suggest that astrocyte dysfunction is an important contributor to the onset and progression of some HD symptoms in mice. Additional exploration of astrocytes in HD mouse models and humans is needed and may provide new therapeutic opportunities to explore in conjunction with neuronal rescue and repair strategies.
Collapse
Affiliation(s)
- Baljit S Khakh
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1751, USA; Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1751, USA.
| | - Vahri Beaumont
- CHDI Management/CHDI Foundation, 6080 Center Drive, Los Angeles, CA 90045, USA
| | - Roger Cachope
- CHDI Management/CHDI Foundation, 6080 Center Drive, Los Angeles, CA 90045, USA
| | | | - Steven A Goldman
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY 14642, USA; Center for Neuroscience, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Rosemarie Grantyn
- Exzellenzcluster NeuroCure & Abt. Experimentelle Neurologie, Charité - Universitätsmedizin Berlin, Robert-Koch-Platz 4, D-10115 Berlin, Germany
| |
Collapse
|
73
|
Du Z, Tertrais M, Courtand G, Leste-Lasserre T, Cardoit L, Masmejean F, Halgand C, Cho YH, Garret M. Differential Alteration in Expression of Striatal GABA AR Subunits in Mouse Models of Huntington's Disease. Front Mol Neurosci 2017; 10:198. [PMID: 28676743 PMCID: PMC5476702 DOI: 10.3389/fnmol.2017.00198] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/06/2017] [Indexed: 12/20/2022] Open
Abstract
Huntington’s disease (HD) is a neurodegenerative disorder characterized by progressive motor symptoms that are preceded by cognitive deficits and is considered as a disorder that primarily affects forebrain striatal neurons. To gain a better understanding of the molecular and cellular mechanisms associated with disease progression, we analyzed the expression of proteins involved in GABAergic neurotransmission in the striatum of the R6/1 transgenic mouse model. Western blot, quantitative PCR and immunohistochemical analyses were conducted on male R6/1 mice and age-matched wild type littermates. Analyses were performed on 2 and 6 month-old animals, respectively, before and after the onset of motor symptoms. Expression of GAD 67, GAD 65, NL2, or gephyrin proteins, involved in GABA synthesis or synapse formation did not display major changes. In contrast, expression of α1, α3 and α5 GABAAR subunits was increased while the expression of δ was decreased, suggesting a change in tonic- and phasic inhibitory transmission. Western blot analysis of the striatum from 8 month-old Hdh Q111, a knock-in mouse model of HD with mild deficits, confirmed the α1 subunit increased expression. From immunohistochemical analyses, we also found that α1 subunit expression is increased in medium-sized spiny projection neurons (MSN) and decreased in parvalbumin (PV)-expressing interneurons at 2 and 6 months in R6/1 mice. Moreover, α2 subunit labeling on the PV and MSN cell membranes was increased at 2 months and decreased at 6 months. Alteration of gene expression in the striatum and modification of GABAA receptor subtypes in both interneurons and projection neurons suggested that HD mutation has a profound effect on synaptic plasticity at an early stage, before the onset of motor symptoms. These results also indicate that cognitive and other behavioral deficits may be associated with changes in GABAergic neurotransmission that consequently could be a relevant target for early therapeutic treatment.
Collapse
Affiliation(s)
- Zhuowei Du
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, University of BordeauxBordeaux, France.,Centre National de la Recherche Scientifique, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287Bordeaux, France
| | - Margot Tertrais
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, University of BordeauxBordeaux, France.,Centre National de la Recherche Scientifique, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287Bordeaux, France
| | - Gilles Courtand
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, University of BordeauxBordeaux, France.,Centre National de la Recherche Scientifique, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287Bordeaux, France
| | - Thierry Leste-Lasserre
- Institut National de la Santé et de la Recherche Médicale, Neurocentre Magendie, U862, Physiopathologie de la Plasticité NeuronaleBordeaux, France.,Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, University of BordeauxBordeaux, France
| | - Laura Cardoit
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, University of BordeauxBordeaux, France.,Centre National de la Recherche Scientifique, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287Bordeaux, France
| | - Frédérique Masmejean
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, University of BordeauxBordeaux, France.,Centre National de la Recherche Scientifique, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287Bordeaux, France
| | - Christophe Halgand
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, University of BordeauxBordeaux, France.,Centre National de la Recherche Scientifique, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287Bordeaux, France
| | - Yoon H Cho
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, University of BordeauxBordeaux, France.,Centre National de la Recherche Scientifique, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287Bordeaux, France
| | - Maurice Garret
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, University of BordeauxBordeaux, France.,Centre National de la Recherche Scientifique, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287Bordeaux, France
| |
Collapse
|
74
|
Sebastianutto I, Cenci MA, Fieblinger T. Alterations of striatal indirect pathway neurons precede motor deficits in two mouse models of Huntington's disease. Neurobiol Dis 2017; 105:117-131. [PMID: 28578004 DOI: 10.1016/j.nbd.2017.05.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/26/2017] [Accepted: 05/29/2017] [Indexed: 11/15/2022] Open
Abstract
Striatal neurons forming the indirect pathway (iSPNs) are particularly vulnerable in Huntington's disease (HD). In this study we set out to investigate morphological and physiological alterations of iSPNs in two mouse models of HD with relatively slow disease progression (long CAG repeat R6/2 and zQ175-KI). Both were crossed with a transgenic mouse line expressing eGFP in iSPNs. Using the open-field and rotarod tests, we first defined two time points in relation to the occurrence of motor deficits in each model. Then, we investigated electrophysiological and morphological properties of iSPNs at both ages. Both HD models exhibited increased iSPN excitability already before the onset of motor deficits, associated with a reduced number of primary dendrites and decreased function of Kir- and voltage-gated potassium channels. Alterations that specifically occurred at symptomatic ages included increased calcium release by back-propagating action potentials in proximal dendrites, due to enhanced engagement of intracellular calcium stores. Moreover, motorically impaired mice of both HD models showed a reduction in iSPN spine density and progressive formation of huntingtin (Htt) aggregates in the striatum. Our study therefore reports iSPN-specific alterations relative to the development of a motor phenotype in two different mouse models of HD. While some alterations occur early and are partly non-progressive, others potentially provide a pathophysiological marker of an overt disease state.
Collapse
Affiliation(s)
- Irene Sebastianutto
- Basal Ganglia Pathophysiology Unit, Dept. of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| | - Maria Angela Cenci
- Basal Ganglia Pathophysiology Unit, Dept. of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| | - Tim Fieblinger
- Basal Ganglia Pathophysiology Unit, Dept. of Experimental Medical Science, Lund University, 22184 Lund, Sweden.
| |
Collapse
|
75
|
Tyebji S, Hannan AJ. Synaptopathic mechanisms of neurodegeneration and dementia: Insights from Huntington's disease. Prog Neurobiol 2017; 153:18-45. [PMID: 28377290 DOI: 10.1016/j.pneurobio.2017.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 03/19/2017] [Accepted: 03/30/2017] [Indexed: 12/20/2022]
Abstract
Dementia encapsulates a set of symptoms that include loss of mental abilities such as memory, problem solving or language, and reduces a person's ability to perform daily activities. Alzheimer's disease is the most common form of dementia, however dementia can also occur in other neurological disorders such as Huntington's disease (HD). Many studies have demonstrated that loss of neuronal cell function manifests pre-symptomatically and thus is a relevant therapeutic target to alleviate symptoms. Synaptopathy, the physiological dysfunction of synapses, is now being approached as the target for many neurological and psychiatric disorders, including HD. HD is an autosomal dominant and progressive degenerative disorder, with clinical manifestations that encompass movement, cognition, mood and behaviour. HD is one of the most common tandem repeat disorders and is caused by a trinucleotide (CAG) repeat expansion, encoding an extended polyglutamine tract in the huntingtin protein. Animal models as well as human studies have provided detailed, although not exhaustive, evidence of synaptic dysfunction in HD. In this review, we discuss the neuropathology of HD and how the changes in synaptic signalling in the diseased brain lead to its symptoms, which include dementia. Here, we review and discuss the mechanisms by which the 'molecular orchestras' and their 'synaptic symphonies' are disrupted in neurodegeneration and dementia, focusing on HD as a model disease. We also explore the therapeutic strategies currently in pre-clinical and clinical testing that are targeted towards improving synaptic function in HD.
Collapse
Affiliation(s)
- Shiraz Tyebji
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia; Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
76
|
Lee K, Holley SM, Shobe JL, Chong NC, Cepeda C, Levine MS, Masmanidis SC. Parvalbumin Interneurons Modulate Striatal Output and Enhance Performance during Associative Learning. Neuron 2017; 93:1451-1463.e4. [PMID: 28334608 PMCID: PMC5386608 DOI: 10.1016/j.neuron.2017.02.033] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/09/2017] [Accepted: 02/15/2017] [Indexed: 01/13/2023]
Abstract
The prevailing view is that striatal parvalbumin (PV)-positive interneurons primarily function to downregulate medium spiny projection neuron (MSN) activity via monosynaptic inhibitory signaling. Here, by combining in vivo neural recordings and optogenetics, we unexpectedly find that both suppressing and over-activating PV cells attenuates spontaneous MSN activity. To account for this, we find that, in addition to monosynaptic coupling, PV-MSN interactions are mediated by a competing disynaptic inhibitory circuit involving a variety of neuropeptide Y-expressing interneurons. Next we use optogenetic and chemogenetic approaches to show that dorsolateral striatal PV interneurons influence the initial expression of reward-conditioned responses but that their contribution to performance declines with experience. Consistent with this, we observe with large-scale recordings in behaving animals that the relative contribution of PV cells on MSN activity diminishes with training. Together, this work provides a possible mechanism by which PV interneurons modulate striatal output and selectively enhance performance early in learning.
Collapse
Affiliation(s)
- Kwang Lee
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sandra M Holley
- Intellectual and Developmental Disabilities Research Center, Brain Research Institute, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Justin L Shobe
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Natalie C Chong
- Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Brain Research Institute, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael S Levine
- Intellectual and Developmental Disabilities Research Center, Brain Research Institute, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sotiris C Masmanidis
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Brain Research Institute, Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
77
|
Chen JY, Tran C, Hwang L, Deng G, Jung ME, Faull KF, Levine MS, Cepeda C. Partial Amelioration of Peripheral and Central Symptoms of Huntington's Disease via Modulation of Lipid Metabolism. J Huntingtons Dis 2016; 5:65-81. [PMID: 27031732 DOI: 10.3233/jhd-150181] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Huntington's disease (HD) is a fatal, inherited neurodegenerative disorder characterized by uncontrollable dance-like movements, as well as cognitive deficits and mood changes. A feature of HD is a metabolic disturbance that precedes neurological symptoms. In addition, brain cholesterol synthesis is significantly reduced, which could hamper synaptic transmission. OBJECTIVE Alterations in lipid metabolism as a potential target for therapeutic intervention in the R6/2 mouse model of HD were examined. METHODS Electrophysiological recordings in vitro examined the acute effects of cholesterol-modifying drugs. In addition, behavioral testing, effects on synaptic activity, and measurements of circulating and brain tissue concentrations of cholesterol and the ketone β-hydroxybutyrate (BHB), were examined in symptomatic R6/2 mice and littermate controls raised on normal chow or a ketogenic diet (KD). RESULTS Whole-cell voltage clamp recordings of striatal medium-sized spiny neurons (MSNs) from symptomatic R6/2 mice showed increased frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) compared with littermate controls. Incubation of slices in cholesterol reduced the frequency of large-amplitude sIPSCs. Addition of BHB or the Liver X Receptor (LXR) agonist T0901317 reduced the frequency and amplitude of sIPSCs. Surprisingly, incubation in simvastatin to reduce cholesterol levels also decreased the frequency of sIPSCs. HD mice fed the KD lost weight more gradually, performed better in an open field, had fewer stereotypies and lower brain levels of cholesterol than mice fed a regular diet. CONCLUSIONS Lipid metabolism represents a potential target for therapeutic intervention in HD. Modifying cholesterol or ketone levels acutely in the brain can partially rescue synaptic alterations, and the KD can prevent weight loss and improve some behavioral abnormalities.
Collapse
Affiliation(s)
- Jane Y Chen
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, CA, USA
| | - Conny Tran
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, CA, USA
| | - Lin Hwang
- Pasarow Mass Spectrometry Laboratory, David Geffen School of Medicine, University of California Los Angeles, CA, USA
| | - Gang Deng
- Department of Chemistry and Biochemistry, David Geffen School of Medicine, University of California Los Angeles, CA, USA
| | - Michael E Jung
- Department of Chemistry and Biochemistry, David Geffen School of Medicine, University of California Los Angeles, CA, USA
| | - Kym F Faull
- Pasarow Mass Spectrometry Laboratory, David Geffen School of Medicine, University of California Los Angeles, CA, USA.,Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, CA, USA
| | - Michael S Levine
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, CA, USA.,Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, CA, USA
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, CA, USA
| |
Collapse
|
78
|
Akopian G, Barry J, Cepeda C, Levine MS. Altered membrane properties and firing patterns of external globus pallidus neurons in the R6/2 mouse model of Huntington's disease. J Neurosci Res 2016; 94:1400-1410. [PMID: 27618125 DOI: 10.1002/jnr.23889] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/25/2016] [Accepted: 07/28/2016] [Indexed: 12/24/2022]
Abstract
In mouse models of Huntington's disease (HD), striatal neuron properties are significantly altered. These alterations predict changes in striatal output regions. However, little is known about alterations in those regions. The present study examines changes in passive and active membrane properties of neurons in the external globus pallidus (GPe), the first relay station of the indirect pathway, in the R6/2 mouse model of juvenile HD at presymptomatic (1 month) and symptomatic (2 month) stages. In GPe, two principal types of neurons can be distinguished based on firing properties and the presence (type A) or absence (type B) of Ih currents. In symptomatic animals (2 month), cell membrane capacitance and input resistance of type A neurons were increased compared with controls. In addition, action potential afterhyperpolarization amplitude was reduced. Although the spontaneous firing rate of GPe neurons was not different between control and R6/2 mice, the number of spikes evoked by depolarizing current pulses was significantly reduced in symptomatic R6/2 animals. In addition, these changes were accompanied by altered firing patterns evidenced by increased interspike interval variation and increased number of bursts. Blockade of GABAA receptors facilitated bursting activity in R6/2 mice but not in control littermates. Thus, alterations in firing patterns could be caused by changes in intrinsic membrane conductances and modulated by synaptic inputs. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Garnik Akopian
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Joshua Barry
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Michael S Levine
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
79
|
Raymond LA. Striatal synaptic dysfunction and altered calcium regulation in Huntington disease. Biochem Biophys Res Commun 2016; 483:1051-1062. [PMID: 27423394 DOI: 10.1016/j.bbrc.2016.07.058] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 07/11/2016] [Indexed: 11/30/2022]
Abstract
Synaptic dysfunction and altered calcium homeostasis in the brain is common to many neurodegenerative disorders. Among these, Huntington disease (HD), which is inherited in an autosomal dominant fashion, can serve as a model for investigating these mechanisms. HD generally manifests in middle age as a disorder of movement, mood and cognition. An expanded polymorphic CAG repeat in the HTT gene results in progressive neurodegeneration that impacts striatal spiny projection neurons (SPNs) earliest and most severely. Striatal SPNs receive massive glutamatergic input from cortex and thalamus, and these excitatory synapses are a focus for early changes that can trigger aberrant downstream signaling to disrupt synaptic plasticity and lead to later degeneration. Mitochondrial dysfunction and altered intracellular calcium-induced calcium release and sequestration mechanisms add to the impairments in circuit function that may underlie prodromal cognitive and subtle motor deficits. These mechanisms and implications for developing disease-modifying therapy will be reviewed here.
Collapse
Affiliation(s)
- Lynn A Raymond
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 4834-2255 Wesbrook Mall, Vancouver, BC, Canada, V6T 1Z3.
| |
Collapse
|
80
|
Bunner KD, Rebec GV. Corticostriatal Dysfunction in Huntington's Disease: The Basics. Front Hum Neurosci 2016; 10:317. [PMID: 27445757 PMCID: PMC4924423 DOI: 10.3389/fnhum.2016.00317] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/13/2016] [Indexed: 11/23/2022] Open
Abstract
The main input to the basal ganglia, the corticostriatal pathway, shows some of the earliest signs of neuropathology in Huntington’s disease (HD), an inherited neurodegenerative condition that typically strikes in mid-life with progressively deteriorating cognitive, emotional, and motor symptoms. Although an effective treatment remains elusive, research on transgenic animal models has implicated dysregulation of glutamate (Glu), the excitatory amino acid released by corticostriatal neurons, in HD onset. Abnormalities in the control of Glu transmission at the level of postsynaptic receptors and Glu transport proteins play a critical role in the loss of information flow through downstream circuits that set the stage for the HD behavioral phenotype. Parallel but less-well characterized changes in dopamine (DA), a key modulator of Glu activation, ensure further deficits in neuronal communication throughout the basal ganglia. Continued analysis of corticostriatal Glu transmission and its modulation by DA, including analysis at the neurobehavioral level in transgenic models, is likely to be an effective strategy in the pursuit of HD therapeutics.
Collapse
Affiliation(s)
- Kendra D Bunner
- Department of Psychological and Brain Sciences, Program in Neuroscience, Indiana University Bloomington, IN, USA
| | - George V Rebec
- Department of Psychological and Brain Sciences, Program in Neuroscience, Indiana University Bloomington, IN, USA
| |
Collapse
|
81
|
Du Z, Chazalon M, Bestaven E, Leste-Lasserre T, Baufreton J, Cazalets JR, Cho YH, Garret M. Early GABAergic transmission defects in the external globus pallidus and rest/activity rhythm alteration in a mouse model of Huntington's disease. Neuroscience 2016; 329:363-79. [PMID: 27217211 DOI: 10.1016/j.neuroscience.2016.05.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 05/12/2016] [Accepted: 05/12/2016] [Indexed: 01/01/2023]
Abstract
Huntington's disease (HD) is characterized by progressive motor symptoms preceded by cognitive deficits and is regarded as a disorder that primarily affects the basal ganglia. The external globus pallidus (GPe) has a central role in the basal ganglia, projects directly to the cortex, and is majorly modulated by GABA. To gain a better understanding of the time course of HD progression and gain insight into the underlying mechanisms, we analyzed GABAergic neurotransmission in the GPe of the R6/1 mouse model at purportedly asymptomatic and symptomatic stages (i.e., 2 and 6months). Western blot and quantitative polymerase chain reaction (PCR) analyses revealed alterations in the GPe of male R6/1 mice compared with wild-type littermates. Expression of proteins involved in pre- and post-synaptic GABAergic compartments as well as synapse number were severely decreased at 2 and 6months. At both ages, patch-clamp electrophysiological recordings showed a decrease of spontaneous and miniature inhibitory post-synaptic currents (IPSCs) suggesting that HD mutation has an early effect on the GABA signaling in the brain. Therefore, we performed continuous locomotor activity recordings from 2 to 4months of age. Actigraphy analyses revealed rest/activity fragmentation alterations that parallel GABAergic system impairment at 2months, while the locomotor deficit is evident only at 3months in R6/1 mice. Our results reveal early deficits in HD and support growing evidence for a critical role played by the GPe in physiological and pathophysiological states. We suggest that actimetry may be used as a non-invasive tool to monitor early disease progression.
Collapse
Affiliation(s)
- Zhuowei Du
- Univ. Bordeaux, INCIA, UMR 5287, F-33000 Bordeaux, France; CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France
| | - Marine Chazalon
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Emma Bestaven
- Univ. Bordeaux, INCIA, UMR 5287, F-33000 Bordeaux, France; CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France
| | - Thierry Leste-Lasserre
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, F-33000 Bordeaux, France
| | - Jérôme Baufreton
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Jean-René Cazalets
- Univ. Bordeaux, INCIA, UMR 5287, F-33000 Bordeaux, France; CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France
| | - Yoon H Cho
- Univ. Bordeaux, INCIA, UMR 5287, F-33000 Bordeaux, France; CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France
| | - Maurice Garret
- Univ. Bordeaux, INCIA, UMR 5287, F-33000 Bordeaux, France; CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France.
| |
Collapse
|
82
|
Beaumont V, Mrzljak L, Dijkman U, Freije R, Heins M, Rassoulpour A, Tombaugh G, Gelman S, Bradaia A, Steidl E, Gleyzes M, Heikkinen T, Lehtimäki K, Puoliväli J, Kontkanen O, Javier RM, Neagoe I, Deisemann H, Winkler D, Ebneth A, Khetarpal V, Toledo-Sherman L, Dominguez C, Park LC, Munoz-Sanjuan I. The novel KMO inhibitor CHDI-340246 leads to a restoration of electrophysiological alterations in mouse models of Huntington's disease. Exp Neurol 2016; 282:99-118. [PMID: 27163548 DOI: 10.1016/j.expneurol.2016.05.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 04/28/2016] [Accepted: 05/05/2016] [Indexed: 11/18/2022]
Abstract
Dysregulation of the kynurenine (Kyn) pathway has been associated with the progression of Huntington's disease (HD). In particular, elevated levels of the kynurenine metabolites 3-hydroxy kynurenine (3-OH-Kyn) and quinolinic acid (Quin), have been reported in the brains of HD patients as well as in rodent models of HD. The production of these metabolites is controlled by the activity of kynurenine mono-oxygenase (KMO), an enzyme which catalyzes the synthesis of 3-OH-Kyn from Kyn. In order to determine the role of KMO in the phenotype of mouse models of HD, we have developed a potent and selective KMO inhibitor termed CHDI-340246. We show that this compound, when administered orally to transgenic mouse models of HD, potently and dose-dependently modulates the Kyn pathway in peripheral tissues and in the central nervous system. The administration of CHDI-340246 leads to an inhibition of the formation of 3-OH-Kyn and Quin, and to an elevation of Kyn and Kynurenic acid (KynA) levels in brain tissues. We show that administration of CHDI-340246 or of Kyn and of KynA can restore several electrophysiological alterations in mouse models of HD, both acutely and after chronic administration. However, using a comprehensive panel of behavioral tests, we demonstrate that the chronic dosing of a selective KMO inhibitor does not significantly modify behavioral phenotypes or natural progression in mouse models of HD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Larry C Park
- CHDI Foundation/CHDI Management Inc., Los Angeles, USA
| | | |
Collapse
|
83
|
Selective expression of mutant huntingtin during development recapitulates characteristic features of Huntington's disease. Proc Natl Acad Sci U S A 2016; 113:5736-41. [PMID: 27140644 DOI: 10.1073/pnas.1603871113] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent studies have identified impairments in neural induction and in striatal and cortical neurogenesis in Huntington's disease (HD) knock-in mouse models and associated embryonic stem cell lines. However, the potential role of these developmental alterations for HD pathogenesis and progression is currently unknown. To address this issue, we used BACHD:CAG-Cre(ERT2) mice, which carry mutant huntingtin (mHtt) modified to harbor a floxed exon 1 containing the pathogenic polyglutamine expansion (Q97). Upon tamoxifen administration at postnatal day 21, the floxed mHtt-exon1 was removed and mHtt expression was terminated (Q97(CRE)). These conditional mice displayed similar profiles of impairments to those mice expressing mHtt throughout life: (i) striatal neurodegeneration, (ii) early vulnerability to NMDA-mediated excitotoxicity, (iii) impairments in motor coordination, (iv) temporally distinct abnormalities in striatal electrophysiological activity, and (v) altered corticostriatal functional connectivity and plasticity. These findings strongly suggest that developmental aberrations may play important roles in HD pathogenesis and progression.
Collapse
|
84
|
Vann KT, Xiong ZG. Optogenetics for neurodegenerative diseases. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2016; 8:1-8. [PMID: 27186317 PMCID: PMC4859873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 02/22/2016] [Indexed: 06/05/2023]
Abstract
Neurodegenerative diseases are devastating conditions that lead to progressive degeneration of neurons. Neurodegeneration may result in ataxia, dementia, and muscle atrophies, etc. Despite enormous research efforts that have been made, there is lack of effective therapeutic interventions for most of these diseases. Optogenetics is a recently developed novel technique that combines optics and genetics to modulate the activity of specific neurons. Optogenetics has been implemented in various studies including neuropsychiatric disorders and neurodegenerative diseases. This review focuses on the recent advance in using this technique for the studies of common neurodegenerative diseases.
Collapse
Affiliation(s)
- Kiara T Vann
- Neuroscience Institute, Morehouse School of Medicine Atlanta, GA 30310
| | - Zhi-Gang Xiong
- Neuroscience Institute, Morehouse School of Medicine Atlanta, GA 30310
| |
Collapse
|
85
|
Sizemore RJ, Seeger-Armbruster S, Hughes SM, Parr-Brownlie LC. Viral vector-based tools advance knowledge of basal ganglia anatomy and physiology. J Neurophysiol 2016; 115:2124-46. [PMID: 26888111 PMCID: PMC4869490 DOI: 10.1152/jn.01131.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/16/2016] [Indexed: 01/07/2023] Open
Abstract
Viral vectors were originally developed to deliver genes into host cells for therapeutic potential. However, viral vector use in neuroscience research has increased because they enhance interpretation of the anatomy and physiology of brain circuits compared with conventional tract tracing or electrical stimulation techniques. Viral vectors enable neuronal or glial subpopulations to be labeled or stimulated, which can be spatially restricted to a single target nucleus or pathway. Here we review the use of viral vectors to examine the structure and function of motor and limbic basal ganglia (BG) networks in normal and pathological states. We outline the use of viral vectors, particularly lentivirus and adeno-associated virus, in circuit tracing, optogenetic stimulation, and designer drug stimulation experiments. Key studies that have used viral vectors to trace and image pathways and connectivity at gross or ultrastructural levels are reviewed. We explain how optogenetic stimulation and designer drugs used to modulate a distinct pathway and neuronal subpopulation have enhanced our mechanistic understanding of BG function in health and pathophysiology in disease. Finally, we outline how viral vector technology may be applied to neurological and psychiatric conditions to offer new treatments with enhanced outcomes for patients.
Collapse
Affiliation(s)
- Rachel J Sizemore
- Department of Anatomy, Otago School of Medical Sciences, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | - Sonja Seeger-Armbruster
- Department of Physiology, Otago School of Medical Sciences, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand; and
| | - Stephanie M Hughes
- Department of Biochemistry, Otago School of Medical Sciences, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | - Louise C Parr-Brownlie
- Department of Anatomy, Otago School of Medical Sciences, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand;
| |
Collapse
|
86
|
Sciamanna G, Ponterio G, Mandolesi G, Bonsi P, Pisani A. Optogenetic stimulation reveals distinct modulatory properties of thalamostriatal vs corticostriatal glutamatergic inputs to fast-spiking interneurons. Sci Rep 2015; 5:16742. [PMID: 26572101 PMCID: PMC4647205 DOI: 10.1038/srep16742] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 10/16/2015] [Indexed: 01/11/2023] Open
Abstract
Parvalbumin-containing fast-spiking interneurons (FSIs) exert a powerful feed-forward GABAergic inhibition on striatal medium spiny neurons (MSNs), playing a critical role in timing striatal output. However, how glutamatergic inputs modulate their firing activity is still unexplored. Here, by means of a combined optogenetic and electrophysiological approach, we provide evidence for a differential modulation of cortico- vs thalamo-striatal synaptic inputs to FSIs in transgenic mice carrying light-gated ion channels channelrhodopsin-2 (ChR2) in glutamatergic fibers. Corticostriatal synapses show a postsynaptic facilitation, whereas thalamostriatal synapses present a postsynaptic depression. Moreover, thalamostriatal synapses exhibit more prominent AMPA-mediated currents than corticostriatal synapses, and an increased release probability. Furthermore, during current-evoked firing activity, simultaneous corticostriatal stimulation increases bursting activity. Conversely, thalamostriatal fiber activation shifts the canonical burst-pause activity to a more prolonged, regular firing pattern. However, this change in firing pattern was accompanied by a significant rise in the frequency of membrane potential oscillations. Notably, the responses to thalamic stimulation were fully abolished by blocking metabotropic glutamate 1 (mGlu1) receptor subtype, whereas both acetylcholine and dopamine receptor antagonists were ineffective. Our findings demonstrate that cortical and thalamic glutamatergic input differently modulate FSIs firing activity through specific intrinsic and synaptic properties, exerting a powerful influence on striatal outputs.
Collapse
Affiliation(s)
- Giuseppe Sciamanna
- University of Rome “Tor Vergata”, Dept. of Systems Medicine, via Montpellier 1 -00133, Rome
- Fondazione Santa Lucia IRCCS, Neurophysiology and Plasticity lab, via Fosso di Fiorano 64 -00143, Rome
| | - Giulia Ponterio
- Fondazione Santa Lucia IRCCS, Neurophysiology and Plasticity lab, via Fosso di Fiorano 64 -00143, Rome
| | - Georgia Mandolesi
- Fondazione Santa Lucia IRCCS, Neurophysiology and Plasticity lab, via Fosso di Fiorano 64 -00143, Rome
| | - Paola Bonsi
- Fondazione Santa Lucia IRCCS, Neurophysiology and Plasticity lab, via Fosso di Fiorano 64 -00143, Rome
| | - Antonio Pisani
- University of Rome “Tor Vergata”, Dept. of Systems Medicine, via Montpellier 1 -00133, Rome
- Fondazione Santa Lucia IRCCS, Neurophysiology and Plasticity lab, via Fosso di Fiorano 64 -00143, Rome
| |
Collapse
|
87
|
Abstract
Over the past 10 years, the development and convergence of microbial opsin engineering, modular genetic methods for cell-type targeting and optical strategies for guiding light through tissue have enabled versatile optical control of defined cells in living systems, defining modern optogenetics. Despite widespread recognition of the importance of spatiotemporally precise causal control over cellular signaling, for nearly the first half (2005-2009) of this 10-year period, as optogenetics was being created, there were difficulties in implementation, few publications and limited biological findings. In contrast, the ensuing years have witnessed a substantial acceleration in the application domain, with the publication of thousands of discoveries and insights into the function of nervous systems and beyond. This Historical Commentary reflects on the scientific landscape of this decade-long transition.
Collapse
Affiliation(s)
- Karl Deisseroth
- Departments of Bioengineering and of Psychiatry and Behavioral Sciences and the Howard Hughes Medical Institute, Stanford University, Stanford, California, USA
| |
Collapse
|
88
|
Pappas SS, Darr K, Holley SM, Cepeda C, Mabrouk OS, Wong JMT, LeWitt TM, Paudel R, Houlden H, Kennedy RT, Levine MS, Dauer WT. Forebrain deletion of the dystonia protein torsinA causes dystonic-like movements and loss of striatal cholinergic neurons. eLife 2015; 4:e08352. [PMID: 26052670 PMCID: PMC4473728 DOI: 10.7554/elife.08352] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 06/07/2015] [Indexed: 12/12/2022] Open
Abstract
Striatal dysfunction plays an important role in dystonia, but the striatal cell types that contribute to abnormal movements are poorly defined. We demonstrate that conditional deletion of the DYT1 dystonia protein torsinA in embryonic progenitors of forebrain cholinergic and GABAergic neurons causes dystonic-like twisting movements that emerge during juvenile CNS maturation. The onset of these movements coincides with selective degeneration of dorsal striatal large cholinergic interneurons (LCI), and surviving LCI exhibit morphological, electrophysiological, and connectivity abnormalities. Consistent with the importance of this LCI pathology, murine dystonic-like movements are reduced significantly with an antimuscarinic agent used clinically, and we identify cholinergic abnormalities in postmortem striatal tissue from DYT1 dystonia patients. These findings demonstrate that dorsal LCI have a unique requirement for torsinA function during striatal maturation, and link abnormalities of these cells to dystonic-like movements in an overtly symptomatic animal model. DOI:http://dx.doi.org/10.7554/eLife.08352.001 Dystonia is disorder of the nervous system that causes people to suffer from abnormal and involuntary twisting movements. These movements are triggered, in part, by irregularities in a part of the brain called the striatum. The most common view among researchers is that dystonia is caused by abnormal activity in an otherwise structurally normal nervous system. But, recent findings indicate that the degeneration of small populations of nerve cells in the brain may be important. The striatum is made up of several different types of nerve cells, but it is poorly understood which of these are affected in dystonia. One type of dystonia, which most often occurs in children, is caused by a defect in a protein called torsinA. Pappas et al. have now discovered that deleting the gene for torsinA from particular populations of nerve cells in the brains of mice (including a population in the striatum) causes abnormal twisting movements. Like people with dystonia, these mice developed the abnormal movements as juveniles, and the movements were suppressed with ‘anti-cholinergic’ medications. Pappas et al. then analyzed brain tissue from these mice and revealed that the twisting movements began at the same time that a single type of cell in the striatum—called ‘cholinergic interneurons’—degenerated. Postmortem studies of brain tissue from dystonia patients also revealed abnormalities of these neurons. Together these findings challenge the notion that dystonia occurs in a structurally normal nervous system and reveal that cholinergic interneurons in the striatum specifically require torsinA to survive. Following on from this work, the next challenges are to identify what causes the selective loss of cholinergic interneurons, and to investigate how this cell loss affects the activity within the striatum. DOI:http://dx.doi.org/10.7554/eLife.08352.002
Collapse
Affiliation(s)
- Samuel S Pappas
- Department of Neurology, University of Michigan, Ann Arbor, United States
| | - Katherine Darr
- Department of Neurology, University of Michigan, Ann Arbor, United States
| | - Sandra M Holley
- Intellectual and Developmental Disabilities Research Center, Brain Research Institute, Semel Institute for Neuroscience, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Brain Research Institute, Semel Institute for Neuroscience, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Omar S Mabrouk
- Department of Pharmacology, University of Michigan, Ann Arbor, United States
| | - Jenny-Marie T Wong
- Department of Chemistry, University of Michigan, Ann Arbor, United States
| | - Tessa M LeWitt
- Department of Neurology, University of Michigan, Ann Arbor, United States
| | - Reema Paudel
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| | - Henry Houlden
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| | - Robert T Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, United States
| | - Michael S Levine
- Intellectual and Developmental Disabilities Research Center, Brain Research Institute, Semel Institute for Neuroscience, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - William T Dauer
- Department of Neurology, University of Michigan, Ann Arbor, United States
| |
Collapse
|
89
|
Enhanced GABAergic Inputs Contribute to Functional Alterations of Cholinergic Interneurons in the R6/2 Mouse Model of Huntington's Disease. eNeuro 2015. [PMID: 26203463 PMCID: PMC4507822 DOI: 10.1523/eneuro.0008-14.2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Although large cholinergic interneurons (LCIs) in striatum are spared in Huntington's disease (HD), deficits in cholinergic function have been described. Here we demonstrate in a mouse model of HD that the firing patterns of LCIs are disrupted and this is due to aberrant GABAergic neurotransmission. This explains cholinergic deficits in HD. In Huntington’s disease (HD), a hereditary neurodegenerative disorder, striatal medium-sized spiny neurons undergo degenerative changes. In contrast, large cholinergic interneurons (LCIs) are relatively spared. However, their ability to release acetylcholine (ACh) is impaired. The present experiments examined morphological and electrophysiological properties of LCIs in the R6/2 mouse model of HD. R6/2 mice show a severe, rapidly progressing phenotype. Immunocytochemical analysis of choline acetyltransferase-positive striatal neurons showed that, although the total number of cells was not changed, somatic areas were significantly smaller in symptomatic R6/2 mice compared to wild-type (WT) littermates, For electrophysiology, brain slices were obtained from presymptomatic (3-4 weeks) and symptomatic (>8 weeks) R6/2 mice and their WT littermates. Striatal LCIs were identified by somatic size and spontaneous action potential firing in the cell-attached mode. Passive and active membrane properties of LCIs were similar in presymptomatic R6/2 and WT mice. In contrast, LCIs from symptomatic R6/2 animals displayed smaller membrane capacitance and higher input resistance, consistent with reduced somatic size. In addition, more LCIs from symptomatic mice displayed irregular firing patterns and bursts of action potentials. They also displayed a higher frequency of spontaneous GABAergic IPSCs and larger amplitude of electrically evoked IPSCs. Selective optogenetic stimulation of somatostatin- but not parvalbumin-containing interneurons also evoked larger amplitude IPSCs in LCIs from R6/2 mice. In contrast, glutamatergic spontaneous or evoked postsynaptic currents were not affected. Morphological and electrophysiological alterations, in conjunction with the presence of mutant huntingtin in LCIs, could explain impaired ACh release in HD mouse models.
Collapse
|
90
|
Plotkin JL, Surmeier DJ. Corticostriatal synaptic adaptations in Huntington's disease. Curr Opin Neurobiol 2015; 33:53-62. [PMID: 25700146 PMCID: PMC4831704 DOI: 10.1016/j.conb.2015.01.020] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/28/2015] [Accepted: 01/30/2015] [Indexed: 12/29/2022]
Abstract
Huntington’s disease (HD) is a progressive neurodegenerative disorder that profoundly impairs corticostriatal information processing. While late stage pathology includes cell death, the appearance of motor symptoms parallels more subtle changes in neuronal function and synaptic integration. Because of the difficulty in modeling the disease and the complexity of the corticostriatal network, understanding the mechanisms driving pathology has been slow to develop. In recent years, advances in animal models and network analysis tools have begun to shed light on the circuit-specific deficits. These studies have revealed a progressive impairment of corticostriatal synaptic signaling in sub-populations of striatal neurons, turning classical excitotoxicity models of HD upside down. Disrupted brain derived neurotrophic factor signaling appears to be a key factor in this decline.
Collapse
Affiliation(s)
- Joshua L Plotkin
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - D James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
91
|
Indersmitten T, Tran CH, Cepeda C, Levine MS. Altered excitatory and inhibitory inputs to striatal medium-sized spiny neurons and cortical pyramidal neurons in the Q175 mouse model of Huntington's disease. J Neurophysiol 2015; 113:2953-66. [PMID: 25673747 DOI: 10.1152/jn.01056.2014] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 02/10/2015] [Indexed: 11/22/2022] Open
Abstract
The Q175 knockin mouse model of Huntington's disease (HD) carries a CAG trinucleotide expansion of the human mutant huntingtin allele in its native mouse genomic context and recapitulates the genotype more closely than transgenic models. In this study we examined the progression of changes in intrinsic membrane properties and excitatory and inhibitory synaptic transmission, using whole cell patch-clamp recordings of medium-sized spiny neurons (MSNs) in the dorsolateral striatum and cortical pyramidal neurons (CPNs) in layers 2/3 of the primary motor cortex in brain slices from heterozygous (Q175(+/-)) and homozygous (Q175(+/+)) mice. Input resistance in MSNs from Q175(+/+) and Q175(+/-) mice was significantly increased compared with wild-type (WT) littermates beginning at 2 mo. Furthermore, the frequency of spontaneous and miniature excitatory postsynaptic currents (EPSCs) was significantly reduced in MSNs from Q175(+/+) and Q175(+/-) mice compared with WTs beginning at 7 mo. In contrast, the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) and IPSC-to-EPSC ratios were increased in MSNs from Q175(+/+) mice beginning at 2 mo. Morphologically, significant decreases in spine density of MSNs from Q175(+/-) and Q175(+/+) mice occurred at 7 and 12 mo. In CPNs, sIPSC frequencies and IPSC-to-EPSC ratios were significantly increased in Q175(+/-) mice compared with WTs at 12 mo. There were no changes in intrinsic membrane properties or morphology. In summary, we show a number of alterations in electrophysiological and morphological properties of MSNs in Q175 mice that are similar to other HD mouse models. However, unlike other models, CPN inhibitory activity is increased in Q175(+/-) mice, indicating reduced cortical excitability.
Collapse
Affiliation(s)
- Tim Indersmitten
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California
| | - Conny H Tran
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California
| | - Michael S Levine
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California
| |
Collapse
|
92
|
Chopra R, Shakkottai VG. The role for alterations in neuronal activity in the pathogenesis of polyglutamine repeat disorders. Neurotherapeutics 2014; 11:751-63. [PMID: 24986674 PMCID: PMC4391381 DOI: 10.1007/s13311-014-0289-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Polyglutamine diseases are a class of neurodegenerative diseases that share an expansion of a glutamine-encoding CAG tract in the respective disease genes as a central hallmark. In all of these diseases there is progressive degeneration in a select subset of neurons, and the mechanisms behind this degeneration remain unclear. Emerging evidence from animal models of disease has identified abnormalities in synaptic signaling and intrinsic excitability in affected neurons, which coincide with the onset of symptoms and precede apparent neuropathology. The appearance of these early changes suggests that altered neuronal activity might be an important component of network dysfunction and that these alterations in network physiology could contribute to symptoms of disease. Here we review abnormalities in neuronal function that have been identified in both animal models and patients, and highlight ways in which these changes in neuronal activity may contribute to disease symptoms. We then review the literature supporting an emerging role for abnormalities in neuronal activity as a driver of neurodegeneration. Finally, we identify common themes that emerge from studies of neuronal dysfunction in polyglutamine disease.
Collapse
Affiliation(s)
- Ravi Chopra
- Department of Neurology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200 USA
| | - Vikram G. Shakkottai
- Department of Neurology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200 USA
| |
Collapse
|
93
|
Yoon BE, Woo J, Chun YE, Chun H, Jo S, Bae JY, An H, Min JO, Oh SJ, Han KS, Kim HY, Kim T, Kim YS, Bae YC, Lee CJ. Glial GABA, synthesized by monoamine oxidase B, mediates tonic inhibition. J Physiol 2014; 592:4951-68. [PMID: 25239459 DOI: 10.1113/jphysiol.2014.278754] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
GABA is the major inhibitory transmitter in the brain and is released not only from a subset of neurons but also from glia. Although neuronal GABA is well known to be synthesized by glutamic acid decarboxylase (GAD), the source of glial GABA is unknown. After estimating the concentration of GABA in Bergmann glia to be around 5-10 mM by immunogold electron microscopy, we demonstrate that GABA production in glia requires MAOB, a key enzyme in the putrescine degradation pathway. In cultured cerebellar glia, both Ca(2+)-induced and tonic GABA release are significantly reduced by both gene silencing of MAOB and the MAOB inhibitor selegiline. In the cerebellum and striatum of adult mice, general gene silencing, knock out of MAOB or selegiline treatment resulted in elimination of tonic GABA currents recorded from granule neurons and medium spiny neurons. Glial-specific rescue of MAOB resulted in complete rescue of tonic GABA currents. Our results identify MAOB as a key synthesizing enzyme of glial GABA, which is released via bestrophin 1 (Best1) channel to mediate tonic inhibition in the brain.
Collapse
Affiliation(s)
- Bo-Eun Yoon
- WCI Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul, 136-791, Korea Center for Neural Science, Korea Institute of Science and Technology (KIST), Seoul, 136-791, Korea Neuroscience Program, University of Science and Technology (UST), Daejeon, 305-350, Korea Department of Nanobiomedical Science, Dankook University, Chungnam, 330-714, Korea
| | - Junsung Woo
- WCI Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul, 136-791, Korea Center for Neural Science, Korea Institute of Science and Technology (KIST), Seoul, 136-791, Korea Neuroscience Program, University of Science and Technology (UST), Daejeon, 305-350, Korea
| | - Ye-Eun Chun
- WCI Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul, 136-791, Korea Center for Neural Science, Korea Institute of Science and Technology (KIST), Seoul, 136-791, Korea Neuroscience Program, University of Science and Technology (UST), Daejeon, 305-350, Korea
| | - Heejung Chun
- WCI Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul, 136-791, Korea Center for Neural Science, Korea Institute of Science and Technology (KIST), Seoul, 136-791, Korea
| | - Seonmi Jo
- WCI Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul, 136-791, Korea Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Korea
| | - Jin Young Bae
- Department of Oral Anatomy and Neurobiology, BK21, School of Dentistry, Kyungpook National University, Daegu, 700-412, Republic of Korea
| | - Heeyoung An
- WCI Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul, 136-791, Korea Center for Neural Science, Korea Institute of Science and Technology (KIST), Seoul, 136-791, Korea KU-KIST School of Converging Science and Technology, Korea University, Seoul, 136-701, Korea
| | - Joo Ok Min
- Department of Nanobiomedical Science, Dankook University, Chungnam, 330-714, Korea
| | - Soo-Jin Oh
- WCI Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul, 136-791, Korea Center for Neural Science, Korea Institute of Science and Technology (KIST), Seoul, 136-791, Korea
| | - Kyung-Seok Han
- WCI Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul, 136-791, Korea Center for Neural Science, Korea Institute of Science and Technology (KIST), Seoul, 136-791, Korea Neuroscience Program, University of Science and Technology (UST), Daejeon, 305-350, Korea
| | - Hye Yun Kim
- WCI Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul, 136-791, Korea
| | - Taekeun Kim
- WCI Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul, 136-791, Korea
| | - Young Soo Kim
- WCI Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul, 136-791, Korea
| | - Yong Chul Bae
- Department of Oral Anatomy and Neurobiology, BK21, School of Dentistry, Kyungpook National University, Daegu, 700-412, Republic of Korea
| | - C Justin Lee
- WCI Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul, 136-791, Korea Center for Neural Science, Korea Institute of Science and Technology (KIST), Seoul, 136-791, Korea Neuroscience Program, University of Science and Technology (UST), Daejeon, 305-350, Korea
| |
Collapse
|
94
|
Naydenov AV, Sepers MD, Swinney K, Raymond LA, Palmiter RD, Stella N. Genetic rescue of CB1 receptors on medium spiny neurons prevents loss of excitatory striatal synapses but not motor impairment in HD mice. Neurobiol Dis 2014; 71:140-50. [PMID: 25134728 DOI: 10.1016/j.nbd.2014.08.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/01/2014] [Accepted: 08/06/2014] [Indexed: 11/30/2022] Open
Abstract
Huntington's disease (HD) is caused by an expanded polyglutamine repeat in huntingtin protein that disrupts synaptic function in specific neuronal populations and results in characteristic motor, cognitive and affective deficits. Histopathological hallmarks observed in both HD patients and genetic mouse models include the reduced expression of synaptic proteins, reduced medium spiny neuron (MSN) dendritic spine density and decreased frequency of spontaneous excitatory post-synaptic currents (sEPSCs). Early down-regulation of cannabinoid CB1 receptor expression on MSN (CB1(MSN)) is thought to participate in HD pathogenesis. Here we present a cell-specific genetic rescue of CB1(MSN) in R6/2 mice and report that treatment prevents the reduction of excitatory synaptic markers in the striatum (synaptophysin, vGLUT1 and vGLUT2), of dendritic spine density on MSNs and of MSN sEPSCs, but does not prevent motor impairment. We conclude that loss of excitatory striatal synapses in HD mice is controlled by CB1(MSN) and can be uncoupled from the motor phenotype.
Collapse
Affiliation(s)
- Alipi V Naydenov
- Medical Scientist Training Program, University of Washington, Seattle, WA USA; Graduate Program in Neurobiology and Behavior, University of Washington, Seattle, WA USA
| | - Marja D Sepers
- Department of Psychiatry, Brain Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Katie Swinney
- Department of Pharmacology, University of Washington, Seattle, WA USA
| | - Lynn A Raymond
- Department of Psychiatry, Brain Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Richard D Palmiter
- Howard Hughes Medical Institute, Department of Biochemistry, University of Washington, Seattle, WA USA
| | - Nephi Stella
- Department of Pharmacology, University of Washington, Seattle, WA USA.
| |
Collapse
|
95
|
Sepers MD, Raymond LA. Mechanisms of synaptic dysfunction and excitotoxicity in Huntington's disease. Drug Discov Today 2014; 19:990-6. [DOI: 10.1016/j.drudis.2014.02.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 02/24/2014] [Indexed: 12/19/2022]
|
96
|
Tritsch NX, Oh WJ, Gu C, Sabatini BL. Midbrain dopamine neurons sustain inhibitory transmission using plasma membrane uptake of GABA, not synthesis. eLife 2014; 3:e01936. [PMID: 24843012 PMCID: PMC4001323 DOI: 10.7554/elife.01936] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Synaptic transmission between midbrain dopamine neurons and target neurons in the striatum is essential for the selection and reinforcement of movements. Recent evidence indicates that nigrostriatal dopamine neurons inhibit striatal projection neurons by releasing a neurotransmitter that activates GABAA receptors. Here, we demonstrate that this phenomenon extends to mesolimbic afferents, and confirm that the released neurotransmitter is GABA. However, the GABA synthetic enzymes GAD65 and GAD67 are not detected in midbrain dopamine neurons. Instead, these cells express the membrane GABA transporters mGAT1 (Slc6a1) and mGAT4 (Slc6a11) and inhibition of these transporters prevents GABA co-release. These findings therefore indicate that GABA co-release is a general feature of midbrain dopaminergic neurons that relies on GABA uptake from the extracellular milieu as opposed to de novo synthesis. This atypical mechanism may confer dopaminergic neurons the flexibility to differentially control GABAergic transmission in a target-dependent manner across their extensive axonal arbors. DOI:http://dx.doi.org/10.7554/eLife.01936.001 The electrical signals that are fired along neurons cannot be transmitted across the small gaps, called synapses that are found between neurons. Instead, the neuron sending the signal releases chemicals called neurotransmitters into the synapse. These neurotransmitters bind to receptor proteins on the surface of the second neuron and control how it fires. A neurotransmitter called dopamine plays a key role in the circuits of the brain that control how we learn certain tasks involving movement. In particular, two populations of neurons from the midbrain that release dopamine target the striatum, an area of the brain that is responsible for motor control. These neurons also release other neurotransmitters, but the identity of these other chemicals is not known, and the details of the interaction between the neurons and the striatum are poorly understood. Previous research showed that some of the midbrain neurons activate receptors that normally respond to a neurotransmitter called gamma-aminobutyric acid (GABA). However, several different chemicals can trigger this receptor. Using a range of techniques, Tritsch et al. now confirm that dopamine neurons release GABA alongside dopamine, and that this applies to both sets of the dopamine-producing neurons that feed into the striatum. Some neurons can manufacture GABA from amino acids found in their internal fluid. However, Tritsch et al. could not detect the enzymes needed for this reaction in dopamine-producing neurons. Instead, these neurons contain proteins that can transport GABA across the cell membrane, which suggests that the neurons collect GABA from the extracellular fluid that surrounds them. DOI:http://dx.doi.org/10.7554/eLife.01936.002
Collapse
Affiliation(s)
- Nicolas X Tritsch
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Won-Jong Oh
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Chenghua Gu
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Bernardo L Sabatini
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| |
Collapse
|
97
|
Simmons DA, Belichenko NP, Yang T, Condon C, Monbureau M, Shamloo M, Jing D, Massa SM, Longo FM. A small molecule TrkB ligand reduces motor impairment and neuropathology in R6/2 and BACHD mouse models of Huntington's disease. J Neurosci 2013; 33:18712-27. [PMID: 24285878 PMCID: PMC3841443 DOI: 10.1523/jneurosci.1310-13.2013] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 09/09/2013] [Accepted: 10/12/2013] [Indexed: 02/08/2023] Open
Abstract
Loss of neurotrophic support in the striatum caused by reduced brain-derived neurotrophic factor (BDNF) levels plays a critical role in Huntington's disease (HD) pathogenesis. BDNF acts via TrkB and p75 neurotrophin receptors (NTR), and restoring its signaling is a prime target for HD therapeutics. Here we sought to determine whether a small molecule ligand, LM22A-4, specific for TrkB and without effects on p75(NTR), could alleviate HD-related pathology in R6/2 and BACHD mouse models of HD. LM22A-4 was administered to R6/2 mice once daily (5-6 d/week) from 4 to 11 weeks of age via intraperitoneal and intranasal routes simultaneously to maximize brain levels. The ligand reached levels in the R6/2 forebrain greater than the maximal neuroprotective dose in vitro and corrected deficits in activation of striatal TrkB and its key signaling intermediates AKT, PLCγ, and CREB. Ligand-induced TrkB activation was associated with a reduction in HD pathologies in the striatum including decreased DARPP-32 levels, neurite degeneration of parvalbumin-containing interneurons, inflammation, and intranuclear huntingtin aggregates. Aggregates were also reduced in the cortex. Notably, LM22A-4 prevented deficits in dendritic spine density of medium spiny neurons. Moreover, R6/2 mice given LM22A-4 demonstrated improved downward climbing and grip strength compared with those given vehicle, though these groups had comparable rotarod performances and survival times. In BACHD mice, long-term LM22A-4 treatment (6 months) produced similar ameliorative effects. These results support the hypothesis that targeted activation of TrkB inhibits HD-related degenerative mechanisms, including spine loss, and may provide a disease mechanism-directed therapy for HD and other neurodegenerative conditions.
Collapse
Affiliation(s)
| | | | - Tao Yang
- Department of Neurology and Neurological Sciences and
| | | | - Marie Monbureau
- Behavioral and Functional Neuroscience Laboratory, Institute for Neuro-Innovation and Translational Neurosciences, Stanford University School of Medicine, Stanford, California 94305
| | - Mehrdad Shamloo
- Behavioral and Functional Neuroscience Laboratory, Institute for Neuro-Innovation and Translational Neurosciences, Stanford University School of Medicine, Stanford, California 94305
| | - Deqiang Jing
- Department of Psychiatry, Weill Cornell Medical College, New York, New York 10021, and
| | - Stephen M. Massa
- Department of Neurology and Laboratory for Computational Neurochemistry and Drug Discovery, Department of Veterans Affairs Medical Center and Department of Neurology, University of California, San Francisco, San Francisco, California 94121
| | | |
Collapse
|
98
|
Wójtowicz AM, Dvorzhak A, Semtner M, Grantyn R. Reduced tonic inhibition in striatal output neurons from Huntington mice due to loss of astrocytic GABA release through GAT-3. Front Neural Circuits 2013; 7:188. [PMID: 24324407 PMCID: PMC3840359 DOI: 10.3389/fncir.2013.00188] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 11/04/2013] [Indexed: 01/17/2023] Open
Abstract
The extracellular concentration of the two main neurotransmitters glutamate and GABA is low but not negligible which enables a number of tonic actions. The effects of ambient GABA vary in a region-, cell-type, and age-dependent manner and can serve as indicators of disease-related alterations. Here we explored the tonic inhibitory actions of GABA in Huntington's disease (HD). HD is a devastating neurodegenerative disorder caused by a mutation in the huntingtin gene. Whole cell patch clamp recordings from striatal output neurons (SONs) in slices from adult wild type mice and two mouse models of HD (Z_Q175_KI homozygotes or R6/2 heterozygotes) revealed an HD-related reduction of the GABA(A) receptor-mediated tonic chloride current (ITonic(GABA)) along with signs of reduced GABA(B) receptor-mediated presynaptic depression of synaptic GABA release. About half of ITonic(GABA) depended on tetrodotoxin-sensitive synaptic GABA release, but the remaining current was still lower in HD. Both in WT and HD, ITonic(GABA) was more prominent during the first 4 h after preparing the slices, when astrocytes but not neurons exhibited a transient depolarization. All further tests were performed within 1–4 h in vitro. Experiments with SNAP5114, a blocker of the astrocytic GABA transporter GAT-3, suggest that in WT but not HD GAT-3 operated in the releasing mode. Application of a transportable substrate for glutamate transporters (D-aspartate 0.1–1 mM) restored the non-synaptic GABA release in slices from HD mice. ITonic(GABA) was also rescued by applying the hyperagonist gaboxadol (0.33 μM). The results lead to the hypothesis that lesion-induced astrocyte depolarization facilitates non-synaptic release of GABA through GAT-3. However, the capacity of depolarized astrocytes to provide GABA for tonic inhibition is strongly reduced in HD.
Collapse
Affiliation(s)
- Anna M Wójtowicz
- Cluster of Excellence NeuroCure, University Medicine Charité Berlin, Germany ; Department of Experimental Neurology, University Medicine Charité Berlin, Germany
| | | | | | | |
Collapse
|
99
|
Dougherty SE, Hollimon JJ, McMeekin LJ, Bohannon AS, West AB, Lesort M, Hablitz JJ, Cowell RM. Hyperactivity and cortical disinhibition in mice with restricted expression of mutant huntingtin to parvalbumin-positive cells. Neurobiol Dis 2013; 62:160-71. [PMID: 24121117 DOI: 10.1016/j.nbd.2013.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 09/20/2013] [Accepted: 10/02/2013] [Indexed: 11/18/2022] Open
Abstract
Recent evidence suggests that interneurons are involved in the pathophysiology of Huntington Disease (HD). Abnormalities in the function of interneurons expressing the calcium buffer parvalbumin (PV) have been observed in multiple mouse models of HD, although it is not clear how PV-positive interneuron dysfunction contributes to behavioral and synaptic deficits. Here, we use the cre-lox system to drive expression of mutant huntingtin (mthtt) in parvalbumin (PV)-positive neurons and find that mutant mice exhibit diffuse mthtt immunoreactivity in PV-rich areas at 10months of age and mthtt aggregates in PV-positive processes at 24months of age. At midlife, mutant mice are hyperactive and display impaired GABA release in the motor cortex, characterized by reduced miniature inhibitory events and severely blunted responses to gamma frequency stimulation, without a loss of PV-positive interneurons. In contrast, 24month-old mutant mice show normalized behavior and responses to gamma frequency stimulation, possibly due to compensatory changes in pyramidal neurons or the formation of inclusions with age. These data indicate that mthtt expression in PV-positive neurons is sufficient to drive a hyperactive phenotype and suggest that mthtt-mediated dysfunction in PV-positive neuronal populations could be a key factor in the hyperkinetic behavior observed in HD. Further clarification of the roles for specific PV-positive populations in this phenotype is warranted to definitively identify cellular targets for intervention.
Collapse
Affiliation(s)
- S E Dougherty
- Neuroscience Graduate Program, University of Alabama at Birmingham, 35294, USA; Department of Psychiatry & Behavioral Neurobiology, University of Alabama at Birmingham, 35294, USA
| | - J J Hollimon
- Department of Psychiatry & Behavioral Neurobiology, University of Alabama at Birmingham, 35294, USA
| | - L J McMeekin
- Department of Psychiatry & Behavioral Neurobiology, University of Alabama at Birmingham, 35294, USA
| | - A S Bohannon
- Department of Psychiatry & Behavioral Neurobiology, University of Alabama at Birmingham, 35294, USA
| | - A B West
- Department of Neurology, University of Alabama at Birmingham, 35294, USA
| | - M Lesort
- Department of Psychiatry & Behavioral Neurobiology, University of Alabama at Birmingham, 35294, USA
| | - J J Hablitz
- Department of Neurobiology, University of Alabama at Birmingham, 35294, USA
| | - R M Cowell
- Department of Psychiatry & Behavioral Neurobiology, University of Alabama at Birmingham, 35294, USA.
| |
Collapse
|
100
|
Mrzljak L, Munoz-Sanjuan I. Therapeutic Strategies for Huntington's Disease. Curr Top Behav Neurosci 2013; 22:161-201. [PMID: 24277342 DOI: 10.1007/7854_2013_250] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Huntington's disease (HD) is a devastating autosomal dominant neurodegenerative disease, caused by expansion of the CAG repeat in the huntingtin (HTT) gene and characterized pathologically by the loss of pyramidal neurons in several cortical areas, of striatal medium spiny neurons, and of hypothalamic neurons. Clinically, a distinguishing feature of the disease is uncontrolled involuntary movements (chorea, dyskensias) accompanied by progressive cognitive, motor, and psychiatric impairment. This review focuses on the current state of therapeutic development for the treatment of HD, including the preclinical and clinical development of small molecules and molecular therapies.
Collapse
|