51
|
Role of Cyclooxygenase Inhibitors in Diminution of Dissimilar Stress-induced Depressive Behavior and Memory Impairment in Rats. Neuroscience 2018; 370:121-129. [DOI: 10.1016/j.neuroscience.2017.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 08/04/2017] [Accepted: 11/06/2017] [Indexed: 01/14/2023]
|
52
|
Oshima Y, Watanabe T, Endo S, Hata S, Watanabe T, Osada K, Takenaka A. Effects of eicosapentaenoic acid and docosahexaenoic acid on anxiety-like behavior in socially isolated rats. Biosci Biotechnol Biochem 2017; 82:716-723. [PMID: 29191085 DOI: 10.1080/09168451.2017.1403888] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effects of fish oil for improving mental health have been reported. The present study was undertaken to compare the effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on anxiety-like behavior using a rat model. Experimental diets enriched in EPA or DHA as glycerides were prepared. Rats were exposed to social isolation stress and fed the experimental diet for 14 days. The results of behavioral tests revealed that rats fed the EPA-enriched diet exhibited less anxiety-like behavior than rats fed the control or DHA-enriched diets. Furthermore, EPA suppressed anxiety-like behavior only in socially isolated rats. The increase in EPA contents in the brain phospholipid fraction by feeding EPA-enriched diet was more significant than that of DHA by feeding DHA-enriched diet. These results suggest that dietary EPA is more anxiolytic than DHA in rats exposed to social isolation stress and is effective in increasing EPA content in brain membranes.
Collapse
Affiliation(s)
- Yasuyo Oshima
- a Department of Agricultural Chemistry, School of Agriculture , Meiji University , Kawasaki , Japan
| | - Tasuku Watanabe
- a Department of Agricultural Chemistry, School of Agriculture , Meiji University , Kawasaki , Japan
| | - Shun Endo
- a Department of Agricultural Chemistry, School of Agriculture , Meiji University , Kawasaki , Japan
| | | | | | - Kyoichi Osada
- a Department of Agricultural Chemistry, School of Agriculture , Meiji University , Kawasaki , Japan
| | - Asako Takenaka
- a Department of Agricultural Chemistry, School of Agriculture , Meiji University , Kawasaki , Japan
| |
Collapse
|
53
|
Time-dependent role of prefrontal cortex and hippocampus on cognitive improvement by aripiprazole in olfactory bulbectomized mice. Eur Neuropsychopharmacol 2017; 27:1000-1010. [PMID: 28822602 DOI: 10.1016/j.euroneuro.2017.08.071] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 07/09/2017] [Accepted: 08/07/2017] [Indexed: 12/20/2022]
Abstract
Dopamine (DA) modulates cognitive functions in the prefrontal cortex (PFC) and hippocampus. Olfactory bulbectomy (OBX) in mice induces cognitive dysfunctions. Recently, we reported that aripiprazole (ARI) normalizes the behavioral hyper-responsivity to DA agonists in OBX mice. However, it remains unclear whether ARI affects OBX-induced cognitive dysfunctions. To address this question we evaluated ARI-treated and untreated OBX mice in a passive avoidance test. Then, we investigated the effects of ARI on cell proliferation in the hippocampal dentate gyrus by immunohistochemistry, and on c-fos levels in the PFC and hippocampus, as well as nerve growth factor (NGF) levels in the hippocampus by western blotting. On the 14th day after surgery OBX mice showed an alteration in passive avoidance and decreases in both cell proliferation and levels of p-ERK, p-CREB and NGF in the hippocampus. The cognitive dysfunctions in OBX mice improved 30min to 24h after the administration of ARI (0.01mg/kg). C-fos levels in the PFC but not in the hippocampus was increased 30min after the administration (early response). This early response was inhibited by the selective D1 receptor antagonist SCH23390. Cell proliferation and NGF levels in the hippocampus increased 24h after ARI administration (late response), and these effects were also inhibited by SCH23390. The MEK1/2 inhibitor U0126 prevented ARI from improving the behavioral impairment as well as enhancing NGF levels in OBX mice. These findings revealed the potential of ARI to improve cognitive dysfunctions via D1 receptors with the PFC and hippocampus being affected sequentially.
Collapse
|
54
|
Liu CS, Adibfar A, Herrmann N, Gallagher D, Lanctôt KL. Evidence for Inflammation-Associated Depression. Curr Top Behav Neurosci 2017; 31:3-30. [PMID: 27221622 DOI: 10.1007/7854_2016_2] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This chapter explores the evidence supporting inflammation-associated depression. Data to date suggest a bidirectional relationship between inflammation and depression wherein one process can drive the other. A wealth of animal and clinical studies have demonstrated an association between concentrations of pro-inflammatory cytokines - specifically interleukin (IL)-1β, IL-6, and tumor necrosis factor-α - and depressive symptoms. There is also evidence that this pro-inflammatory state is accompanied by aberrant inflammation-related processes including platelet activation factor hyperactivity, oxidative and nitrosative stress, and damage to mitochondria. These complex and interrelated mechanisms can collectively contribute to negative neurobiological outcomes that may, in part, underlie the etiopathology of depression. Mounting evidence has shown a concomitant reduction in both depressive symptoms and pro-inflammatory cytokine concentrations following treatment with pharmacological anti-inflammatory interventions. Taken together, the reviewed preclinical and clinical findings may suggest the existence of a distinct inflammatory subtype of depression in which these patients exhibit unique biochemical and clinical features and may potentially experience improved clinical outcomes with inflammation-targeted pharmacotherapy.
Collapse
Affiliation(s)
- Celina S Liu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program Sunnybrook Research Institute, Toronto, ON, Canada
| | - Alexander Adibfar
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program Sunnybrook Research Institute, Toronto, ON, Canada
| | - Nathan Herrmann
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Damien Gallagher
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Krista L Lanctôt
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada. .,Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program Sunnybrook Research Institute, Toronto, ON, Canada. .,Department of Psychiatry, University of Toronto, Toronto, ON, Canada. .,Sunnybrook Health Sciences Centre, 2075 Bayview Ave., Room FG 08, Toronto, ON, Canada, M4N 3M5.
| |
Collapse
|
55
|
Hallahan B, Ryan T, Hibbeln JR, Murray IT, Glynn S, Ramsden CE, SanGiovanni JP, Davis JM. Efficacy of omega-3 highly unsaturated fatty acids in the treatment of depression. Br J Psychiatry 2016; 209:192-201. [PMID: 27103682 PMCID: PMC9406129 DOI: 10.1192/bjp.bp.114.160242] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 07/05/2015] [Indexed: 01/21/2023]
Abstract
BACKGROUND Trials evaluating efficacy of omega-3 highly unsaturated fatty acids (HUFAs) in major depressive disorder report discrepant findings. AIMS To establish the reasons underlying inconsistent findings among randomised controlled trials (RCTs) of omega-3 HUFAs for depression and to assess implications for further trials. METHOD A systematic bibliographic search of double-blind RCTs was conducted between January 1980 and July 2014 and an exploratory hypothesis-testing meta-analysis performed in 35 RCTs including 6665 participants receiving omega-3 HUFAs and 4373 participants receiving placebo. RESULTS Among participants with diagnosed depression, eicosapentaenoic acid (EPA)-predominant formulations (>50% EPA) demonstrated clinical benefits compared with placebo (Hedge's G = 0.61, P<0.001) whereas docosahexaenoic acid (DHA)-predominant formulations (>50% DHA) did not. EPA failed to prevent depressive symptoms among populations not diagnosed for depression. CONCLUSIONS Further RCTs should be conducted on study populations with diagnosed or clinically significant depression of adequate duration using EPA-predominant omega-3 HUFA formulations.
Collapse
Affiliation(s)
- Brian Hallahan
- Brian Hallahan, MRCPsych, MD, Department of Psychiatry, Clinical Science Institute, National University of Ireland Galway, Galway, Ireland; Timothy Ryan, BA, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA; Joseph R. Hibbeln, MD, Section on Nutritional Neurosciences, Laboratory of Membrane Biochemistry & Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, USA; Ivan T. Murray, MRCPsych, Department of Psychiatry, University Hospital Galway, Galway, Ireland; Shauna Glynn, MRCPsych, Child and Adolescent Mental Health Services, Castlebar, Mayo, Ireland; Christopher E. Ramsden, MD, John Paul SanGiovanni, ScD, Section on Nutritional Neurosciences, Laboratory of Membrane Biochemistry & Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, USA; John M. Davis, MD, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Berger G. Comments on Bozzatello et al. Supplementation with Omega-3 Fatty Acids in Psychiatric Disorders: A Review of Literature Data. J. Clin. Med. 2016, 5, 67. J Clin Med 2016; 5:jcm5080069. [PMID: 27527228 PMCID: PMC4999789 DOI: 10.3390/jcm5080069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 07/28/2016] [Indexed: 12/31/2022] Open
Affiliation(s)
- Gregor Berger
- Department of Child and Adolescent Psychiatry and Psychotherapy, Outpatient Clinics and Specialized Care, Emergency Services, University Hospital of Psychiatry Zurich, Neumünsterallee 3, P.O. Box 1482, 8032 Zurich, Switzerland.
| |
Collapse
|
57
|
Holubova K, Kleteckova L, Skurlova M, Ricny J, Stuchlik A, Vales K. Rapamycin blocks the antidepressant effect of ketamine in task-dependent manner. Psychopharmacology (Berl) 2016; 233:2077-2097. [PMID: 27004790 DOI: 10.1007/s00213-016-4256-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/21/2016] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The aim of our study was to test whether ketamine produces an antidepressant effect in animal model of olfactory bulbectomy and assess the role of mammalian target of rapamycin (mTOR) pathway in ketamine's antidepressant effect. METHODS Bulbectomized (OBX) rats and sham controls were assigned to four subgroups according to the treatment they received (ketamine, saline, ketamine + rapamycin, and saline + rapamycin). The animals were subjected to open field (OF), elevated plus maze (EPM), passive avoidance (PA), Morris water maze (MWM), and Carousel maze (CM) tests. Blood samples were collected before and after drug administration for analysis of phosphorylated mTOR level. After behavioral testing, brains were removed for evaluation of brain-derived neurotrophic factor (BDNF) in prefrontal cortex (PFC) and hippocampus. RESULTS Ketamine normalized hyperactivity of OBX animals in EPM and increased the time spent in open arms. Rapamycin pretreatment resulted in elimination of ketamine effect in EPM test. In CM test, ketamine + rapamycin administration led to cognitive impairment not observed in saline-, ketamine-, or saline + rapamycin-treated OBX rats. Prefrontal BDNF content was significantly decreased, and level of mTOR was significantly elevated in OBX groups. CONCLUSIONS OBX animals significantly differed from sham controls in most of the tests used. Treatment had more profound effect on OBX phenotype than controls. Pretreatment with rapamycin eliminated the anxiolytic and antidepressant effects of ketamine in task-dependent manner. The results indicate that ketamine + rapamycin application resulted in impaired stress responses manifested by cognitive deficits in active place avoidance (CM) test. Intensity of stressor (mild vs. severe) used in the behavioral tests had opposite effect on controls and on OBX animals.
Collapse
Affiliation(s)
- Kristina Holubova
- The Institute of Physiology, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 14220, Prague, Czech Republic.,National Institute of Mental Health, Topolova 748, 250 67 Klecany, Prague East, Czech Republic
| | - Lenka Kleteckova
- The Institute of Physiology, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 14220, Prague, Czech Republic.,National Institute of Mental Health, Topolova 748, 250 67 Klecany, Prague East, Czech Republic
| | - Martina Skurlova
- The Institute of Physiology, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 14220, Prague, Czech Republic.,National Institute of Mental Health, Topolova 748, 250 67 Klecany, Prague East, Czech Republic
| | - Jan Ricny
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Prague East, Czech Republic
| | - Ales Stuchlik
- The Institute of Physiology, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 14220, Prague, Czech Republic
| | - Karel Vales
- The Institute of Physiology, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 14220, Prague, Czech Republic. .,National Institute of Mental Health, Topolova 748, 250 67 Klecany, Prague East, Czech Republic.
| |
Collapse
|
58
|
Song C, Shieh CH, Wu YS, Kalueff A, Gaikwad S, Su KP. The role of omega-3 polyunsaturated fatty acids eicosapentaenoic and docosahexaenoic acids in the treatment of major depression and Alzheimer's disease: Acting separately or synergistically? Prog Lipid Res 2016; 62:41-54. [DOI: 10.1016/j.plipres.2015.12.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 12/18/2015] [Indexed: 12/22/2022]
|
59
|
Donma MM, Donma O. Promising link between selenium and peroxisome proliferator activated receptor gamma in the treatment protocols of obesity as well as depression. Med Hypotheses 2016; 89:79-83. [PMID: 26968915 DOI: 10.1016/j.mehy.2016.02.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/31/2016] [Accepted: 02/07/2016] [Indexed: 12/13/2022]
Abstract
Considerable interest has been given to the significance of peroxisome proliferator activated receptors (PPARs) in macronutrient metabolism, however, there is not sufficient data concerning the interactions between PPARs and micronutrients. Investigations performed on PPARγ and one of the essential micronutrients selenium (Se) have shown that both parameters may lead to alterations in obesity-related or mood disorders. Therefore, it is plausible to consider PPARγ and Se together as a powerful combination during the treatment of two associated diseases; obesity and depression. PPARγ has been shown to be involved in the antidepressant-like activity. It is also an important parameter to be considered in obesity as the master regulator of adipogenesis. The mechanism of action of PPARγ is initiated by ligand binding which induces a conformational change in the receptor. Se is capable of alleviating inflammatory signaling pathways. Obesity is associated with chronic low-grade inflammation. Depression is also defined as an inflammatory disorder. Inflammatory mediators such as tumor necrosis factor-alpha (TNFα) participate in the progression of depression. They are also obesity-associated parameters. Due to TNFα induced depressive-like behaviors and the positive association between this proinflammatory cytokine and obesity, TNFα-activated signaling pathways and those inhibiting them have recently gained importance as potential targets and therapeutic tools, respectively. More studies are necessary to develop compounds with therapeutic nature against depressive disorders and obesity. PPARγ is an important signaling pathway that occurs at the crossroads of depression and obesity. Se, aside from its anti-inflammatory, anticarcinogenic and antioxidative nature, affects also the way of PPARγ action. Se supplementation or fortification as well as the development of the partial agonists of PPARγ in which lipophilic Se compounds are used as ligand followed by experimental trials and human studies using the newly developed compounds will be promising approaches for future hope during the treatment of these diseases.
Collapse
Affiliation(s)
- M M Donma
- Namik Kemal University, Faculty of Medicine, Tekirdag, Turkey
| | - O Donma
- Istanbul University, Cerrahpasa Medical Faculty, Istanbul, Turkey
| |
Collapse
|
60
|
The impact of chronic stress on the rat brain lipidome. Mol Psychiatry 2016; 21:80-8. [PMID: 25754084 PMCID: PMC4565780 DOI: 10.1038/mp.2015.14] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 11/28/2014] [Accepted: 12/19/2014] [Indexed: 12/11/2022]
Abstract
Chronic stress is a major risk factor for several human disorders that affect modern societies. The brain is a key target of chronic stress. In fact, there is growing evidence indicating that exposure to stress affects learning and memory, decision making and emotional responses, and may even predispose for pathological processes, such as Alzheimer's disease and depression. Lipids are a major constituent of the brain and specifically signaling lipids have been shown to regulate brain function. Here, we used a mass spectrometry-based lipidomic approach to evaluate the impact of a chronic unpredictable stress (CUS) paradigm on the rat brain in a region-specific manner. We found that the prefrontal cortex (PFC) was the area with the highest degree of changes induced by chronic stress. Although the hippocampus presented relevant lipidomic changes, the amygdala and, to a greater extent, the cerebellum presented few lipid changes upon chronic stress exposure. The sphingolipid and phospholipid metabolism were profoundly affected, showing an increase in ceramide (Cer) and a decrease in sphingomyelin (SM) and dihydrosphingomyelin (dhSM) levels, and a decrease in phosphatidylethanolamine (PE) and ether phosphatidylcholine (PCe) and increase in lysophosphatidylethanolamine (LPE) levels, respectively. Furthermore, the fatty-acyl profile of phospholipids and diacylglycerol revealed that chronic stressed rats had higher 38 carbon(38C)-lipid levels in the hippocampus and reduced 36C-lipid levels in the PFC. Finally, lysophosphatidylcholine (LPC) levels in the PFC were found to be correlated with blood corticosterone (CORT) levels. In summary, lipidomic profiling of the effect of chronic stress allowed the identification of dysregulated lipid pathways, revealing putative targets for pharmacological intervention that may potentially be used to modulate stress-induced deficits.
Collapse
|
61
|
Does Diet Matter? The Use of Polyunsaturated Fatty Acids (PUFAs) and Other Dietary Supplements in Inflammation-Associated Depression. Curr Top Behav Neurosci 2016; 31:321-338. [PMID: 27431396 DOI: 10.1007/7854_2016_31] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An increasingly pertinent issue in psychiatry in recent years is that of the limitations of conventional antidepressants, which are not effective in a large number of patients with major depressive disorder (MDD). Coupled with emerging hypotheses about the role of inflammation in depression, it would appear that it is time to look for alternative treatments for these symptoms.This review will examine an emerging area in psychiatry, that of dietary supplements and the diet in general to treat depressive symptoms, and inflammation in depression. In particular, polyunsaturated fatty acids (PUFAs), probiotics and folic acid are three supplements that demonstrate the ability to target inflammation and other underlying systems in depression. While there is a definite need for more research in all these supplements to determine true efficacy, dosage and target populations, they can be used as mono- or adjunctive therapies to good effect, and show superior safety profiles when compared with more traditional alternatives.
Collapse
|
62
|
Targeted alterations in dietary n-3 and n-6 fatty acids improve life functioning and reduce psychological distress among patients with chronic headache: a secondary analysis of a randomized trial. Pain 2015; 156:587-596. [PMID: 25790451 DOI: 10.1097/01.j.pain.0000460348.84965.47] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Omega-3 and omega-6 fatty acids are precursors of bioactive lipid mediators posited to modulate both physical pain and psychological distress. In a randomized trial of 67 subjects with severe headaches, we recently demonstrated that targeted dietary manipulation-increasing omega-3 fatty acids with concurrent reduction in omega-6 linoleic acid (the H3-L6 intervention)-produced major reductions in headache compared with an omega-6 lowering (L6) intervention. Because chronic pain is often accompanied by psychological distress and impaired health-related quality of life (HRQOL), we used data from this trial to examine whether the H3-L6 intervention favorably impacted these domains. Additionally, we examined the effect of the interventions on the number of cases with substantial physical or mental impairments as defined by cutoff values in the Brief Symptom Inventory (BSI-18), Medical Outcomes Study Short Forms 12 (SF-12), Headache Impact Test (HIT-6), and the number of headache days per month. In the intention-to-treat analysis, participants in the H3-L6 group experienced statistically significant reductions in psychological distress (BSI-18 mean difference: -6.56; 95% confidence interval [CI]: -11.43 to -1.69) and improvements in SF-12 mental (mean difference: 6.01; 95% CI: 0.57 to 11.45) and physical (mean difference: 6.65; 95% CI: 2.14 to 11.16) health summary scores. At 12 weeks, the proportion of subjects experiencing substantial impairment according to cutoff values in the BSI-18, SF-12 physical, HIT-6, and headache days per month was significantly lower in the H3-L6 group. Dietary manipulation of n-3 and n-6 fatty acids, previously shown to produce major improvements in headache, was found to also reduce psychological distress and improve HRQOL and function.
Collapse
|
63
|
Munoz-Garrido P, Marin JJG, Perugorria MJ, Urribarri AD, Erice O, Sáez E, Úriz M, Sarvide S, Portu A, Concepcion AR, Romero MR, Monte MJ, Santos-Laso Á, Hijona E, Jimenez-Agüero R, Marzioni M, Beuers U, Masyuk TV, LaRusso NF, Prieto J, Bujanda L, Drenth JPH, Banales JM. Ursodeoxycholic acid inhibits hepatic cystogenesis in experimental models of polycystic liver disease. J Hepatol 2015; 63:952-961. [PMID: 26044126 PMCID: PMC4575914 DOI: 10.1016/j.jhep.2015.05.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Polycystic liver diseases (PLDs) are genetic disorders characterized by progressive biliary cystogenesis. Current therapies show short-term and/or modest beneficial effects. Cystic cholangiocytes hyperproliferate as a consequence of diminished intracellular calcium levels ([Ca(2+)]i). Here, the therapeutic value of ursodeoxycholic acid (UDCA) was investigated. METHODS Effect of UDCA was examined in vitro and in polycystic (PCK) rats. Hepatic cystogenesis and fibrosis, and the bile acid (BA) content were evaluated from the liver, bile, serum, and kidneys by HPLC-MS/MS. RESULTS Chronic treatment of PCK rats with UDCA inhibits hepatic cystogenesis and fibrosis, and improves their motor behaviour. As compared to wild-type animals, PCK rats show increased BA concentration ([BA]) in liver, similar hepatic Cyp7a1 mRNA levels, and diminished [BA] in bile. Likewise, [BA] is increased in cystic fluid of PLD patients compared to their matched serum levels. In PCK rats, UDCA decreases the intrahepatic accumulation of cytotoxic BA, normalizes their diminished [BA] in bile, increases the BA secretion in bile and diminishes the increased [BA] in kidneys. In vitro, UDCA inhibits the hyperproliferation of polycystic human cholangiocytes via a PI3K/AKT/MEK/ERK1/2-dependent mechanism without affecting apoptosis. Finally, the presence of glycodeoxycholic acid promotes the proliferation of polycystic human cholangiocytes, which is inhibited by both UDCA and tauro-UDCA. CONCLUSIONS UDCA was able to halt the liver disease of a rat model of PLD through inhibiting cystic cholangiocyte hyperproliferation and decreasing the levels of cytotoxic BA species in the liver, which suggests the use of UDCA as a potential therapeutic tool for PLD patients.
Collapse
Affiliation(s)
- Patricia Munoz-Garrido
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastián, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Spain
| | - José J G Marin
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Spain; Experimental Hepatology and Drug Targeting (HEVEFARM), Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - María J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastián, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Spain; IKERBASQUE, Basque Foundation for Science, Spain
| | - Aura D Urribarri
- Division of Gene Therapy and Hepatology, CIMA of the University of Navarra, Pamplona, Spain
| | - Oihane Erice
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastián, Spain
| | - Elena Sáez
- Division of Gene Therapy and Hepatology, CIMA of the University of Navarra, Pamplona, Spain
| | - Miriam Úriz
- Division of Gene Therapy and Hepatology, CIMA of the University of Navarra, Pamplona, Spain
| | - Sarai Sarvide
- Division of Gene Therapy and Hepatology, CIMA of the University of Navarra, Pamplona, Spain
| | - Ainhoa Portu
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Spain; Division of Gene Therapy and Hepatology, CIMA of the University of Navarra, Pamplona, Spain
| | - Axel R Concepcion
- Division of Gene Therapy and Hepatology, CIMA of the University of Navarra, Pamplona, Spain
| | - Marta R Romero
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Spain; Experimental Hepatology and Drug Targeting (HEVEFARM), Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - María J Monte
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Spain; Experimental Hepatology and Drug Targeting (HEVEFARM), Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Álvaro Santos-Laso
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastián, Spain
| | - Elizabeth Hijona
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastián, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Spain
| | - Raúl Jimenez-Agüero
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastián, Spain
| | - Marco Marzioni
- Department of Gastroenterology, "Università Politecnica delle Marche", Ancona, Italy
| | - Ulrich Beuers
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Tatyana V Masyuk
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Jesús Prieto
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Spain; Division of Gene Therapy and Hepatology, CIMA of the University of Navarra, Pamplona, Spain
| | - Luis Bujanda
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastián, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Spain
| | - Joost P H Drenth
- Department of Gastroenterology & Hepatology, Radboud University Nijmegen Medical Center, The Netherlands
| | - Jesús M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastián, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Spain; IKERBASQUE, Basque Foundation for Science, Spain; Division of Gene Therapy and Hepatology, CIMA of the University of Navarra, Pamplona, Spain.
| |
Collapse
|
64
|
Behavior and the cholinergic parameters in olfactory bulbectomized female rodents: Difference between rats and mice. Behav Brain Res 2015; 297:5-14. [PMID: 26431763 DOI: 10.1016/j.bbr.2015.09.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 12/20/2022]
Abstract
Olfactory bulbectomy (OBX) in rodents induces a wide spectrum of functional disturbances, including behavioral, neurochemical, and neuromorphological alterations. We have examined the effects of OBX on behavior and the parameters of the cholinergic system in female rats and mice. In rats, OBX resulted in the appearance of some depressive-like behavioral marks, such as the decreased sucrose consumption, hyperactivity, impaired short-term memory and anxiety-like behavioral features, such as shortened presence in the center of the open field arena or open arms of the elevated plus-maze and an enhancement of avoidance behavior. These behavioral abnormalities could be associated with disturbances in hippocampal function, this suggestion being supported by the presence of cellular changes in this brain structure. No effect of OBX on the number of cholinergic neurons in the medial septum-diagonal band as well as on the acetylcholine content and acetylcholinesterase activity in the septum, hippocampus, and neocortex could be detected. In contrast, in mice, OBX impaired spontaneous alternation behavior and decreased the number of cholinergic neurons in the medial septum-diagonal band. These data demonstrate that rats and mice differently respond to OBX, in particular, OBX does not significantly affect the cholinergic system in rats.
Collapse
|
65
|
Comparative protective effects of royal jelly and cod liver oil against neurotoxic impact of tartrazine on male rat pups brain. Acta Histochem 2015; 117:649-58. [PMID: 26190785 DOI: 10.1016/j.acthis.2015.07.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/03/2015] [Accepted: 07/03/2015] [Indexed: 01/14/2023]
Abstract
This study is aimed to evaluate the possible neurotoxic effect of tartrazine (T), an extensively used synthetic azo dye, as well as to determine the potential modulatory role of cod liver oil (CLO) or royal jelly (RJ) against such effects. For this purpose, thirty-six male rat pups were allocated into six groups. The 1st group received distilled water (control group), the 2nd group was given 300 mg RJ/kg bw (RJ group), the 3rd group was given 0.4 ml CLO/kg bw (CLO group), the 4th was given 500 mg T/kg bw (T group). The 5th group was given T concurrently with RJ (TRJ group) and the 6th group was given T concurrently with CLO (TCLO group), at the same doses as the former groups. All treatments were given orally for 30 consecutive days. The concentrations of different brain neurotransmitters, gamma amino butyric acid (GABA), dopamine (DA) and serotonin (5HT) as well as the antioxidant and oxidative stress biomarkers were measured in the brain homogenates. An immunohistochemical staining of the cerebral cortex was applied with the anti-ssDNA antibody (an apoptotic cell marker) to reveal the changes in brain structure. The T group revealed a significant decrease in the concentration of the brain neurotransmitters, a sharp shortage in the level of antioxidant biomarkers (super oxide dismutase, catalase and the reduced glutathione), a marked increase in malondialdehyde levels, and numerous apoptotic cells in the brain cortex compared with the other groups. Interestingly, all the previously mentioned parameters were almost retrieved in both the TRJ and TCLO groups compared to the T group. These results conclusively demonstrate that RJ and CLO administration provides sufficient protection against the ruinous effects of T on rat pups brain tissue function and structure.
Collapse
|
66
|
Su KP, Matsuoka Y, Pae CU. Omega-3 Polyunsaturated Fatty Acids in Prevention of Mood and Anxiety Disorders. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2015; 13:129-37. [PMID: 26243838 PMCID: PMC4540034 DOI: 10.9758/cpn.2015.13.2.129] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 02/21/2015] [Accepted: 02/22/2015] [Indexed: 12/16/2022]
Abstract
Psychiatric disorders in general, and major depression and anxiety disorders in particular, account for a large burden of disability, morbidity and premature mortality worldwide. Omega-3 polyunsaturated fatty acids (PUFAs) have a range of neurobiological activities in modulation of neurotransmitters, anti-inflammation, anti-oxidation and neuroplasticity, which could contribute to psychotropic effects. Here we reviewed recent research on the benefits of omega-3 PUFA supplements in prevention against major depression, bipolar disorders, interferon-α-induced depression patients with chronic hepatitis C viral infection, and posttraumatic stress disorder. The biological mechanisms underlying omega-3 PUFAs'psychotropic effects are proposed and reviewed. Nutrition is a modifiable environmental factor that might be important in prevention medicine, which have been applied for many years in the secondary prevention of heart disease with omega-3 PUFAs. This review extends the notion that nutrition in psychiatry is a modifiable environmental factor and calls for more researches on prospective clinical studies to justify the preventive application of omega-3 PUFAs in daily practice.
Collapse
Affiliation(s)
- Kuan-Pin Su
- Department of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Neural and Cognitive Sciences, China Medical University, Taichung, Taiwan
| | - Yutaka Matsuoka
- Department of Clinical Epidemiology, Translational Medical Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Chi-Un Pae
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
67
|
Heng LJ, Qi R, Yang RH, Xu GZ. Docosahexaenoic acid inhibits mechanical allodynia and thermal hyperalgesia in diabetic rats by decreasing the excitability of DRG neurons. Exp Neurol 2015; 271:291-300. [PMID: 26118950 DOI: 10.1016/j.expneurol.2015.06.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/07/2015] [Accepted: 06/24/2015] [Indexed: 11/16/2022]
Abstract
Diabetes mellitus is a common metabolic disease in human beings with characteristic symptoms of hyperglycemia, chronic inflammation and insulin resistance. One of the most common complications of early-onset diabetes mellitus is peripheral diabetic neuropathy, which is manifested either by loss of nociception or by allodynia and hyperalgesia. Dietary fatty acids, especially polyunsaturated fatty acids, have been shown the potential of anti-inflammation and modulating neuron excitability. The present study investigated the effects of docosahexaenoic acid (DHA) on the excitability of dorsal root ganglion (DRG) neurons in streptozotocin (STZ)-induced diabetes rats. The effects of DHA on the allodynia and hyperalgesia of diabetic rats were also evaluated. Dietary DHA supplementation effectively attenuated both allodynia and hyperalgesia induced by STZ injection. DHA supplementation decreased the excitability of DRG neurons by decreasing the sodium currents and increasing potassium currents, which may contribute to the effect of alleviating allodynia and hyperalgesia in diabetic rats. The results suggested that DHA might be useful as an adjuvant therapy for the prevention and treatment of painful diabetic neuropathy.
Collapse
Affiliation(s)
- Li-Jun Heng
- Department of Neurosurgery, Wuhan General Hospital of Guangzhou Military Command, Wuhan, Hubei 430070, China; Department of Neurosurgery, Tangdu Hospital of Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Rui Qi
- Department of Nutrition and Food Hygiene, School of Public Health, The Fourth Military Medical University, Xi'an 710032, China
| | - Rui-Hua Yang
- Department of Nutrition and Food Hygiene, School of Public Health, The Fourth Military Medical University, Xi'an 710032, China.
| | - Guo-Zheng Xu
- Department of Neurosurgery, Wuhan General Hospital of Guangzhou Military Command, Wuhan, Hubei 430070, China.
| |
Collapse
|
68
|
Chronic unpredictable mild stress induces parallel reductions of 15-PGDH in the hypothalamus and lungs in rats. Behav Brain Res 2015; 286:278-84. [DOI: 10.1016/j.bbr.2015.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 12/28/2022]
|
69
|
Trépanier MO, Hopperton KE, Orr SK, Bazinet RP. N-3 polyunsaturated fatty acids in animal models with neuroinflammation: An update. Eur J Pharmacol 2015; 785:187-206. [PMID: 26036964 DOI: 10.1016/j.ejphar.2015.05.045] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/13/2015] [Accepted: 05/21/2015] [Indexed: 12/19/2022]
Abstract
Neuroinflammation is a characteristic of a multitude of neurological and psychiatric disorders. Modulating inflammatory pathways offers a potential therapeutic target in these disorders. Omega-3 polyunsaturated fatty acids have anti-inflammatory and pro-resolving properties in the periphery, however, their effect on neuroinflammation is less studied. This review summarizes 61 animal studies that tested the effect of omega-3 polyunsaturated fatty acids on neuroinflammatory outcomes in vivo in various models including stroke, spinal cord injury, aging, Alzheimer's disease, Parkinson's disease, lipopolysaccharide and IL-1β injections, diabetes, neuropathic pain, traumatic brain injury, depression, surgically induced cognitive decline, whole body irradiation, amyotrophic lateral sclerosis, N-methyl-D-aspartate-induced excitotoxicity and lupus. The evidence presented in this review suggests anti-neuroinflammatory properties of omega-3 polyunsaturated fatty acids, however, it is not clear by which mechanism omega-3 polyunsaturated fatty acids exert their effect. Future research should aim to isolate the effect of omega-3 polyunsaturated fatty acids on neuroinflammatory signaling in vivo and elucidate the mechanisms underlying these effects.
Collapse
Affiliation(s)
- Marc-Olivier Trépanier
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2
| | - Kathryn E Hopperton
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2
| | - Sarah K Orr
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2
| | - Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2.
| |
Collapse
|
70
|
Maes M, Nowak G, Caso JR, Leza JC, Song C, Kubera M, Klein H, Galecki P, Noto C, Glaab E, Balling R, Berk M. Toward Omics-Based, Systems Biomedicine, and Path and Drug Discovery Methodologies for Depression-Inflammation Research. Mol Neurobiol 2015; 53:2927-2935. [PMID: 25934103 DOI: 10.1007/s12035-015-9183-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 04/16/2015] [Indexed: 02/07/2023]
Abstract
Meta-analyses confirm that depression is accompanied by signs of inflammation including increased levels of acute phase proteins, e.g., C-reactive protein, and pro-inflammatory cytokines, e.g., interleukin-6. Supporting the translational significance of this, a meta-analysis showed that anti-inflammatory drugs may have antidepressant effects. Here, we argue that inflammation and depression research needs to get onto a new track. Firstly, the choice of inflammatory biomarkers in depression research was often too selective and did not consider the broader pathways. Secondly, although mild inflammatory responses are present in depression, other immune-related pathways cannot be disregarded as new drug targets, e.g., activation of cell-mediated immunity, oxidative and nitrosative stress (O&NS) pathways, autoimmune responses, bacterial translocation, and activation of the toll-like receptor and neuroprogressive pathways. Thirdly, anti-inflammatory treatments are sometimes used without full understanding of their effects on the broader pathways underpinning depression. Since many of the activated immune-inflammatory pathways in depression actually confer protection against an overzealous inflammatory response, targeting these pathways may result in unpredictable and unwanted results. Furthermore, this paper discusses the required improvements in research strategy, i.e., path and drug discovery processes, omics-based techniques, and systems biomedicine methodologies. Firstly, novel methods should be employed to examine the intracellular networks that control and modulate the immune, O&NS and neuroprogressive pathways using omics-based assays, including genomics, transcriptomics, proteomics, metabolomics, epigenomics, immunoproteomics and metagenomics. Secondly, systems biomedicine analyses are essential to unravel the complex interactions between these cellular networks, pathways, and the multifactorial trigger factors and to delineate new drug targets in the cellular networks or pathways. Drug discovery processes should delineate new drugs targeting the intracellular networks and immune-related pathways.
Collapse
Affiliation(s)
- Michael Maes
- IMPACT Research Center, Deakin University, Geelong, Australia.
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Health Sciences Graduate Program, Health Sciences Center, State University of Londrina, Londrina, Brazil.
- IMPACT Strategic Research Center, Barwon Health, Deakin University, Geelong, Vic, Australia.
| | - Gabriel Nowak
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Javier R Caso
- Department of Pharmacology, Faculty of Medicine, University Complutense, Centro de Investigación Biomédica en Salud Mental (CIBERSAM) & Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain
| | - Juan Carlos Leza
- Department of Pharmacology, Faculty of Medicine, University Complutense, Centro de Investigación Biomédica en Salud Mental (CIBERSAM) & Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain
| | - Cai Song
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Canada
- Research Institute for Marine Nutrition and Drugs, Guangdong Ocean University, Zhanjiang, China
| | - Marta Kubera
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Science, Krakow, Poland
| | - Hans Klein
- Department of Psychiatry, University of Groningen, Groningen, The Netherlands
| | - Piotr Galecki
- Department of Adult Psychiatry, Medial University of Łódź, Łódź, Poland
| | - Cristiano Noto
- Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Enrico Glaab
- Luxembourg Centre for Systems Biomedicine, University of Luxemburg, Esch-sur-Alzette, Luxembourg
| | - Rudi Balling
- Luxembourg Centre for Systems Biomedicine, University of Luxemburg, Esch-sur-Alzette, Luxembourg
| | - Michael Berk
- IMPACT Research Center, Deakin University, Geelong, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Department of Psychiatry and The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| |
Collapse
|
71
|
Gao L, Li C, Yang RY, Lian WW, Fang JS, Pang XC, Qin XM, Liu AL, Du GH. Ameliorative effects of baicalein in MPTP-induced mouse model of Parkinson's disease: A microarray study. Pharmacol Biochem Behav 2015; 133:155-63. [PMID: 25895692 DOI: 10.1016/j.pbb.2015.04.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 04/02/2015] [Accepted: 04/12/2015] [Indexed: 01/17/2023]
Abstract
Baicalein, a flavonoid from Scutellaria baicalensis Georgi, has been shown to possess neuroprotective properties. The purpose of this study was to explore the effects of baicalein on motor behavioral deficits and gene expression in N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mice model of Parkinson's disease (PD). The behavioral results showed that baicalein significantly improves the abnormal behaviors in MPTP-induced mice model of PD, as manifested by shortening the total time for climbing down the pole, prolonging the latent periods of rotarod, and increasing the vertical movements. Using cDNA microarray and subsequent bioinformatic analyses, it was found that baicalein significantly promotes the biological processes including neurogenesis, neuroblast proliferation, neurotrophin signaling pathway, walking and locomotor behaviors, and inhibits dopamine metabolic process through regulation of gene expressions. Based on analysis of gene co-expression networks, the results indicated that the regulation of genes such as LIMK1, SNCA and GLRA1 by baicalein might play central roles in the network. Our results provide experimental evidence for the potential use of baicalein in the treatment of PD, and revealed gene expression profiles, biological processes and pathways influenced by baicalein in MPTP-treated mice.
Collapse
Affiliation(s)
- Li Gao
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, PR China
| | - Chao Li
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Ran-Yao Yang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Wen-Wen Lian
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Jian-Song Fang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Xiao-Cong Pang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, PR China
| | - Ai-Lin Liu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Beijing Key Laboratory of Drug Target Research and Drug Screening, Beijing 100050, PR China.
| | - Guan-Hua Du
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, PR China.
| |
Collapse
|
72
|
Filho C, Jesse C, Donato F, Giacomeli R, Del Fabbro L, da Silva Antunes M, de Gomes M, Goes A, Boeira S, Prigol M, Souza L. Chronic unpredictable mild stress decreases BDNF and NGF levels and Na+,K+-ATPase activity in the hippocampus and prefrontal cortex of mice: Antidepressant effect of chrysin. Neuroscience 2015; 289:367-80. [DOI: 10.1016/j.neuroscience.2014.12.048] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 12/30/2014] [Accepted: 12/31/2014] [Indexed: 10/24/2022]
|
73
|
Jindal A, Mahesh R, Bhatt S. Etazolate, a phosphodiesterase-4 enzyme inhibitor produces antidepressant-like effects by blocking the behavioral, biochemical, neurobiological deficits and histological abnormalities in hippocampus region caused by olfactory bulbectomy. Psychopharmacology (Berl) 2015; 232:623-37. [PMID: 25120105 DOI: 10.1007/s00213-014-3705-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 07/21/2014] [Indexed: 11/28/2022]
Abstract
RATIONALE Olfactory bulbectomy (OBX) is a widely used model for antidepressant screening and known to induce neurodegeneration in several brain areas. Our earlier studies demonstrated that etazolate produced antidepressant-like effects in behavioral despair models of depression; however, the potential role of etazolate on behavior and morphological changes in the hippocampus region along with its underlying mechanism(s) following OBX has not been adequately addressed. OBJECTIVES We evaluated if etazolate could protect against OBX-induced depression-like behavioral deficits and neurodegeneration. The possible underlying mechanism of etazolate in OBX model was also investigated. METHODS The effects of etazolate were measured in a battery of behavioral paradigms, including the forced swim test (FST), sucrose consumption, open arm activity in elevated plus maze (EPM), and hyperemotionality tests. The underlying mechanisms were investigated by measuring serum corticosterone (CORT), cyclic adenosine monophosphate (cAMP), cAMP response element binding protein (CREB), brain-derived neurotrophic factor (BDNF), and oxidative/nitrosative stress (lipid peroxidation and nitrite) levels and antioxidant enzymes, like reduced glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) levels in the hippocampus. RESULT OBX rats showed depression-like behavior anomalies in behavioral paradigms. OBX rats also showed high CORT and decreased cAMP, phosphorylated CREB (pCREB), and BDNF levels. Additionally, we found increased oxidative/nitrosative stress and reduced antioxidant enzyme levels in the hippocampus. Histopathological analysis showed morphological changes and neuronal loss in the hippocampus. Etazolate (0.5 and 1 mg/kg) attenuated the OBX-induced behavioral, biochemical, neurobiological, and histopathological alterations. CONCLUSION The aforesaid results suggest that etazolate produces an antidepressant-like effect and neuroprotection in OBX, which is possibly mediated by modulating biochemical and neurobiological markers in the hippocampus.
Collapse
Affiliation(s)
- Ankur Jindal
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan, 333031, India,
| | | | | |
Collapse
|
74
|
Olfactory Deprivation Hastens Alzheimer-Like Pathologies in a Human Tau-Overexpressed Mouse Model via Activation of cdk5. Mol Neurobiol 2014; 53:391-401. [PMID: 25465240 DOI: 10.1007/s12035-014-9007-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 11/13/2014] [Indexed: 01/12/2023]
Abstract
Olfactory dysfunction is a recognized risk factor for the pathogenesis of Alzheimer's disease (AD), while the mechanisms are still not clear. Here, we applied bilateral olfactory bulbectomy (OBX), an olfactory deprivation surgery to cause permanent anosmia, in human tau-overexpressed mice (htau mice) to investigate changes of AD-like pathologies including aggregation of abnormally phosphorylated tau and cholinergic neuron loss. We found that tau phosphorylation in hippocampus was increased at Thr-205, Ser-214, Thr-231, and Ser-396 after OBX. OBX also increased the level of sarkosyl-insoluble Tau at those epitopes and accelerated accumulation of somatodendritic tau. Moreover, OBX resulted in the elevation of calpain activity accompanied by an increased expression of the cyclin-dependent kinase 5 (cdk5) neuronal activators, p35 and p25, in hippocampus. Furthermore, OBX induces the loss of the cholinergic neurons in medial septal. Administration of cdk5 pharmacological inhibitor roscovitine into lateral ventricles suppressed tau hyperphosphorylation and mislocalization and restored the cholinergic neuron loss. These findings suggest that olfactory deprivation by OBX hastens tau pathology and cholinergic system impairment in htau mice possibly via activation of cdk5.
Collapse
|
75
|
Fayez AM, Awad AS, El-Naa MM, Kenawy SA, El-Sayed ME. Beneficial effects of thymoquinone and omega-3 on intestinal ischemia/reperfusion-induced renal dysfunction in rats. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.bfopcu.2014.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
76
|
Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat Rev Neurosci 2014; 15:771-85. [PMID: 25387473 DOI: 10.1038/nrn3820] [Citation(s) in RCA: 1026] [Impact Index Per Article: 93.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The brain is highly enriched with fatty acids. These include the polyunsaturated fatty acids (PUFAs) arachidonic acid and docosahexaenoic acid, which are largely esterified to the phospholipid cell membrane. Once PUFAs are released from the membrane, they can participate in signal transduction, either directly or after enzymatic conversion to a variety of bioactive derivatives ('mediators'). PUFAs and their mediators regulate several processes within the brain, such as neurotransmission, cell survival and neuroinflammation, and thereby mood and cognition. PUFA levels and the signalling pathways that they regulate are altered in various neurological disorders, including Alzheimer's disease and major depression. Diet and drugs targeting PUFAs may lead to novel therapeutic approaches for the prevention and treatment of brain disorders.
Collapse
|
77
|
Omega-3 fatty acids improve behavioral coping to stress in multiparous rats. Behav Brain Res 2014; 279:129-38. [PMID: 25446767 DOI: 10.1016/j.bbr.2014.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/28/2014] [Accepted: 11/05/2014] [Indexed: 12/24/2022]
Abstract
Behavioral coping refers to the ability to modify behavior to escape from stress, and is protective against the development of depressive disorders. Omega-3 fatty acid (n-3 FA) intake is inversely correlated with anxiety and depression in humans. The objective of this study was to determine if consumption of n-3 FAs promotes adaptive coping behaviors in a multiparous rat model. Twenty female rats were randomly assigned to diets with or without n-3 FA containing menhaden oil or sunflower oil as the fat source, respectively. Rats experienced two cycles of gestation and lactation. Behavioral testing began on the second day after the last parturition. Rats consuming n-3 FAs displayed improved escape learning in the shuttle box test. Specifically, rats consuming n-3 FAs escaped footshock more quickly and had a greater number of successful escapes in the shuttle box than rats not consuming n-3 FAs. Diet did not affect general activity in the open field, but rats consuming n-3 FAs showed less reactivity and habituation to novelty in the open field than rats not consuming n-3 FAs. Immobility and swimming in the forced swim test, risk-taking assessed by the light/dark test, sucrose drinking, and motor coordination were not significantly affected by diet. A diet enriched with n-3 FAs promoted behavioral escape changes consistent with increased adaptive coping to stressful events, suggesting that n-3 FAs may help prevent the development of stress-related depressive disorders.
Collapse
|
78
|
Activation of Glycogen Synthase Kinase-3 Mediates the Olfactory Deficit-Induced Hippocampal Impairments. Mol Neurobiol 2014; 52:1601-1617. [DOI: 10.1007/s12035-014-8953-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 10/20/2014] [Indexed: 01/04/2023]
|
79
|
Yang SJ, Yu HY, Kang DY, Ma ZQ, Qu R, Fu Q, Ma SP. Antidepressant-like effects of salidroside on olfactory bulbectomy-induced pro-inflammatory cytokine production and hyperactivity of HPA axis in rats. Pharmacol Biochem Behav 2014; 124:451-7. [PMID: 25101546 DOI: 10.1016/j.pbb.2014.07.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/17/2014] [Accepted: 07/26/2014] [Indexed: 02/05/2023]
Abstract
Salidroside (SA) is the primary bioactive marker compound in the standardized extracts from Rhodiola rosea. Although it has potential antidepressant activity in a rat behavioral despair model, the mechanisms of antidepressant effect for SA remain unclear. The objective of this study was to evaluate the antidepressant effects of SA and to discuss the potential mechanisms in olfactory bulbectomized (OBX) rats. SA of 20, 40 mg/kg (p.o.) for 2 weeks notably alleviated OBX-induced hyperactivity in open field test, decreased immobility time in TST and FST. Chronic treatment with SA could remarkably reduce TNF-α and IL-1β levels in hippocampus. Western blot showed that SA could markedly increase glucocorticoid receptor (GR) and brain-derived neurotrophic factor (BDNF) expression in the hippocampus. Besides, SA could also attenuate corticotropin-releasing hormone (CRH) expression in hypothalamus, as well as reducing significantly the levels of serum corticosterone. In conclusion, this study demonstrated that OBX rats treated with SA could significantly improve the depressive-like behaviors. The antidepressant mechanisms of SA might be associated with its anti-inflammatory effects and the regulation of HPA axis activity. Reversal of abnormalities of GR may be partly responsible for those effects. These findings suggested that SA might become a beneficial agent to prevent and treat the depression.
Collapse
Affiliation(s)
- Shui-Jin Yang
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, PR China
| | - Hai-Yang Yu
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, PR China
| | - Dan-Yu Kang
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, PR China
| | - Zhan-Qiang Ma
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, PR China
| | - Rong Qu
- Discipline of Chinese and Western Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210046, PR China
| | - Qiang Fu
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Shi-Ping Ma
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
80
|
Joffre C, Nadjar A, Lebbadi M, Calon F, Laye S. n-3 LCPUFA improves cognition: the young, the old and the sick. Prostaglandins Leukot Essent Fatty Acids 2014; 91:1-20. [PMID: 24908517 DOI: 10.1016/j.plefa.2014.05.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 04/29/2014] [Accepted: 05/01/2014] [Indexed: 01/01/2023]
Abstract
Due to the implication of docosahexaenoic acid (DHA) in neurogenesis, synaptogenesis, neurite outgrowth and to its high incorporation into the brain, this n-3 long chain polyunsaturated fatty acid (LCPUFA) is considered as crucial in the development and maintenance of the learning memory performance throughout life. In the present chapter we aimed at reviewing data investigating the relation between DHA and cognition during the perinatal period, young adult- and adulthood and neurodegenerative diseases such as Alzheimer disease (AD). In Humans, dietary DHA supplementation from the perinatal period to adulthood does not reveal a clear and consistent memory improvement whereas it is the case in animal studies. The positive effects observed in animal models may have been enhanced by using n-3 PUFA deficient animal models as controls. In animal models of AD, a general consensus on the beneficial effects of n-3 LCPUFA in attenuating cognitive impairment was established. These studies make DHA a potential suitable micronutrient for the maintenance of cognitive performance at all periods of life.
Collapse
Affiliation(s)
- C Joffre
- Université Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, F-33000 Bordeaux, France; INRA, Nutrition and Integrative Neurobiology, UMR 1286, F-33000 Bordeaux, France.
| | - A Nadjar
- Université Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, F-33000 Bordeaux, France; INRA, Nutrition and Integrative Neurobiology, UMR 1286, F-33000 Bordeaux, France.
| | - M Lebbadi
- Centre de Recherche du CHUL, Axe Neurosciences, T2-05, 2705, Boulevard Laurier, Québec, QC, Canada G1V 4G2.
| | - F Calon
- Centre de Recherche du CHUL, Axe Neurosciences, T2-05, 2705, Boulevard Laurier, Québec, QC, Canada G1V 4G2.
| | - S Laye
- Université Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, F-33000 Bordeaux, France; INRA, Nutrition and Integrative Neurobiology, UMR 1286, F-33000 Bordeaux, France.
| |
Collapse
|
81
|
Rodent models of depression: neurotrophic and neuroinflammatory biomarkers. BIOMED RESEARCH INTERNATIONAL 2014; 2014:932757. [PMID: 24999483 PMCID: PMC4066721 DOI: 10.1155/2014/932757] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 05/18/2014] [Indexed: 12/13/2022]
Abstract
Rodent models are an indispensable tool for studying etiology and progress of depression. Since interrelated systems of neurotrophic factors and cytokines comprise major regulatory mechanisms controlling normal brain plasticity, impairments of these systems form the basis for development of cerebral pathologies, including mental diseases. The present review focuses on the numerous experimental rodent models of depression induced by different stress factors (exteroceptive and interoceptive) during early life (including prenatal period) or adulthood, giving emphasis to the data on the changes of neurotrophic factors and neuroinflammatory indices in the brain. These parameters are closely related to behavioral depression-like symptoms and impairments of neuronal plasticity and are both gender- and genotype-dependent. Stress-related changes in expression of neurotrophins and cytokines in rodent brain are region-specific. Some contradictory data reported by different groups may be a consequence of differences of stress paradigms or their realization in different laboratories. Like all experimental models, stress-induced depression-like conditions are experimental simplification of clinical depression states; however, they are suitable for understanding the involvement of neurotrophic factors and cytokines in the pathogenesis of the disease—a goal unachievable in the clinical reality. These major regulatory systems may be important targets for therapeutic measures as well as for development of drugs for treatment of depression states.
Collapse
|
82
|
Yang RH, Lin J, Hou XH, Cao R, Yu F, Liu HQ, Ji AL, Xu XN, Zhang L, Wang F. Effect of docosahexaenoic acid on hippocampal neurons in high-glucose condition: involvement of PI3K/AKT/nuclear factor-κB-mediated inflammatory pathways. Neuroscience 2014; 274:218-28. [PMID: 24881575 DOI: 10.1016/j.neuroscience.2014.05.042] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 05/17/2014] [Accepted: 05/21/2014] [Indexed: 12/01/2022]
Abstract
Accumulating evidence suggested that hyperglycemia played a critical role in hippocampus dysfunction in patients with diabetes mellitus. However, the multifactorial pathogenesis of hyperglycemia-induced impairments of hippocampal neurons has not been fully elucidated. Docosahexaenoic acid (DHA) has been shown to enhance learning and memory and affect neural function in various experimental conditions. The present study investigated the effects of DHA on the lipid peroxidation, the level of inflammatory cytokines and neuron apoptosis in the hippocampal neurons in high-glucose condition. High-glucose administration increased the level of tumor necrosis factor α (TNF-α) and IL-6, induced oxidative stress and apoptosis of hippocampal neurons in vitro. DHA treatment reduced oxidative stress and TNF-α expression, protected the hippocampal neurons by increasing AKT phosphorylation and decreasing caspase-3 and caspase-9 expression. These results suggested that high-glucose exposure induced injury of hippocampal neurons in vitro, and the principle mechanisms involved in the neuroprotective effect of DHA were its antioxidant and anti-apoptotic potential. DHA may thus be of use in preventing or treating neuron-degeneration resulting from hyperglycemia.
Collapse
Affiliation(s)
- R-H Yang
- Department of Nutrition and Food Hygiene, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, The Fourth Military Medical University, Xi'an 710032, PR China.
| | - J Lin
- Department of Nutrition and Food Hygiene, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, The Fourth Military Medical University, Xi'an 710032, PR China
| | - X-H Hou
- Department of Nutrition and Food Hygiene, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, The Fourth Military Medical University, Xi'an 710032, PR China
| | - R Cao
- Department of Nutrition and Food Hygiene, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, The Fourth Military Medical University, Xi'an 710032, PR China
| | - F Yu
- Department of Nutrition and Food Hygiene, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, The Fourth Military Medical University, Xi'an 710032, PR China
| | - H-Q Liu
- Department of Nutrition and Food Hygiene, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, The Fourth Military Medical University, Xi'an 710032, PR China
| | - A-L Ji
- Department of Nutrition and Food Hygiene, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, The Fourth Military Medical University, Xi'an 710032, PR China
| | - X-N Xu
- Department of Nutrition and Food Hygiene, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, The Fourth Military Medical University, Xi'an 710032, PR China
| | - L Zhang
- Department of Nutrition and Food Hygiene, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, The Fourth Military Medical University, Xi'an 710032, PR China
| | - F Wang
- Department of Nutrition and Food Hygiene, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, The Fourth Military Medical University, Xi'an 710032, PR China.
| |
Collapse
|
83
|
Rinwa P, Kumar A. Panax quinquefolium involves nitric oxide pathway in olfactory bulbectomy rat model. Physiol Behav 2014; 129:142-51. [DOI: 10.1016/j.physbeh.2014.02.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 02/06/2014] [Accepted: 02/15/2014] [Indexed: 12/14/2022]
|
84
|
Seidl SE, Santiago JA, Bilyk H, Potashkin JA. The emerging role of nutrition in Parkinson's disease. Front Aging Neurosci 2014; 6:36. [PMID: 24639650 PMCID: PMC3945400 DOI: 10.3389/fnagi.2014.00036] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 02/20/2014] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease in ageing individuals. It is now clear that genetic susceptibility and environmental factors play a role in disease etiology and progression. Because environmental factors are involved with the majority of the cases of PD, it is important to understand the role nutrition plays in both neuroprotection and neurodegeneration. Recent epidemiological studies have revealed the promise of some nutrients in reducing the risk of PD. In contrast, other nutrients may be involved with the etiology of neurodegeneration or exacerbate disease progression. This review summarizes the studies that have addressed these issues and describes in detail the nutrients and their putative mechanisms of action in PD.
Collapse
Affiliation(s)
- Stacey E Seidl
- The Cellular and Molecular Pharmacology Department, The Chicago Medical School, Rosalind Franklin University of Medicine and Science North Chicago, IL, USA
| | - Jose A Santiago
- The Cellular and Molecular Pharmacology Department, The Chicago Medical School, Rosalind Franklin University of Medicine and Science North Chicago, IL, USA
| | - Hope Bilyk
- The Nutrition Department, The College of Health Professions, Rosalind Franklin University of Medicine and Science North Chicago, IL, USA
| | - Judith A Potashkin
- The Cellular and Molecular Pharmacology Department, The Chicago Medical School, Rosalind Franklin University of Medicine and Science North Chicago, IL, USA
| |
Collapse
|
85
|
Olfactory bulbectomy as a putative model for Alzheimer’: The protective role of essential fatty acids. PHARMANUTRITION 2014. [DOI: 10.1016/j.phanu.2013.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
86
|
Vaz JS, Kac G, Nardi AE, Hibbeln JR. Omega-6 fatty acids and greater likelihood of suicide risk and major depression in early pregnancy. J Affect Disord 2014; 152-154:76-82. [PMID: 23726775 PMCID: PMC4239694 DOI: 10.1016/j.jad.2013.04.045] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/26/2013] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To estimate the prevalence of suicide risk (SR) and major depressive episodes (MDEs) in early pregnancy, as well as the relationship of serum fatty acid status to these outcomes. METHODS Cross-sectional analyses were performed on data from 234 pregnant women enrolled in a prospective cohort study in Rio de Janeiro, Brazil. SR and MDE were defined according to the Mini International Neuropsychiatric Interview. Fatty acid compositions were determined for serum samples obtained between the 6th and 13th gestational week. Fatty acid data were expressed as the percent of total fatty acids, converted to Z scores and then entered as continuous variables in logistic regression models. RESULTS The prevalence of SR was 19.6% and that of MDE was 17.0%. In the adjusted logistic regressions, a higher likelihood of SR was observed among women with higher arachidonic acid levels [AA (20:4, n-6): OR=1.45, 95%CI 1.02-2.07] and adrenic acid levels [AdA (22:4, n-6): OR=1.43, 95%CI 1.01-2.04]. A higher likelihood of MDE was also observed among women with higher AA levels [OR=1.47, 95%CI 1.03-2.10] and AdA levels [OR=1.59, 95%CI 1.09-2.32]. CONCLUSION Higher serum levels of AA and AdA were associated with a greater likelihood of SR and MDE among pregnant Brazilian women.
Collapse
Affiliation(s)
- Juliana S. Vaz
- Nutritional Epidemiology Observatory, Josué de Castro Nutrition Institute, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| | - Gilberto Kac
- Nutritional Epidemiology Observatory, Josué de Castro Nutrition Institute, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| | - Antonio E. Nardi
- National Institute for Science and Technology - Translational Medicine, Laboratory of Panic and Respiration, Institute of Psychiatry, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| | - Joseph R. Hibbeln
- Section of Nutritional Neurosciences, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcoholism and Alcohol Abuse, National Institutes of Health, Bethesda, USA
| |
Collapse
|
87
|
Quercetin suppress microglial neuroinflammatory response and induce antidepressent-like effect in olfactory bulbectomized rats. Neuroscience 2013; 255:86-98. [DOI: 10.1016/j.neuroscience.2013.09.044] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 09/19/2013] [Accepted: 09/22/2013] [Indexed: 01/03/2023]
|
88
|
Borre YE, Panagaki T, Koelink PJ, Morgan ME, Hendriksen H, Garssen J, Kraneveld AD, Olivier B, Oosting RS. Neuroprotective and cognitive enhancing effects of a multi-targeted food intervention in an animal model of neurodegeneration and depression. Neuropharmacology 2013; 79:738-49. [PMID: 24286859 DOI: 10.1016/j.neuropharm.2013.11.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 11/13/2013] [Accepted: 11/16/2013] [Indexed: 01/24/2023]
Abstract
Rising neurodegenerative and depressive disease prevalence combined with the lack of effective pharmaceutical treatments and dangerous side effects, has created an urgent need for the development of effective therapies. Considering that these disorders are multifactorial in origin, treatments designed to interfere at different mechanistic levels may be more effective than the traditional single-targeted pharmacological concepts. To that end, an experimental diet composed of zinc, melatonin, curcumin, piperine, eicosapentaenoic acid (EPA, 20:5, n-3), docosahexaenoic acid (DHA, 22:6, n-3), uridine, and choline was formulated. This diet was tested on the olfactory bulbectomized rat (OBX), an established animal model of depression and cognitive decline. The ingredients of the diet have been individually shown to attenuate glutamate excitoxicity, exert potent anti-oxidant/anti-inflammatory properties, and improve synaptogenesis; processes that all have been implicated in neurodegenerative diseases and in the cognitive deficits following OBX in rodents. Dietary treatment started 2 weeks before OBX surgery, continuing for 6 weeks in total. The diet attenuated OBX-induced cognitive and behavioral deficits, except long-term spatial memory. Ameliorating effects of the diet extended to the control animals. Furthermore, the experimental diet reduced hippocampal atrophy and decreased the peripheral immune activation in the OBX rats. The ameliorating effects of the diet on the OBX-induced changes were comparable to those of the NMDA receptor antagonist, memantine, a drug used for the management of Alzheimer's disease. This proof-of-concept study suggests that a diet, which simultaneously targets multiple disease etiologies, can prevent/impede the development of a neurodegenerative and depressive disorders and the concomitant cognitive deficits.
Collapse
Affiliation(s)
- Yuliya E Borre
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, PO Box 80082, 3508 TB Utrecht, The Netherlands; Rudolf Magnus Institute of Neuroscience, Utrecht University, PO Box 80082, 3508 TB Utrecht, The Netherlands.
| | - Theodora Panagaki
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, PO Box 80082, 3508 TB Utrecht, The Netherlands
| | - Pim J Koelink
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, PO Box 80082, 3508 TB Utrecht, The Netherlands
| | - Mary E Morgan
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, PO Box 80082, 3508 TB Utrecht, The Netherlands
| | - Hendrikus Hendriksen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, PO Box 80082, 3508 TB Utrecht, The Netherlands; Rudolf Magnus Institute of Neuroscience, Utrecht University, PO Box 80082, 3508 TB Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, PO Box 80082, 3508 TB Utrecht, The Netherlands; Danone Research, Center for Specialized Nutrition, Wageningen, The Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, PO Box 80082, 3508 TB Utrecht, The Netherlands
| | - Berend Olivier
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, PO Box 80082, 3508 TB Utrecht, The Netherlands; Rudolf Magnus Institute of Neuroscience, Utrecht University, PO Box 80082, 3508 TB Utrecht, The Netherlands
| | - Ronald S Oosting
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, PO Box 80082, 3508 TB Utrecht, The Netherlands; Rudolf Magnus Institute of Neuroscience, Utrecht University, PO Box 80082, 3508 TB Utrecht, The Netherlands
| |
Collapse
|
89
|
Jia D, Heng LJ, Yang RH, Gao GD. Fish oil improves learning impairments of diabetic rats by blocking PI3K/AKT/nuclear factor-κB-mediated inflammatory pathways. Neuroscience 2013; 258:228-37. [PMID: 24252320 DOI: 10.1016/j.neuroscience.2013.11.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/25/2013] [Accepted: 11/07/2013] [Indexed: 01/15/2023]
Abstract
Previous research has demonstrated that diabetes induces learning and memory deficits. However, the mechanism of memory impairment induced by diabetes is poorly understood. Dietary fatty acids, especially polyunsaturated fatty acids, have been shown to enhance learning and memory and prevent memory deficits in various experimental conditions. The present study investigated the effects of fish oil supplementation on the lipid peroxidation, inflammation and neuron apoptosis in the hippocampus of streptozotocin (STZ)-induced diabetes rats. The effects of diabetes and fish oil treatment on the spatial learning and memory were also evaluated using the Morris Water Maze. STZ-induced diabetes impaired spatial learning and memory of rats, which was associated with the inflammation, oxidative stress and apoptosis of hippocampal neurons. Fish oil administration ameliorated cognitive deficit, reduced oxidative stress and tumor necrosis factor α (TNF-α), protected the hippocampal neurons by increasing Protein Kinase B (AKT) phosphorylation and decreasing caspase-9 expression. These results suggested that the principle mechanisms involved in the antidiabetic and neuroprotective effect of fish oil were its antioxidant, anti-inflammatory and anti-apoptosis potential, supporting a potential role for fish oil as an adjuvant therapy for the prevention and treatment of diabetic complications.
Collapse
Affiliation(s)
- D Jia
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, PR China
| | - L-J Heng
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, PR China
| | - R-H Yang
- Department of Nutrition and Food Hygiene, The Ministry of Education Key Laboratory of Hazard Assessment and Control in Special Operational Environment, School of Public Health, The Fourth Military Medical University, Xi'an 710032, PR China.
| | - G-D Gao
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, PR China.
| |
Collapse
|
90
|
Su KP, Wang SM, Pae CU. Omega-3 polyunsaturated fatty acids for major depressive disorder. Expert Opin Investig Drugs 2013; 22:1519-34. [DOI: 10.1517/13543784.2013.836487] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
91
|
Burke NN, Geoghegan E, Kerr DM, Moriarty O, Finn DP, Roche M. Altered neuropathic pain behaviour in a rat model of depression is associated with changes in inflammatory gene expression in the amygdala. GENES BRAIN AND BEHAVIOR 2013; 12:705-13. [PMID: 23957449 DOI: 10.1111/gbb.12080] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/30/2013] [Accepted: 08/15/2013] [Indexed: 12/22/2022]
Abstract
The association between chronic pain and depression is widely recognized, the comorbidity of which leads to a heavier disease burden, increased disability and poor treatment response. This study examined nociceptive responding to mechanical and thermal stimuli prior to and following L5-L6 spinal nerve ligation (SNL), a model of neuropathic pain, in the olfactory bulbectomized (OB) rat model of depression. Associated changes in the expression of genes encoding for markers of glial activation and cytokines were subsequently examined in the amygdala, a key brain region for the modulation of emotion and pain. The OB rats exhibited mechanical and cold allodynia, but not heat hyperalgesia, when compared with sham-operated counterparts. Spinal nerve ligation induced characteristic mechanical and cold allodynia in the ipsilateral hindpaw of both sham and OB rats. The OB rats exhibited a reduced latency and number of responses to an innocuous cold stimulus following SNL, an effect positively correlated with interleukin (IL)-6 and IL-10 mRNA expression in the amygdala, respectively. Spinal nerve ligation reduced IL-6 and increased IL-10 expression in the amygdala of sham rats. The expression of CD11b (cluster of differentiation molecule 11b) and GFAP (glial fibrillary acidic protein), indicative of microglial and astrocyte activation, and IL-1β in the amygdala was enhanced in OB animals when compared with sham counterparts, an effect not observed following SNL. This study shows that neuropathic pain-related responding to an innocuous cold stimulus is altered in an animal model of depression, effects accompanied by changes in the expression of neuroinflammatory genes in the amygdala.
Collapse
|
92
|
Peripheral biomarkers in animal models of major depressive disorder. DISEASE MARKERS 2013; 35:33-41. [PMID: 24167347 PMCID: PMC3774958 DOI: 10.1155/2013/284543] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 01/31/2013] [Indexed: 01/07/2023]
Abstract
Investigations of preclinical biomarkers for major depressive disorder (MDD) encompass the quantification of proteins, peptides, mRNAs, or small molecules in blood or urine of animal models. Most studies aim at characterising the animal model by including the assessment of analytes or hormones affected in depressive patients. The ultimate objective is to validate the model to better understand the neurobiological basis of MDD. Stress hormones or inflammation-related analytes associated with MDD are frequently measured. In contrast, other investigators evaluate peripheral analytes in preclinical models to translate the results in clinical settings afterwards. Large-scale, hypothesis-free studies are performed in MDD models to identify candidate biomarkers. Other studies wish to propose new targets for drug discovery. Animal models endowed with predictive validity are investigated, and the assessment of peripheral analytes, such as stress hormones or immune molecules, is comprised to increase the confidence in the target. Finally, since the mechanism of action of antidepressants is incompletely understood, studies investigating molecular alterations associated with antidepressant treatment may include peripheral analyte levels. In conclusion, preclinical biomarker studies aid the identification of new candidate analytes to be tested in clinical trials. They also increase our understanding of MDD pathophysiology and help to identify new pharmacological targets.
Collapse
|
93
|
Moylan S, Maes M, Wray NR, Berk M. The neuroprogressive nature of major depressive disorder: pathways to disease evolution and resistance, and therapeutic implications. Mol Psychiatry 2013; 18:595-606. [PMID: 22525486 DOI: 10.1038/mp.2012.33] [Citation(s) in RCA: 353] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In some patients with major depressive disorder (MDD), individual illness characteristics appear consistent with those of a neuroprogressive illness. Features of neuroprogression include poorer symptomatic, treatment and functional outcomes in patients with earlier disease onset and increased number and length of depressive episodes. In such patients, longer and more frequent depressive episodes appear to increase vulnerability for further episodes, precipitating an accelerating and progressive illness course leading to functional decline. Evidence from clinical, biochemical and neuroimaging studies appear to support this model and are informing novel therapeutic approaches. This paper reviews current knowledge of the neuroprogressive processes that may occur in MDD, including structural brain consequences and potential molecular mechanisms including the role of neurotransmitter systems, inflammatory, oxidative and nitrosative stress pathways, neurotrophins and regulation of neurogenesis, cortisol and the hypothalamic-pituitary-adrenal axis modulation, mitochondrial dysfunction and epigenetic and dietary influences. Evidence-based novel treatments informed by this knowledge are discussed.
Collapse
Affiliation(s)
- S Moylan
- School of Medicine, Deakin University, Geelong, VIC, Australia.
| | | | | | | |
Collapse
|
94
|
Rinwa P, Kumar A, Garg S. Suppression of neuroinflammatory and apoptotic signaling cascade by curcumin alone and in combination with piperine in rat model of olfactory bulbectomy induced depression. PLoS One 2013; 8:e61052. [PMID: 23613781 PMCID: PMC3629220 DOI: 10.1371/journal.pone.0061052] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Accepted: 03/05/2013] [Indexed: 02/07/2023] Open
Abstract
Objectives Bilateral destruction of the olfactory bulbs is known to cause behavioral changes analogous to symptoms of depression. Curcumin, a traditional Indian spice is currently being investigated in different psychiatric problems including depression. Dietary phytochemicals are currently used as an adjuvant therapy to accelerate their therapeutic efficacy. Therefore, the present study is an attempt to elucidate the neuroprotective mechanism of curcumin and its co-administration with piperine against olfactory bulbectomy induced depression in rats. Methods Rats undergone olfactory bulbs ablations were analyzed after post-surgical rehabilitation period of 2 weeks. Animals were then treated with different doses of curcumin (100, 200 and 400 mg/kg; p.o.), piperine (20 mg/kg; p.o.) and their combination daily for another 2 weeks. Imipramine (10 mg/kg; i.p.) served as a standard control. Various behavioral tests like forced swim test (FST), open field behaviour and sucrose preference test (SPT) were performed, followed by estimation of biochemical, mitochondrial, molecular and histopathological parameters in rat brain. Results Ablation of olfactory bulbs caused depression-like symptoms as evidenced by increased immobility time in FST, hyperactivity in open field arena, and anhedonic like response in SPT along with alterations in mitochondrial enzyme complexes, increased serum corticosterone levels and oxidative damage. These deficits were integrated with increased inflammatory cytokines (TNF-α) and apoptotic factor (caspase-3) levels along with a marked reduction in neurogenesis factor (BDNF) in the brain of olfactory bulbectomized (OBX) rats. Curcumin treatment significantly and dose-dependently restored all these behavioral, biochemical, mitochondrial, molecular and histopathological alterations associated with OBX induced depression. Further, co-administration of piperine with curcumin significantly potentiated their neuroprotective effects as compared to their effects alone. Conclusions The present study highlights that curcumin along with piperine exhibits neuroprotection against olfactory bulbectomy induced depression possibly by modulating oxidative-nitrosative stress induced neuroinflammation and apoptosis.
Collapse
Affiliation(s)
- Puneet Rinwa
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Anil Kumar
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study, Panjab University, Chandigarh, India
- * E-mail:
| | - Sukant Garg
- Department of Pathology, Dr. Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, India
| |
Collapse
|
95
|
Cardamone L, Salzberg MR, O'Brien TJ, Jones NC. Antidepressant therapy in epilepsy: can treating the comorbidities affect the underlying disorder? Br J Pharmacol 2013; 168:1531-54. [PMID: 23146067 PMCID: PMC3605864 DOI: 10.1111/bph.12052] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 10/24/2012] [Accepted: 10/29/2012] [Indexed: 12/20/2022] Open
Abstract
There is a high incidence of psychiatric comorbidity in people with epilepsy (PWE), particularly depression. The manifold adverse consequences of comorbid depression have been more clearly mapped in recent years. Accordingly, considerable efforts have been made to improve detection and diagnosis, with the result that many PWE are treated with antidepressant drugs, medications with the potential to influence both epilepsy and depression. Exposure to older generations of antidepressants (notably tricyclic antidepressants and bupropion) can increase seizure frequency. However, a growing body of evidence suggests that newer ('second generation') antidepressants, such as selective serotonin reuptake inhibitors or serotonin-noradrenaline reuptake inhibitors, have markedly less effect on excitability and may lead to improvements in epilepsy severity. Although a great deal is known about how antidepressants affect excitability on short time scales in experimental models, little is known about the effects of chronic antidepressant exposure on the underlying processes subsumed under the term 'epileptogenesis': the progressive neurobiological processes by which the non-epileptic brain changes so that it generates spontaneous, recurrent seizures. This paper reviews the literature concerning the influences of antidepressants in PWE and in animal models. The second section describes neurobiological mechanisms implicated in both antidepressant actions and in epileptogenesis, highlighting potential substrates that may mediate any effects of antidepressants on the development and progression of epilepsy. Although much indirect evidence suggests the overall clinical effects of antidepressants on epilepsy itself are beneficial, there are reasons for caution and the need for further research, discussed in the concluding section.
Collapse
Affiliation(s)
- L Cardamone
- Department of Medicine (RMH), University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
96
|
McNamara RK, Lotrich FE. Elevated immune-inflammatory signaling in mood disorders: a new therapeutic target? Expert Rev Neurother 2013; 12:1143-61. [PMID: 23039393 DOI: 10.1586/ern.12.98] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Converging translational evidence has implicated elevated immune-inflammatory signaling activity in the pathoetiology of mood disorders, including major depressive disorder and bipolar disorder. This is supported in part by cross-sectional evidence for increased levels of proinflammatory eicosanoids, cytokines and acute-phase proteins during mood episodes, and prospective longitudinal evidence for the emergence of mood symptoms in response to chronic immune-inflammatory activation. In addition, mood-stabilizer and atypical antipsychotic medications downregulate initial components of the immune-inflammatory signaling pathway, and adjunctive treatment with anti-inflammatory agents augment the therapeutic efficacy of antidepressant, mood stabilizer and atypical antipsychotic medications. Potential pathogenic mechanisms linked with elevated immune-inflammatory signaling include perturbations in central serotonin neurotransmission and progressive white matter pathology. Both heritable genetic factors and environmental factors including dietary fatty-acid composition may act in concert to sustain elevated immune-inflammatory signaling. Collectively, these data suggest that elevated immune-inflammatory signaling is a mechanism that is relevant to the pathoetiology of mood disorders, and may therefore represent a new therapeutic target for the development of more effective treatments.
Collapse
Affiliation(s)
- Robert K McNamara
- Department of Psychiatry, Division of Bipolar Disorders Research, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | | |
Collapse
|
97
|
Immune effects of optimized DNA vaccine and protective effects in a MPTP model of Parkinson’s disease. Neurol Sci 2013; 34:1559-70. [DOI: 10.1007/s10072-012-1284-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/17/2012] [Indexed: 11/25/2022]
|
98
|
Luchtman DW, Meng Q, Wang X, Shao D, Song C. ω-3 fatty acid eicosapentaenoic acid attenuates MPP+-induced neurodegeneration in fully differentiated human SH-SY5Y and primary mesencephalic cells. J Neurochem 2013; 124:855-68. [PMID: 23106698 DOI: 10.1111/jnc.12068] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 10/22/2012] [Accepted: 10/23/2012] [Indexed: 11/27/2022]
Abstract
Eicosapentaenoic acid (EPA), a neuroactive omega-3 fatty acid, has been demonstrated to exert neuroprotective effects in experimental models of Parkinson's disease (PD), but the cellular mechanisms of protection are unknown. Here, we studied the effects of EPA in fully differentiated human SH-SY5Y cells and primary mesencephalic neurons treated with MPP(+) . In both in-vitro models of PD, EPA attenuated an MPP(+) -induced reduction in cell viability. EPA also prevented the presence of electron-dense cytoplasmic inclusions in SH-SY5Y cells. Then, possible mechanisms of the neuroprotection were studied. In primary neurons, EPA attenuated an MPP(+) -induced increase in Tyrosine-related kinase B (TrkB) receptors. In SH-SY5Y cells, EPA down-regulated reactive oxygen species and nitric oxide. This antioxidant effect of EPA may have been mediated by its inhibition of neuronal NADPH oxidase and cyclo-oxygenase-2 (COX-2), as MPP(+) increased the expression of these enzymes. Furthermore, EPA prevented an increase in cytosolic phospholipase A2 (cPLA2), an enzyme linked with COX-2 in the potentially pro-inflammatory arachidonic acid cascade. Lastly, EPA attenuated an increase in the bax:bcl-2 ratio, and cytochrome c release. However, EPA did not prevent mitochondrial enlargement or a decrease in mitochondrial membrane potential. This study demonstrated cellular mechanisms by which EPA provided neuroprotective effects in experimental PD.
Collapse
Affiliation(s)
- Dirk W Luchtman
- National Research Institute for Nutrisciences and Health and Department of Biomedical Science, University of Prince Edward Island, Charlottetown, Canada
| | | | | | | | | |
Collapse
|
99
|
Baitharu I, Jain V, Deep SN, Kumar G, Ilavazhagan G. Exposure to Hypobaric Hypoxia and Reoxygenation Induces Transient Anxiety-Like Behavior in Rat. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jbbs.2013.38063] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
100
|
Orr SK, Trépanier MO, Bazinet RP. n-3 Polyunsaturated fatty acids in animal models with neuroinflammation. Prostaglandins Leukot Essent Fatty Acids 2013; 88:97-103. [PMID: 22770766 DOI: 10.1016/j.plefa.2012.05.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 05/16/2012] [Accepted: 05/18/2012] [Indexed: 11/24/2022]
Abstract
Neuroinflammation is present in the majority of acute and chronic neurological disorders. Excess or prolonged inflammation in the brain is thought to exacerbate neuronal damage and loss. Identifying modulators of neuroinflammation is an active area of study since it may lead to novel therapies. Omega-3 polyunsaturated fatty acids (n-3 PUFA) are anti-inflammatory in many non-neural tissues; their role in neuroinflammation is less studied. This review summarizes the relationship between n-3 PUFA and brain inflammation in animal models of brain injury and aging. Evidence by and large shows protective effects of n-3 PUFA in models of sickness behavior, stroke, aging, depression, Parkinson's disease, diabetes, and cytokine- and irradiation-induced cognitive impairments. However, rigorous studies that test the direct effects of n-3 PUFA in neuroinflammation in vivo are lacking. Future research in this area is necessary to determine if, and if so which, n-3 PUFA directly target brain inflammatory pathways. n-3 PUFA bioactive metabolites may provide novel therapeutic targets for neurological disorders with a neuroinflammatory component.
Collapse
Affiliation(s)
- Sarah K Orr
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2
| | | | | |
Collapse
|