51
|
Collagen XIII Is Required for Neuromuscular Synapse Regeneration and Functional Recovery after Peripheral Nerve Injury. J Neurosci 2018; 38:4243-4258. [PMID: 29626165 DOI: 10.1523/jneurosci.3119-17.2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 03/02/2018] [Accepted: 03/30/2018] [Indexed: 11/21/2022] Open
Abstract
Collagen XIII occurs as both a transmembrane-bound and a shed extracellular protein and is able to regulate the formation and function of neuromuscular synapses. Its absence results in myasthenia: presynaptic and postsynaptic defects at the neuromuscular junction (NMJ), leading to destabilization of the motor nerves, muscle regeneration and atrophy. Mutations in COL13A1 have recently been found to cause congenital myasthenic syndrome, characterized by fatigue and chronic muscle weakness, which may be lethal. We show here that muscle defects in collagen XIII-deficient mice stabilize in adulthood, so that the disease is not progressive until very late. Sciatic nerve crush was performed to examine how the lack of collagen XIII or forced expression of its transmembrane form affects the neuromuscular synapse regeneration and functional recovery following injury. We show that collagen XIII-deficient male mice are unable to achieve complete NMJ regeneration and functional recovery. This is mainly attributable to presynaptic defects that already existed in the absence of collagen XIII before injury. Shedding of the ectodomain is not required, as the transmembrane form of collagen XIII alone fully rescues the phenotype. Thus, collagen XIII could serve as a therapeutic agent in cases of injury-induced PNS regeneration and functional recovery. We conclude that intrinsic alterations at the NMJ in Col13a1-/- mice contribute to impaired and incomplete NMJ regeneration and functional recovery after peripheral nerve injury. However, such alterations do not progress once they have stabilized in early adulthood, emphasizing the role of collagen XIII in NMJ maturation.SIGNIFICANCE STATEMENT Collagen XIII is required for gaining and maintaining the normal size, complexity, and functional capacity of neuromuscular synapses. Loss-of-function mutations in COL13A1 cause congenital myasthenic syndrome 19, characterized by postnatally progressive muscle fatigue, which compromises patients' functional capacity. We show here in collagen XIII-deficient mice that the disease stabilizes in adulthood once the NMJs have matured. This study also describes a relevant contribution of the altered NMJ morphology and function to neuromuscular synapses, and PNS regeneration and functional recovery in collagen XIII-deficient mice after peripheral nerve injury. Correlating the animal model data on collagen XIII-associated congenital myasthenic syndrome, it can be speculated that neuromuscular connections in congenital myasthenic syndrome patients are not able to fully regenerate and restore normal functionality if exposed to peripheral nerve injury.
Collapse
|
52
|
Yan M, Xing GL, Xiong WC, Mei L. Agrin and LRP4 antibodies as new biomarkers of myasthenia gravis. Ann N Y Acad Sci 2018; 1413:126-135. [PMID: 29377176 DOI: 10.1111/nyas.13573] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/08/2017] [Accepted: 11/11/2017] [Indexed: 12/13/2022]
Abstract
Myasthenia gravis (MG) is a common disorder that affects the neuromuscular junction. It is caused by antibodies against acetylcholine receptor and muscle-specific tyrosine kinase; however, some MG patients do not have antibodies against either of the proteins. Recent studies have revealed antibodies against agrin and its receptor LRP4-both critical for neuromuscular junction formation and maintenance-in MG patients from various populations. Results from experimental autoimmune MG animal models indicate that anti-LRP4 antibodies are causal to MG. Clinical studies have begun to reveal the significance of the new biomarkers. With their identification, MG appears to be a complex disease entity that can be classified into different subtypes with different etiology, each with unique symptoms. Future systematic studies of large cohorts of well-diagnosed MG patients are needed to determine whether each subtype of patients would respond to different therapeutic strategies. Results should contribute to the goal of precision medicine for MG patients. Anti-agrin and anti-LRP4 antibodies are also detectable in some patients with amyotrophic lateral sclerosis or Lou Gehrig's disease; however, whether they are a cause or response to the disorder remains unclear.
Collapse
Affiliation(s)
- Min Yan
- Institute of Life Science, Nanchang University, Nanchang, China.,School of Basic Medical Sciences, Nanchang University, Nanchang, China.,Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Guang-Lin Xing
- Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Wen-Cheng Xiong
- Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, Ohio.,Louis Stokes Cleveland VAMC, Cleveland, Ohio
| | - Lin Mei
- Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, Ohio.,Louis Stokes Cleveland VAMC, Cleveland, Ohio
| |
Collapse
|
53
|
Beeson D, Cossins J, Rodriguez-Cruz P, Maxwell S, Liu WW, Palace J. Myasthenic syndromes due to defects in COL13A1 and in the N-linked glycosylation pathway. Ann N Y Acad Sci 2018; 1413:163-169. [DOI: 10.1111/nyas.13576] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/09/2017] [Accepted: 11/14/2017] [Indexed: 12/11/2022]
Affiliation(s)
- David Beeson
- Neurosciences Group, Nuffield Department of Clinical Neuroscience; Weatherall Institute of Molecular Medicine; The John Radcliffe Oxford UK
| | - Judith Cossins
- Neurosciences Group, Nuffield Department of Clinical Neuroscience; Weatherall Institute of Molecular Medicine; The John Radcliffe Oxford UK
| | - Pedro Rodriguez-Cruz
- Neurosciences Group, Nuffield Department of Clinical Neuroscience; Weatherall Institute of Molecular Medicine; The John Radcliffe Oxford UK
| | - Susan Maxwell
- Neurosciences Group, Nuffield Department of Clinical Neuroscience; Weatherall Institute of Molecular Medicine; The John Radcliffe Oxford UK
| | - Wei-Wei Liu
- Neurosciences Group, Nuffield Department of Clinical Neuroscience; Weatherall Institute of Molecular Medicine; The John Radcliffe Oxford UK
| | - Jacqueline Palace
- Nuffield Department of Clinical Neuroscience; Level 3 The West Wing; The John Radcliffe Oxford UK
| |
Collapse
|
54
|
Abstract
PURPOSE OF REVIEW Congenital myasthenic syndromes (CMS) are a group of heterogeneous inherited disorders caused by mutations in genes encoding proteins essential for the integrity of neuromuscular transmission. This review updates the reader on recent findings that have expanded the phenotypic spectrum and suggested improved treatment strategies. RECENT FINDINGS The use of next-generation sequencing is continuing to unearth new genes in which mutations can give rise to defective neuromuscular transmission. The defective transmission may be part of an overall more complex phenotype in which there may be muscle, central nervous system or other involvement. Notably, mutations in series of genes encoding presynaptic proteins are being identified. Further work on mutations found in the AGRN-MUSK acetylcholine receptor clustering pathway has helped characterize the role of LRP4 and broadened the phenotypic spectrum for AGRN mutations. Mutations in another extracellular matrix protein, collagen 13A1 and in GMPPB have also been found to cause a CMS. Finally, there are an increasing number of reports for the beneficial effects of treatment with β2-adrenergic receptor agonists. SUMMARY Recent studies of the CMS illustrate the increasing complexity of the genetics, pathophysiological mechanisms and the need to tailor therapy for the genetic disorders of the neuromuscular junction.
Collapse
|
55
|
Wei C, Stock L, Valanejad L, Zalewski ZA, Karns R, Puymirat J, Nelson D, Witte D, Woodgett J, Timchenko NA, Timchenko L. Correction of GSK3β at young age prevents muscle pathology in mice with myotonic dystrophy type 1. FASEB J 2018; 32:2073-2085. [PMID: 29203592 DOI: 10.1096/fj.201700700r] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is a progressive neuromuscular disease caused by expanded CUG repeats, which misregulate RNA metabolism through several RNA-binding proteins, including CUG-binding protein/CUGBP1 elav-like factor 1 (CUGBP1/CELF1) and muscleblind 1 protein. Mutant CUG repeats elevate CUGBP1 and alter CUGBP1 activity via a glycogen synthase kinase 3β (GSK3β)-cyclin D3-cyclin D-dependent kinase 4 (CDK4) signaling pathway. Inhibition of GSK3β corrects abnormal activity of CUGBP1 in DM1 mice [human skeletal actin mRNA, containing long repeats ( HSALR) model]. Here, we show that the inhibition of GSK3β in young HSALR mice prevents development of DM1 muscle pathology. Skeletal muscle in 1-yr-old HSALR mice, treated at 1.5 mo for 6 wk with the inhibitors of GSK3, exhibits high fiber density, corrected atrophy, normal fiber size, with reduced central nuclei and normalized grip strength. Because CUG-GSK3β-cyclin D3-CDK4 converts the active form of CUGBP1 into a form of translational repressor, we examined the contribution of CUGBP1 in myogenesis using Celf1 knockout mice. We found that a loss of CUGBP1 disrupts myogenesis, affecting genes that regulate differentiation and the extracellular matrix. Proteins of those pathways are also misregulated in young HSALR mice and in muscle biopsies of patients with congenital DM1. These findings suggest that the correction of GSK3β-CUGBP1 pathway in young HSALR mice might have a positive effect on the myogenesis over time.-Wei, C., Stock, L., Valanejad, L., Zalewski, Z. A., Karns, R., Puymirat, J., Nelson, D., Witte, D., Woodgett, J., Timchenko, N. A., Timchenko, L. Correction of GSK3β at young age prevents muscle pathology in mice with myotonic dystrophy type 1.
Collapse
Affiliation(s)
- Christina Wei
- Division of Neurology, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Lauren Stock
- Division of Neurology, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Leila Valanejad
- Department of Surgery, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Zachary A Zalewski
- Department of Molecular Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Rebekah Karns
- Department of Bioinformatics, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Jack Puymirat
- Centre Hospitalier-Université Laval Research Center, Québec City, Quebéc, Canada
| | - David Nelson
- Department of Molecular Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - David Witte
- Department of Pathology, Cincinnati Children's Hospital, Cincinnati, Ohio, USA; and
| | - Jim Woodgett
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Nikolai A Timchenko
- Department of Surgery, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Lubov Timchenko
- Division of Neurology, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| |
Collapse
|
56
|
Shi L, Huang L, He R, Huang W, Wang H, Lai X, Zou Z, Sun J, Ke Q, Zheng M, Lu X, Pei Z, Su H, Xiang AP, Li W, Yao X. Modeling the Pathogenesis of Charcot-Marie-Tooth Disease Type 1A Using Patient-Specific iPSCs. Stem Cell Reports 2017; 10:120-133. [PMID: 29276154 PMCID: PMC5768917 DOI: 10.1016/j.stemcr.2017.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 11/16/2017] [Accepted: 11/16/2017] [Indexed: 01/27/2023] Open
Abstract
Charcot-Marie-Tooth disease type 1A (CMT1A), one of the most frequent inherited peripheral neuropathies, is associated with PMP22 gene duplication. Previous studies of CMT1A mainly relied on rodent models, and it is not yet clear how PMP22 overexpression leads to the phenotype in patients. Here, we generated the human induced pluripotent stem cell (hiPSC) lines from two CMT1A patients as an in vitro cell model. We found that, unlike the normal control cells, CMT1A hiPSCs rarely generated Schwann cells through neural crest stem cells (NCSCs). Instead, CMT1A NCSCs produced numerous endoneurial fibroblast-like cells in the Schwann cell differentiation system, and similar results were obtained in a PMP22-overexpressing iPSC model. Therefore, despite the demyelination-remyelination and/or dysmyelination theory for CMT1A pathogenesis, developmental disabilities of Schwann cells may be considered as an underlying cause of CMT1A. Our results may have important implications for the uncovering of the underlying mechanism and the development of a promising therapeutic strategy for CMT1A neuropathy. Modeling CMT1A disease with PMP22 duplication using hiPSC-derived NCSCs PMP22 duplication may lead to Schwann cell developmental defect of NCSCs PMP22-overexpressing NCSCs recapitulate the phenotype of CMT1A NCSCs
Collapse
Affiliation(s)
- Lei Shi
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Division of Neurosurgical Intensive Care Unit, Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Lihua Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ruojie He
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Weijun Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Huiyan Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xingqiang Lai
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zhengwei Zou
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jiaqi Sun
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Qiong Ke
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Minying Zheng
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xilin Lu
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zhong Pei
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China; Department of Biochemistry, Zhongshan Medical School, Sun Yat-sen University, Guangzhou 510080, China
| | - Weiqiang Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China; Department of Biochemistry, Zhongshan Medical School, Sun Yat-sen University, Guangzhou 510080, China.
| | - Xiaoli Yao
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.
| |
Collapse
|
57
|
Tu H, Pirskanen-Matell R, Heikkinen A, Oikarainen T, Risteli J, Pihlajaniemi T. Autoimmune antibodies to collagen XIII in myasthenia gravis patients. Muscle Nerve 2017; 57:506-510. [DOI: 10.1002/mus.25969] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Hongmin Tu
- Centre of Excellence in Cell-Extracellular Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu; University of Oulu; FIN 90014 Oulu Finland
| | | | - Anne Heikkinen
- Centre of Excellence in Cell-Extracellular Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu; University of Oulu; FIN 90014 Oulu Finland
| | - Tuomo Oikarainen
- Centre of Excellence in Cell-Extracellular Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu; University of Oulu; FIN 90014 Oulu Finland
| | - Juha Risteli
- Department of Clinical Chemistry, Cancer and Translational Medicine Research Unit, Medical Research Center; University of Oulu and Northern Finland Laboratory Centre NordLab, Oulu University Hospital; Oulu Finland
| | - Taina Pihlajaniemi
- Centre of Excellence in Cell-Extracellular Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu; University of Oulu; FIN 90014 Oulu Finland
| |
Collapse
|
58
|
Monavarfeshani A, Knill CN, Sabbagh U, Su J, Fox MA. Region- and Cell-Specific Expression of Transmembrane Collagens in Mouse Brain. Front Integr Neurosci 2017; 11:20. [PMID: 28912695 PMCID: PMC5583603 DOI: 10.3389/fnint.2017.00020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/16/2017] [Indexed: 12/16/2022] Open
Abstract
Unconventional collagens are nonfribrillar proteins that not only contribute to the structure of extracellular matrices but exhibit unique bio-activities. Although roles for unconventional collagens have been well-established in the development and function of non-neural tissues, only recently have studies identified roles for these proteins in brain development, and more specifically, in the formation and refinement of synaptic connections between neurons. Still, our understanding of the full cohort of unconventional collagens that are generated in the mammalian brain remains unclear. Here, we sought to address this gap by assessing the expression of transmembrane collagens (i.e., collagens XIII, XVII, XXIII and XXV) in mouse brain. Using quantitative PCR and in situ hybridization (ISH), we demonstrate both region- and cell-specific expression of these unique collagens in the developing brain. For the two most highly expressed transmembrane collagens (i.e., collagen XXIII and XXV), we demonstrate that they are expressed by select subsets of neurons in different parts of the brain. For example, collagen XXIII is selectively expressed by excitatory neurons in the mitral/tufted cell layer of the accessory olfactory bulb (AOB) and by cells in the inner nuclear layer (INL) of the retina. On the other hand, collagen XXV, which is more broadly expressed, is generated by subsets of excitatory neurons in the dorsal thalamus and midbrain and by inhibitory neurons in the retina, ventral thalamus and telencephalon. Not only is col25a1 expression present in retina, it appears specifically enriched in retino-recipient nuclei within the brain (including the suprachiasmatic nucleus (SCN), lateral geniculate complex, olivary pretectal nucleus (OPN) and superior colliculus). Taken together, the distinct region- and cell-specific expression patterns of transmembrane collagens suggest that this family of unconventional collagens may play unique, yet-to-be identified roles in brain development and function.
Collapse
Affiliation(s)
- Aboozar Monavarfeshani
- Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research InstituteRoanoke, VA, United States.,Department of Biological Sciences, Virginia TechBlacksburg, VA, United States
| | - Courtney N Knill
- Virginia Tech Carilion School of Medicine, Virginia TechRoanoke, VA, United States
| | - Ubadah Sabbagh
- Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research InstituteRoanoke, VA, United States.,Translational Biology, Medicine, and Health Graduate Program, Virginia TechBlacksburg, VA, United States
| | - Jianmin Su
- Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research InstituteRoanoke, VA, United States
| | - Michael A Fox
- Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research InstituteRoanoke, VA, United States.,Department of Biological Sciences, Virginia TechBlacksburg, VA, United States.,Department of Pediatrics, Virginia Tech Carilion School of MedicineRoanoke, VA, United States
| |
Collapse
|
59
|
Motor Nerve Arborization Requires Proteolytic Domain of Damage-Induced Neuronal Endopeptidase (DINE) during Development. J Neurosci 2017; 36:4744-57. [PMID: 27122033 DOI: 10.1523/jneurosci.3811-15.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 03/14/2016] [Indexed: 01/23/2023] Open
Abstract
UNLABELLED Damage-induced neuronal endopeptidase (DINE)/endothelin-converting enzyme-like 1 (ECEL1) is a membrane-bound metalloprotease, which we originally identified as a nerve regeneration-associated molecule. Abundant expression of DINE is observed in regenerating neurons, as well as in developing spinal motor neurons. In line with this, DINE-deficient (DINE KO) embryos fail to arborize phrenic motor nerves in the diaphragm and to form proper neuromuscular junctions (NMJ), which lead to death shortly after birth. However, it is unclear whether protease activity of DINE is involved in motor nerve terminal arborization and how DINE participates in the process. To address these issues, we performed an in vivo rescue experiment in which three types of motor-neuron specific DINE transgenic mice were crossed with DINE KO mice. The DINE KO mice, which overexpressed wild-type DINE in motor neurons, succeeded in rescuing the aberrant nerve terminal arborization and lethality after birth, while those overexpressing two types of protease domain-mutated DINE failed. Further histochemical analysis showed abnormal behavior of immature Schwann cells along the DINE-deficient axons. Coculture experiments of motor neurons and Schwann cells ensured that the protease domain of neuronal DINE was required for proper alignment of immature Schwann cells along the axon. These findings suggest that protease activity of DINE is crucial for intramuscular innervation of motor nerves and subsequent NMJ formation, as well as proper control of interactions between axons and immature Schwann cells. SIGNIFICANCE STATEMENT Damage-induced neuronal endopeptidase (DINE) is a membrane-bound metalloprotease; expression is abundant in developing spinal motor neurons, as well as in nerve-injured neurons. DINE-deficient (KO) embryos fail to arborize phrenic motor nerves in the diaphragm and to form a neuromuscular junction, leading to death immediately after birth. To address whether proteolytic activity of DINE is involved in this process, we performed in vivo rescue experiments with DINE KO mice. Transgenic rescue of DINE KO mice was accomplished by overexpression of wild-type DINE, but not by protease domain-mutated DINE. Immature Schwann cells were abnormally aligned along the DINE protease-deficient axons. Thus, the protease activity of DINE is crucial for motor axon arborization, as well as the interaction between axons and immature Schwann cells.
Collapse
|
60
|
Ross JA, Webster RG, Lechertier T, Reynolds LE, Turmaine M, Bencze M, Jamshidi Y, Cetin H, Muntoni F, Beeson D, Hodilvala-Dilke K, Conti FJ. Multiple roles of integrin-α3 at the neuromuscular junction. J Cell Sci 2017; 130:1772-1784. [PMID: 28386022 PMCID: PMC5450193 DOI: 10.1242/jcs.201103] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 03/31/2017] [Indexed: 12/22/2022] Open
Abstract
The neuromuscular junction (NMJ) is the synapse between motoneurons and skeletal muscle, and is responsible for eliciting muscle contraction. Neurotransmission at synapses depends on the release of synaptic vesicles at sites called active zones (AZs). Various proteins of the extracellular matrix are crucial for NMJ development; however, little is known about the identity and functions of the receptors that mediate their effects. Using genetically modified mice, we find that integrin-α3 (encoded by Itga3), an adhesion receptor at the presynaptic membrane, is involved in the localisation of AZ components and efficient synaptic vesicle release. Integrin-α3 also regulates integrity of the synapse - mutant NMJs present with progressive structural changes and upregulated autophagy, features commonly observed during ageing and in models of neurodegeneration. Unexpectedly, we find instances of nerve terminal detachment from the muscle fibre; to our knowledge, this is the first report of a receptor that is required for the physical anchorage of pre- and postsynaptic elements at the NMJ. These results demonstrate multiple roles of integrin-α3 at the NMJ, and suggest that alterations in its function could underlie defects that occur in neurodegeneration or ageing.
Collapse
Affiliation(s)
- Jacob A Ross
- Dubowitz Neuromuscular Centre, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Richard G Webster
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Tanguy Lechertier
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Louise E Reynolds
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Mark Turmaine
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Maximilien Bencze
- Dubowitz Neuromuscular Centre, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Yalda Jamshidi
- Department of Genetics, Institute of Molecular and Clinical Sciences, St George's University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Hakan Cetin
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - David Beeson
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Kairbaan Hodilvala-Dilke
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Francesco J Conti
- Dubowitz Neuromuscular Centre, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
61
|
Deletion of Pofut1 in Mouse Skeletal Myofibers Induces Muscle Aging-Related Phenotypes in cis and in trans. Mol Cell Biol 2017; 37:MCB.00426-16. [PMID: 28265002 DOI: 10.1128/mcb.00426-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 02/18/2017] [Indexed: 01/01/2023] Open
Abstract
Sarcopenia, the loss of muscle mass and strength during normal aging, involves coordinate changes in skeletal myofibers and the cells that contact them, including satellite cells and motor neurons. Here we show that the protein O-fucosyltransferase 1 gene (Pofut1), which encodes a glycosyltransferase required for NotchR-mediated cell-cell signaling, has reduced expression in aging skeletal muscle. Moreover, premature postnatal deletion of Pofut1 in skeletal myofibers can induce aging-related phenotypes in cis within skeletal myofibers and in trans within satellite cells and within motor neurons via the neuromuscular junction. Changed phenotypes include reduced skeletal muscle size and strength, decreased myofiber size, increased slow fiber (type 1) density, increased muscle degeneration and regeneration in aged muscles, decreased satellite cell self-renewal and regenerative potential, and increased neuromuscular fragmentation and occasional denervation. Pofut1 deletion in skeletal myofibers reduced NotchR signaling in young adult muscles, but this effect was lost with age. Increasing muscle NotchR signaling also reduced muscle size. Gene expression studies point to regulation of cell cycle genes, muscle myosins, NotchR and Wnt pathway genes, and connective tissue growth factor by Pofut1 in skeletal muscle, with additional effects on α dystroglycan glycosylation.
Collapse
|
62
|
Härönen H, Zainul Z, Tu H, Naumenko N, Sormunen R, Miinalainen I, Shakirzyanova A, Oikarainen T, Abdullin A, Martin P, Santoleri S, Koistinaho J, Silman I, Giniatullin R, Fox MA, Heikkinen A, Pihlajaniemi T. Collagen XIII secures pre- and postsynaptic integrity of the neuromuscular synapse. Hum Mol Genet 2017; 26:2076-2090. [DOI: 10.1093/hmg/ddx101] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/10/2017] [Indexed: 01/01/2023] Open
|
63
|
Rogers RS, Nishimune H. The role of laminins in the organization and function of neuromuscular junctions. Matrix Biol 2016; 57-58:86-105. [PMID: 27614294 DOI: 10.1016/j.matbio.2016.08.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/10/2016] [Accepted: 08/17/2016] [Indexed: 01/11/2023]
Abstract
The synapse between motor neurons and skeletal muscle is known as the neuromuscular junction (NMJ). Proper alignment of presynaptic and post-synaptic structures of motor neurons and muscle fibers, respectively, is essential for efficient motor control of skeletal muscles. The synaptic cleft between these two cells is filled with basal lamina. Laminins are heterotrimer extracellular matrix molecules that are key members of the basal lamina. Laminin α4, α5, and β2 chains specifically localize to NMJs, and these laminin isoforms play a critical role in maintenance of NMJs and organization of synaptic vesicle release sites known as active zones. These individual laminin chains exert their role in organizing NMJs by binding to their receptors including integrins, dystroglycan, and voltage-gated calcium channels (VGCCs). Disruption of these laminins or the laminin-receptor interaction occurs in neuromuscular diseases including Pierson syndrome and Lambert-Eaton myasthenic syndrome (LEMS). Interventions to maintain proper level of laminins and their receptor interactions may be insightful in treating neuromuscular diseases and aging related degeneration of NMJs.
Collapse
Affiliation(s)
- Robert S Rogers
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas, USA.
| | - Hiroshi Nishimune
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas, USA.
| |
Collapse
|
64
|
Morris OC, Schebitz Walter K, Telemo E, Hintschich C. Constitutively low expression of collagen XIII alpha 1 may help explain the vulnerability of the inferior rectus muscle to thyroid-associated ophthalmopathy. Orbit 2016; 35:343-349. [PMID: 27580012 DOI: 10.1080/01676830.2016.1193531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Thyroid-associated ophthalmopathy (TAO) has a predilection for inferior rectus muscle that has never been explained. We conducted immunohistochemical staining for the soluble cleaved form of collagen XIII alpha 1 (COL13A1) and found constitutively low expression of COL13A1 in normal human inferior rectus muscles and moderate expression of COL13A1 in normal human medial rectus muscles. COL13A1 is known to be essential to development and maintenance of neuromuscular junctions and there is some evidence to suggest it may help support normal immune function. The combination of constitutively low expression of COL13A1, high physiological and metabolic demands, and consequentially relatively high exposure to stressors via the blood stream may help explain the particular vulnerability of inferior rectus to TAO compared to other extraocular muscles.
Collapse
Affiliation(s)
- Olivia Claire Morris
- a William Harvey Research Institute , University of London , London , UK.,b Department of Rheumatology and Inflammation Research , University of Gothenburg , Gothenburg , Sweden
| | | | - Esbjörn Telemo
- b Department of Rheumatology and Inflammation Research , University of Gothenburg , Gothenburg , Sweden
| | | |
Collapse
|
65
|
Ohno K, Ohkawara B, Ito M. Recent advances in congenital myasthenic syndromes. ACTA ACUST UNITED AC 2016. [DOI: 10.1111/cen3.12316] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Kinji Ohno
- Division of Neurogenetics; Center for Neurological Diseases and Cancer; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Bisei Ohkawara
- Division of Neurogenetics; Center for Neurological Diseases and Cancer; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Mikako Ito
- Division of Neurogenetics; Center for Neurological Diseases and Cancer; Nagoya University Graduate School of Medicine; Nagoya Japan
| |
Collapse
|
66
|
Zhang J, Hu ZQ, Turner NJ, Teng SF, Cheng WY, Zhou HY, Zhang L, Hu HW, Wang Q, Badylak SF. Perfusion-decellularized skeletal muscle as a three-dimensional scaffold with a vascular network template. Biomaterials 2016; 89:114-26. [PMID: 26963901 DOI: 10.1016/j.biomaterials.2016.02.040] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/07/2016] [Accepted: 02/23/2016] [Indexed: 11/25/2022]
Abstract
There exists a great need for repair grafts with similar volume to human skeletal muscle that can promote the innate ability of muscle to regenerate following volumetric muscle loss. Perfusion decellularization is an attractive technique for extracellular matrix (ECM) scaffold from intact mammalian organ or tissue which has been successfully used in tissue reconstruction. The perfusion-decellularization of skeletal muscle has been poorly assessed and characterized, but the bioactivity and functional capacity of the obtained perfusion skeletal muscle ECM (pM-ECM) to remodel in vivo is unknown. In the present study, pM-ECM was prepared from porcine rectus abdominis (RA). Perfusion-decellularization of porcine RA effectively removed cellular and nuclear material while retaining the intricate three-dimensional microarchitecture and vasculature networks of the native RA, and many of the bioactive ECM components and mechanical properties. In vivo, partial-thickness abdominal wall defects in rats repaired with pM-ECM showed improved neovascularization, myogenesis and functional recellularization compared to porcine-derived small intestinal submucosa (SIS). These findings show the biologic potential of RA pM-ECM as a scaffold for supporting site appropriate, tissue reconstruction, and provide a better understanding of the importance maintaining the tissue-specific complex three-dimensional architecture of ECM during decellularization and regeneration.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Surgery, Shanghai Chang Zheng Hospital, Second Military Medical University, Shanghai 200003, PR China; Department of Regenerative Medicine, Shanghai Zhabei District Central Hospital, Shanghai 200072, PR China
| | - Zhi Qian Hu
- Department of Surgery, Shanghai Chang Zheng Hospital, Second Military Medical University, Shanghai 200003, PR China
| | - Neill J Turner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Shi Feng Teng
- Department of Surgery, Shanghai Chang Zheng Hospital, Second Military Medical University, Shanghai 200003, PR China
| | - Wen Yue Cheng
- Department of Regenerative Medicine, Shanghai Zhabei District Central Hospital, Shanghai 200072, PR China
| | - Hai Yang Zhou
- Department of Surgery, Shanghai Chang Zheng Hospital, Second Military Medical University, Shanghai 200003, PR China
| | - Li Zhang
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Hong Wei Hu
- Department of General Surgery, Shanghai Zhabei District Central Hospital, Shanghai 200072, PR China
| | - Qiang Wang
- Department of Surgery, Shanghai Chang Zheng Hospital, Second Military Medical University, Shanghai 200003, PR China; Department of Regenerative Medicine, Shanghai Zhabei District Central Hospital, Shanghai 200072, PR China; Department of General Surgery, Shanghai Zhabei District Central Hospital, Shanghai 200072, PR China.
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
67
|
Tu H, Huhtala P, Lee HM, Adams JC, Pihlajaniemi T. Membrane-associated collagens with interrupted triple-helices (MACITs): evolution from a bilaterian common ancestor and functional conservation in C. elegans. BMC Evol Biol 2015; 15:281. [PMID: 26667623 PMCID: PMC4678570 DOI: 10.1186/s12862-015-0554-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 12/02/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Collagens provide structural support and guidance cues within the extracellular matrix of metazoans. Mammalian collagens XIII, XXIII and XXV form a unique subgroup of type II transmembrane proteins, each comprising a short N-terminal cytosolic domain, a transmembrane domain and a largely collagenous ectodomain. We name these collagens as MACITs (Membrane-Associated Collagens with Interrupted Triple-helices), and here investigate their evolution and conserved properties. To date, these collagens have been studied only in mammals. Knowledge of the representation of MACITs in other extant metazoans is lacking. This question is of interest for understanding structural/functional relationships in the MACIT family and also for insight into the evolution of MACITs in relation to the secreted, fibrillar collagens that are present throughout the metazoa. RESULTS MACITs are restricted to bilaterians and are represented in the Ecdysozoa, Hemichordata, Urochordata and Vertebrata (Gnathostomata). They were not identified in available early-diverging metazoans, Lophotrochozoa, Echinodermata, Cephalochordata or Vertebrata (Cyclostomata). Whereas invertebrates encode a single MACIT, collagens XIII/XXIII/XXV of jawed vertebrates are paralogues that originated from the two rounds of en-bloc genome duplication occurring early in vertebrate evolution. MACITs have conserved domain architecture in which a juxta-membrane furin-cleavage site and the C-terminal 34 residues are especially highly conserved, whereas the cytoplasmic domains are weakly conserved. To study protein expression and function in a metazoan with a single MACIT gene, we focused on Caenorhabditis elegans and its col-99 gene. A col-99 cDNA was cloned and expressed as protein in mammalian CHO cells, two antibodies against COL-99 protein were generated, and a col-99-bearing fosmid gene construct col-99::egfp::flag was used to generate transgenic C. elegans lines. The encoded COL-99 polypeptide is 85 kDa in size and forms a trimeric protein. COL-99 is plasma membrane-associated and undergoes furin-dependent ectodomain cleavage and shedding. COL-99 is detected in mouth, pharynx, body wall and the tail, mostly in motor neurons and muscle systems and is enriched at neuromuscular junctions. CONCLUSIONS Through identification of MACITs in multiple metazoan phyla we developed a model for the evolution of MACITs. The experimental data demonstrate conservation of MACIT molecular and cellular properties and tissue localisations in the invertebrate, C. elegans.
Collapse
Affiliation(s)
- Hongmin Tu
- Centre of Excellence in Cell-Extracellular Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Aapistie 5, Oulu, FIN 90014, Finland.
| | - Pirkko Huhtala
- Centre of Excellence in Cell-Extracellular Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Aapistie 5, Oulu, FIN 90014, Finland.
| | - Hang-Mao Lee
- Centre of Excellence in Cell-Extracellular Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Aapistie 5, Oulu, FIN 90014, Finland.
| | - Josephine C Adams
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.
| | - Taina Pihlajaniemi
- Centre of Excellence in Cell-Extracellular Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Aapistie 5, Oulu, FIN 90014, Finland.
| |
Collapse
|
68
|
Logan CV, Cossins J, Rodríguez Cruz PM, Parry DA, Maxwell S, Martínez-Martínez P, Riepsaame J, Abdelhamed ZA, Lake AVR, Moran M, Robb S, Chow G, Sewry C, Hopkins PM, Sheridan E, Jayawant S, Palace J, Johnson CA, Beeson D. Congenital Myasthenic Syndrome Type 19 Is Caused by Mutations in COL13A1, Encoding the Atypical Non-fibrillar Collagen Type XIII α1 Chain. Am J Hum Genet 2015; 97:878-85. [PMID: 26626625 PMCID: PMC4678414 DOI: 10.1016/j.ajhg.2015.10.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/28/2015] [Indexed: 12/30/2022] Open
Abstract
The neuromuscular junction (NMJ) consists of a tripartite synapse with a presynaptic nerve terminal, Schwann cells that ensheathe the terminal bouton, and a highly specialized postsynaptic membrane. Synaptic structural integrity is crucial for efficient signal transmission. Congenital myasthenic syndromes (CMSs) are a heterogeneous group of inherited disorders that result from impaired neuromuscular transmission, caused by mutations in genes encoding proteins that are involved in synaptic transmission and in forming and maintaining the structural integrity of NMJs. To identify further causes of CMSs, we performed whole-exome sequencing (WES) in families without an identified mutation in known CMS-associated genes. In two families affected by a previously undefined CMS, we identified homozygous loss-of-function mutations in COL13A1, which encodes the alpha chain of an atypical non-fibrillar collagen with a single transmembrane domain. COL13A1 localized to the human muscle motor endplate. Using CRISPR-Cas9 genome editing, modeling of the COL13A1 c.1171delG (p.Leu392Sfs∗71) frameshift mutation in the C2C12 cell line reduced acetylcholine receptor (AChR) clustering during myotube differentiation. This highlights the crucial role of collagen XIII in the formation and maintenance of the NMJ. Our results therefore delineate a myasthenic disorder that is caused by loss-of-function mutations in COL13A1, encoding a protein involved in organization of the NMJ, and emphasize the importance of appropriate symptomatic treatment for these individuals.
Collapse
Affiliation(s)
- Clare V Logan
- Section of Ophthalmology & Neurosciences, Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds LS9 7TF, UK
| | - Judith Cossins
- Neurosciences Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Pedro M Rodríguez Cruz
- Neurosciences Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - David A Parry
- Section of Genetics, Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds LS9 7TF, UK
| | - Susan Maxwell
- Neurosciences Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Pilar Martínez-Martínez
- Neuroimmunology Group, Division of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, PO box 616, 6200 MD Maastricht, the Netherlands
| | - Joey Riepsaame
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Zakia A Abdelhamed
- Section of Ophthalmology & Neurosciences, Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds LS9 7TF, UK
| | - Alice V R Lake
- Section of Ophthalmology & Neurosciences, Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds LS9 7TF, UK
| | - Maria Moran
- Department of Paediatric Neurology, Nottingham City Hospital, Nottingham University Hospitals NHS Trust, Hucknall Road, Nottingham NG5 1PB, UK
| | - Stephanie Robb
- Dubowitz Neuromuscular Centre, Institute of Child Health and Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK
| | - Gabriel Chow
- Department of Paediatric Neurology, Nottingham City Hospital, Nottingham University Hospitals NHS Trust, Hucknall Road, Nottingham NG5 1PB, UK
| | - Caroline Sewry
- Dubowitz Neuromuscular Centre, Institute of Child Health and Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK
| | - Philip M Hopkins
- Section of Translational Anaesthesia and Surgical Sciences, Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds LS9 7TF, UK
| | - Eamonn Sheridan
- Section of Genetics, Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds LS9 7TF, UK
| | - Sandeep Jayawant
- Department of Paediatric Neurology, John Radcliffe Hospital, Oxford Radcliffe Hospitals NHS Trust, Oxford OX3 9DU, UK
| | - Jacqueline Palace
- Neurosciences Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Department of Clinical Neurology, John Radcliffe Hospital, Oxford Radcliffe Hospitals NHS Trust, Oxford OX3 9DU, UK
| | - Colin A Johnson
- Section of Ophthalmology & Neurosciences, Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds LS9 7TF, UK.
| | - David Beeson
- Neurosciences Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
69
|
Ricard-Blum S, Vallet SD. Proteases decode the extracellular matrix cryptome. Biochimie 2015; 122:300-13. [PMID: 26382969 DOI: 10.1016/j.biochi.2015.09.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/11/2015] [Indexed: 12/24/2022]
Abstract
The extracellular matrix is comprised of 1100 core-matrisome and matrisome-associated proteins and of glycosaminoglycans. This structural scaffold contributes to the organization and mechanical properties of tissues and modulates cell behavior. The extracellular matrix is dynamic and undergoes constant remodeling, which leads to diseases if uncontrolled. Bioactive fragments, called matricryptins, are released from the extracellular proteins by limited proteolysis and have biological activities on their own. They regulate numerous physiological and pathological processes such as angiogenesis, cancer, diabetes, wound healing, fibrosis and infectious diseases and either improve or worsen the course of diseases depending on the matricryptins and on the molecular and biological contexts. Several protease families release matricryptins from core-matrisome and matrisome-associated proteins both in vitro and in vivo. The major proteases, which decrypt the extracellular matrix, are zinc metalloproteinases of the metzincin superfamily (matrixins, adamalysins and astacins), cysteine proteinases and serine proteases. Some matricryptins act as enzyme inhibitors, further connecting protease and matricryptin fates and providing intricate regulation of major physiopathological processes such as angiogenesis and tumorigenesis. They strengthen the role of the extracellular matrix as a key player in tissue failure and core-matrisome and matrisome-associated proteins as important therapeutic targets.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- UMR 5086 CNRS - Université Lyon 1, 7 Passage du Vercors, 69367 Lyon Cedex 07, France.
| | - Sylvain D Vallet
- UMR 5086 CNRS - Université Lyon 1, 7 Passage du Vercors, 69367 Lyon Cedex 07, France.
| |
Collapse
|
70
|
Wu H, Barik A, Lu Y, Shen C, Bowman A, Li L, Sathyamurthy A, Lin TW, Xiong WC, Mei L. Slit2 as a β-catenin/Ctnnb1-dependent retrograde signal for presynaptic differentiation. eLife 2015; 4. [PMID: 26159615 PMCID: PMC4498096 DOI: 10.7554/elife.07266] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 06/18/2015] [Indexed: 12/12/2022] Open
Abstract
Neuromuscular junction formation requires proper interaction between motoneurons and muscle cells. β-Catenin (Ctnnb1) in muscle is critical for motoneuron differentiation; however, little is known about the relevant retrograde signal. In this paper, we dissected which functions of muscle Ctnnb1 are critical by an in vivo transgenic approach. We show that Ctnnb1 mutant without the transactivation domain was unable to rescue presynaptic deficits of Ctnnb1 mutation, indicating the involvement of transcription regulation. On the other hand, the cell-adhesion function of Ctnnb1 is dispensable. We screened for proteins that may serve as a Ctnnb1-directed retrograde factor and identified Slit2. Transgenic expression of Slit2 specifically in the muscle was able to diminish presynaptic deficits by Ctnnb1 mutation in mice. Slit2 immobilized on beads was able to induce synaptophysin puncta in axons of spinal cord explants. Together, these observations suggest that Slit2 serves as a factor utilized by muscle Ctnnb1 to direct presynaptic differentiation. DOI:http://dx.doi.org/10.7554/eLife.07266.001 Motor nerves are like electrical wires that connect our spinal cord to the muscles in our body. These nerves communicate with muscles across a connection called the neuromuscular junction. To first form a neuromuscular junction, the motor nerves and muscles each produce molecular cues that tell each other to do their part to build a connection. Beta-catenin in the muscle is known to regulate motor nerve development. However, beta-catenin has two different roles: it helps to coordinate whether neighboring cells stick together, and it can regulate which genes are ‘transcribed’ to produce proteins. It was not known which of these roles is necessary for forming neuromuscular junctions. Wu, Barik et al. now investigate this question by creating mice with mutant forms of beta-catenin in their muscles. Some mice had muscle beta-catenin that could not help cells stick together, and others had beta-catenin that could not control gene transcription. Only mutations that affected the ability of beta-catenin to control transcription caused abnormalities in the neuromuscular junction. However, these problems could be fixed by adding either normal beta-catenin or the mutant form that cannot help cells stick together. Wu, Barik et al. then used molecular tools to explore which genes are turned on by beta-catenin. The experiments showed that beta-catenin causes muscle fibers to produce a protein called Slit2—a developmental cue that controls where neurons grow. Furthermore, the neuromuscular junction defects found in mice without beta-catenin in their muscles could be reduced by making the muscle fibers produce more Slit2. However, not all defects in beta-catenin mutant mice are rescued by Slit2. Future research is needed to identify other beta-catenin-controlled signals and to determine whether such a pathway is altered in neuromuscular disorders. DOI:http://dx.doi.org/10.7554/eLife.07266.002
Collapse
Affiliation(s)
- Haitao Wu
- Department of Neurobiology, Institute of Basic Medical Sciences, Beijing, China
| | - Arnab Barik
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, United States
| | - Yisheng Lu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, United States
| | - Chengyong Shen
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, United States
| | - Andrew Bowman
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, United States
| | - Lei Li
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, United States
| | - Anupama Sathyamurthy
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, United States
| | - Thiri W Lin
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, United States
| | - Wen-Cheng Xiong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, United States
| | - Lin Mei
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, United States
| |
Collapse
|
71
|
Regulation of synaptic extracellular matrix composition is critical for proper synapse morphology. J Neurosci 2014; 34:12678-89. [PMID: 25232106 DOI: 10.1523/jneurosci.1183-14.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synapses are surrounded by a layer of extracellular matrix (ECM), which is instrumental for their development and maintenance. ECM composition is dynamically controlled by proteases, but how the precise composition of the ECM affects synaptic morphology is largely unknown. Through an unbiased forward genetic screen, we found that Caenorhabditis elegans gon-1, a conserved extracellular ADAMTS protease, is required for maintaining proper synaptic morphology at the neuromuscular junction. In gon-1 mutants, once synapse formation is complete, motor neuron presynaptic varicosities develop into large bulbous protrusions that contain synaptic vesicles and active zone proteins. A concomitant overgrowth of postsynaptic muscle membrane is found in close apposition to presynaptic axonal protrusions. Mutations in the muscle-specific, actin-severing protein cofilin (unc-60) suppress the axon phenotype, suggesting that muscle outgrowth is necessary for presynaptic protrusions. gon-1 mutants can also be suppressed by loss of the ECM components collagen IV (EMB-9) and fibulin (FBL-1). We propose that GON-1 regulates a developmental switch out of an initial "pro-growth" phase during which muscle arms grow out and form synapses with motor neuron axons. We postulate that this switch involves degradation or reorganization of collagen IV (EMB-9), whereas FBL-1 opposes GON-1 by stabilizing EMB-9. Our results describe a mechanism for regulating synaptic ECM composition and reveal the importance of precise ECM composition for neuronal morphology and synapse integrity.
Collapse
|
72
|
Darabid H, Perez-Gonzalez AP, Robitaille R. Neuromuscular synaptogenesis: coordinating partners with multiple functions. Nat Rev Neurosci 2014; 15:630-1. [DOI: 10.1038/nrn3821] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
73
|
Abstract
The function of muscle is to contract, which means to exert force on a substrate. The adaptations required for skeletal muscle differentiation, from a prototypic cell, involve specialization of housekeeping cytoskeletal contracting and supporting systems into crystalline arrays of proteins. Here I discuss the changes that all three cytoskeletal systems (microfilaments, intermediate filaments, and microtubules) undergo through myogenesis. I also discuss their interaction, through the membrane, to extracellular matrix and to other cells, where force will be exerted during contraction. The three cytoskeletal systems are necessary for the muscle cell and must exert complementary roles in the cell. Muscle is a responsive system, where structure and function are integrated: the structural adaptations it undergoes depend on force production. In this way, the muscle cytoskeleton is a portrait of its physiology. I review the cytoskeletal proteins and structures involved in muscle function and focus particularly on their role in myogenesis, the process by which this incredible muscle machine is made. Although the focus is on skeletal muscle, some of the discussion is applicable to cardiac and smooth muscle.
Collapse
|
74
|
CLAC-P/collagen type XXV is required for the intramuscular innervation of motoneurons during neuromuscular development. J Neurosci 2014; 34:1370-9. [PMID: 24453327 DOI: 10.1523/jneurosci.2440-13.2014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Formation of proper neuromuscular connections is a process coordinated by both motoneuron-intrinsic and target-dependent programs. Under these programs, motoneurons innervate target muscles, escape programmed cell death during fetal development, and form neuromuscular junctions (NMJ). Although a number of studies have revealed molecules involved in axon guidance to target muscles and NMJ formation, little is known about the molecular mechanisms linking intramuscular innervation and target-derived trophic factor-dependent prevention of motoneuron apoptosis. Here we studied the physiological function of CLAC-P/collagen XXV, a transmembrane-type collagen originally identified as a component of senile plaque amyloid of Alzheimer's disease brains, by means of generating Col25a1-deficient (KO) mice. Col25a1 KO mice died immediately after birth of respiratory failure. In Col25a1 KO mice, motor axons projected properly toward the target muscles but failed to elongate and branch within the muscle, followed by degeneration of axons. Failure of muscular innervation in Col25a1 KO mice led to excessive apoptosis during development, resulting in almost complete and exclusive loss of spinal motoneurons and immaturity in skeletal muscle development. Bax deletion in Col25a1 KO mice rescued motoneurons from apoptosis, although motor axons remained halted around the muscle entry site. Furthermore, these motoneurons were positive for phosphorylated c-Jun, an indicator of insufficient supply of target-derived survival signals. Together, these observations indicate that CLAC-P/collagen XXV is a novel essential factor that regulates the initial phase of intramuscular motor innervation, which is required for subsequent target-dependent motoneuron survival and NMJ formation during development.
Collapse
|
75
|
Abstract
Chemical synapses allow neurons to perform complex computations and regulate other systems of the body. At a chemical synapse, pre- and postsynaptic sites are separated by a small space (the synaptic cleft) and surrounded by astrocytes. The basement membrane (BM), a sheetlike, specialized extracellular matrix (ECM), is found ubiquitously in the PNS. It has become clear that the ECMs not only play a structural role but also serve as barriers and filters in the PNS and CNS. Moreover, proteoglycans and tenascin family proteins in the ECM regulate synapse formation and synaptic plasticity. Although CNS synapses lack the BMs, recent results indicate that the BM-associated collagens are also present in the CNS synaptic cleft and affect synaptogenesis in both the CNS and the PNS. The C1q domain-containing family proteins are important components of the CNS synaptic cleft in regulating synapse formation, maintenance, and the pruning process. The ECM is regarded as a crucial component of the tetrapartite synapse, consisting of pre- and postsynaptic neurons, astrocyte, and ECM.
Collapse
Affiliation(s)
- Anne Heikkinen
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Taina Pihlajaniemi
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Ruhr-University, Bochum, Germany
| | - Michisuke Yuzaki
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan.
| |
Collapse
|
76
|
Mienaltowski MJ, Birk DE. Structure, physiology, and biochemistry of collagens. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 802:5-29. [PMID: 24443018 DOI: 10.1007/978-94-007-7893-1_2] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tendons and ligaments are connective tissues that guide motion, share loads, and transmit forces in a manner that is unique to each as well as the anatomical site and biomechanical stresses to which they are subjected. Collagens are the major molecular components of both tendons and ligaments. The hierarchical structure of tendon and its functional properties are determined by the collagens present, as well as their supramolecular organization. There are 28 different types of collagen that assemble into a variety of supramolecular structures. The assembly of specific supramolecular structures is dependent on the interaction with other matrix molecules as well as the cellular elements. Multiple suprastructural assemblies are integrated to form the functional tendon/ligament. This chapter begins with a discussion of collagen molecules. This is followed by a definition of the supramolecular structures assembled by different collagen types. The general principles involved in the assembly of collagen-containing suprastructures are presented focusing on the regulation of tendon collagen fibrillogenesis. Finally, site-specific differences are discussed. While generalizations can be made, differences exist between different tendons as well as between tendons and ligaments. Compositional differences will impact structure that in turn will determine functional differences. Elucidation of the unique physiology and pathophysiology of different tendons and ligaments will require an appreciation of the role compositional differences have on collagen suprastructural assembly, tissue organization, and function.
Collapse
Affiliation(s)
- Michael J Mienaltowski
- Departments of Molecular Pharmacology & Physiology and Orthopaedics & Sports Medicine, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd., MDC8, Tampa, FL, 33612, USA
| | | |
Collapse
|
77
|
Proszynski TJ, Sanes JR. Amotl2 interacts with LL5β, localizes to podosomes and regulates postsynaptic differentiation in muscle. J Cell Sci 2013; 126:2225-35. [PMID: 23525008 DOI: 10.1242/jcs.121327] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Neuromuscular junctions (NMJs) in mammalian skeletal muscle undergo a postnatal topological transformation from a simple oval plaque to a complex branched structure. We previously showed that podosomes, actin-rich adhesive organelles, promote the remodeling process, and demonstrated a key role for one podosome component, LL5β. To further investigate molecular mechanisms of postsynaptic maturation, we purified LL5β-associated proteins from myotubes and showed that three regulators of the actin cytoskeleton--Amotl2, Asef2 and Flii--interact with LL5β. These and other LL5β-interacting proteins are associated with conventional podosomes in macrophages and podosome-like invadopodia in fibroblasts, strengthening the close relationship between synaptic and non-synaptic podosomes. We then focused on Amotl2, showing that it is associated with synaptic podosomes in cultured myotubes and with NMJs in vivo. Depletion of Amotl2 in myotubes leads to increased size of synaptic podosomes and corresponding alterations in postsynaptic topology. Depletion of Amotl2 from fibroblasts disrupts invadopodia in these cells. These results demonstrate a role for Amotl2 in synaptic maturation and support the involvement of podosomes in this process.
Collapse
Affiliation(s)
- Tomasz J Proszynski
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
78
|
Nordström V, Willershäuser M, Herzer S, Rozman J, von Bohlen Und Halbach O, Meldner S, Rothermel U, Kaden S, Roth FC, Waldeck C, Gretz N, de Angelis MH, Draguhn A, Klingenspor M, Gröne HJ, Jennemann R. Neuronal expression of glucosylceramide synthase in central nervous system regulates body weight and energy homeostasis. PLoS Biol 2013; 11:e1001506. [PMID: 23554574 PMCID: PMC3595213 DOI: 10.1371/journal.pbio.1001506] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 01/31/2013] [Indexed: 01/19/2023] Open
Abstract
Body weight and energy homeostasis are regulated by leptin receptor interactions with gangliosides, a class of plasma membrane lipids, in forebrain neurons of mice. Hypothalamic neurons are main regulators of energy homeostasis. Neuronal function essentially depends on plasma membrane-located gangliosides. The present work demonstrates that hypothalamic integration of metabolic signals requires neuronal expression of glucosylceramide synthase (GCS; UDP-glucose:ceramide glucosyltransferase). As a major mechanism of central nervous system (CNS) metabolic control, we demonstrate that GCS-derived gangliosides interacting with leptin receptors (ObR) in the neuronal membrane modulate leptin-stimulated formation of signaling metabolites in hypothalamic neurons. Furthermore, ganglioside-depleted hypothalamic neurons fail to adapt their activity (c-Fos) in response to alterations in peripheral energy signals. Consequently, mice with inducible forebrain neuron-specific deletion of the UDP-glucose:ceramide glucosyltransferase gene (Ugcg) display obesity, hypothermia, and lower sympathetic activity. Recombinant adeno-associated virus (rAAV)-mediated Ugcg delivery to the arcuate nucleus (Arc) significantly ameliorated obesity, specifying gangliosides as seminal components for hypothalamic regulation of body energy homeostasis. Obesity is a growing health threat that affects nearly half a billion people worldwide, and its incidence rates in lower income countries are rising dramatically. As obesity is a major risk factor for type II diabetes and cardiovascular disease, significant effort has been put into the exploration of causes, prevention, and potential treatment. Recent research has demonstrated that a region of the brain called the hypothalamus is a major integrator of metabolic and nutrient signals, adapting food intake and energy expenditure to current metabolic needs. Leptin or insulin receptors located in the plasma cell membrane of neurons sense energy signals from the body. They transmit this information inside the cell, which then regulates neuronal function. In this study, we show that leptin receptors interact with gangliosides, a class of plasma membrane lipids. This interaction is a prerequisite for proper receptor activation. Consequently, ganglioside loss in hypothalamic neurons inhibits leptin receptor signal transduction in response to energy metabolites. Furthermore, mice lacking gangliosides in distinct forebrain areas, amongst them the hypothalamus, develop progressive obesity and hypothermia. Our results suggest a previously unknown regulatory mechanism of plasma membrane lipids for hypothalamic control of body weight.
Collapse
Affiliation(s)
- Viola Nordström
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Maselli RA, Arredondo J, Ferns MJ, Wollmann RL. Synaptic basal lamina-associated congenital myasthenic syndromes. Ann N Y Acad Sci 2013; 1275:36-48. [PMID: 23278576 DOI: 10.1111/j.1749-6632.2012.06807.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Proteins associated with the basal lamina (BL) participate in complex signal transduction processes that are essential for the development and maintenance of the neuromuscular junction (NMJ). Most important junctional BL proteins are collagens, such as collagen IV (α3-6), collagen XIII, and ColQ; laminins; nidogens; and heparan sulfate proteoglycans, such as perlecan and agrin. Mice lacking Colq (Colq(-/-)), laminin β2 (Lamb2(-/-)), or collagen XIII (Col13a1(-/-)) show immature nerve terminals enwrapped by Schwann cell projections that invaginate into the synaptic cleft and decrease contact surface for neurotransmission. Human mutations in COLQ, LAMB2, and AGRN cause congenital myasthenic syndromes (CMSs) owing to deficiency of ColQ, laminin-β2, and agrin, respectively. In these syndromes the NMJ ultrastructure shows striking resemblance to that of mice lacking the corresponding protein; furthermore, the extracellular localization of mutant proteins may provide favorable conditions for replacement strategies based on gene therapy and stem cells.
Collapse
Affiliation(s)
- Ricardo A Maselli
- Department of Neurology, University of California, Davis, California, USA.
| | | | | | | |
Collapse
|
80
|
Abstract
Compelling evidence from in vivo model systems within the past decade shows that the APP family of proteins is important for synaptic development and function in the central and peripheral nervous systems. The synaptic role promises to be complex and multifaceted for several reasons. The three family members have overlapping and redundant functions in mammals. They have both adhesive and signaling properties and may, in principle, act as both ligands and receptors. Moreover, they bind a multitude of synapse-specific proteins, and we predict that additional interacting protein partners will be discovered. Transgenic mice with modified or abolished expression of APP and APLPs have synaptic defects that are readily apparent. Studies of the neuromuscular junction (NMJ) in these transgenic mice have revealed molecular and functional deficits in neurotransmitter release, in organization of the postsynaptic receptors, and in coordinated intercellular development. The results summarized here from invertebrate and vertebrate systems confirm that the NMJ with its accessibility, large size, and homogeneity provides a model synapse for identifying and analyzing molecular pathways of APP actions.
Collapse
|
81
|
Singhal N, Martin PT. Role of extracellular matrix proteins and their receptors in the development of the vertebrate neuromuscular junction. Dev Neurobiol 2012; 71:982-1005. [PMID: 21766463 DOI: 10.1002/dneu.20953] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The vertebrate neuromuscular junction (NMJ) remains the best-studied model for understanding the mechanisms involved in synaptogenesis, due to its relatively large size, its simplicity of patterning, and its unparalleled experimental accessibility. During neuromuscular development, each skeletal myofiber secretes and deposits around its extracellular surface an assemblage of extracellular matrix (ECM) proteins that ultimately form a basal lamina. This is also the case at the NMJ, where the motor nerve contributes additional factors. Before most of the current molecular components were known, it was clear that the synaptic ECM of adult skeletal muscles was unique in composition and contained factors sufficient to induce the differentiation of both pre- and postsynaptic membranes. Biochemical, genetic, and microscopy studies have confirmed that agrin, laminin (221, 421, and 521), collagen IV (α3-α6), collagen XIII, perlecan, and the ColQ-bound form of acetylcholinesterase are all synaptic ECM proteins with important roles in neuromuscular development. The roles of their many potential receptors and/or binding proteins have been more difficult to assess at the genetic level due to the complexity of membrane interactions with these large proteins, but roles for MuSK-LRP4 in agrin signaling and for integrins, dystroglycan, and voltage-gated calcium channels in laminin-dependent phenotypes have been identified. Synaptic ECM proteins and their receptors are involved in almost all aspects of synaptic development, including synaptic initiation, topography, ultrastructure, maturation, stability, and transmission.
Collapse
Affiliation(s)
- Neha Singhal
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, Ohio State University College of Medicine, Columbus, Ohio 43205, USA
| | | |
Collapse
|
82
|
Molecular mechanisms underlying maturation and maintenance of the vertebrate neuromuscular junction. Trends Neurosci 2012; 35:441-53. [PMID: 22633140 DOI: 10.1016/j.tins.2012.04.005] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/09/2012] [Accepted: 04/15/2012] [Indexed: 01/22/2023]
Abstract
The vertebrate neuromuscular junction (NMJ), a peripheral synapse formed between motoneuron and skeletal muscle, is characterized by a protracted postnatal period of maturation and life-long maintenance. In neuromuscular disorders such as congenital myasthenic syndromes (CMSs), disruptions of NMJ maturation and/or maintenance are frequently observed. In particular, defective neuromuscular transmission associated with structural and molecular abnormalities at the pre- and postsynaptic membranes, as well as at the synaptic cleft, has been reported in these patients. Here, we review recent advances in the understanding of molecular and cellular events that mediate NMJ maturation and maintenance. The underlying regulatory mechanisms, including key molecular regulators at the presynaptic nerve terminal, synaptic cleft, and postsynaptic muscle membrane, are discussed.
Collapse
|
83
|
Koper A, Schenck A, Prokop A. Analysis of adhesion molecules and basement membrane contributions to synaptic adhesion at the Drosophila embryonic NMJ. PLoS One 2012; 7:e36339. [PMID: 22558441 PMCID: PMC3340374 DOI: 10.1371/journal.pone.0036339] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 03/30/2012] [Indexed: 12/12/2022] Open
Abstract
Synapse formation and maintenance crucially underlie brain function in health and disease. Both processes are believed to depend on cell adhesion molecules (CAMs). Many different classes of CAMs localise to synapses, including cadherins, protocadherins, neuroligins, neurexins, integrins, and immunoglobulin adhesion proteins, and further contributions come from the extracellular matrix and its receptors. Most of these factors have been scrutinised by loss-of-function analyses in animal models. However, which adhesion factors establish the essential physical links across synaptic clefts and allow the assembly of synaptic machineries at the contact site in vivo is still unclear. To investigate these key questions, we have used the neuromuscular junction (NMJ) of Drosophila embryos as a genetically amenable model synapse. Our ultrastructural analyses of NMJs lacking different classes of CAMs revealed that loss of all neurexins, all classical cadherins or all glutamate receptors, as well as combinations between these or with a Laminin deficiency, failed to reveal structural phenotypes. These results are compatible with a view that these CAMs might have no structural role at this model synapse. However, we consider it far more likely that they operate in a redundant or well buffered context. We propose a model based on a multi-adaptor principle to explain this phenomenon. Furthermore, we report a new CAM-independent adhesion mechanism that involves the basement membranes (BM) covering neuromuscular terminals. Thus, motorneuronal terminals show strong partial detachment of the junction when BM-to-cell surface attachment is impaired by removing Laminin A, or when BMs lose their structural integrity upon loss of type IV collagens. We conclude that BMs are essential to tie embryonic motorneuronal terminals to the muscle surface, lending CAM-independent structural support to their adhesion. Therefore, future developmental studies of these synaptic junctions in Drosophila need to consider the important contribution made by BM-dependent mechanisms, in addition to CAM-dependent adhesion.
Collapse
Affiliation(s)
- Andre Koper
- Faculty of Life Sciences, Wellcome Trust Centre for Cell-Matrix Research, Manchester, United Kingdom
| | - Annette Schenck
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Andreas Prokop
- Faculty of Life Sciences, Wellcome Trust Centre for Cell-Matrix Research, Manchester, United Kingdom
| |
Collapse
|
84
|
Heikkinen A, Tu H, Pihlajaniemi T. Collagen XIII: a type II transmembrane protein with relevance to musculoskeletal tissues, microvessels and inflammation. Int J Biochem Cell Biol 2012; 44:714-7. [PMID: 22342189 DOI: 10.1016/j.biocel.2012.01.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 01/27/2012] [Accepted: 01/31/2012] [Indexed: 12/15/2022]
Abstract
Collagen XIII and the homologous collagens XXIII and XXV form a subgroup of type II transmembrane proteins within the collagen superfamily. Collagen XIII consists of a short cytosolic domain, a transmembrane domain and a large extracellular ectodomain, which may be shed into the pericellular matrix. It has been proposed that collagen XIII may function as an adhesion molecule, due to its cellular localization at focal contacts, numerous interactions with basement membrane (BM) and other extracellular matrix (ECM) proteins and expression at various cell-cell and cell-matrix junctions. Recent in vivo studies highlight its involvement in the development, differentiation and maturation of musculoskeletal tissues and vessels and in maintaining tissue integrity.
Collapse
Affiliation(s)
- Anne Heikkinen
- Center for Cell-Matrix Research and Biocenter Oulu, Department of Medical Biochemistry and Molecular Biology, PO Box 5000, 90014 University of Oulu, Finland.
| | | | | |
Collapse
|
85
|
Abstract
Synapse formation is driven by precisely orchestrated intercellular communication between the presynaptic and the postsynaptic cell, involving a cascade of anterograde and retrograde signals. At the neuromuscular junction (NMJ), both neuron and muscle secrete signals into the heavily glycosylated synaptic cleft matrix sandwiched between the two synapsing cells. These signals must necessarily traverse and interact with the extracellular environment, for the ligand-receptor interactions mediating communication to occur. This complex synaptomatrix, rich in glycoproteins and proteoglycans, comprises heterogeneous, compartmentalized domains where specialized glycans modulate trans-synaptic signaling during synaptogenesis and subsequent synapse modulation. The general importance of glycans during development, homeostasis and disease is well established, but this important molecular class has received less study in the nervous system. Glycan modifications are now understood to play functional and modulatory roles as ligands and co-receptors in numerous tissues; however, roles at the synapse are relatively unexplored. We highlight here properties of synaptomatrix glycans and glycan-interacting proteins with key roles in synaptogenesis, with a particular focus on recent advances made in the Drosophila NMJ genetic system. We discuss open questions and interesting new findings driving this investigation of complex, diverse, and largely understudied glycan mechanisms at the synapse.
Collapse
Affiliation(s)
- Neil Dani
- Departments of Biological Sciences and Cell and Developmental Biology, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232 USA
| | - Kendal Broadie
- Departments of Biological Sciences and Cell and Developmental Biology, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232 USA
| |
Collapse
|
86
|
A transcriptional program promotes remodeling of GABAergic synapses in Caenorhabditis elegans. J Neurosci 2011; 31:15362-75. [PMID: 22031882 DOI: 10.1523/jneurosci.3181-11.2011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although transcription factors are known to regulate synaptic plasticity, downstream genes that contribute to neural circuit remodeling are largely undefined. In Caenorhabditis elegans, GABAergic Dorsal D (DD) motor neuron synapses are relocated to new sites during larval development. This remodeling program is blocked in Ventral D (VD) GABAergic motor neurons by the COUP-TF (chicken ovalbumin upstream promoter transcription factor) homolog, UNC-55. We exploited this UNC-55 function to identify downstream synaptic remodeling genes that encode a diverse array of protein types including ion channels, cytoskeletal components, and transcription factors. We show that one of these targets, the Iroquois-like homeodomain protein, IRX-1, functions as a key regulator of remodeling in DD neurons. Our discovery of irx-1 as an unc-55-regulated target defines a transcriptional pathway that orchestrates an intricate synaptic remodeling program. Moreover, the well established roles of these conserved transcription factors in mammalian neural development suggest that a similar cascade may also control synaptic plasticity in more complex nervous systems.
Collapse
|
87
|
Nishimune H. Molecular mechanism of active zone organization at vertebrate neuromuscular junctions. Mol Neurobiol 2011; 45:1-16. [PMID: 22135013 DOI: 10.1007/s12035-011-8216-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 10/24/2011] [Indexed: 02/08/2023]
Abstract
Organization of presynaptic active zones is essential for development, plasticity, and pathology of the nervous system. Recent studies indicate a trans-synaptic molecular mechanism that organizes the active zones by connecting the pre- and the postsynaptic specialization. The presynaptic component of this trans-synaptic mechanism is comprised of cytosolic active zone proteins bound to the cytosolic domains of voltage-dependent calcium channels (P/Q-, N-, and L-type) on the presynaptic membrane. The postsynaptic component of this mechanism is the synapse organizer (laminin β2) that is expressed by the postsynaptic cell and accumulates specifically on top of the postsynaptic specialization. The pre- and the postsynaptic components interact directly between the extracellular domains of calcium channels and laminin β2 to anchor the presynaptic protein complex in front of the postsynaptic specialization. Hence, the presynaptic calcium channel functions as a scaffolding protein for active zone organization and as an ion-conducting channel for synaptic transmission. In contrast to the requirement of calcium influx for synaptic transmission, the formation of the active zone does not require the calcium influx through the calcium channels. Importantly, the active zones of adult synapses are not stable structures and require maintenance for their integrity. Furthermore, aging or diseases of the central and peripheral nervous system impair the active zones. This review will focus on the molecular mechanisms that organize the presynaptic active zones and summarize recent findings at the neuromuscular junctions and other synapses.
Collapse
Affiliation(s)
- Hiroshi Nishimune
- Department of Anatomy and Cell Biology, and Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical School, 3901 Rainbow Blvd., MS 3051, HLSIC Rm. 2073, Kansas City, KS 66160, USA.
| |
Collapse
|