51
|
Ma S, Yan J, Chen L, Zhu Y, Chen K, Zheng C, Shen M, Liao Y. A Bibliometric and Visualized Analysis of Cardiac Regeneration Over a 20-Year Period. Front Cardiovasc Med 2021; 8:789503. [PMID: 34966800 PMCID: PMC8710530 DOI: 10.3389/fcvm.2021.789503] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/01/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Recent research has suggested that cardiac regeneration may have the widely applicable potential of treating heart failure (HF). A comprehensive understanding of the development status of this field is conducive to its development. However, no bibliometric analysis has summarized this field properly. We aimed to analyze cardiac regeneration-related literature over 20 years and provide valuable insights. Methods: Publications were collected from the Web of Science Core Collection (WoSCC). Microsoft Excel, VOSviewer, CiteSpace, and alluvial generator were used to analyze and present the data. Results: The collected 11,700 publications showed an annually increasing trend. The United States and Harvard University were the leading force among all the countries and institutions. The majority of articles were published in Circulation Research, and Circulation was the most co-cited journal. According to co-citation analysis, burst detection and alluvial flow map, cardiomyocyte proliferation, stem cells, such as first-and second-generation, extracellular vesicles especially exosomes, direct cardiac reprogramming, macrophages, microRNAs, and inflammation have become more and more popular recently. Conclusions: Cardiac regeneration remains a research hotspot and develops rapidly. How to modify cardiac regeneration endogenously and exogenously may still be the hotspot in the future and should be discussed more deeply.
Collapse
Affiliation(s)
- Siyuan Ma
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Department of Cardiology, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junyu Yan
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Department of Cardiology, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lu Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Department of Cardiology, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yingqi Zhu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Department of Cardiology, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kaitong Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Department of Cardiology, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Cankun Zheng
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Department of Cardiology, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengjia Shen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Department of Cardiology, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yulin Liao
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Department of Cardiology, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
52
|
Gajjela H, Kela I, Kakarala CL, Hassan M, Belavadi R, Gudigopuram SVR, Raguthu CC, Modi S, Sange I. Milestones in Heart Failure: How Far We Have Come and How Far We Have Left to Go. Cureus 2021; 13:e20359. [PMID: 35028235 PMCID: PMC8751580 DOI: 10.7759/cureus.20359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2021] [Indexed: 12/20/2022] Open
Abstract
Heart failure is a clinically complex syndrome that results due to the failure of the ventricles to function as pump and oxygenate end organs. The repercussions of inadequate perfusion are seen in the form of sympathetic overactivation and third spacing, leading to clinical signs of increased blood pressure, dyspnea, fatigue, palpitations, etc. This article provided a brief overview of the clinical syndrome of heart failure; its epidemiology, risk factors, symptoms, and staging; and the mechanisms involved in disease progression. This article also described several landmark trials in heart failure that tested the efficacy of first-line drugs such as beta-blockers, angiotensin receptor blockers, angiotensin-converting enzyme inhibitors, and the latest drugs in the field of heart failure: angiotensin receptor neprilysin inhibitors. Most studies described in this article were guideline-setting trials that revolutionized the practice of medicine and cardiology.
Collapse
Affiliation(s)
- Harini Gajjela
- Research, Our Lady of Fatima University College of Medicine, Valenzuela, PHL
| | - Iljena Kela
- Family Medicine, Jagiellonian University Medical College, Krakow, POL
| | - Chandra L Kakarala
- Internal Medicine, Jawaharlal Institute of Post-Graduate Medical Education and Research (JIPMER), Pondicherry, IND
| | - Mohammad Hassan
- Internal Medicine, Mohiuddin Islamic Medical College, Mirpur, PAK
| | - Rishab Belavadi
- Surgery, Jawaharlal Institute of Post-Graduate Medical Education and Research (JIPMER), Pondicherry, IND
| | | | | | - Srimy Modi
- Research, K. J. Somaiya Medical College, Mumbai, IND
| | - Ibrahim Sange
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Research, K. J. Somaiya Medical College, Mumbai, IND
| |
Collapse
|
53
|
Liu L, Guo Y, Li Z, Wang Z. Improving Cardiac Reprogramming for Heart Regeneration in Translational Medicine. Cells 2021; 10:cells10123297. [PMID: 34943805 PMCID: PMC8699771 DOI: 10.3390/cells10123297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 12/25/2022] Open
Abstract
Direct reprogramming of fibroblasts into CM-like cells has emerged as an attractive strategy to generate induced CMs (iCMs) in heart regeneration. However, low conversion rate, poor purity, and the lack of precise conversion of iCMs are still present as significant challenges. In this review, we summarize the recent development in understanding the molecular mechanisms of cardiac reprogramming with various strategies to achieve more efficient iCMs. reprogramming. Specifically, we focus on the identified critical roles of transcriptional regulation, epigenetic modification, signaling pathways from the cellular microenvironment, and cell cycling regulation in cardiac reprogramming. We also discuss the progress in delivery system optimization and cardiac reprogramming in human cells related to preclinical applications. We anticipate that this will translate cardiac reprogramming-based heart therapy into clinical applications. In addition to optimizing the cardiogenesis related transcriptional regulation and signaling pathways, an important strategy is to modulate the pathological microenvironment associated with heart injury, including inflammation, pro-fibrotic signaling pathways, and the mechanical properties of the damaged myocardium. We are optimistic that cardiac reprogramming will provide a powerful therapy in heart regenerative medicine.
Collapse
Affiliation(s)
- Liu Liu
- Department of Cardiac Surgery, Cardiovascular Center, The University of Michigan, Ann Arbor, MI 48109, USA; (L.L.); (Y.G.); (Z.L.)
| | - Yijing Guo
- Department of Cardiac Surgery, Cardiovascular Center, The University of Michigan, Ann Arbor, MI 48109, USA; (L.L.); (Y.G.); (Z.L.)
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Zhaokai Li
- Department of Cardiac Surgery, Cardiovascular Center, The University of Michigan, Ann Arbor, MI 48109, USA; (L.L.); (Y.G.); (Z.L.)
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha 410000, China
| | - Zhong Wang
- Department of Cardiac Surgery, Cardiovascular Center, The University of Michigan, Ann Arbor, MI 48109, USA; (L.L.); (Y.G.); (Z.L.)
- Correspondence:
| |
Collapse
|
54
|
Zhou H, Tang W, Yang J, Peng J, Guo J, Fan C. MicroRNA-Related Strategies to Improve Cardiac Function in Heart Failure. Front Cardiovasc Med 2021; 8:773083. [PMID: 34869689 PMCID: PMC8639862 DOI: 10.3389/fcvm.2021.773083] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/25/2021] [Indexed: 12/18/2022] Open
Abstract
Heart failure (HF) describes a group of manifestations caused by the failure of heart function as a pump that supports blood flow through the body. MicroRNAs (miRNAs), as one type of non-coding RNA molecule, have crucial roles in the etiology of HF. Accordingly, miRNAs related to HF may represent potential novel therapeutic targets. In this review, we first discuss the different roles of miRNAs in the development and diseases of the heart. We then outline commonly used miRNA chemical modifications and delivery systems. Further, we summarize the opportunities and challenges for HF-related miRNA therapeutics targets, and discuss the first clinical trial of an antisense drug (CDR132L) in patients with HF. Finally, we outline current and future challenges and potential new directions for miRNA-based therapeutics for HF.
Collapse
Affiliation(s)
- Huatao Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Weijie Tang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jinfu Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Pharmacology, Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jun Peng
- Department of Pharmacology, Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jianjun Guo
- Hunan Fangsheng Pharmaceutical Co., Ltd. Changsha, China
| | - Chengming Fan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Pharmacology, Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Fangsheng Pharmaceutical Co., Ltd. Changsha, China
| |
Collapse
|
55
|
Cell Transdifferentiation and Reprogramming in Disease Modeling: Insights into the Neuronal and Cardiac Disease Models and Current Translational Strategies. Cells 2021; 10:cells10102558. [PMID: 34685537 PMCID: PMC8533873 DOI: 10.3390/cells10102558] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023] Open
Abstract
Cell transdifferentiation and reprogramming approaches in recent times have enabled the manipulation of cell fate by enrolling exogenous/artificial controls. The chemical/small molecule and regulatory components of transcription machinery serve as potential tools to execute cell transdifferentiation and have thereby uncovered new avenues for disease modeling and drug discovery. At the advanced stage, one can believe these methods can pave the way to develop efficient and sensitive gene therapy and regenerative medicine approaches. As we are beginning to learn about the utility of cell transdifferentiation and reprogramming, speculations about its applications in translational therapeutics are being largely anticipated. Although clinicians and researchers are endeavoring to scale these processes, we lack a comprehensive understanding of their mechanism(s), and the promises these offer for targeted and personalized therapeutics are scarce. In the present report, we endeavored to provide a detailed review of the original concept, methods and modalities enrolled in the field of cellular transdifferentiation and reprogramming. A special focus is given to the neuronal and cardiac systems/diseases towards scaling their utility in disease modeling and drug discovery.
Collapse
|
56
|
Kasai-Brunswick TH, Carvalho AB, Campos de Carvalho AC. Stem cell therapies in cardiac diseases: Current status and future possibilities. World J Stem Cells 2021; 13:1231-1247. [PMID: 34630860 PMCID: PMC8474720 DOI: 10.4252/wjsc.v13.i9.1231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases represent the world's leading cause of death. In this heterogeneous group of diseases, ischemic cardiomyopathies are the most devastating and prevalent, estimated to cause 17.9 million deaths per year. Despite all biomedical efforts, there are no effective treatments that can replace the myocytes lost during an ischemic event or progression of the disease to heart failure. In this context, cell therapy is an emerging therapeutic alternative to treat cardiovascular diseases by cell administration, aimed at cardiac regeneration and repair. In this review, we will cover more than 30 years of cell therapy in cardiology, presenting the main milestones and drawbacks in the field and signaling future challenges and perspectives. The outcomes of cardiac cell therapies are discussed in three distinct aspects: The search for remuscularization by replacement of lost cells by exogenous adult cells, the endogenous stem cell era, which pursued the isolation of a progenitor with the ability to induce heart repair, and the utilization of pluripotent stem cells as a rich and reliable source of cardiomyocytes. Acellular therapies using cell derivatives, such as microvesicles and exosomes, are presented as a promising cell-free therapeutic alternative.
Collapse
Affiliation(s)
- Tais Hanae Kasai-Brunswick
- National Center of Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- National Institute of Science and Technology in Regenerative Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Adriana Bastos Carvalho
- National Institute of Science and Technology in Regenerative Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Antonio Carlos Campos de Carvalho
- National Center of Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- National Institute of Science and Technology in Regenerative Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil.
| |
Collapse
|
57
|
Testa G, Di Benedetto G, Passaro F. Advanced Technologies to Target Cardiac Cell Fate Plasticity for Heart Regeneration. Int J Mol Sci 2021; 22:ijms22179517. [PMID: 34502423 PMCID: PMC8431232 DOI: 10.3390/ijms22179517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
The adult human heart can only adapt to heart diseases by starting a myocardial remodeling process to compensate for the loss of functional cardiomyocytes, which ultimately develop into heart failure. In recent decades, the evolution of new strategies to regenerate the injured myocardium based on cellular reprogramming represents a revolutionary new paradigm for cardiac repair by targeting some key signaling molecules governing cardiac cell fate plasticity. While the indirect reprogramming routes require an in vitro engineered 3D tissue to be transplanted in vivo, the direct cardiac reprogramming would allow the administration of reprogramming factors directly in situ, thus holding great potential as in vivo treatment for clinical applications. In this framework, cellular reprogramming in partnership with nanotechnologies and bioengineering will offer new perspectives in the field of cardiovascular research for disease modeling, drug screening, and tissue engineering applications. In this review, we will summarize the recent progress in developing innovative therapeutic strategies based on manipulating cardiac cell fate plasticity in combination with bioengineering and nanotechnology-based approaches for targeting the failing heart.
Collapse
Affiliation(s)
- Gianluca Testa
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
- Interdepartmental Center for Nanotechnology Research—NanoBem, University of Molise, 86100 Campobasso, Italy
| | - Giorgia Di Benedetto
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, 80138 Naples, Italy;
| | - Fabiana Passaro
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, 80138 Naples, Italy;
- Correspondence:
| |
Collapse
|
58
|
Schweiger V, Hasimbegovic E, Kastner N, Spannbauer A, Traxler D, Gyöngyösi M, Mester-Tonczar J. Non-Coding RNAs in Stem Cell Regulation and Cardiac Regeneration: Current Problems and Future Perspectives. Int J Mol Sci 2021; 22:ijms22179160. [PMID: 34502068 PMCID: PMC8431637 DOI: 10.3390/ijms22179160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/12/2021] [Accepted: 08/21/2021] [Indexed: 12/03/2022] Open
Abstract
Although advances in rapid revascularization strategies following acute myocardial infarction (AMI) have led to improved short and long-term outcomes, the associated loss of cardiomyocytes and the subsequent remodeling result in an impaired ventricular function that can lead to heart failure or death. The poor regenerative capacity of the myocardium and the current lack of effective regenerative therapies have driven stem cell research in search of a possible solution. One approach involves the delivery of stem cells to the site of injury in order to stimulate repair response. Although animal studies initially delivered promising results, the application of similar techniques in humans has been hampered by poor target site retention and oncogenic considerations. In response, several alternative strategies, including the use of non-coding RNAs (ncRNAs), have been introduced with the aim of activating and regulating stem cells or inducing stem cell status in resident cells. Circular RNAs (circRNAs) and microRNAs (miRNAs) are ncRNAs with pivotal functions in cell proliferation and differentiation, whose role in stem cell regulation and potential significance for the field of cardiac regeneration is the primary focus of this review. We also address the general advantages of ncRNAs as promising drivers of cardiac regeneration and potent stem cell regulators.
Collapse
|
59
|
Bär C, Chatterjee S, Falcão Pires I, Rodrigues P, Sluijter JPG, Boon RA, Nevado RM, Andrés V, Sansonetti M, de Windt L, Ciccarelli M, Hamdani N, Heymans S, Figuinha Videira R, Tocchetti CG, Giacca M, Zacchigna S, Engelhardt S, Dimmeler S, Madonna R, Thum T. Non-coding RNAs: update on mechanisms and therapeutic targets from the ESC Working Groups of Myocardial Function and Cellular Biology of the Heart. Cardiovasc Res 2021; 116:1805-1819. [PMID: 32638021 DOI: 10.1093/cvr/cvaa195] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/15/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023] Open
Abstract
Vast parts of mammalian genomes are actively transcribed, predominantly giving rise to non-coding RNA (ncRNA) transcripts including microRNAs, long ncRNAs, and circular RNAs among others. Contrary to previous opinions that most of these RNAs are non-functional molecules, they are now recognized as critical regulators of many physiological and pathological processes including those of the cardiovascular system. The discovery of functional ncRNAs has opened up new research avenues aiming at understanding ncRNA-related disease mechanisms as well as exploiting them as novel therapeutics in cardiovascular therapy. In this review, we give an update on the current progress in ncRNA research, particularly focusing on cardiovascular physiological and disease processes, which are under current investigation at the ESC Working Groups of Myocardial Function and Cellular Biology of the Heart. This includes a range of topics such as extracellular vesicle-mediated communication, neurohormonal regulation, inflammation, cardiac remodelling, cardio-oncology as well as cardiac development and regeneration, collectively highlighting the wide-spread involvement and importance of ncRNAs in the cardiovascular system.
Collapse
Affiliation(s)
- Christian Bär
- Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Shambhabi Chatterjee
- Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Inês Falcão Pires
- Cardiovascular Research and Development Center, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Patrícia Rodrigues
- Cardiovascular Research and Development Center, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Joost P G Sluijter
- Experimental Cardiology Laboratory, UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Reinier A Boon
- Department of Physiology, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands.,Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,Partner site Rhein/Main, German Center for Cardiovascular Research (DZHK), Frankfurt am Main, Germany
| | - Rosa M Nevado
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Marida Sansonetti
- Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.,Department of Molecular Genetics, Faculty of Science and Engineering, Maastricht University, Maastricht, The Netherlands.,Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Leon de Windt
- Department of Molecular Genetics, Faculty of Science and Engineering, Maastricht University, Maastricht, The Netherlands.,Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Italy
| | - Nazha Hamdani
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Stephane Heymans
- Department of Cardiology, Maastricht University Medical Centre, University Hospital Maastricht, The Netherlands.,Center for Heart Failure Research, Cardiovascular Research Institute Maastricht (CARIM), University Hospital Maastricht, The Netherlands
| | - Raquel Figuinha Videira
- Cardiovascular Research and Development Center, Faculty of Medicine, University of Porto, Porto, Portugal.,Department of Molecular Genetics, Faculty of Science and Engineering, Maastricht University, Maastricht, The Netherlands.,Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Carlo G Tocchetti
- Department of Translational Medical Sciences and Interdepartmental Center of Clinical and Translational Research (CIRCET), Federico II University, Naples, Italy
| | - Mauro Giacca
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.,School of Cardiovascular Medicine & Sciences, King's College London, London, UK.,Department of Medicine, Surgery and Health Sciences, University of Trieste, Italy
| | - Serena Zacchigna
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.,Department of Medicine, Surgery and Health Sciences, University of Trieste, Italy
| | - Stefan Engelhardt
- Institute of Pharmacology and Toxicology, Technische Universität München, Biedersteiner Str. 29, Munich 80802, Germany.,DZHK (German Center for Cardiovascular Research), Partner site Munich Heart Alliance, Biedersteiner Str. 29, Munich 80802, Germany
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe University, Germany.,German Center for Cardiovascular Research (DZHK), Frankfurt, Germany.,Cardio-Pulmonary Institute (CPI), Frankfurt, Germany
| | - Rosalinda Madonna
- Institute of Cardiology, University of Pisa, Pisa, Italy.,Department of Internal Medicine, University of Texas Medical School, Houston, TX, USA
| | - Thomas Thum
- Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
60
|
Kaur K, Hadas Y, Kurian AA, Żak MM, Yoo J, Mahmood A, Girard H, Komargodski R, Io T, Santini MP, Sultana N, Kabir Sharkar MT, Magadum A, Fargnoli A, Yoon S, Chepurko E, Chepurko V, Eliyahu E, Pinto D, Lebeche D, Kovacic JC, Hajjar RJ, Rafii S, Zangi L. Direct Reprogramming Induces Vascular Regeneration Post Muscle Ischemic Injury. Mol Ther 2021; 29:3042-3058. [PMID: 34332145 PMCID: PMC8531157 DOI: 10.1016/j.ymthe.2021.07.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 07/02/2021] [Accepted: 07/21/2021] [Indexed: 11/24/2022] Open
Abstract
Reprogramming non-cardiomyocytes (non-CMs) into cardiomyocyte (CM)-like cells is a promising strategy for cardiac regeneration in conditions such as ischemic heart disease. Here, we used a modified mRNA (modRNA) gene delivery platform to deliver a cocktail, termed 7G-modRNA, of four cardiac-reprogramming genes—Gata4 (G), Mef2c (M), Tbx5 (T), and Hand2 (H)—together with three reprogramming-helper genes—dominant-negative (DN)-TGFβ, DN-Wnt8a, and acid ceramidase (AC)—to induce CM-like cells. We showed that 7G-modRNA reprogrammed 57% of CM-like cells in vitro. Through a lineage-tracing model, we determined that delivering the 7G-modRNA cocktail at the time of myocardial infarction reprogrammed ∼25% of CM-like cells in the scar area and significantly improved cardiac function, scar size, long-term survival, and capillary density. Mechanistically, we determined that while 7G-modRNA cannot create de novo beating CMs in vitro or in vivo, it can significantly upregulate pro-angiogenic mesenchymal stromal cells markers and transcription factors. We also demonstrated that our 7G-modRNA cocktail leads to neovascularization in ischemic-limb injury, indicating CM-like cells importance in other organs besides the heart. modRNA is currently being used around the globe for vaccination against COVID-19, and this study proves this is a safe, highly efficient gene delivery approach with therapeutic potential to treat ischemic diseases.
Collapse
Affiliation(s)
- Keerat Kaur
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Yoav Hadas
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Ann Anu Kurian
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Magdalena M Żak
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Jimeen Yoo
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Asharee Mahmood
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Hanna Girard
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Rinat Komargodski
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Toshiro Io
- Research Department, Ono Pharmaceutical Co. Ltd., Osaka, Japan, 103-0023
| | - Maria Paola Santini
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Nishat Sultana
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Mohammad Tofael Kabir Sharkar
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Ajit Magadum
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Anthony Fargnoli
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Seonghun Yoon
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Elena Chepurko
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Vadim Chepurko
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Efrat Eliyahu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Multiscale Biology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Dalila Pinto
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Djamel Lebeche
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Jason C Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Roger J Hajjar
- Phospholamban Foundation, Amsterdam, The Netherlands 1775 ZH
| | - Shahin Rafii
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Lior Zangi
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029.
| |
Collapse
|
61
|
Zhou W, Ma T, Ding S. Non-viral approaches for somatic cell reprogramming into cardiomyocytes. Semin Cell Dev Biol 2021; 122:28-36. [PMID: 34238675 DOI: 10.1016/j.semcdb.2021.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/04/2021] [Accepted: 06/23/2021] [Indexed: 11/27/2022]
Abstract
Heart disease is the leading cause of human deaths worldwide. Due to lacking cardiomyocytes with replicative capacity and cardiac progenitor cells with differentiation potential in adult hearts, massive loss of cardiomyocytes after ischemic events produces permanent damage, ultimately leading to heart failure. Cellular reprogramming is a promising strategy to regenerate heart by induction of cardiomyocytes from other cell types, such as cardiac fibroblasts. In contrast to conventional virus-based cardiac reprogramming, non-viral approaches greatly reduce the potential risk that includes disruption of genome integrity by integration of foreign DNAs, expression of exogenous genes with oncogenic potential, and appearance of partially reprogrammed cells harmful for the physiological functions of tissues/organs, which impedes their in-vivo applications. Here, we review the recent progress in development of non-viral approaches to directly reprogram somatic cells towards cardiomyocytes and their therapeutic application for heart regeneration.
Collapse
Affiliation(s)
- Wei Zhou
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Tianhua Ma
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Sheng Ding
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
62
|
Jung JE, Lee JY, Park HR, Kang JW, Kim YH, Lee JH. MicroRNA-133 Targets Phosphodiesterase 1C in Drosophila and Human Oral Cancer Cells to Regulate Epithelial-Mesenchymal Transition. J Cancer 2021; 12:5296-5309. [PMID: 34335946 PMCID: PMC8317528 DOI: 10.7150/jca.56138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 06/24/2021] [Indexed: 12/29/2022] Open
Abstract
Non-coding microRNAs (miRNAs) have been proposed to play diverse roles in cancer biology, including epithelial-mesenchymal transition (EMT) crucial for cancer progression. Previous comparative studies revealed distinct expression profiles of miRNAs relevant to tumorigenesis and progression of oral cancer. With putative targets of these miRNAs mostly validated in vitro, it remains unclear whether similar miRNA-target relationships exist in vivo. In this study, we employed a hybrid approach, utilizing both Drosophila melanogaster and human oral cancer cells, to validate projected miRNA-target relationships relevant to EMT. Notably, overexpression of dme-miR-133 resulted in significant tissue growth in Drosophila larval wing discs. The RT-PCR analysis successfully validated a subset of its putative targets, including Pde1c. Subsequent experiments performed in oral cancer cells confirmed conserved targeting of human PDE1C by hsa-miR-133. Furthermore, the elevated level of miR-133 and its targeting of PDE1C was positively correlated with enhanced migrative ability of oral cancer cells treated with LPS, along with the molecular signature of a facilitated EMT process induced by LPS and TGF-β. The analysis on the RNAseq data also revealed a negative correlation between the expression level of hsa-miR-133 and the survival of oral cancer patients. Taken together, our mammal-to-Drosophila-to-mammal approach successfully validates targeting of PDE1C by miR-133 both in vivo and in vitro, underlying the promoted EMT phenotypes and potentially influencing the prognosis of oral cancer patients. This hybrid approach will further aid to widen our scope in investigation of intractable human malignancies, including oral cancer.
Collapse
Affiliation(s)
- Ji Eun Jung
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea.,BK21 FOUR Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| | - Joo Young Lee
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea
| | - Hae Ryoun Park
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea.,BK21 FOUR Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea.,Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea.,Department of Oral Pathology, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| | - Ji Wan Kang
- Interdisciplinary Program of Genomic Science, Pusan National University, Yangsan 50612, Korea
| | - Yun Hak Kim
- Department of Anatomy, Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Ji Hye Lee
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea.,BK21 FOUR Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea.,Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea.,Department of Oral Pathology, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| |
Collapse
|
63
|
Yamakawa H, Ieda M. Cardiac regeneration by direct reprogramming in this decade and beyond. Inflamm Regen 2021; 41:20. [PMID: 34193320 PMCID: PMC8247073 DOI: 10.1186/s41232-021-00168-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022] Open
Abstract
Japan faces an increasing incidence of heart disease, owing to a shift towards a westernized lifestyle and an aging demographic. In cases where conventional interventions are not appropriate, regenerative medicine offers a promising therapeutic option. However, the use of stem cells has limitations, and therefore, “direct cardiac reprogramming” is emerging as an alternative treatment. Myocardial regeneration transdifferentiates cardiac fibroblasts into cardiomyocytes in situ. Three cardiogenic transcription factors: Gata4, Mef2c, and Tbx5 (GMT) can induce direct reprogramming of fibroblasts into induced cardiomyocytes (iCMs), in mice. However, in humans, additional factors, such as Mesp1 and Myocd, are required. Inflammation and immune responses hinder the reprogramming process in mice, and epigenetic modifiers such as TET1 are involved in direct cardiac reprogramming in humans. The three main approaches to improving reprogramming efficiency are (1) improving direct cardiac reprogramming factors, (2) improving cell culture conditions, and (3) regulating epigenetic factors. miR-133 is a potential candidate for the first approach. For the second approach, inhibitors of TGF-β and Wnt signals, Akt1 overexpression, Notch signaling pathway inhibitors, such as DAPT ((S)-tert-butyl 2-((S)-2-(2-(3,5-difluorophenyl) acetamido) propanamido)-2-phenylacetate), fibroblast growth factor (FGF)-2, FGF-10, and vascular endothelial growth factor (VEGF: FFV) can influence reprogramming. Reducing the expression of Bmi1, which regulates the mono-ubiquitination of histone H2A, alters histone modification, and subsequently the reprogramming efficiency, in the third approach. In addition, diclofenac, a non-steroidal anti-inflammatory drug, and high level of Mef2c overexpression could improve direct cardiac reprogramming. Direct cardiac reprogramming needs improvement if it is to be used in humans, and the molecular mechanisms involved remain largely elusive. Further advances in cardiac reprogramming research are needed to bring us closer to cardiac regenerative therapy.
Collapse
Affiliation(s)
- Hiroyuki Yamakawa
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjiku-ku, Tokyo, 160-8582, Japan. .,Center for Preventive Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Masaki Ieda
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba City, Ibaraki, 305-8575, Japan.
| |
Collapse
|
64
|
Sadahiro T, Ieda M. In vivo reprogramming as a new approach to cardiac regenerative therapy. Semin Cell Dev Biol 2021; 122:21-27. [PMID: 34210577 DOI: 10.1016/j.semcdb.2021.06.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 12/19/2022]
Abstract
Cardiovascular diseases are a common cause of death worldwide. Adult cardiomyocytes have limited regenerative capacity after injury, and there is growing interest in cardiac regeneration as a new therapeutic strategy. There are several limitations of induced pluripotent stem cell-based transplantation therapy with respect to efficiency and risks of tumorigenesis. Direct reprogramming enables the conversion of terminally differentiated cells into target cell types using defined factors. In most cardiac diseases, activated fibroblasts proliferate in the damaged heart and contribute to the progression of heart failure. In vivo cardiac reprogramming, in which resident cardiac fibroblasts are converted into cardiomyocytes in situ, is expected to become a new cardiac regenerative therapy. Indeed, we and other groups have demonstrated that in vivo reprogramming improves cardiac function and reduces fibrosis after myocardial infarction. In this review, we summarize recent discoveries and developments related to in vivo reprogramming. In addition, issues that need to be resolved for clinical application are described.
Collapse
Affiliation(s)
- Taketaro Sadahiro
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba City, Ibaraki 305-8575, Japan
| | - Masaki Ieda
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba City, Ibaraki 305-8575, Japan.
| |
Collapse
|
65
|
m6A modification promotes miR-133a repression during cardiac development and hypertrophy via IGF2BP2. Cell Death Discov 2021; 7:157. [PMID: 34226535 PMCID: PMC8257704 DOI: 10.1038/s41420-021-00552-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/09/2021] [Accepted: 06/03/2021] [Indexed: 12/31/2022] Open
Abstract
Both N6-methyladenosine (m6A) RNA modification and microRNAs (miRNAs) are common regulatory mechanisms for gene post-transcription by modulating mRNA stability and translation. They also share the same 3′-untranslated regions (UTRs) regions for their target gene. However, little is known about their potential interaction in cell development and biology. Here, we aimed to investigate how m6A regulates the specific miRNA repression during cardiac development and hypertrophy. Our multiple lines of bioinformatic and molecular biological evidence have shown that m6A modification on cardiac miR-133a target sequence promotes miR-133a repressive effect via AGO2-IGF2BP2 (Argonaute 2—Insulin-like growth factor 2 mRNA binding protein 2) complex. Among 139 cardiac miRNAs, only the seed sequence of miR-133a was inversely complement to m6A consensus motif “GGACH” by sequence alignment analysis. Immunofluorescence staining, luciferase reporter, and m6A-RIP (RNA immunoprecipitation) assays revealed that m6A modification facilitated miR-133a binding to and repressing their targets. The inhibition of the miR-133a on cardiac proliferation and hypertrophy could be prevented by silencing of Fto (FTO alpha-ketoglutarate dependent dioxygenase) which induced m6A modification. IGF2BP2, an m6A binding protein, physically interacted with AGO2 and increased more miR-133a accumulation on its target site, which was modified by m6A. In conclusion, our study revealed a novel and precise regulatory mechanism that the m6A modification promoted the repression of specific miRNA during heart development and hypertrophy. Targeting m6A modification might provide a strategy to repair hypertrophic gene expression induced by miR-133a.
Collapse
|
66
|
Adams E, McCloy R, Jordan A, Falconer K, Dykes IM. Direct Reprogramming of Cardiac Fibroblasts to Repair the Injured Heart. J Cardiovasc Dev Dis 2021; 8:72. [PMID: 34206355 PMCID: PMC8306371 DOI: 10.3390/jcdd8070072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
Coronary heart disease is a leading cause of mortality and morbidity. Those that survive acute myocardial infarction are at significant risk of subsequent heart failure due to fibrotic remodelling of the infarcted myocardium. By applying knowledge from the study of embryonic cardiovascular development, modern medicine offers hope for treatment of this condition through regeneration of the myocardium by direct reprogramming of fibrotic scar tissue. Here, we will review mechanisms of cell fate specification leading to the generation of cardiovascular cell types in the embryo and use this as a framework in which to understand direct reprogramming. Driving expression of a network of transcription factors, micro RNA or small molecule epigenetic modifiers can reverse epigenetic silencing, reverting differentiated cells to a state of induced pluripotency. The pluripotent state can be bypassed by direct reprogramming in which one differentiated cell type can be transdifferentiated into another. Transdifferentiating cardiac fibroblasts to cardiomyocytes requires a network of transcription factors similar to that observed in embryonic multipotent cardiac progenitors. There is some flexibility in the composition of this network. These studies raise the possibility that the failing heart could one day be regenerated by directly reprogramming cardiac fibroblasts within post-infarct scar tissue.
Collapse
Affiliation(s)
- Emma Adams
- Pharmacy and Biomolecular Science, Liverpool John Moores University, Liverpool L3 3AF, UK; (E.A.); (R.M.); (A.J.); (K.F.)
| | - Rachel McCloy
- Pharmacy and Biomolecular Science, Liverpool John Moores University, Liverpool L3 3AF, UK; (E.A.); (R.M.); (A.J.); (K.F.)
| | - Ashley Jordan
- Pharmacy and Biomolecular Science, Liverpool John Moores University, Liverpool L3 3AF, UK; (E.A.); (R.M.); (A.J.); (K.F.)
| | - Kaitlin Falconer
- Pharmacy and Biomolecular Science, Liverpool John Moores University, Liverpool L3 3AF, UK; (E.A.); (R.M.); (A.J.); (K.F.)
| | - Iain M. Dykes
- Pharmacy and Biomolecular Science, Liverpool John Moores University, Liverpool L3 3AF, UK; (E.A.); (R.M.); (A.J.); (K.F.)
- Liverpool Centre for Cardiovascular Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| |
Collapse
|
67
|
Bektik E, Sun Y, Dennis AT, Sakon P, Yang D, Deschênes I, Fu JD. Inhibition of CREB-CBP Signaling Improves Fibroblast Plasticity for Direct Cardiac Reprogramming. Cells 2021; 10:cells10071572. [PMID: 34206684 PMCID: PMC8307124 DOI: 10.3390/cells10071572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 01/14/2023] Open
Abstract
Direct cardiac reprogramming of fibroblasts into induced cardiomyocytes (iCMs) is a promising approach but remains a challenge in heart regeneration. Efforts have focused on improving the efficiency by understanding fundamental mechanisms. One major challenge is that the plasticity of cultured fibroblast varies batch to batch with unknown mechanisms. Here, we noticed a portion of in vitro cultured fibroblasts have been activated to differentiate into myofibroblasts, marked by the expression of αSMA, even in primary cell cultures. Both forskolin, which increases cAMP levels, and TGFβ inhibitor SB431542 can efficiently suppress myofibroblast differentiation of cultured fibroblasts. However, SB431542 improved but forskolin blocked iCM reprogramming of fibroblasts that were infected with retroviruses of Gata4, Mef2c, and Tbx5 (GMT). Moreover, inhibitors of cAMP downstream signaling pathways, PKA or CREB-CBP, significantly improved the efficiency of reprogramming. Consistently, inhibition of p38/MAPK, another upstream regulator of CREB-CBP, also improved reprogramming efficiency. We then investigated if inhibition of these signaling pathways in primary cultured fibroblasts could improve their plasticity for reprogramming and found that preconditioning of cultured fibroblasts with CREB-CBP inhibitor significantly improved the cellular plasticity of fibroblasts to be reprogrammed, yielding ~2-fold more iCMs than untreated control cells. In conclusion, suppression of CREB-CBP signaling improves fibroblast plasticity for direct cardiac reprogramming.
Collapse
Affiliation(s)
- Emre Bektik
- Department of Physiology, Cell Biology College of Medicine, Ohio State University, 333 W 10th Avenue, Columbus, OH 43210, USA; (E.B.); (D.Y.); (I.D.)
- Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA;
| | - Yu Sun
- Heart and Vascular Research Center, Department of Medicine, MetroHealth Campus, Case Western Reserve University, Cleveland, OH 44109, USA; (Y.S.); (A.T.D.)
| | - Adrienne T. Dennis
- Heart and Vascular Research Center, Department of Medicine, MetroHealth Campus, Case Western Reserve University, Cleveland, OH 44109, USA; (Y.S.); (A.T.D.)
| | - Phraew Sakon
- Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA;
| | - Dandan Yang
- Department of Physiology, Cell Biology College of Medicine, Ohio State University, 333 W 10th Avenue, Columbus, OH 43210, USA; (E.B.); (D.Y.); (I.D.)
| | - Isabelle Deschênes
- Department of Physiology, Cell Biology College of Medicine, Ohio State University, 333 W 10th Avenue, Columbus, OH 43210, USA; (E.B.); (D.Y.); (I.D.)
- Heart and Vascular Research Center, Department of Medicine, MetroHealth Campus, Case Western Reserve University, Cleveland, OH 44109, USA; (Y.S.); (A.T.D.)
| | - Ji-Dong Fu
- Department of Physiology, Cell Biology College of Medicine, Ohio State University, 333 W 10th Avenue, Columbus, OH 43210, USA; (E.B.); (D.Y.); (I.D.)
- Heart and Vascular Research Center, Department of Medicine, MetroHealth Campus, Case Western Reserve University, Cleveland, OH 44109, USA; (Y.S.); (A.T.D.)
- Correspondence: ; Tel.: +1-(614)-685-0657
| |
Collapse
|
68
|
Liu M, López de Juan Abad B, Cheng K. Cardiac fibrosis: Myofibroblast-mediated pathological regulation and drug delivery strategies. Adv Drug Deliv Rev 2021; 173:504-519. [PMID: 33831476 PMCID: PMC8299409 DOI: 10.1016/j.addr.2021.03.021] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/16/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
Cardiac fibrosis remains an unresolved problem in heart diseases. After initial injury, cardiac fibroblasts (CFs) are activated and subsequently differentiate into myofibroblasts (myoFbs) that are major mediator cells in the pathological remodeling. MyoFbs exhibit proliferative and secretive characteristics, and contribute to extracellular matrix (ECM) turnover, collagen deposition. The persistent functions of myoFbs lead to fibrotic scars and cardiac dysfunction. The anti-fibrotic treatment is hindered by the elusive mechanism of fibrosis and lack of specific targets on myoFbs. In this review, we will outline the progress of cardiac fibrosis and its contributions to the heart failure. We will also shed light on the role of myoFbs in the regulation of adverse remodeling. The communication between myoFbs and other cells that are involved in the heart injury and repair respectively will be reviewed in detail. Then, recently developed therapeutic strategies to treat fibrosis will be summarized such as i) chimeric antigen receptor T cell (CAR-T) therapy with an optimal target on myoFbs, ii) direct reprogramming from stem cells to quiescent CFs, iii) "off-target" small molecular drugs. The application of nano/micro technology will be discussed as well, which is involved in the construction of cell-based biomimic platforms and "pleiotropic" drug delivery systems.
Collapse
Affiliation(s)
- Mengrui Liu
- Department of Molecular Biomedical Sciences, North Carolina State University, NC, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, USA
| | - Blanca López de Juan Abad
- Department of Molecular Biomedical Sciences, North Carolina State University, NC, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences, North Carolina State University, NC, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, USA.
| |
Collapse
|
69
|
Yang L, Xue S, Du M, Lian F. Highly Efficient MicroRNA Delivery Using Functionalized Carbon Dots for Enhanced Conversion of Fibroblasts to Cardiomyocytes. Int J Nanomedicine 2021; 16:3741-3754. [PMID: 34113099 PMCID: PMC8186278 DOI: 10.2147/ijn.s304873] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/01/2021] [Indexed: 01/14/2023] Open
Abstract
Introduction The reprogramming of induced cardiomyocytes (iCMs) is of particular significance in regenerative medicine; however, it remains a great challenge to fabricate an efficient and safe gene delivery system to induce reprogramming of iCMs for therapeutic applications in heart injury. Here, we report branched polyethyleneimine (BP) coated nitrogen-enriched carbon dots (BP-NCDs) as highly efficient nanocarriers loaded with microRNAs-combo (BP-NCDs/MC) for cardiac reprogramming. Methods The BP-NCDs nanocarriers were prepared and characterized by several analytical techniques. Results The BP-NCDs nanocarriers showed good microRNAs-combo binding affinity, negligible cytotoxicity, and long-term microRNAs expression. Importantly, BP-NCDs/MC nanocomplexes led to the efficient direct reprogramming of fibroblasts into iCMs without genomic integration and resulting in effective recovery of cardiac function after myocardial infarction (MI). Conclusion This study offers a novel strategy to provide safe and effective microRNAs-delivery nanoplatforms based on carbon dots for promising cardiac regeneration and disease therapy.
Collapse
Affiliation(s)
- Lei Yang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Song Xue
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Mingjun Du
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Feng Lian
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| |
Collapse
|
70
|
Van Handel B, Wang L, Ardehali R. Environmental factors influence somatic cell reprogramming to cardiomyocyte-like cells. Semin Cell Dev Biol 2021; 122:44-49. [PMID: 34083115 DOI: 10.1016/j.semcdb.2021.05.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 12/11/2022]
Abstract
Direct cardiac reprogramming, which refers to somatic cell (i.e. fibroblast) fate conversion to cardiomyocyte-like cell without transitioning through an intermediate pluripotent state, provides a novel therapeutic strategy for heart regeneration by converting resident cardiac fibroblasts to cardiomyocytes in situ. However, several limitations need to be addressed prior to clinical translation of this technology. They include low efficiency of reprogramming, heterogeneity of starting fibroblasts, functional immaturity of induced cardiomyocytes (iCMs), virus immunogenicity and toxicity, incomplete understanding of changes in the epigenetic landscape as fibroblasts undergo reprogramming, and the environmental factors that influence fate conversion. Several studies have demonstrated that a combination of enforced expression of cardiac transcription factors along with certain cytokines and growth factors in the presence of favorable environmental cues (including extracellular matrix, topography, and mechanical properties) enhance the efficiency and quality of direct reprogramming. This paper reviews the literature on the influence of the microenvironment on direct cardiac reprogramming in vitro and in vivo.
Collapse
Affiliation(s)
- Ben Van Handel
- Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, CA 90095, USA; Department of Orthopedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, 90033, USA
| | - Lingjun Wang
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Department of Cardiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Reza Ardehali
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, CA 90095, USA; Molecular, Cellular and Integrative Physiology Graduate Program, University of California, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
71
|
A Brief Review on the Biology and Effects of Cellular and Circulating microRNAs on Cardiac Remodeling after Infarction. Int J Mol Sci 2021; 22:ijms22094995. [PMID: 34066757 PMCID: PMC8125864 DOI: 10.3390/ijms22094995] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 01/21/2023] Open
Abstract
Despite advances in diagnostic, prognostic, and treatment modalities, myocardial infarction (MI) remains a leading cause of morbidity and mortality. Impaired cellular signaling after an MI causes maladaptive changes resulting in cardiac remodeling. MicroRNAs (miRNAs/miR) along with other molecular components have been investigated for their involvement in cellular signaling in the pathogenesis of various cardiac conditions like MI. miRNAs are small non-coding RNAs that negatively regulate gene expression. They bind to complementary mRNAs and regulate the rate of protein synthesis by altering the stability of their targeted mRNAs. A single miRNA can modulate several cellular signaling pathways by targeting hundreds of mRNAs. This review focuses on the biogenesis and beneficial effects of cellular and circulating (exosomal) miRNAs on cardiac remodeling after an MI. Particularly, miR-1, -133, 135, and -29 that play an essential role in cardiac remodeling after an MI are described in detail. The limitations that will need to be addressed in the future for the further development of miRNA-based therapeutics for cardiovascular conditions will also be discussed.
Collapse
|
72
|
Tang Y, Zhao L, Yu X, Zhang J, Qian L, Jin J, Lu R, Zhou Y. Inhibition of EZH2 primes the cardiac gene activation via removal of epigenetic repression during human direct cardiac reprogramming. Stem Cell Res 2021; 53:102365. [PMID: 34087994 PMCID: PMC8238038 DOI: 10.1016/j.scr.2021.102365] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 04/12/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease, until now, is still the leading cause of death in the United States. Due to the limited regenerative capacity of adult hearts, the damage caused by heart injury cannot be reversed and eventually progress into heart failure. In need of cardiovascular disease treatment, many therapies aimed at either cell transplantation or cell regeneration have been proposed. Direct reprogramming of somatic cells into induced cardiomyocytes (iCMs) is considered to be a promising strategy for regenerative medicine. The induction of cardiomyocytes from non-myocytes can be achieved efficiently via ectopic expression of reprogramming factors both in vitro and in vivo in the mouse model, however, the generation of human induced cardiomyocyte-like cells (hiCMs) remains challenging. The inefficiency of hiCMs production called for the identification of the additional epigenetic memories in non-myocytes which might be damping the hiCM reprogramming. Here, we conducted an unbiased loss-of-function screening focusing on epigenetic regulators and identified enhancer of zeste homolog 2 (EZH2) as an important epigenetic barrier during hiCM reprogramming. We found that the removal of EZH2 via genetic knockdown or treatment of EZH2 selective degrader significantly increased the hiCM reprogramming efficiency and led to profound activation of cardiac genes and repression of collagen and extracellular matrix genes. Furthermore, EZH2 inhibitors targeting its catalytic activity also promotes hiCM reprogramming, suggesting that EZH2 may restrain cardiac conversion through H3K27me3-mediated gene repression. Indeed, genomic profiling of H3K27me3 revealed a subset of cardiac genes that remain repressed with high levels of H3K27me3 despite of the delivery of the reprogramming factors. Inhibition of EZH2, however, leads to reduced H3K27me3 occupancy and robust activation of these cardiac genes. Taken together, our data suggested that EZH2 inhibition facilitates the activation of cardiac genes in fibroblasts and eases the production of hiCMs.
Collapse
Affiliation(s)
- Yawen Tang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Lianzhong Zhao
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Xufen Yu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jianyi Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Li Qian
- Department of Pathology and Laboratory Medicine, McAllister Heart Institute, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rui Lu
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yang Zhou
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| |
Collapse
|
73
|
Chen W, Bian W, Zhou Y, Zhang J. Cardiac Fibroblasts and Myocardial Regeneration. Front Bioeng Biotechnol 2021; 9:599928. [PMID: 33842440 PMCID: PMC8026894 DOI: 10.3389/fbioe.2021.599928] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 03/05/2021] [Indexed: 12/15/2022] Open
Abstract
The billions of cardiomyocytes lost to acute myocardial infarction (MI) cannot be replaced by the limited regenerative capacity of adult mammalian hearts, and despite decades of research, there are still no clinically effective therapies for remuscularizing and restoring damaged myocardial tissue. Although the majority of the cardiac mass is composed of cardiomyocytes, cardiac fibroblasts (CFs) are one type of most numerous cells in the heart and the primary drivers of fibrosis, which prevents ventricular rupture immediately after MI but the fibrotic scar expansion and LV dilatation can eventually lead to heart failure. However, embryonic CFs produce cytokines that can activate proliferation in cultured cardiomyocytes, and the structural proteins produced by CFs may regulate cardiomyocyte cell-cycle activity by modulating the stiffness of the extracellular matrix (ECM). CFs can also be used to generate induced-pluripotent stem cells and induced cardiac progenitor cells, both of which can differentiate into cardiomyocytes and vascular cells, but cardiomyocytes appear to be more readily differentiated from iPSCs that have been reprogrammed from CFs than from other cell types. Furthermore, the results from recent studies suggest that cultured CFs, as well as the CFs present in infarcted hearts, can be reprogrammed directly into cardiomyocytes. This finding is very exciting as should we be able to successfully increase the efficiency of this reprogramming, we could remuscularize the injured ventricle and restore the LV function without need the transplantation of cells or cell products. This review summarizes the role of CFs in the innate response to MI and how their phenotypic plasticity and involvement in ECM production might be manipulated to improve cardiac performance in injured hearts.
Collapse
Affiliation(s)
- Wangping Chen
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Weihua Bian
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yang Zhou
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
74
|
Haridhasapavalan KK, Ranjan SH, Bhattacharyya S, Thummer RP. Soluble expression, purification, and secondary structure determination of human MESP1 transcription factor. Appl Microbiol Biotechnol 2021; 105:2363-2376. [PMID: 33651130 DOI: 10.1007/s00253-021-11194-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/04/2021] [Accepted: 02/19/2021] [Indexed: 02/06/2023]
Abstract
Transcription factor MESP1 is a crucial factor regulating cardiac, hematopoietic, and skeletal myogenic development. Besides, it also contributes to the generation of functional cardiomyocytes. Here, we report the soluble expression and purification of the full-length human MESP1 protein from the heterologous system, which can be delivered into the target mammalian cells. To generate this biological macromolecule, we cloned its codon-optimized gene sequence fused to a nuclear localization sequence, a cell-penetrating peptide, and a His-tag into the protein expression vector and expressed in the bacterial system (E. coli strain BL21(DE3)). Subsequently, we have screened and identified the optimal expression parameters to obtain this recombinant fusion protein in soluble form from E. coli and examined its expression concerning the placement of fusion tags at either terminal. Further, we have purified this recombinant fusion protein to homogeneity under native conditions. Notably, this purified fusion protein has maintained its secondary structure after purification, primarily comprising α-helices and random coils. This molecular tool can potentially replace its genetic and viral forms in the cardiac reprogramming of fibroblasts to induce a cardiac transcriptional profile in an integration-free manner and elucidating its role in various biological processes and diseases. KEY POINTS: • Screening of the suitable gene construct was performed and identified. • Screening of optimal expression conditions was performed and identified. • Native purification of recombinant human MESP1 protein from E. coli was performed. • Recombinant MESP1 protein has retained its secondary structure after purification.
Collapse
Affiliation(s)
- Krishna Kumar Haridhasapavalan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Sujal Harsh Ranjan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Srirupa Bhattacharyya
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
75
|
Direct cell reprogramming: approaches, mechanisms and progress. Nat Rev Mol Cell Biol 2021; 22:410-424. [PMID: 33619373 DOI: 10.1038/s41580-021-00335-z] [Citation(s) in RCA: 231] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 02/06/2023]
Abstract
The reprogramming of somatic cells with defined factors, which converts cells from one lineage into cells of another, has greatly reshaped our traditional views on cell identity and cell fate determination. Direct reprogramming (also known as transdifferentiation) refers to cell fate conversion without transitioning through an intermediary pluripotent state. Given that the number of cell types that can be generated by direct reprogramming is rapidly increasing, it has become a promising strategy to produce functional cells for therapeutic purposes. This Review discusses the evolution of direct reprogramming from a transcription factor-based method to a small-molecule-driven approach, the recent progress in enhancing reprogrammed cell maturation, and the challenges associated with in vivo direct reprogramming for translational applications. It also describes our current understanding of the molecular mechanisms underlying direct reprogramming, including the role of transcription factors, epigenetic modifications, non-coding RNAs, and the function of metabolic reprogramming, and highlights novel insights gained from single-cell omics studies.
Collapse
|
76
|
Riching AS, Song K. Cardiac Regeneration: New Insights Into the Frontier of Ischemic Heart Failure Therapy. Front Bioeng Biotechnol 2021; 8:637538. [PMID: 33585427 PMCID: PMC7873479 DOI: 10.3389/fbioe.2020.637538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/29/2020] [Indexed: 12/17/2022] Open
Abstract
Ischemic heart disease is the leading cause of morbidity and mortality in the world. While pharmacological and surgical interventions developed in the late twentieth century drastically improved patient outcomes, mortality rates over the last two decades have begun to plateau. Following ischemic injury, pathological remodeling leads to cardiomyocyte loss and fibrosis leading to impaired heart function. Cardiomyocyte turnover rate in the adult heart is limited, and no clinical therapies currently exist to regenerate cardiomyocytes lost following ischemic injury. In this review, we summarize the progress of therapeutic strategies including revascularization and cell-based interventions to regenerate the heart: transiently inducing cardiomyocyte proliferation and direct reprogramming of fibroblasts into cardiomyocytes. Moreover, we highlight recent mechanistic insights governing these strategies to promote heart regeneration and identify current challenges in translating these approaches to human patients.
Collapse
Affiliation(s)
- Andrew S. Riching
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- The Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Pharmacology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kunhua Song
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- The Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Pharmacology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
77
|
Regulation of cardiomyocyte fate plasticity: a key strategy for cardiac regeneration. Signal Transduct Target Ther 2021; 6:31. [PMID: 33500391 PMCID: PMC7838318 DOI: 10.1038/s41392-020-00413-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/11/2020] [Accepted: 10/26/2020] [Indexed: 01/14/2023] Open
Abstract
With the high morbidity and mortality rates, cardiovascular diseases have become one of the most concerning diseases worldwide. The heart of adult mammals can hardly regenerate naturally after injury because adult cardiomyocytes have already exited the cell cycle, which subseqently triggers cardiac remodeling and heart failure. Although a series of pharmacological treatments and surgical methods have been utilized to improve heart functions, they cannot replenish the massive loss of beating cardiomyocytes after injury. Here, we summarize the latest research progress in cardiac regeneration and heart repair through altering cardiomyocyte fate plasticity, which is emerging as an effective strategy to compensate for the loss of functional cardiomyocytes and improve the impaired heart functions. First, residual cardiomyocytes in damaged hearts re-enter the cell cycle to acquire the proliferative capacity by the modifications of cell cycle-related genes or regulation of growth-related signals. Additionally, non-cardiomyocytes such as cardiac fibroblasts, were shown to be reprogrammed into cardiomyocytes and thus favor the repair of damaged hearts. Moreover, pluripotent stem cells have been shown to transform into cardiomyocytes to promote heart healing after myocardial infarction (MI). Furthermore, in vitro and in vivo studies demonstrated that environmental oxygen, energy metabolism, extracellular factors, nerves, non-coding RNAs, etc. play the key regulatory functions in cardiac regeneration. These findings provide the theoretical basis of targeting cellular fate plasticity to induce cardiomyocyte proliferation or formation, and also provide the clues for stimulating heart repair after injury.
Collapse
|
78
|
Saadat S, Noureddini M, Mahjoubin-Tehran M, Nazemi S, Shojaie L, Aschner M, Maleki B, Abbasi-Kolli M, Rajabi Moghadam H, Alani B, Mirzaei H. Pivotal Role of TGF-β/Smad Signaling in Cardiac Fibrosis: Non-coding RNAs as Effectual Players. Front Cardiovasc Med 2021; 7:588347. [PMID: 33569393 PMCID: PMC7868343 DOI: 10.3389/fcvm.2020.588347] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/15/2020] [Indexed: 12/21/2022] Open
Abstract
Unintended cardiac fibroblast proliferation in many pathophysiological heart conditions, known as cardiac fibrosis, results in pooling of extracellular matrix (ECM) proteins in the heart muscle. Transforming growth factor β (TGF-β) as a pivotal cytokine/growth factor stimulates fibroblasts and hastens ECM production in injured tissues. The TGF-β receptor is a heterodimeric receptor complex on the plasma membrane, made up from TGF-β type I, as well as type II receptors, giving rise to Smad2 and Smad3 transcription factors phosphorylation upon canonical signaling. Phosphorylated Smad2, Smad3, and cytoplasmic Smad4 intercommunicate to transfer the signal to the nucleus, culminating in provoked gene transcription. Additionally, TGF-β receptor complex activation starts up non-canonical signaling that lead to the mitogen-stimulated protein kinase cascade activation, inducing p38, JNK1/2 (c-Jun NH2-terminal kinase 1/2), and ERK1/2 (extracellular signal–regulated kinase 1/2) signaling. TGF-β not only activates fibroblasts and stimulates them to differentiate into myofibroblasts, which produce ECM proteins, but also promotes fibroblast proliferation. Non-coding RNAs (ncRNAs) are important regulators of numerous pathways along with cellular procedures. MicroRNAs and circular long ncRNAs, combined with long ncRNAs, are capable of affecting TGF-β/Smad signaling, leading to cardiac fibrosis. More comprehensive knowledge based on these processes may bring about new diagnostic and therapeutic approaches for different cardiac disorders.
Collapse
Affiliation(s)
- Somayeh Saadat
- Physiology Research Centre, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahdi Noureddini
- Physiology Research Centre, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sina Nazemi
- Vascular and Thorax Surgery Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Layla Shojaie
- Department of Medicine, Research Center for Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Behnaz Maleki
- Physiology Research Centre, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Abbasi-Kolli
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hasan Rajabi Moghadam
- Department of Cardiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Behrang Alani
- Department of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
79
|
Myocyte-specific enhancer factor 2c triggers transdifferentiation of adipose tissue-derived stromal cells into spontaneously beating cardiomyocyte-like cells. Sci Rep 2021; 11:1520. [PMID: 33452355 PMCID: PMC7810870 DOI: 10.1038/s41598-020-80848-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/29/2020] [Indexed: 01/10/2023] Open
Abstract
Cardiomyocyte regeneration is limited in adults. The adipose tissue-derived stromal vascular fraction (Ad-SVF) contains pluripotent stem cells that rarely transdifferentiate into spontaneously beating cardiomyocyte-like cells (beating CMs). However, the characteristics of beating CMs and the factors that regulate the differentiation of Ad-SVF toward the cardiac lineage are unknown. We developed a simple culture protocol under which the adult murine inguinal Ad-SVF reproducibly transdifferentiates into beating CMs without induction. The beating CMs showed the striated ventricular phenotype of cardiomyocytes and synchronised oscillation of the intracellular calcium concentration among cells on day 28 of Ad-SVF primary culture. We also identified beating CM-fated progenitors (CFPs) and performed single-cell transcriptome analysis of these CFPs. Among 491 transcription factors that were differentially expressed (≥ 1.75-fold) in CFPs and the beating CMs, myocyte-specific enhancer 2c (Mef2c) was key. Transduction of Ad-SVF cells with Mef2c using a lentiviral vector yielded CFPs and beating CMs with ~ tenfold higher cardiac troponin T expression, which was abolished by silencing of Mef2c. Thus, we identified the master gene required for transdifferentiation of Ad-SVF into beating CMs. These findings will facilitate the development of novel cardiac regeneration therapies based on gene-modified, cardiac lineage-directed Ad-SVF cells.
Collapse
|
80
|
Riching AS, Danis E, Zhao Y, Cao Y, Chi C, Bagchi RA, Klein BJ, Xu H, Kutateladze TG, McKinsey TA, Buttrick PM, Song K. Suppression of canonical TGF-β signaling enables GATA4 to interact with H3K27me3 demethylase JMJD3 to promote cardiomyogenesis. J Mol Cell Cardiol 2020; 153:44-59. [PMID: 33359755 DOI: 10.1016/j.yjmcc.2020.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 11/14/2020] [Accepted: 12/12/2020] [Indexed: 01/07/2023]
Abstract
Direct reprogramming of fibroblasts into cardiomyocytes (CMs) represents a promising strategy to regenerate CMs lost after ischemic heart injury. Overexpression of GATA4, HAND2, MEF2C, TBX5, miR-1, and miR-133 (GHMT2m) along with transforming growth factor beta (TGF-β) inhibition efficiently promote reprogramming. However, the mechanisms by which TGF-β blockade promotes cardiac reprogramming remain unknown. Here, we identify interactions between the histone H3 lysine 27 trimethylation (H3K27me3) demethylase JMJD3, the SWI/SNF remodeling complex subunit BRG1, and cardiac transcription factors. Furthermore, canonical TGF-β signaling regulates the interaction between GATA4 and JMJD3. TGF-β activation impairs the ability of GATA4 to bind target genes and prevents demethylation of H3K27 at cardiac gene promoters during cardiac reprogramming. Finally, a mutation in GATA4 (V267M) that is associated with congenital heart disease exhibits reduced binding to JMJD3 and impairs cardiomyogenesis. Thus, we have identified an epigenetic mechanism wherein canonical TGF-β pathway activation impairs cardiac gene programming, in part by interfering with GATA4-JMJD3 interactions.
Collapse
Affiliation(s)
- Andrew S Riching
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; The Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Pharmacology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Etienne Danis
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Yuanbiao Zhao
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; The Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Yingqiong Cao
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; The Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Congwu Chi
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; The Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rushita A Bagchi
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; The Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Brianna J Klein
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Hongyan Xu
- Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Tatiana G Kutateladze
- Pharmacology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Timothy A McKinsey
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; The Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Pharmacology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Peter M Buttrick
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kunhua Song
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; The Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Pharmacology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
81
|
Di Gregorio J, Robuffo I, Spalletta S, Giambuzzi G, De Iuliis V, Toniato E, Martinotti S, Conti P, Flati V. The Epithelial-to-Mesenchymal Transition as a Possible Therapeutic Target in Fibrotic Disorders. Front Cell Dev Biol 2020; 8:607483. [PMID: 33409282 PMCID: PMC7779530 DOI: 10.3389/fcell.2020.607483] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
Fibrosis is a chronic and progressive disorder characterized by excessive deposition of extracellular matrix, which leads to scarring and loss of function of the affected organ or tissue. Indeed, the fibrotic process affects a variety of organs and tissues, with specific molecular background. However, two common hallmarks are shared: the crucial role of the transforming growth factor-beta (TGF-β) and the involvement of the inflammation process, that is essential for initiating the fibrotic degeneration. TGF-β in particular but also other cytokines regulate the most common molecular mechanism at the basis of fibrosis, the Epithelial-to-Mesenchymal Transition (EMT). EMT has been extensively studied, but not yet fully explored as a possible therapeutic target for fibrosis. A deeper understanding of the crosstalk between fibrosis and EMT may represent an opportunity for the development of a broadly effective anti-fibrotic therapy. Here we report the evidences of the relationship between EMT and multi-organ fibrosis, and the possible therapeutic approaches that may be developed by exploiting this relationship.
Collapse
Affiliation(s)
- Jacopo Di Gregorio
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Iole Robuffo
- Institute of Molecular Genetics, National Research Council, Section of Chieti, Chieti, Italy
| | - Sonia Spalletta
- Department of Clinical Pathology, E. Profili Hospital, Fabriano, Ancona, Italy
| | - Giulia Giambuzzi
- Department of Medical and Oral Sciences and Biotechnologies, University “G. d’Annunzio”, Chieti, Italy
| | - Vincenzo De Iuliis
- Department of Medical and Oral Sciences and Biotechnologies, University “G. d’Annunzio”, Chieti, Italy
| | - Elena Toniato
- Department of Medical and Oral Sciences and Biotechnologies, University “G. d’Annunzio”, Chieti, Italy
| | - Stefano Martinotti
- Department of Medical and Oral Sciences and Biotechnologies, University “G. d’Annunzio”, Chieti, Italy
| | - Pio Conti
- Postgraduate Medical School, University of Chieti-Pescara, Chieti, Italy
| | - Vincenzo Flati
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
82
|
Wang NB, Beitz AM, Galloway KE. Engineering cell fate: Applying synthetic biology to cellular reprogramming. ACTA ACUST UNITED AC 2020; 24:18-31. [PMID: 36330198 PMCID: PMC9629175 DOI: 10.1016/j.coisb.2020.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cellular reprogramming drives cells from one stable identity to a new cell fate. By generating a diversity of previously inaccessible cell types from diverse genetic backgrounds, cellular reprogramming is rapidly transforming how we study disease. However, low efficiency and limited maturity have limited the adoption of in vitro-derived cellular models. To overcome these limitations and improve mechanistic understanding of cellular reprogramming, a host of synthetic biology tools have been deployed. Recent synthetic biology approaches have advanced reprogramming by tackling three significant challenges to reprogramming: delivery of reprogramming factors, epigenetic roadblocks, and latent donor identity. In addition, emerging insight from the molecular systems biology of reprogramming reveal how systems-level drivers of reprogramming can be harnessed to further advance reprogramming technologies. Furthermore, recently developed synthetic biology tools offer new modes for engineering cell fate.
Collapse
Affiliation(s)
- Nathan B Wang
- Department of Chemical Engineering, MIT, 25 Ames St., Cambridge, MA, 02139, USA
| | - Adam M Beitz
- Department of Chemical Engineering, MIT, 25 Ames St., Cambridge, MA, 02139, USA
| | - Kate E Galloway
- Department of Chemical Engineering, MIT, 25 Ames St., Cambridge, MA, 02139, USA
| |
Collapse
|
83
|
Zhang Z, Nam YJ. Assessing Cardiac Reprogramming using High Content Imaging Analysis. J Vis Exp 2020. [PMID: 33165328 DOI: 10.3791/61859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The goal of this protocol is to describe a method for quantifying induced cardiomyocyte-like cells (iCMs), which are directly reprogrammed in vitro by a reprogramming technique. Cardiac reprogramming provides a strategy to generate new cardiomyocytes. By introducing core cardiogenic transcription factors into fibroblasts; fibroblasts can be converted to iCMs without transition through the pluripotent stem cell state. However, the conversion rate of fibroblasts to iCMs still remains low. Accordingly, there have been numerous additional approaches to enhance cardiac reprogramming efficiency. Most of these studies assessed cardiac reprogramming efficiency using flow cytometry, while at the same time performed immunocytochemistry to visualize iCMs. Thus, at least two separate sets of reprogramming experiments are required to demonstrate the success of iCM reprogramming. In contrast, automated high content imaging analysis will provide both quantification and qualification of iCM reprogramming with a relatively small number of cells. With this method, it is possible to directly assess the quantity and quality of iCMs with a single reprogramming experiment. This approach will be able to facilitate future cardiac reprogramming studies that require large-scale reprogramming experiments such as screening genetic or pharmacological factors for enhancing reprogramming efficiency. In addition, the application of high content imaging analysis protocol is not limited to cardiac reprogramming. It can be applied to reprogramming of other cell lineages as well as any immunostaining experiments which need both quantification and visualization of immunostained cells.
Collapse
Affiliation(s)
- Zhentao Zhang
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center; Department of Cell and Developmental Biology, Vanderbilt University; Vanderbilt Center for Stem Cell Biology, Vanderbilt University
| | - Young-Jae Nam
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center; Department of Cell and Developmental Biology, Vanderbilt University; Vanderbilt Center for Stem Cell Biology, Vanderbilt University;
| |
Collapse
|
84
|
The Future of Direct Cardiac Reprogramming: Any GMT Cocktail Variety? Int J Mol Sci 2020; 21:ijms21217950. [PMID: 33114756 PMCID: PMC7663133 DOI: 10.3390/ijms21217950] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/13/2022] Open
Abstract
Direct cardiac reprogramming has emerged as a novel therapeutic approach to treat and regenerate injured hearts through the direct conversion of fibroblasts into cardiac cells. Most studies have focused on the reprogramming of fibroblasts into induced cardiomyocytes (iCMs). The first study in which this technology was described, showed that at least a combination of three transcription factors, GATA4, MEF2C and TBX5 (GMT cocktail), was required for the reprogramming into iCMs in vitro using mouse cells. However, this was later demonstrated to be insufficient for the reprogramming of human cells and additional factors were required. Thereafter, most studies have focused on implementing reprogramming efficiency and obtaining fully reprogrammed and functional iCMs, by the incorporation of other transcription factors, microRNAs or small molecules to the original GMT cocktail. In this respect, great advances have been made in recent years. However, there is still no consensus on which of these GMT-based varieties is best, and robust and highly reproducible protocols are still urgently required, especially in the case of human cells. On the other hand, apart from CMs, other cells such as endothelial and smooth muscle cells to form new blood vessels will be fundamental for the correct reconstruction of damaged cardiac tissue. With this aim, several studies have centered on the direct reprogramming of fibroblasts into induced cardiac progenitor cells (iCPCs) able to give rise to all myocardial cell lineages. Especially interesting are reports in which multipotent and highly expandable mouse iCPCs have been obtained, suggesting that clinically relevant amounts of these cells could be created. However, as of yet, this has not been achieved with human iCPCs, and exactly what stage of maturity is appropriate for a cell therapy product remains an open question. Nonetheless, the major concern in regenerative medicine is the poor retention, survival, and engraftment of transplanted cells in the cardiac tissue. To circumvent this issue, several cell pre-conditioning approaches are currently being explored. As an alternative to cell injection, in vivo reprogramming may face fewer barriers for its translation to the clinic. This approach has achieved better results in terms of efficiency and iCMs maturity in mouse models, indicating that the heart environment can favor this process. In this context, in recent years some studies have focused on the development of safer delivery systems such as Sendai virus, Adenovirus, chemical cocktails or nanoparticles. This article provides an in-depth review of the in vitro and in vivo cardiac reprograming technology used in mouse and human cells to obtain iCMs and iCPCs, and discusses what challenges still lie ahead and what hurdles are to be overcome before results from this field can be transferred to the clinical settings.
Collapse
|
85
|
Wang L, Ma H, Huang P, Xie Y, Near D, Wang H, Xu J, Yang Y, Xu Y, Garbutt T, Zhou Y, Liu Z, Yin C, Bressan M, Taylor JM, Liu J, Qian L. Down-regulation of Beclin1 promotes direct cardiac reprogramming. Sci Transl Med 2020; 12:eaay7856. [PMID: 33087505 PMCID: PMC8188650 DOI: 10.1126/scitranslmed.aay7856] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 05/07/2020] [Accepted: 09/16/2020] [Indexed: 12/22/2022]
Abstract
Direct reprogramming of fibroblasts to alternative cell fates by forced expression of transcription factors offers a platform to explore fundamental molecular events governing cell fate identity. The discovery and study of induced cardiomyocytes (iCMs) not only provides alternative therapeutic strategies for heart disease but also sheds lights on basic biology underlying CM fate determination. The iCM field has primarily focused on early transcriptome and epigenome repatterning, whereas little is known about how reprogramming iCMs remodel, erase, and exit the initial fibroblast lineage to acquire final cell identity. Here, we show that autophagy-related 5 (Atg5)-dependent autophagy, an evolutionarily conserved self-digestion process, was induced and required for iCM reprogramming. Unexpectedly, the autophagic factor Beclin1 (Becn1) was found to suppress iCM induction in an autophagy-independent manner. Depletion of Becn1 resulted in improved iCM induction from both murine and human fibroblasts. In a mouse genetic model, Becn1 haploinsufficiency further enhanced reprogramming factor-mediated heart function recovery and scar size reduction after myocardial infarction. Mechanistically, loss of Becn1 up-regulated Lef1 and down-regulated Wnt inhibitors, leading to activation of the canonical Wnt/β-catenin signaling pathway. In addition, Becn1 physically interacts with other classical class III phosphatidylinositol 3-kinase (PI3K III) complex components, the knockdown of which phenocopied Becn1 depletion in cardiac reprogramming. Collectively, our study revealed an inductive role of Atg5-dependent autophagy as well as a previously unrecognized autophagy-independent inhibitory function of Becn1 in iCM reprogramming.
Collapse
Affiliation(s)
- Li Wang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Hong Ma
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Peisen Huang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yifang Xie
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - David Near
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Haofei Wang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jun Xu
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yuchen Yang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yangxi Xu
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Tiffany Garbutt
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yang Zhou
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ziqing Liu
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Chaoying Yin
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Michael Bressan
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joan M Taylor
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jiandong Liu
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Li Qian
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA.
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
86
|
Jiang L, Liang J, Huang W, Wu Z, Paul C, Wang Y. Strategies and Challenges to Improve Cellular Programming-Based Approaches for Heart Regeneration Therapy. Int J Mol Sci 2020; 21:E7662. [PMID: 33081233 PMCID: PMC7589611 DOI: 10.3390/ijms21207662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/29/2022] Open
Abstract
Limited adult cardiac cell proliferation after cardiovascular disease, such as heart failure, hampers regeneration, resulting in a major loss of cardiomyocytes (CMs) at the site of injury. Recent studies in cellular reprogramming approaches have provided the opportunity to improve upon previous techniques used to regenerate damaged heart. Using these approaches, new CMs can be regenerated from differentiation of iPSCs (similar to embryonic stem cells), the direct reprogramming of fibroblasts [induced cardiomyocytes (iCMs)], or induced cardiac progenitors. Although these CMs have been shown to functionally repair infarcted heart, advancements in technology are still in the early stages of development in research laboratories. In this review, reprogramming-based approaches for generating CMs are briefly introduced and reviewed, and the challenges (including low efficiency, functional maturity, and safety issues) that hinder further translation of these approaches into a clinical setting are discussed. The creative and combined optimal methods to address these challenges are also summarized, with optimism that further investigation into tissue engineering, cardiac development signaling, and epigenetic mechanisms will help to establish methods that improve cell-reprogramming approaches for heart regeneration.
Collapse
Affiliation(s)
- Lin Jiang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267-0529, USA
| | - Jialiang Liang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267-0529, USA
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267-0529, USA
| | - Zhichao Wu
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267-0529, USA
| | - Christian Paul
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267-0529, USA
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267-0529, USA
| |
Collapse
|
87
|
Nasser MI, Qi X, Zhu S, He Y, Zhao M, Guo H, Zhu P. Current situation and future of stem cells in cardiovascular medicine. Biomed Pharmacother 2020; 132:110813. [PMID: 33068940 DOI: 10.1016/j.biopha.2020.110813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular disease (CVD) is one of the leading causes of death worldwide. Currently, many methods have been proposed by researchers for the prevention and treatment of CVD; among them, stem cell-based therapies are the most promising. As the cells of origin for various mature cells, stem cells have the ability to self-renew and differentiate. Stem cells have a powerful ability to regenerate biologically, self-repair, and enhance damaged functional tissues or organs. Allogeneic stem cells and somatic stem cells are two types of cells that can be used for cardiac repair. Theoretically, dilated cardiomyopathy and acute myocardial infarction can be treated with such cells. In addition, stem cell transplantation procedures, including intravenous, epicardial, cardiac, and endocardial injections, have been reported to provide significant benefits in clinical practice; however, there are still a number of issues that need further study and consideration, such as the form and quantity of transplanted cells and post-transplantation health. The goal of this analysis was to summarize the recent advances in stem cell-based therapies and their efficacy in cardiovascular regenerative medicine.
Collapse
Affiliation(s)
- M I Nasser
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China. Address: 106 Zhongshan Er Road, Guangzhou, 510080, PR China
| | - Xiao Qi
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China. Address: 106 Zhongshan Er Road, Guangzhou, 510080, PR China
| | - Shuoji Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China. Address: 106 Zhongshan Er Road, Guangzhou, 510080, PR China
| | - Yin He
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China. Address: 106 Zhongshan Er Road, Guangzhou, 510080, PR China
| | - Mingyi Zhao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China. Address: 106 Zhongshan Er Road, Guangzhou, 510080, PR China
| | - Huiming Guo
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China. Address: 106 Zhongshan Er Road, Guangzhou, 510080, PR China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China. Address: 106 Zhongshan Er Road, Guangzhou, 510080, PR China.
| |
Collapse
|
88
|
Geng W, Li C, Zhan Y, Zhang R, Zheng J. Thymoquinone alleviates liver fibrosis via miR-30a-mediated epithelial-mesenchymal transition. J Cell Physiol 2020; 236:3629-3640. [PMID: 33090549 DOI: 10.1002/jcp.30097] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/31/2020] [Accepted: 09/25/2020] [Indexed: 12/19/2022]
Abstract
Thymoquinone (TQ), the main active constituent of Nigella sativa seeds, has been shown to play a role in antioxidation, anti-inflammation, and antitumor. Recent studies have demonstrated that TQ contributes to the suppression of liver fibrosis. Abnormal activated epithelial-mesenchymal transition (EMT) promotes the activation of hepatic stellate cells (HSCs). However, whether the antifibrotic effects of TQ occur through inhibiting EMT is largely unknown. In this study, it was found that TQ ameliorated liver fibrosis and collagen accumulation in carbon tetrachloride (CCl4) mice. In vitro, TQ inhibited HSC activation including reduced proliferation, α-smooth muscle actin, and collagen. In addition, TQ markedly suppressed the EMT process, with enhanced E-cadherin and reduced desmin. Notably, snail family transcriptional repressor 1 (Snai1), the EMT master transcription factor, was obviously inhibited by TQ in vivo and in vitro. Further studies demonstrated that Snai1 was a target of microRNA-30a (miR-30a), which was upregulated by TQ. Interestingly, the effects of TQ on HSC activation and EMT were almost inhibited by miR-30a inhibitor. Collectively, we demonstrate that TQ inhibits HSC activation, at least in part, via regulation of miR-30a and Snai1. TQ upregulates miR-30a expression, resulting in a reduced Snai1 level as well as EMT process inactivation, which contributes to the inhibition of HSC activation. TQ may be a potential therapeutic agent for liver fibrosis.
Collapse
Affiliation(s)
- Wujun Geng
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chunxue Li
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yating Zhan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rongrong Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianjian Zheng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
89
|
Cardioprotective Effects of Dietary Flaxseed Post-Infarction Are Associated with Changes in MicroRNA Expression. Biomolecules 2020; 10:biom10091297. [PMID: 32911872 PMCID: PMC7564197 DOI: 10.3390/biom10091297] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/01/2020] [Accepted: 09/05/2020] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) such as miR-1, miR-133a, miR-133b, miR-135a, and miR-29b play a key role in many cardiac pathological remodeling processes, including apoptosis, fibrosis, and arrhythmias, after a myocardial infarction (MI). Dietary flaxseed has demonstrated a protective effect against an MI. The present study was carried out to test the hypothesis that dietary flaxseed supplementation before and after an MI regulates the expression of above-mentioned miRNAs to produce its cardioprotective effect. Animals were randomized after inducing MI by coronary artery ligation into: (a) sham MI with normal chow, (b) MI with normal chow, and (c–e) MI supplemented with either 10% milled flaxseed, or 4.4% flax oil enriched in alpha-linolenic acid (ALA), or 0.44% flax lignan secoisolariciresinol diglucoside. The feeding protocol consisted of 2 weeks before and 8 weeks after the surgery. Dietary flax oil supplementation selectively upregulated the cardiac expression of miR-133a, miR-135a, and miR-29b. The levels of collagen I expression were reduced in the flax oil group. We conclude that miR-133a, miR-135a, and miR-29b are sensitive to dietary flax oil, likely due to its rich ALA content. The cardioprotective effect of flaxseed in an MI could be due to modulation of these miRNAs.
Collapse
|
90
|
Soft Matrix Promotes Cardiac Reprogramming via Inhibition of YAP/TAZ and Suppression of Fibroblast Signatures. Stem Cell Reports 2020; 15:612-628. [PMID: 32857980 PMCID: PMC7486305 DOI: 10.1016/j.stemcr.2020.07.022] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 01/14/2023] Open
Abstract
Direct cardiac reprogramming holds great potential for regenerative medicine. However, it remains inefficient, and induced cardiomyocytes (iCMs) generated in vitro are less mature than those in vivo, suggesting that undefined extrinsic factors may regulate cardiac reprogramming. Previous in vitro studies mainly used hard polystyrene dishes, yet the effect of substrate rigidity on cardiac reprogramming remains unclear. Thus, we developed a Matrigel-based hydrogel culture system to determine the roles of matrix stiffness and mechanotransduction in cardiac reprogramming. We found that soft matrix comparable with native myocardium promoted the efficiency and quality of cardiac reprogramming. Mechanistically, soft matrix enhanced cardiac reprogramming via inhibition of integrin, Rho/ROCK, actomyosin, and YAP/TAZ signaling and suppression of fibroblast programs, which were activated on rigid substrates. Soft substrate further enhanced cardiac reprogramming with Sendai virus vectors via YAP/TAZ suppression, increasing the reprogramming efficiency up to ∼15%. Thus, mechanotransduction could provide new targets for improving cardiac reprogramming. Hydrogel culture reveals the role of mechanotransduction in cardiac reprogramming Soft ECM comparable with native myocardium promotes cardiac reprogramming Soft ECM promotes cardiac reprogramming via YAP/TAZ/fibroblast signaling inhibition Soft ECM promotes Sendai virus vector-mediated cardiac reprogramming
Collapse
|
91
|
Hand2 Selectively Reorganizes Chromatin Accessibility to Induce Pacemaker-like Transcriptional Reprogramming. Cell Rep 2020; 27:2354-2369.e7. [PMID: 31116981 PMCID: PMC6657359 DOI: 10.1016/j.celrep.2019.04.077] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/25/2019] [Accepted: 04/17/2019] [Indexed: 01/01/2023] Open
Abstract
Gata4, Hand2, Mef2c, and Tbx5 (GHMT) can reprogram transduced fibroblasts into induced pacemaker-like myocytes (iPMs), but the underlying mechanisms remain obscure. Here, we explore the role of Hand2 in iPM formation by using a combination of transcriptome, genome, and biochemical as-says. We found many shared transcriptional signatures between iPMs and the endogenous sinoatrial node (SAN), yet key regulatory networks remain missing. We demonstrate that Hand2 augments chromatin accessibility at loci involved in sarcomere organization, electrical coupling, and membrane depolarization. Focusing on an established cardiac Hand2 cistrome, we observe selective reorganization of chromatin accessibility to promote pacemaker-specific gene expression. Moreover, we identify a Hand2 cardiac subtype diversity (CSD) domain through biochemical analysis of the N terminus. By integrating our RNA-seq and ATAC-seq datasets, we highlight desmosome organization as a hallmark feature of iPM formation. Collectively, our results illuminate Hand2-dependent mechanisms that may guide future efforts to rationally improve iPM formation. Gata4, Hand2, Mef2c, and Tbx5 can reprogram fibroblasts into cardiomyocyte-like cells, including induced pacemakers (iPMs). Fernandez-Perez et al. show that Hand2 coordinates this process by influencing chromatin accessibility and gene expression in fibroblasts undergoing iPM lineage conversion. These insights could eventually inform the production of superior replacement cells.
Collapse
|
92
|
Yang D, Liu HQ, Liu FY, Tang N, Guo Z, Ma SQ, An P, Wang MY, Wu HM, Yang Z, Fan D, Tang QZ. The Roles of Noncardiomyocytes in Cardiac Remodeling. Int J Biol Sci 2020; 16:2414-2429. [PMID: 32760209 PMCID: PMC7378633 DOI: 10.7150/ijbs.47180] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiac remodeling is a common characteristic of almost all forms of heart disease, including cardiac infarction, valvular diseases, hypertension, arrhythmia, dilated cardiomyopathy and other conditions. It is not merely a simple outcome induced by an increase in the workload of cardiomyocytes (CMs). The remodeling process is accompanied by abnormalities of cardiac structure as well as disturbance of cardiac function, and emerging evidence suggests that a wide range of cells in the heart participate in the initiation and development of cardiac remodeling. Other than CMs, there are numerous noncardiomyocytes (non-CMs) that regulate the process of cardiac remodeling, such as cardiac fibroblasts and immune cells (including macrophages, lymphocytes, neutrophils, and mast cells). In this review, we summarize recent knowledge regarding the definition and significant effects of various non-CMs in the pathogenesis of cardiac remodeling, with a particular emphasis on the involved signaling mechanisms. In addition, we discuss the properties of non-CMs, which serve as targets of many cardiovascular drugs that reduce adverse cardiac remodeling.
Collapse
Affiliation(s)
- Dan Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Han-Qing Liu
- Department of Thyroid and Breast, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
| | - Fang-Yuan Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Nan Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Zhen Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Shu-Qing Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Peng An
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Ming-Yu Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Hai-Ming Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Zheng Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Di Fan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| |
Collapse
|
93
|
Abstract
PURPOSE OF REVIEW The high global incidence of heart disease drives the need for methods of mending damaged hearts. Direct reprogramming of cardiac fibroblasts into cardiomyocyte-like cells (called iCMs) has been successful in the creation of new muscle cells, in the repair of hearts post-myocardial injury, and therefore has great promise for the clinic. The purpose of this paper is to review and highlight the approaches for and underlying molecular mechanisms of direct cardiac reprogramming. RECENT FINDINGS Single-cell genomics and mechanistic studies have elucidated the stepwise transition of fibroblasts to iCMs as well as the molecular roadblocks that hinder reprogramming. Cardiac fibroblasts are able to be directly reprogrammed, in vitro and in vivo, into induced cardiomyocyte-like cells by the ectopic expression of a combination of transcription factors, microRNAs or small molecules. Recent works have illustrated methods that improve the efficiency of iCM generation and delivery of reprogramming cocktails as well as have revealed the molecular networks governing the reprogramming process. Current studies have also begun to identify and address the additional hurdles in human iCM reprogramming.
Collapse
Affiliation(s)
- Gregory Farber
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Li Qian
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, 27599, USA.
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA.
- , Chapel Hill, NC, USA.
| |
Collapse
|
94
|
Paoletti C, Divieto C, Tarricone G, Di Meglio F, Nurzynska D, Chiono V. MicroRNA-Mediated Direct Reprogramming of Human Adult Fibroblasts Toward Cardiac Phenotype. Front Bioeng Biotechnol 2020; 8:529. [PMID: 32582662 PMCID: PMC7297084 DOI: 10.3389/fbioe.2020.00529] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
Modulation of microRNA expression holds the promise to achieve direct reprogramming of fibroblasts into cardiomyocyte-like cells as a new strategy for myocardial regeneration after ischemic heart disease. Previous reports have shown that murine fibroblasts can be directly reprogrammed into induced cardiomyocytes (iCMs) by transient transfection with four microRNA mimics (miR-1, 133, 208, and 499, termed "miRcombo"). Hence, study on the effect of miRcombo transfection on adult human cardiac fibroblasts (AHCFs) deserves attention in the perspective of a future clinical translation of the approach. In this brief report, we studied for the first time whether miRcombo transient transfection of AHCFs by non-viral vectors might trigger direct reprogramming of AHCFs into cardiomyocyte-like cells. Initially, efficient miRNA delivery to cells was demonstrated through the use of a commercially available transfection agent (DharmaFECT1). Transient transfection of AHCFs with miRcombo was found to upregulate early cardiac transcription factors after 7 days post-transfection and cardiomyocyte specific marker cTnT after 15 days post-transfection, and to downregulate the expression of fibroblast markers at 15 days post-transfection. The percentage of cTnT-positive cells after 15 days from miRcombo transfection was ∼11%, as evaluated by flow cytometry. Furthermore, a relevant percentage of miRcombo-transfected AHCFs (∼38%) displayed spontaneous calcium transients at 30 days post-transfection. Results evidenced the role of miRcombo transfection on triggering the trans differentiation of AHCFs into iCMs. Although further investigations are needed to achieve iCM maturation, early findings from this study pave the way toward new advanced therapies for human cardiac regeneration.
Collapse
Affiliation(s)
- C. Paoletti
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - C. Divieto
- Istituto Nazionale di Ricerca Metrologica, Advanced Materials Metrology and Life Science, Turin, Italy
| | - G. Tarricone
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - F. Di Meglio
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - D. Nurzynska
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - V. Chiono
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| |
Collapse
|
95
|
Mazzola M, Di Pasquale E. Toward Cardiac Regeneration: Combination of Pluripotent Stem Cell-Based Therapies and Bioengineering Strategies. Front Bioeng Biotechnol 2020; 8:455. [PMID: 32528940 PMCID: PMC7266938 DOI: 10.3389/fbioe.2020.00455] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases represent the major cause of morbidity and mortality worldwide. Multiple studies have been conducted so far in order to develop treatments able to prevent the progression of these pathologies. Despite progress made in the last decade, current therapies are still hampered by poor translation into actual clinical applications. The major drawback of such strategies is represented by the limited regenerative capacity of the cardiac tissue. Indeed, after an ischaemic insult, the formation of fibrotic scar takes place, interfering with mechanical and electrical functions of the heart. Hence, the ability of the heart to recover after ischaemic injury depends on several molecular and cellular pathways, and the imbalance between them results into adverse remodeling, culminating in heart failure. In this complex scenario, a new chapter of regenerative medicine has been opened over the past 20 years with the discovery of induced pluripotent stem cells (iPSCs). These cells share the same characteristic of embryonic stem cells (ESCs), but are generated from patient-specific somatic cells, overcoming the ethical limitations related to ESC use and providing an autologous source of human cells. Similarly to ESCs, iPSCs are able to efficiently differentiate into cardiomyocytes (CMs), and thus hold a real regenerative potential for future clinical applications. However, cell-based therapies are subjected to poor grafting and may cause adverse effects in the failing heart. Thus, over the last years, bioengineering technologies focused their attention on the improvement of both survival and functionality of iPSC-derived CMs. The combination of these two fields of study has burst the development of cell-based three-dimensional (3D) structures and organoids which mimic, more realistically, the in vivo cell behavior. Toward the same path, the possibility to directly induce conversion of fibroblasts into CMs has recently emerged as a promising area for in situ cardiac regeneration. In this review we provide an up-to-date overview of the latest advancements in the application of pluripotent stem cells and tissue-engineering for therapeutically relevant cardiac regenerative approaches, aiming to highlight outcomes, limitations and future perspectives for their clinical translation.
Collapse
Affiliation(s)
- Marta Mazzola
- Stem Cell Unit, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Elisa Di Pasquale
- Stem Cell Unit, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy.,Institute of Genetic and Biomedical Research (IRGB) - UOS of Milan, National Research Council (CNR), Milan, Italy
| |
Collapse
|
96
|
Ozaki Tan SJ, Floriano JF, Nicastro L, Emanueli C, Catapano F. Novel Applications of Mesenchymal Stem Cell-derived Exosomes for Myocardial Infarction Therapeutics. Biomolecules 2020; 10:E707. [PMID: 32370160 PMCID: PMC7277090 DOI: 10.3390/biom10050707] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality and morbidity globally, representing approximately a third of all deaths every year. The greater part of these cases is represented by myocardial infarction (MI), or heart attack as it is better known, which occurs when declining blood flow to the heart causes injury to cardiac tissue. Mesenchymal stem cells (MSCs) are multipotent stem cells that represent a promising vector for cell therapies that aim to treat MI due to their potent regenerative effects. However, it remains unclear the extent to which MSC-based therapies are able to induce regeneration in the heart and even less clear the degree to which clinical outcomes could be improved. Exosomes, which are small extracellular vesicles (EVs) known to have implications in intracellular communication, derived from MSCs (MSC-Exos), have recently emerged as a novel cell-free vector that is capable of conferring cardio-protection and regeneration in target cardiac cells. In this review, we assess the current state of research of MSC-Exos in the context of MI. In particular, we place emphasis on the mechanisms of action by which MSC-Exos accomplish their therapeutic effects, along with commentary on the current difficulties faced with exosome research and the ongoing clinical applications of stem-cell derived exosomes in different medical contexts.
Collapse
Affiliation(s)
- Sho Joseph Ozaki Tan
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; (S.J.O.T.); (J.F.F.); (L.N.)
| | - Juliana Ferreria Floriano
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; (S.J.O.T.); (J.F.F.); (L.N.)
- Botucatu Medical School, Sao Paulo State University, Botucatu 18618687, Brazil
| | - Laura Nicastro
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; (S.J.O.T.); (J.F.F.); (L.N.)
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; (S.J.O.T.); (J.F.F.); (L.N.)
| | - Francesco Catapano
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; (S.J.O.T.); (J.F.F.); (L.N.)
| |
Collapse
|
97
|
Wang B, Xu M, Li M, Wu F, Hu S, Chen X, Zhao L, Huang Z, Lan F, Liu D, Wang Y. miR-25 Promotes Cardiomyocyte Proliferation by Targeting FBXW7. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:1299-1308. [PMID: 32160702 PMCID: PMC7044498 DOI: 10.1016/j.omtn.2020.01.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/05/2020] [Accepted: 01/09/2020] [Indexed: 01/14/2023]
Abstract
Induction of endogenous cardiomyocyte (CM) proliferation is one of the key strategies for heart regeneration. Increasing evidence points to the potential role of microRNAs (miRNAs) in the regulation of CM proliferation. Here, we used human embryonic stem cell (hESC)-derived CMs (hESC-CMs) as a tool to identify miRNAs that promote CM proliferation. We profiled miRNA expression at an early stage of CM differentiation and identified a list of highly expressed miRNAs. Among these miRNAs, miR-25 was enriched in early-stage hESC-CMs, but its expression decreased over time. Overexpression of miR-25 promoted CM proliferation. RNA sequencing (RNA-seq) analysis revealed that genes related to cell-cycle signal were strongly influenced by miR-25 overexpression. We further showed that miR-25 promoted CM proliferation by targeting FBXW7. Finally, the function of miR-25 in the regulation of CM proliferation was demonstrated in zebrafish. Our study suggested that miR-25 is a promising molecule for heart regeneration.
Collapse
Affiliation(s)
- Bei Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Mengting Xu
- School of Life Sciences, Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Miaomiao Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Fujian Wu
- Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Disease, Capital Medical University, Beijing 100029, China
| | - Shijun Hu
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou 215007, China
| | - Xiangbo Chen
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; Hangzhou Rongze Biotechnology, Hangzhou 310000, Zhejiang, China
| | - Liqun Zhao
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zheyong Huang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Feng Lan
- Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Disease, Capital Medical University, Beijing 100029, China.
| | - Dong Liu
- School of Life Sciences, Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong 226001, China.
| | - Yongming Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China; School of Life Sciences, Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong 226001, China.
| |
Collapse
|
98
|
Wang J, Jiang X, Zhao L, Zuo S, Chen X, Zhang L, Lin Z, Zhao X, Qin Y, Zhou X, Yu XY. Lineage reprogramming of fibroblasts into induced cardiac progenitor cells by CRISPR/Cas9-based transcriptional activators. Acta Pharm Sin B 2020; 10:313-326. [PMID: 32082976 PMCID: PMC7016296 DOI: 10.1016/j.apsb.2019.09.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/26/2019] [Accepted: 08/29/2019] [Indexed: 12/16/2022] Open
Abstract
Overexpression of exogenous lineage-determining factors succeeds in directly reprogramming fibroblasts to various cell types. Several studies have reported reprogramming of fibroblasts into induced cardiac progenitor cells (iCPCs). CRISPR/Cas9-mediated gene activation is a potential approach for cellular reprogramming due to its high precision and multiplexing capacity. Here we show lineage reprogramming to iCPCs through a dead Cas9 (dCas9)-based transcription activation system. Targeted and robust activation of endogenous cardiac factors, including GATA4, HAND2, MEF2C and TBX5 (G, H, M and T; GHMT), can reprogram human fibroblasts toward iCPCs. The iCPCs show potentials to differentiate into cardiomyocytes, smooth muscle cells and endothelial cells in vitro. Addition of MEIS1 to GHMT induces cell cycle arrest in G2/M and facilitates cardiac reprogramming. Lineage reprogramming of human fibroblasts into iCPCs provides a promising cellular resource for disease modeling, drug discovery and individualized cardiac cell therapy.
Collapse
|
99
|
Chen K, Huang Y, Singh R, Wang ZZ. Arrhythmogenic risks of stem cell replacement therapy for cardiovascular diseases. J Cell Physiol 2020; 235:6257-6267. [PMID: 31994198 DOI: 10.1002/jcp.29554] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 12/22/2022]
Abstract
Ischemic heart disease and congestive heart failure are major contributors to high morbidity and mortality. Approximately 1.5 million cases of myocardial infarction occur annually in the United States; the yearly incidence rate is approximately 600 cases per 100,000 people. Although significant progress to improve the survival rate has been made by medications and implantable medical devices, damaged cardiomyocytes are unable to be recovered by current treatment strategies. After almost two decades of research, stem cell therapy has become a very promising approach to generate new cardiomyocytes and enhance the function of the heart. Along with clinical trials with stem cells conducted in cardiac regeneration, concerns regarding safety and potential risks have emerged. One of the contentious issues is the electrical dysfunctions of cardiomyocytes and cardiac arrhythmia after stem cell therapy. In this review, we focus on the cell sources currently used for stem cell therapy and discuss related arrhythmogenic risk.
Collapse
Affiliation(s)
- Kang Chen
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuting Huang
- Department of Medicine, University of Maryland Medical Center Midtown Campus, Baltimore, Maryland
| | - Radhika Singh
- Center for Biotechnology Education, Johns Hopkins University, Baltimore, Maryland
| | - Zack Z Wang
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
100
|
Isoform Specific Effects of Mef2C during Direct Cardiac Reprogramming. Cells 2020; 9:cells9020268. [PMID: 31979018 PMCID: PMC7072587 DOI: 10.3390/cells9020268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 01/14/2023] Open
Abstract
Direct conversion of cardiac fibroblasts into induced cardiomyocytes (iCMs) by forced expression of defined factors holds great potential for regenerative medicine by offering an alternative strategy for treatment of heart disease. Successful iCM conversion can be achieved by minimally using three transcription factors, Mef2c (M), Gata4(G), and Tbx5 (T). Despite increasing interest in iCM mechanistic studies using MGT(polycistronic construct with optimal expression of M,G and T), the reprogramming efficiency varies among different laboratories. Two main Mef2c isoforms (isoform2, Mi2 and isoform4, Mi4) are present in heart and are used separately by different labs, for iCM reprogramming. It is currently unknown if differently spliced isoform of Mef2c contributes to varied reprogramming efficiency. Here, we used Mi2 and Mi4 together with Gata4 and Tbx5 in separate vectors or polycistronic vector, to convert fibroblasts to iCMs. We found that Mi2 can induce higher reprogramming efficiency than Mi4 in MEFs. Addition of Hand2 to MGT retroviral cocktail or polycistronic Mi2-GT retroviruses further enhanced the iCM conversion. Overall, this study demonstrated the isoform specific effects of Mef2c, during iCM reprogramming, clarified some discrepancy about varied efficiency among labs and might lead to future research into the role of alternative splicing and the consequent variants in cell fate determination.
Collapse
|