51
|
Picca A, Faitg J, Auwerx J, Ferrucci L, D'Amico D. Mitophagy in human health, ageing and disease. Nat Metab 2023; 5:2047-2061. [PMID: 38036770 DOI: 10.1038/s42255-023-00930-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/13/2023] [Indexed: 12/02/2023]
Abstract
Maintaining optimal mitochondrial function is a feature of health. Mitophagy removes and recycles damaged mitochondria and regulates the biogenesis of new, fully functional ones preserving healthy mitochondrial functions and activities. Preclinical and clinical studies have shown that impaired mitophagy negatively affects cellular health and contributes to age-related chronic diseases. Strategies to boost mitophagy have been successfully tested in model organisms, and, recently, some have been translated into clinics. In this Review, we describe the basic mechanisms of mitophagy and how mitophagy can be assessed in human blood, the immune system and tissues, including muscle, brain and liver. We outline mitophagy's role in specific diseases and describe mitophagy-activating approaches successfully tested in humans, including exercise and nutritional and pharmacological interventions. We describe how mitophagy is connected to other features of ageing through general mechanisms such as inflammation and oxidative stress and forecast how strengthening research on mitophagy and mitophagy interventions may strongly support human health.
Collapse
Affiliation(s)
- Anna Picca
- Department of Medicine and Surgery, LUM University, Casamassima, Italy
- Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, Rome, Italy
| | - Julie Faitg
- Amazentis, EPFL Innovation Park, Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Luigi Ferrucci
- Division of Intramural Research, National Institute on Aging, Baltimore, MD, USA.
| | | |
Collapse
|
52
|
Yang X, Zhang Y, Luo JX, Zhu T, Ran Z, Mu BR, Lu MH. Targeting mitophagy for neurological disorders treatment: advances in drugs and non-drug approaches. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3503-3528. [PMID: 37535076 DOI: 10.1007/s00210-023-02636-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023]
Abstract
Mitochondria serve as a vital energy source for nerve cells. The mitochondrial network also acts as a defense mechanism against external stressors that can threaten the stability of the nervous system. However, excessive accumulation of damaged mitochondria can lead to neuronal death. Mitophagy is an essential pathway in the mitochondrial quality control system and can protect neurons by selectively removing damaged mitochondria. In most neurological disorders, dysfunctional mitochondria are a common feature, and drugs that target mitophagy can improve symptoms. Here, we reviewed the role of mitophagy in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, stroke, and traumatic brain injuries. We also summarized drug and non-drug approaches to promote mitophagy and described their therapeutic role in neurological disorders in order to provide valuable insight into the potential therapeutic agents available for neurological disease treatment. However, most studies on mitophagy regulation are based on preclinical research using cell and animal models, which may not accurately reflect the effects in humans. This poses a challenge to the clinical application of drugs targeting mitophagy. Additionally, these drugs may carry the risk of intolerable side effects and toxicity. Future research should focus on the development of safer and more targeted drugs for mitophagy.
Collapse
Affiliation(s)
- Xiong Yang
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yu Zhang
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jia-Xin Luo
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tao Zhu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhao Ran
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ben-Rong Mu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Mei-Hong Lu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
53
|
Yu Y, Xu J, Li H, Lv J, Zhang Y, Niu R, Wang J, Zhao Y, Sun Z. α-Lipoic acid improves mitochondrial biogenesis and dynamics by enhancing antioxidant and inhibiting Wnt/Ca 2+ pathway to relieve fluoride-induced hepatotoxic injury. Chem Biol Interact 2023; 385:110719. [PMID: 37739047 DOI: 10.1016/j.cbi.2023.110719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/30/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Fluoride (F), widely present in water and food, poses a serious threat to liver health, and oxidative damage and mitochondrial damage are its main causes. As a natural mitochondrial protector and antioxidant, α-lipoic acid (ALA)'s alleviating effect on fluorosis liver injury and its underlying mechanism are still unclear. Therefore, this study established a fluorosis ALA intervention mice model to explore the mechanism of mitochondrial biogenesis, mitochondrial dynamics, and Wnt/Ca2+ pathway in ALA attenuating fluorosis liver injury. The results showed that ALA mitigated F-induced weight loss, hepatic structural and functional damage, hepatocytes mitochondrial damage, and decreased antioxidant levels. However, ALA did not reduce F accumulation in the femur. Further mRNA and protein detection results showed that F increased the expression levels of key genes in the mitochondrial fission (Drp1, Mff, and Fis1), mitophagy (Parkin, Pink1, and Prdx3), Wnt/Ca2+ pathway (Wnt5a and CaMK2), and rised the number and intensity of fluorescent spots of Drp1, but decreased the expression levels of key genes in the mitochondrial biogenesis (Sirt1, Sirt3, and PGC-1α) and fusion (OPA1, Mfn2, and Mfn1), and reduced the number and intensity of fluorescent spots of PGC-1α in the liver. However, the intervention of ALA relieved the F-induced changes in the expressions of the above genes. In conclusion, ALA mitigated F-induced hepatic injury through enhancing antioxidant capacity and inhibiting Wnt/Ca2+ pathway to improve mitochondrial biogenesis and dynamics disturbance. This study further reveals the hepatotoxic mechanism of F and the protective mechanism of ALA, and provides a theoretical basis for ALA as a potential preventive and palliative agent for F-induced hepatotoxic injury.
Collapse
Affiliation(s)
- Yanghuan Yu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jipeng Xu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Hao Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jia Lv
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Yaqin Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Ruiyan Niu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jundong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Yangfei Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| | - Zilong Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| |
Collapse
|
54
|
Wang X, Ling G, Wei Y, Li W, Zhang Y, Tan N, Li W, Li H, Qiu Q, Wang W, Wang Y. Activation of ULK1 to trigger FUNDC1-mediated mitophagy in heart failure: Effect of Ginsenoside Rg3 intervention. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155042. [PMID: 37659296 DOI: 10.1016/j.phymed.2023.155042] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/01/2023] [Accepted: 08/18/2023] [Indexed: 09/04/2023]
Abstract
BACKGROUND Although the development of therapies for heart failure (HF) continues apace, clinical outcomes are often far from ideal. Unc51-like-kinase 1 (ULK1)-mediated mitophagy prevents pathological cardiac remodeling and heart failure (HF). Molecularly ULK1-targeted agent to enhance mitophagy is scanty. HYPOTHESIS/PURPOSE This study aimed to investigate whether Ginsenoside Rg3 (Rg3) can activate ULK1 to trigger FUNDC1-mediated mitophagy for protecting heart failure. METHODS Molecular docking and surface plasmon resonance were used to detect the ULK1 binding behavior of Rg3. Established HF model in rats and transcriptome sequencing were used to evaluate the therapeutic effect and regulatory mechanism of Rg3. Loss-of-function approaches in vivo and in vitro were performed to determine the role of ULK1 in Rg3-elicited myocardial protection against HF. FUNDC1 recombinant plasmid of site mutation was applied to elucidate more in-depth mechanisms. RESULTS Structurally, a good binding mode was unveiled between ULK1 and Rg3. In vivo, Rg3 improved cardiac dysfunction, adverse remodeling, and mitochondrial damage in HF rats. Furthermore, Rg3 promoted Ulk1-triggered mitophagy both in vivo and in vitro, manifested by the impetus of downstream Fundc1-Lc3 interaction. Of note, the protective effects conferred by Rg3 against mitophagy defects, pathological remodeling, and cardiac dysfunction were compromised by Ulk1 gene silencing both in vivo and in vitro. Mechanistically, Rg3 activated mitophagy by inducing ULK1-mediated phosphorylation of FUNDC1 at the Ser17 site, not the Ser13 site. CONCLUSION Together these observations demonstrated that Rg3 acts as a ULK1 activator for the precise treatment of HF, which binds to ULK1 to activate FUNDC1-mediated mitophagy.
Collapse
Affiliation(s)
- Xiaoping Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Guanjing Ling
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yan Wei
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Weili Li
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yawen Zhang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Nannan Tan
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wei Li
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Haijing Li
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qi Qiu
- Department of Pharmacy, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Wei Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Beijing Key Laboratory of TCM Syndrome and Formula, Beijing 100029, China; Key Laboratory of Beijing University of Chinese Medicine, Ministry of Education, Beijing 100029, China
| | - Yong Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; Beijing Key Laboratory of TCM Syndrome and Formula, Beijing 100029, China; Key Laboratory of Beijing University of Chinese Medicine, Ministry of Education, Beijing 100029, China.
| |
Collapse
|
55
|
Zhao W, Hou Y, Zhang Q, Yu H, Meng M, Zhang H, Zhou Y. Estrogen receptor β exerts neuroprotective effects by fine-tuning mitochondrial homeostasis through NRF1/PGC-1α. Neurochem Int 2023; 171:105636. [PMID: 39491237 DOI: 10.1016/j.neuint.2023.105636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/05/2024]
Abstract
BACKGROUND Estrogen deficiency causes mitochondrial defects that precede pathological changes related to Alzheimer's disease (AD) in the mouse model of postmenopause. The aim of this study was to investigate in such a mouse model whether and how estrogen receptor β (ERβ) was involved in prevention of mitochondrial damage and protection of neurons in the hippocampus. METHODS A mouse model of postmenopausal AD was created by ovariectomizing female 3xTg-AD mice, some of which were subcutaneously injected for six weeks with the non-steroidal ERβ agonist diarylpropionitrile. ERβ expression in female C57BL/6J mice was knocked down using shRNA interference. The different groups of animals were compared in terms of cognitive function using the Y-maze test, new object recognition test, and Morris water maze test, expression of numerous proteins related to mitochondrial biogenesis, mitophagy, apoptosis, and mitochondrial membrane potential, as well as deposition of amyloid β and neurofibrillary tangles. To complement these in vivo studies, we probed the effects of diarylpropionitrile on ERβ expression, apoptosis, and mitochondrial homeostasis in primary rat hippocampal neurons treated with amyloid β. RESULTS ERβ knockdown in C57BL/6J mice produced cognitive impairment, reduced mitochondrial biogenesis by downregulating PGC-1α, NRF1, mtTFA, and TOM20, and decreased mitophagy by downregulating Pink1, Parkin, and LC3B while upregulating PARIS and p62. ERβ knockdown promoted neuronal apoptosis by upregulating Cleaved-Caspase 9, Cleaved-Caspase 3, and Bax, while downregulating Bcl2 in hippocampus. Diarylpropionitrile mitigated cognitive decline in ovariectomized 3xTg-AD mice, which was associated with downregulation of BACE1, reduction of Aβ deposition, neurofibrillary tangles, and tau hyperphosphorylation, and upregulation of ERβ, increases in mitochondrial biogenesis and mitophagy, and decreases in apoptosis. The effects of diarylpropionitrile in mice were recapitulated in Aβ-injured primary rat hippocampal neurons. CONCLUSIONS ERβ activation can support learning and memory and alleviate AD symptoms in the postmenopausal AD model, which may involve regulation of neuronal mitochondrial biogenesis and mitophagy via NRF1/PGC-1α. This study supports further research on ERβ as a therapeutic target for postmenopausal women with AD.
Collapse
Affiliation(s)
- Wei Zhao
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271021, China; Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266011, China
| | - Yue Hou
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271021, China
| | - Qiwei Zhang
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271021, China; College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian City, 271018, China
| | - Haiyang Yu
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271021, China
| | - Meichen Meng
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271021, China
| | - Hanting Zhang
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271021, China; Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266011, China.
| | - Yanmeng Zhou
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271021, China.
| |
Collapse
|
56
|
Gu S, Fu L, Wang J, Sun X, Wang X, Lou J, Zhao M, Wang C, Zhang Q. MtDNA Copy Number in Oral Epithelial Cells Serves as a Potential Biomarker of Mitochondrial Damage by Neonicotinoid Exposure: A Cross-Sectional Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15816-15824. [PMID: 37819077 DOI: 10.1021/acs.est.3c03835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
As the mitochondrial DNA copy number (mtDNAcn) has been reported to be a biomarker for mtDNA damage in honeybees when exposed to sublethal neonicotinoids, the feasibility of using human mitochondria as a predictor upon neonicotinoid exposure remains elusive. This study investigated the association between the urinary neonicotinoid and the relative mtDNAcn (RmtDNAcn) of oral epithelial cells collected in a cross-sectional study with repeated measurements over 6 weeks. The molecular mechanism underlying neonicotinoid-caused mitochondrial damage was also examined by in vitro assay. Herein, the average integrated urinary neonicotinoid (IMIRPF) concentration ranged from 8.01 to 13.70 μg/L (specific gravity-adjusted) during the sampling period. Concomitantly, with an increase in the urinary IMIRPF, the RmtDNAcn significantly increased from 1.20 (low group) to 1.93 (high group), indicating potential dose-dependent mitochondrial damage. Furthermore, the linear regression analysis confirmed the significant correlation between the IMIRPF and RmtDNAcn. Results from in vitro assays demonstrated that neonicotinoid exposure led to the inhibition of the genes encoding mitochondrial oxidative phosphorylation (OXPHOS) complexes I and III (e.g., ND2, ND6, CytB, and CYC1), accompanied by increased reactive oxygen species production in SH-SY5Y cells. Conjointly, neonicotinoid exposure led to mitochondrial dysfunction and a resulting increase in the RmtDNAcn, which may serve as a plausible biomarker in humans.
Collapse
Affiliation(s)
- Sijia Gu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Lili Fu
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China
| | - Jing Wang
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China
| | - Xiaohui Sun
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China
| | - Ximing Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Jianlin Lou
- School of Medicine, and The First Affiliated Hospital, Huzhou University, Huzhou, Zhejiang 313000, China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Cui Wang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Quan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| |
Collapse
|
57
|
Song H, Zhang X, Wang J, Wu Y, Xiong T, Shen J, Lin R, Xiao T, Lin W. The regulatory role of adipocyte mitochondrial homeostasis in metabolism-related diseases. Front Physiol 2023; 14:1261204. [PMID: 37920803 PMCID: PMC10619862 DOI: 10.3389/fphys.2023.1261204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023] Open
Abstract
Adipose tissue is the most important energy storage organ in the body, maintaining its normal energy metabolism function and playing a vital role in keeping the energy balance of the body to avoid the harm caused by obesity and a series of related diseases resulting from abnormal energy metabolism. The dysfunction of adipose tissue is closely related to the occurrence of diseases related to obesity metabolism. Among various organelles, mitochondria are the main site of energy metabolism, and mitochondria maintain their quality through autophagy, biogenesis, transfer, and dynamics, which play an important role in maintaining metabolic homeostasis of adipocytes. On the other hand, mitochondria have mitochondrial genomes which are vulnerable to damage due to the lack of protective structures and their proximity to sites of reactive oxygen species generation, thus affecting mitochondrial function. Notably, mitochondria are closely related to other organelles in adipocytes, such as lipid droplets and the endoplasmic reticulum, which enhances the function of mitochondria and other organelles and regulates energy metabolism processes, thus reducing the occurrence of obesity-related diseases. This article introduces the structure and quality control of mitochondria in adipocytes and their interactions with other organelles in adipocytes, aiming to provide a new perspective on the regulation of mitochondrial homeostasis in adipocytes on the occurrence of obesity-related diseases, and to provide theoretical reference for further revealing the molecular mechanism of mitochondrial homeostasis in adipocytes on the occurrence of obesity-related diseases.
Collapse
Affiliation(s)
- Hongbing Song
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaohan Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jing Wang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yanling Wu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Taimin Xiong
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jieqiong Shen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ruiyi Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Tianfang Xiao
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Weimin Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
58
|
An W, Huang Z, Mao Z, Qiao T, Jia G, Zhao H, Liu G, Chen X. Dietary Taurine Supplementation Improves the Meat Quality, Muscle Fiber Type, and Mitochondrial Function of Finishing Pigs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15331-15340. [PMID: 37801406 DOI: 10.1021/acs.jafc.3c01163] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
This study investigated the effects of dietary supplementation with taurine (TAU) on the meat quality, muscle fiber type, and mitochondrial function of finishing pigs. The results demonstrated that TAU significantly increased the a* value while decreasing b*45 min, L*24 h, and drip loss24 h and drip loss48 h in the longissimus dorsi (LD) muscle. Dietary supplemented with TAU reduced the content of lactate and the glycolytic potential (GP) in the LD muscle. Dietary supplemented with TAU enhanced the oxidative fiber-related gene expression as well as increased succinic dehydrogenase and malate dehydrogenase activities while reducing lactate dehydrogenase activity. Furthermore, dietary supplementation with TAU increased the contents of mtDNA and ATP and mitochondrial function-related gene expression. Moreover, TAU enhanced the mRNA expressions of calcineurin (CaN) and nuclear factor of activated T cells c1 (NFATc1) and protein expressions of CNA and NFATc1. The results indicate that dietary TAU supplementation improves meat quality and mitochondrial biogenesis and function and promotes muscle fiber-type conversion from the glycolytic fiber to the oxidative fiber via the CaN/NFATc1 pathway.
Collapse
Affiliation(s)
- Wenting An
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Zhengyu Mao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Tianlei Qiao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Gang Jia
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Hua Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Guangmang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| |
Collapse
|
59
|
Liu L, Li Y, Chen G, Chen Q. Crosstalk between mitochondrial biogenesis and mitophagy to maintain mitochondrial homeostasis. J Biomed Sci 2023; 30:86. [PMID: 37821940 PMCID: PMC10568841 DOI: 10.1186/s12929-023-00975-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023] Open
Abstract
Mitochondrial mass and quality are tightly regulated by two essential and opposing mechanisms, mitochondrial biogenesis (mitobiogenesis) and mitophagy, in response to cellular energy needs and other cellular and environmental cues. Great strides have been made to uncover key regulators of these complex processes. Emerging evidence has shown that there exists a tight coordination between mitophagy and mitobiogenesis, and their defects may cause many human diseases. In this review, we will first summarize the recent advances made in the discovery of molecular regulations of mitobiogenesis and mitophagy and then focus on the mechanism and signaling pathways involved in the simultaneous regulation of mitobiogenesis and mitophagy in the response of tissue or cultured cells to energy needs, stress, or pathophysiological conditions. Further studies of the crosstalk of these two opposing processes at the molecular level will provide a better understanding of how the cell maintains optimal cellular fitness and function under physiological and pathophysiological conditions, which holds promise for fighting aging and aging-related diseases.
Collapse
Affiliation(s)
- Lei Liu
- Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regenerative Medicine, Beijing, China.
| | - Yanjun Li
- Center of Cell Response, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Guo Chen
- Center of Cell Response, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Quan Chen
- Center of Cell Response, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
60
|
Hsu YL, Chen HJ, Gao JX, Yang MY, Fu RH. Chiisanoside Mediates the Parkin/ZNF746/PGC-1α Axis by Downregulating MiR-181a to Improve Mitochondrial Biogenesis in 6-OHDA-Caused Neurotoxicity Models In Vitro and In Vivo: Suggestions for Prevention of Parkinson's Disease. Antioxidants (Basel) 2023; 12:1782. [PMID: 37760085 PMCID: PMC10525196 DOI: 10.3390/antiox12091782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
The degeneration of dopamine (DA) neurons is known to be associated with defects in mitochondrial biogenesis caused by aging, environmental factors, or mutations in genes, leading to Parkinson's disease (PD). As PD has not yet been successfully cured, the strategy of using small molecule drugs to protect and restore mitochondrial biogenesis is a promising direction. This study evaluated the efficacy of synthetic chiisanoside (CSS) identified in the leaves of Acanthopanax sessiliflorus to prevent PD symptoms. The results show that in the 6-hydroxydopamine (6-OHDA) model, CSS pretreatment can effectively alleviate the reactive oxygen species generation and apoptosis of SH-SY5Y cells, thereby lessening the defects in the C. elegans model including DA neuron degeneration, dopamine-mediated food sensitivity behavioral disorders, and shortened lifespan. Mechanistically, we found that CSS could restore the expression of proliferator-activated receptor gamma coactivator-1-alpha (PGC-1α), a key molecule in mitochondrial biogenesis, and its downstream related genes inhibited by 6-OHDA. We further confirmed that this is due to the enhanced activity of parkin leading to the ubiquitination and degradation of PGC-1α inhibitor protein Zinc finger protein 746 (ZNF746). Parkin siRNA treatment abolished this effect of CSS. Furthermore, we found that CSS inhibited 6-OHDA-induced expression of miR-181a, which targets parkin. The CSS's ability to reverse the 6-OHDA-induced reduction in mitochondrial biogenesis and activation of apoptosis was abolished after the transfection of anti-miR-181a and miR-181a mimics. Therefore, the neuroprotective effect of CSS mainly promotes mitochondrial biogenesis by regulating the miR-181a/Parkin/ZNF746/PGC-1α axis. CSS potentially has the opportunity to be developed into PD prevention agents.
Collapse
Affiliation(s)
- Yu-Ling Hsu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (Y.-L.H.); (H.-J.C.); (J.-X.G.)
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
| | - Hui-Jye Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (Y.-L.H.); (H.-J.C.); (J.-X.G.)
| | - Jia-Xin Gao
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (Y.-L.H.); (H.-J.C.); (J.-X.G.)
| | - Ming-Yang Yang
- Ph.D. Program for Aging, China Medical University, Taichung 40402, Taiwan;
| | - Ru-Huei Fu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (Y.-L.H.); (H.-J.C.); (J.-X.G.)
- Ph.D. Program for Aging, China Medical University, Taichung 40402, Taiwan;
- Translational Medicine Research Center, China Medical University Hospital, Taichung 40447, Taiwan
| |
Collapse
|
61
|
Zhao T, Zhang J, Lei H, Meng Y, Cheng H, Zhao Y, Geng G, Mu C, Chen L, Liu Q, Luo Q, Zhang C, Long Y, Su J, Wang Y, Li Z, Sun J, Chen G, Li Y, Liao X, Shang Y, Hu G, Chen Q, Zhu Y. NRF1-mediated mitochondrial biogenesis antagonizes innate antiviral immunity. EMBO J 2023; 42:e113258. [PMID: 37409632 PMCID: PMC10425878 DOI: 10.15252/embj.2022113258] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 07/07/2023] Open
Abstract
Mitochondrial biogenesis is the process of generating new mitochondria to maintain cellular homeostasis. Here, we report that viruses exploit mitochondrial biogenesis to antagonize innate antiviral immunity. We found that nuclear respiratory factor-1 (NRF1), a vital transcriptional factor involved in nuclear-mitochondrial interactions, is essential for RNA (VSV) or DNA (HSV-1) virus-induced mitochondrial biogenesis. NRF1 deficiency resulted in enhanced innate immunity, a diminished viral load, and morbidity in mice. Mechanistically, the inhibition of NRF1-mediated mitochondrial biogenesis aggravated virus-induced mitochondrial damage, promoted the release of mitochondrial DNA (mtDNA), increased the production of mitochondrial reactive oxygen species (mtROS), and activated the innate immune response. Notably, virus-activated kinase TBK1 phosphorylated NRF1 at Ser318 and thereby triggered the inactivation of the NRF1-TFAM axis during HSV-1 infection. A knock-in (KI) strategy that mimicked TBK1-NRF1 signaling revealed that interrupting the TBK1-NRF1 connection ablated mtDNA release and thereby attenuated the HSV-1-induced innate antiviral response. Our study reveals a previously unidentified antiviral mechanism that utilizes a NRF1-mediated negative feedback loop to modulate mitochondrial biogenesis and antagonize innate immune response.
Collapse
Affiliation(s)
- Tian Zhao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Jiaojiao Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Hong Lei
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Yuanyuan Meng
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Hongcheng Cheng
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Yanping Zhao
- School of Statistics and Data Science, LPMC and KLMDASRNankai UniversityTianjinChina
| | - Guangfeng Geng
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Chenglong Mu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Linbo Chen
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Qiangqiang Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Qian Luo
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Chuanmei Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Yijia Long
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Jingyi Su
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Yinhao Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Zhuoya Li
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Jiaxing Sun
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Guo Chen
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Yanjun Li
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Xudong Liao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Yingli Shang
- Department of Preventive Veterinary Medicine, College of Veterinary MedicineShandong Agricultural UniversityTaianChina
| | - Gang Hu
- School of Statistics and Data Science, LPMC and KLMDASRNankai UniversityTianjinChina
| | - Quan Chen
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Yushan Zhu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| |
Collapse
|
62
|
Souza-Tavares H, Miranda CS, Vasques-Monteiro IML, Sandoval C, Santana-Oliveira DA, Silva-Veiga FM, Fernandes-da-Silva A, Souza-Mello V. Peroxisome proliferator-activated receptors as targets to treat metabolic diseases: Focus on the adipose tissue, liver, and pancreas. World J Gastroenterol 2023; 29:4136-4155. [PMID: 37475842 PMCID: PMC10354577 DOI: 10.3748/wjg.v29.i26.4136] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 07/10/2023] Open
Abstract
The world is experiencing reflections of the intersection of two pandemics: Obesity and coronavirus disease 2019. The prevalence of obesity has tripled since 1975 worldwide, representing substantial public health costs due to its comorbidities. The adipose tissue is the initial site of obesity impairments. During excessive energy intake, it undergoes hyperplasia and hypertrophy until overt inflammation and insulin resistance turn adipocytes into dysfunctional cells that send lipotoxic signals to other organs. The pancreas is one of the organs most affected by obesity. Once lipotoxicity becomes chronic, there is an increase in insulin secretion by pancreatic beta cells, a surrogate for type 2 diabetes mellitus (T2DM). These alterations threaten the survival of the pancreatic islets, which tend to become dysfunctional, reaching exhaustion in the long term. As for the liver, lipotoxicity favors lipogenesis and impairs beta-oxidation, resulting in hepatic steatosis. This silent disease affects around 30% of the worldwide population and can evolve into end-stage liver disease. Although therapy for hepatic steatosis remains to be defined, peroxisome proliferator-activated receptors (PPARs) activation copes with T2DM management. Peroxisome PPARs are transcription factors found at the intersection of several metabolic pathways, leading to insulin resistance relief, improved thermogenesis, and expressive hepatic steatosis mitigation by increasing mitochondrial beta-oxidation. This review aimed to update the potential of PPAR agonists as targets to treat metabolic diseases, focusing on adipose tissue plasticity and hepatic and pancreatic remodeling.
Collapse
Affiliation(s)
| | | | | | - Cristian Sandoval
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Osorno 5310431, Chile
- Departamento de Ciencias Preclínicas, Universidad de la Frontera, Temuco 4780000, Chile
| | | | | | | | - Vanessa Souza-Mello
- Department of Anatomy, Rio de Janeiro State University, Rio de Janeiro 20551030, Brazil
| |
Collapse
|
63
|
Cao Y, Zheng J, Wan H, Sun Y, Fu S, Liu S, He B, Cai G, Cao Y, Huang H, Li Q, Ma Y, Chen S, Wang F, Jiang H. A mitochondrial SCF-FBXL4 ubiquitin E3 ligase complex degrades BNIP3 and NIX to restrain mitophagy and prevent mitochondrial disease. EMBO J 2023; 42:e113033. [PMID: 36896912 PMCID: PMC10308365 DOI: 10.15252/embj.2022113033] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 03/11/2023] Open
Abstract
Mitophagy is a fundamental quality control mechanism of mitochondria. Its regulatory mechanisms and pathological implications remain poorly understood. Here, via a mitochondria-targeted genetic screen, we found that knockout (KO) of FBXL4, a mitochondrial disease gene, hyperactivates mitophagy at basal conditions. Subsequent counter screen revealed that FBXL4-KO hyperactivates mitophagy via two mitophagy receptors BNIP3 and NIX. We determined that FBXL4 functions as an integral outer-membrane protein that forms an SCF-FBXL4 ubiquitin E3 ligase complex. SCF-FBXL4 ubiquitinates BNIP3 and NIX to target them for degradation. Pathogenic FBXL4 mutations disrupt SCF-FBXL4 assembly and impair substrate degradation. Fbxl4-/- mice exhibit elevated BNIP3 and NIX proteins, hyperactive mitophagy, and perinatal lethality. Importantly, knockout of either Bnip3 or Nix rescues metabolic derangements and viability of the Fbxl4-/- mice. Together, beyond identifying SCF-FBXL4 as a novel mitochondrial ubiquitin E3 ligase restraining basal mitophagy, our results reveal hyperactivated mitophagy as a cause of mitochondrial disease and suggest therapeutic strategies.
Collapse
Affiliation(s)
- Yu Cao
- College of Life SciencesBeijing Normal UniversityBeijingChina
- National Institute of Biological SciencesBeijingChina
- Beijing Key Laboratory of Cell Biology for Animal AgingBeijingChina
| | - Jing Zheng
- National Institute of Biological SciencesBeijingChina
- Beijing Key Laboratory of Cell Biology for Animal AgingBeijingChina
| | - Huayun Wan
- National Institute of Biological SciencesBeijingChina
- Beijing Key Laboratory of Cell Biology for Animal AgingBeijingChina
| | - Yuqiu Sun
- National Institute of Biological SciencesBeijingChina
- Beijing Key Laboratory of Cell Biology for Animal AgingBeijingChina
- Tsinghua Institute of Multidisciplinary Biomedical ResearchTsinghua UniversityBeijingChina
| | - Song Fu
- National Institute of Biological SciencesBeijingChina
- Beijing Key Laboratory of Cell Biology for Animal AgingBeijingChina
- Graduate School of Peking Union Medical CollegeBeijingChina
| | - Shanshan Liu
- National Institute of Biological SciencesBeijingChina
- Beijing Key Laboratory of Cell Biology for Animal AgingBeijingChina
| | - Baiyu He
- National Institute of Biological SciencesBeijingChina
- Beijing Key Laboratory of Cell Biology for Animal AgingBeijingChina
- College of Life SciencesChina Agriculture UniversityBeijingChina
| | - Gaihong Cai
- National Institute of Biological SciencesBeijingChina
| | - Yang Cao
- National Institute of Biological SciencesBeijingChina
| | - Huanwei Huang
- National Institute of Biological SciencesBeijingChina
| | - Qi Li
- National Institute of Biological SciencesBeijingChina
- Tsinghua Institute of Multidisciplinary Biomedical ResearchTsinghua UniversityBeijingChina
| | - Yan Ma
- National Institute of Biological SciencesBeijingChina
- Tsinghua Institute of Multidisciplinary Biomedical ResearchTsinghua UniversityBeijingChina
| | - She Chen
- National Institute of Biological SciencesBeijingChina
- Tsinghua Institute of Multidisciplinary Biomedical ResearchTsinghua UniversityBeijingChina
| | - Fengchao Wang
- National Institute of Biological SciencesBeijingChina
- Tsinghua Institute of Multidisciplinary Biomedical ResearchTsinghua UniversityBeijingChina
| | - Hui Jiang
- College of Life SciencesBeijing Normal UniversityBeijingChina
- National Institute of Biological SciencesBeijingChina
- Beijing Key Laboratory of Cell Biology for Animal AgingBeijingChina
- Tsinghua Institute of Multidisciplinary Biomedical ResearchTsinghua UniversityBeijingChina
| |
Collapse
|
64
|
Han Y, Liu D, Cheng Y, Ji Q, Liu M, Zhang B, Zhou S. Maintenance of mitochondrial homeostasis for Alzheimer's disease: Strategies and challenges. Redox Biol 2023; 63:102734. [PMID: 37159984 PMCID: PMC10189488 DOI: 10.1016/j.redox.2023.102734] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/11/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases, and its early onset is closely related to mitochondrial energy metabolism. The brain is only 2% of body weight, but consumes 20% of total energy needs. Mitochondria are responsible for providing energy in cells, and maintaining their homeostasis ensures an adequate supply of energy to the brain. Mitochondrial homeostasis is constituted by mitochondrial quantity and quality control, which is dynamically regulated by mitochondrial energy metabolism, mitochondrial dynamics and mitochondrial quality control. Impaired energy metabolism of brain cells occurs early in AD, and maintaining mitochondrial homeostasis is a promising therapeutic target in the future. We summarized the mechanism of mitochondrial homeostasis in AD, its influence on the pathogenesis of early AD, strategies for maintaining mitochondrial homeostasis, and mitochondrial targeting strategies. This review concludes with the authors' opinions on future research and development for mitochondrial homeostasis of early AD.
Collapse
Affiliation(s)
- Ying Han
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Daozhou Liu
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Ying Cheng
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Qifeng Ji
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Miao Liu
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Bangle Zhang
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Siyuan Zhou
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
65
|
Fan M, Shi Y, Zhao J, Li L. Cancer stem cell fate determination: mito-nuclear communication. Cell Commun Signal 2023; 21:159. [PMID: 37370081 PMCID: PMC10294499 DOI: 10.1186/s12964-023-01160-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/06/2023] [Indexed: 06/29/2023] Open
Abstract
Cancer stem cells (CSCs) are considered to be responsible for tumor recurrence and metastasis. Therefore, clarification of the mechanisms involved in CSC stemness maintenance and cell fate determination would provide a new strategy for cancer therapy. Unregulated cellular energetics has been accepted as one of the hallmarks of cancer cells, but recent studies have revealed that mitochondrial metabolism can also actively determine CSC fate by affecting nuclear stemness gene expression. Herein, from the perspective of mito-nuclear communication, we review recent progress on the influence of mitochondria on CSC potential from four aspects: metabolism, dynamics, mitochondrial homeostasis, and reactive oxygen species (ROS). Video Abstract.
Collapse
Affiliation(s)
- Mengchen Fan
- School of Basic Medical Sciences, Medical College of Yan’an University, Yanan, 716000 China
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi’an, 710032 China
| | - Ying Shi
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi’an, 710032 China
| | - Jumei Zhao
- School of Basic Medical Sciences, Medical College of Yan’an University, Yanan, 716000 China
| | - Ling Li
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi’an, 710032 China
| |
Collapse
|
66
|
Shan Z, Wang Y, Qiu T, Zhou Y, Zhang Y, Hu L, Zhang L, Liang J, Ding M, Fan S, Xiao Z. SS-31 alleviated nociceptive responses and restored mitochondrial function in a headache mouse model via Sirt3/Pgc-1α positive feedback loop. J Headache Pain 2023; 24:65. [PMID: 37271805 DOI: 10.1186/s10194-023-01600-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 05/23/2023] [Indexed: 06/06/2023] Open
Abstract
Migraine is the second highest cause of disability worldwide, bringing a huge socioeconomic burden. Improving mitochondrial function has promise as an effective treatment strategy for migraine. Szeto-Schiller peptide (SS-31) is a new mitochondria-targeted tetrapeptide molecule that has been shown to suppress the progression of diseases by restoring mitochondrial function, including renal disease, cardiac disease, and neurodegenerative disease. However, whether SS-31 has a therapeutic effect on migraine remains unclear. The aim of this study is to clarify the treatment of SS-31 for headache and its potential mechanisms. Here we used a mouse model induced by repeated dural infusion of inflammatory soup (IS), and examined roles of Sirt3/Pgc-1α positive feedback loop in headache pathogenesis and mitochondrial function. Our results showed that repeated IS infusion impaired mitochondrial function, mitochondrial ultrastructure and mitochondrial homeostasis in the trigeminal nucleus caudalis (TNC). These IS-induced damages in TNC were reversed by SS-31. In addition, IS-induced nociceptive responses were simultaneously alleviated. The effects of SS-31 on mitochondrial function and mitochondrial homeostasis (mainly mitochondrial biogenesis) were attenuated partially by the inhibitor of Sirt3/Pgc-1α. Overexpression of Sirt3/Pgc-1α increased the protein level of each other. These results indicated that SS-31 alleviated nociceptive responses and restored mitochondrial function in an IS-induced headache mouse model via Sirt3/Pgc-1α positive feedback loop. SS-31 has the potential to be an effective drug candidate for headache treatment.
Collapse
Affiliation(s)
- Zhengming Shan
- Department of Neurology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
- Central Laboratory, Renmin Hospital of Wuhan University, 9 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Yajuan Wang
- Department of Neurology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
- Central Laboratory, Renmin Hospital of Wuhan University, 9 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Tao Qiu
- Department of Neurology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
- Central Laboratory, Renmin Hospital of Wuhan University, 9 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Yanjie Zhou
- Department of Neurology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
- Central Laboratory, Renmin Hospital of Wuhan University, 9 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Yu Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
- Central Laboratory, Renmin Hospital of Wuhan University, 9 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Luyu Hu
- Department of Neurology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
- Central Laboratory, Renmin Hospital of Wuhan University, 9 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Lili Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
- Central Laboratory, Renmin Hospital of Wuhan University, 9 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Jingjing Liang
- Department of Neurology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Man Ding
- Department of Neurology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Shanghua Fan
- Department of Neurology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Zheman Xiao
- Department of Neurology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China.
| |
Collapse
|
67
|
Bai X, Zhang Z, Li X, Yang Y, Ding S. FUNDC1: An Emerging Mitochondrial and MAMs Protein for Mitochondrial Quality Control in Heart Diseases. Int J Mol Sci 2023; 24:ijms24119151. [PMID: 37298100 DOI: 10.3390/ijms24119151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
Heart diseases (HDs) are the leading cause of mortality worldwide, with mitochondrial dysfunction being a significant factor in their development. The recently discovered mitophagy receptor, FUNDC1, plays a critical role in regulating the homeostasis of the Mitochondrial Quality Control (MQC) system and contributing to HDs. The phosphorylation of specific regions of FUNDC1 and varying levels of its expression have been shown to have diverse effects on cardiac injury. This review presents a comprehensive consolidation and summary of the latest evidence regarding the role of FUNDC1 in the MQC system. The review elucidates the association of FUNDC1 with prevalent HDs, such as metabolic cardiomyopathy (MCM), cardiac remodeling/heart failure, and myocardial ischemia-reperfusion (IR) injury. The results indicate that the expression of FUNDC1 is elevated in MCM but reduced in instances of cardiac remodeling, heart failure, and myocardial IR injury, with divergent impacts on mitochondrial function among distinct HDs. Exercise has been identified as a powerful preventive and therapeutic approach for managing HDs. Additionally, it has been suggested that exercise-induced enhancement of cardiac function may be attributed to the AMPK/FUNDC1 pathway.
Collapse
Affiliation(s)
- Xizhe Bai
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Zhe Zhang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Xi Li
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Yangjun Yang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Shuzhe Ding
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| |
Collapse
|
68
|
Ni C, Pan K, Xu J, Long X, Lin F, Nie Y, Yang Y, Yu J. Effects and mechanism of perinatal nonylphenol exposure on cardiac function and myocardial mitochondria in neonatal rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 258:114977. [PMID: 37146387 DOI: 10.1016/j.ecoenv.2023.114977] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 04/18/2023] [Accepted: 05/01/2023] [Indexed: 05/07/2023]
Abstract
BACKGROUND Nonylphenol (NP) is a common environmental endocrine disruptor that is associated with the development of cardiovascular disease. However, the toxic effect of NP on mitochondria in the heart of offspring to exposed individuals remains exclusive. OBJECTIVE To investigate whether perinatal NP exposure causes mitochondrial damage in the hearts of offspring of exposed individuals and determine its mechanism of action through both animal and cell experiments. METHODS AND RESULTS For the in vivo experiment, pregnant rats were randomly divided into four groups: the control group (corn oil, C), low dose group (2.5 mg/kg/day, L-NP group), medium dose group (50 mg/kg/day, M-NP group), and high dose group (100 mg/kg/day, H-NP group), with 12 rats in each group. The NP concentration in the hearts of offspring at PND21 and PND90 increased with the increase of the NP dose. Perinatal NP exposure induced a gradual increase in systolic blood pressure in offspring at PND90. In the H-NP group, there was a high degree of inflammatory cell infiltration, myofibril breaks, inconspicuous or absent nuclei, and pink collagen deposition. At PND90, the membrane integrity of mitochondria in the H-NP group was disrupted, the cristae disorder was aggravated, and there was internal lysis with vacuolation. Compared to the control group, the mitochondrial membrane potential of offspring at PND21 and PND90 was decreased in each of the NP exposure groups. NP exposure decreased the activity of mitochondrial respiratory enzyme complex I (CI) and increased the activity of mitochondrial respiratory enzyme complex IV (CIV) in the offspring. At PND21 and PND90, the mRNA and protein expression levels of cardiac mitochondrial PGC-1α, NRF-1, and TFAM decreased with increasing NP dose in a dose-dependent manner. In the in vitro experiment, H9C2 cells were divided into the following four groups: the blank group, RSV group (15 μg/ml), RSV + NP group (15 μg/ml RSV + 120 mmol/L NP), and NP group (120 mmol/L). With increasing NP concentration, the cell survival rate gradually decreased. Compared to the control, the membrane potential was significantly decreased in the NP group; the protein expression levels of SIRT1, PGC-1α, NRF-1, and TFAM in the NP group were significantly lower. CONCLUSION Perinatal NP exposure caused mitochondrial damage and dysfunction in the offspring of exposed individuals in a dose-dependent manner. This toxic effect may be related to NP-induced mitochondrial pathology in the offspring and the inhibition of both gene and protein expression involved in the PGC-1α/NRF-1/TFAM mitochondrial biogenesis signaling pathway following NP exposure.
Collapse
Affiliation(s)
- Chengyu Ni
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China; Department of Medicine, Hubei College of Chinese Medicine, Jingzhou, Hubei 434020, PR China
| | - Kai Pan
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Jie Xu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Xianping Long
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Guizhou, PR China
| | - FangMei Lin
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Yanling Nie
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Yu Yang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Jie Yu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China.
| |
Collapse
|
69
|
Qu K, Yan F, Qin X, Zhang K, He W, Dong M, Wu G. Mitochondrial dysfunction in vascular endothelial cells and its role in atherosclerosis. Front Physiol 2022; 13:1084604. [PMID: 36605901 PMCID: PMC9807884 DOI: 10.3389/fphys.2022.1084604] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
The mitochondria are essential organelles that generate large amounts of ATP via the electron transport chain (ECT). Mitochondrial dysfunction causes reactive oxygen species accumulation, energy stress, and cell death. Endothelial mitochondrial dysfunction is an important factor causing abnormal function of the endothelium, which plays a central role during atherosclerosis development. Atherosclerosis-related risk factors, including high glucose levels, hypertension, ischemia, hypoxia, and diabetes, promote mitochondrial dysfunction in endothelial cells. This review summarizes the physiological and pathophysiological roles of endothelial mitochondria in endothelial function and atherosclerosis.
Collapse
Affiliation(s)
- Kai Qu
- Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, China
- College of Bioengineering Chongqing University, Chongqing, China
| | - Fang Yan
- Department of Geriatrics, Geriatric Diseases Institute of Chengdu, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China
- Center for Medicine Research and Translation, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China
| | - Xian Qin
- Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, China
- College of Bioengineering Chongqing University, Chongqing, China
| | - Kun Zhang
- Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, China
- College of Bioengineering Chongqing University, Chongqing, China
| | - Wen He
- Department of Geriatrics, Clinical trial center, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China
| | - Mingqing Dong
- Center for Medicine Research and Translation, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China
| | - Guicheng Wu
- Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, China
| |
Collapse
|
70
|
Yuan Q, Zeng ZL, Yang S, Li A, Zu X, Liu J. Mitochondrial Stress in Metabolic Inflammation: Modest Benefits and Full Losses. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8803404. [PMID: 36457729 PMCID: PMC9708372 DOI: 10.1155/2022/8803404] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 09/02/2023]
Abstract
Energy intake and metabolic balance are the pillars of health preservation. Overnutrition causes nonspecific, persistently low inflammatory state known as metabolic inflammation. This condition contributes to the pathophysiology of various metabolic disorders, such as atherosclerosis, obesity, diabetes mellitus, and metabolic syndrome. The mitochondria maintain the balance of energy metabolism. Excessive energy stress can lead to mitochondrial dysfunction, which promotes metabolic inflammation. The inflammatory environment further impairs mitochondrial function. Accordingly, excellent organism design keeps the body metabolically healthy in the context of mitochondrial dysfunction, and moderate mitochondrial stress can have a beneficial effect. This review summarises the research progress on the multifaceted characterisation of mitochondrial dysfunction and its role in metabolic inflammation.
Collapse
Affiliation(s)
- Qing Yuan
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Diabetes Clinical Medical Research Center of Hunan Province, Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Z. L. Zeng
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Diabetes Clinical Medical Research Center of Hunan Province, Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Shiqi Yang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Diabetes Clinical Medical Research Center of Hunan Province, Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Anqi Li
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Diabetes Clinical Medical Research Center of Hunan Province, Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xuyu Zu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Jianghua Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Diabetes Clinical Medical Research Center of Hunan Province, Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
71
|
Wang L, Yang Z, He X, Pu S, Yang C, Wu Q, Zhou Z, Cen X, Zhao H. Mitochondrial protein dysfunction in pathogenesis of neurological diseases. Front Mol Neurosci 2022; 15:974480. [PMID: 36157077 PMCID: PMC9489860 DOI: 10.3389/fnmol.2022.974480] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Mitochondria are essential organelles for neuronal function and cell survival. Besides the well-known bioenergetics, additional mitochondrial roles in calcium signaling, lipid biogenesis, regulation of reactive oxygen species, and apoptosis are pivotal in diverse cellular processes. The mitochondrial proteome encompasses about 1,500 proteins encoded by both the nuclear DNA and the maternally inherited mitochondrial DNA. Mutations in the nuclear or mitochondrial genome, or combinations of both, can result in mitochondrial protein deficiencies and mitochondrial malfunction. Therefore, mitochondrial quality control by proteins involved in various surveillance mechanisms is critical for neuronal integrity and viability. Abnormal proteins involved in mitochondrial bioenergetics, dynamics, mitophagy, import machinery, ion channels, and mitochondrial DNA maintenance have been linked to the pathogenesis of a number of neurological diseases. The goal of this review is to give an overview of these pathways and to summarize the interconnections between mitochondrial protein dysfunction and neurological diseases.
Collapse
Affiliation(s)
- Liang Wang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Ziyun Yang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Xiumei He
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Shiming Pu
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Cheng Yang
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Qiong Wu
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Zuping Zhou
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Hongxia Zhao
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
72
|
Bai Y, Wu J, Yang Z, Wang X, Zhang D, Ma J. Mitochondrial quality control in cardiac ischemia/reperfusion injury: new insights into mechanisms and implications. Cell Biol Toxicol 2022; 39:33-51. [PMID: 35951200 DOI: 10.1007/s10565-022-09716-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/07/2022] [Indexed: 11/25/2022]
Abstract
The current effective method for the treatment of myocardial infarction is timely restoration of the blood supply to the ischemic area of the heart. Although reperfusion is essential for reestablishing oxygen and nutrient supplies, it often leads to additional myocardial damage, creating an important clinical dilemma. Reports from long-term studies have confirmed that mitochondrial damage is the critical mechanism in cardiac ischemia/reperfusion (I/R) injury. Mitochondria are dynamic and possess a quality control system that targets mitochondrial quantity and quality by modifying mitochondrial fusion, fission, mitophagy, and biogenesis and protein homeostasis to maintain a healthy mitochondrial network. The system of mitochondrial quality control involves complex molecular machinery that is highly interconnected and associated with pathological changes such as oxidative stress, calcium overload, and endoplasmic reticulum (ER) stress. Because of the critical role of the mitochondrial quality control systems, many reports have suggested that defects in this system are among the molecular mechanisms underlying myocardial reperfusion injury. In this review, we briefly summarize the important role of the mitochondrial quality control in cardiomyocyte function and focus on the current understanding of the regulatory mechanisms and molecular pathways involved in mitochondrial quality control in cardiac I/R damage.
Collapse
Affiliation(s)
- Yang Bai
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, No.2 Anzhen Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Jinjing Wu
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, No.2 Anzhen Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Zhenyu Yang
- Department of Endocrinology, South China Hospital of Shenzhen University, Shenzhen, People's Republic of China
| | - Xu'an Wang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, No.2 Anzhen Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Dongni Zhang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, No.2 Anzhen Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Jun Ma
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, No.2 Anzhen Road, Chaoyang District, Beijing, 100029, People's Republic of China.
| |
Collapse
|
73
|
Tan N, Liu T, Wang X, Shao M, Zhang M, Li W, Ling G, Jiang J, Wang Q, Li J, Li C, Wang W, Wang Y. The multi-faced role of FUNDC1 in mitochondrial events and human diseases. Front Cell Dev Biol 2022; 10:918943. [PMID: 35959490 PMCID: PMC9358025 DOI: 10.3389/fcell.2022.918943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
Mitophagy plays a vital role in the selective elimination of dysfunctional and unwanted mitochondria. As a receptor of mitophagy, FUN14 domain containing 1 (FUNDC1) is attracting considerably critical attention. FUNDC1 is involved in the mitochondria fission, the clearance of unfolded protein, iron metabolism in mitochondria, and the crosstalk between mitochondria and endoplasmic reticulum besides mitophagy. Studies have demonstrated that FUNDC1 is associated with the progression of ischemic disease, cancer, and metabolic disease. In this review, we systematically examine the recent advancements in FUNDC1 and the implications of this protein in health and disease.
Collapse
Affiliation(s)
- Nannan Tan
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tianhua Liu
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoping Wang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Mingyan Shao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Miao Zhang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Weili Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Guanjing Ling
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jinchi Jiang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qiyan Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Li
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chun Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Chun Li, ; Wei Wang, ; Yong Wang,
| | - Wei Wang
- School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Chun Li, ; Wei Wang, ; Yong Wang,
| | - Yong Wang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Chun Li, ; Wei Wang, ; Yong Wang,
| |
Collapse
|
74
|
Role of Mitophagy in neurodegenerative Diseases and potential tagarts for Therapy. Mol Biol Rep 2022; 49:10749-10760. [PMID: 35794507 DOI: 10.1007/s11033-022-07738-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/13/2022] [Accepted: 06/22/2022] [Indexed: 12/27/2022]
Abstract
Mitochondria dysfunction has been defined as one of the hallmarks of aging-related diseases as is characterized by the destroyed integrity, abnormal distribution and size, insufficient ATP supply, increased ROS production, and subsequently damage and oxidize the proteins, lipids and nucleic acid. Mitophagy, an efficient way of removing damaged or defective mitochondria by autophagy, plays a pivotal role in maintaining the mitochondrial quantity and quality control enabling the degradation of unwanted mitochondria, and thus rescues cellular homeostasis in response to stress. Accumulating evidence demonstrates that impaired mitophagy has been associated with many neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD), amyotrophic lateral sclerosis (ALS) in a variety of patients and disease models with neural death, oxidative stress and disturbed metabolism, either as the cause or consequence. These findings suggest that modulation of mitophagy may be considered as a valid therapeutic strategy in neurodegenerative diseases. In this review, we summarize recent findings on the mechanisms of mitophagy and its role in neurodegenerative diseases, with a particular focus on mitochondrial proteins acting as receptors that mediate mitophagy in these diseases.
Collapse
|
75
|
Yao X, Cao Y, Lu L, Xu Y, Chen H, Liu C, Chen D, Wang K, Xu J, Fang R, Xia H, Li J, Fang Q, Tao Z. Plasmodium infection suppresses colon cancer growth by inhibiting proliferation and promoting apoptosis associated with disrupting mitochondrial biogenesis and mitophagy in mice. Parasit Vectors 2022; 15:192. [PMID: 35668501 PMCID: PMC9169289 DOI: 10.1186/s13071-022-05291-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Colon cancer is a common gastrointestinal tumor with a poor prognosis, and thus new therapeutic strategies are urgently needed. The antitumor effect of Plasmodium infection has been reported in some murine models, but it is not clear whether it has an anti-colon cancer effect. In this study, we investigated the anti-colon cancer effect of Plasmodium infection and its related mechanisms using a mouse model of colon cancer. METHODS An experimental model was established by intraperitoneal injection of Plasmodium yoelii 17XNL-infected erythrocytes into mice with colon cancer. The size of tumors was observed dynamically in mice, and the expression of Ki67 detected by immunohistochemistry was used to analyze tumor cell proliferation. Apoptosis was assessed by terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling (TUNEL) staining, and the expression of apoptosis-related proteins including Bax, Bcl-2, caspase-9, and cleaved caspase-3 was detected by western blot and immunohistochemistry, respectively. Transmission electron microscopy (TEM) was used to observe the ultrastructural change in colon cancer cells, and the expression of mitochondrial biogenesis correlative central protein, PGC-1α, and mitophagy relevant crucial proteins, PINK1/Parkin, were detected by western blot. RESULTS We found that Plasmodium infection reduced the weight and size of tumors and decreased the expression of Ki67 in colon cancer-bearing mice. Furthermore, Plasmodium infection promoted mitochondria-mediated apoptosis in colon cancer cells, as evidenced by the increased proportion of TUNEL-positive cells, the upregulated expression of Bax, caspase-9, and cleaved caspase-3 proteins, and the downregulated expression of Bcl-2 protein. In colon cancer cells, we found destroyed cell nuclei, swollen mitochondria, missing cristae, and a decreased number of autolysosomes. In addition, Plasmodium infection disturbed mitochondrial biogenesis and mitophagy through the reduced expression of PGC-1α, PINK1, and Parkin proteins in colon cancer cells. CONCLUSIONS Plasmodium infection can play an anti-colon cancer role in mice by inhibiting proliferation and promoting mitochondria-mediated apoptosis in colon cancer cells, which may relate to mitochondrial biogenesis and mitophagy.
Collapse
Affiliation(s)
- Xin Yao
- Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, China.,Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China
| | - Yujie Cao
- Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, China.,Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China
| | - Li Lu
- School of Fundamental Sciences, Bengbu Medical College, Bengbu, China
| | - Yuanxia Xu
- Clinical Medical Department, Bengbu Medical College, Bengbu, China
| | - Hao Chen
- School of Life Sciences, Bengbu Medical College, Bengbu, China
| | - Chuanqi Liu
- School of Life Sciences, Bengbu Medical College, Bengbu, China
| | - Dianyi Chen
- Clinical Medical Department, Bengbu Medical College, Bengbu, China
| | - Kexue Wang
- School of Life Sciences, Bengbu Medical College, Bengbu, China
| | - Jingxiang Xu
- Clinical Medical Department, Bengbu Medical College, Bengbu, China
| | - Runqi Fang
- Clinical Medical Department, Bengbu Medical College, Bengbu, China
| | - Hui Xia
- Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, China.,Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China
| | - Jiangyan Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Qiang Fang
- Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, China. .,Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China. .,School of Fundamental Sciences, Bengbu Medical College, Bengbu, China.
| | - Zhiyong Tao
- Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, China. .,Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.
| |
Collapse
|
76
|
Chen L, Qin Y, Liu B, Gao M, Li A, Li X, Gong G. PGC-1 α-Mediated Mitochondrial Quality Control: Molecular Mechanisms and Implications for Heart Failure. Front Cell Dev Biol 2022; 10:871357. [PMID: 35721484 PMCID: PMC9199988 DOI: 10.3389/fcell.2022.871357] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/27/2022] [Indexed: 12/26/2022] Open
Abstract
Mitochondria with structural and functional integrity are essential for maintaining mitochondrial function and cardiac homeostasis. It is involved in the pathogenesis of many diseases. Peroxisome proliferator-activated receptor γ coactivator 1 α (PGC-1α), acted as a transcriptional cofactor, is abundant in the heart, which modulates mitochondrial biogenesis and mitochondrial dynamics and mitophagy to sustain a steady-state of mitochondria. Cumulative evidence suggests that dysregulation of PGC-1α is closely related to the onset and progression of heart failure. PGC-1α deficient-mice can lead to worse cardiac function under pressure overload compared to sham. Here, this review mainly focuses on what is known about its regulation in mitochondrial functions, as well as its crucial role in heart failure.
Collapse
Affiliation(s)
- Lei Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yuan Qin
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Department of Pharmacy, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Bilin Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Meng Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Anqi Li
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xue Li
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Guohua Gong
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
77
|
Von Schulze AT, Geiger PC. Heat and Mitochondrial Bioenergetics. CURRENT OPINION IN PHYSIOLOGY 2022. [DOI: 10.1016/j.cophys.2022.100553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
78
|
Peng H, Fu S, Wang S, Xu H, Dhanasekaran M, Chen H, Shao C, Yuanzhuo, Ren J. Ablation of FUNDC1-dependent mitophagy renders myocardium resistant to paraquat-induced ferroptosis and contractile dysfunction. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166448. [DOI: 10.1016/j.bbadis.2022.166448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 02/08/2023]
|
79
|
Wang D, Wan B, Zhang X, Sun P, Lu S, Liu C, Zhu L. Nuclear respiratory factor 1 promotes the growth of liver hepatocellular carcinoma cells via E2F1 transcriptional activation. BMC Gastroenterol 2022; 22:198. [PMID: 35448958 PMCID: PMC9027447 DOI: 10.1186/s12876-022-02260-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background Recent studies have shown that functional mitochondria are essential for cancer cells. Nuclear respiratory factor 1 (NRF1) is a transcription factor that activates mitochondrial biogenesis and the expression of the respiratory chain, but little is known about its role and underlying mechanism in liver hepatocellular carcinoma (LIHC). Methods NRF1 expression was analyzed via public databases and 24 paired LIHC samples. Clinical-pathological information and follow-up data were collected from 165 patients with LIHC or online datasets. Furthermore, cellular proliferation and the cell cycle were analyzed by MTT, Clone-forming assay and flow cytometric analyses. NRF1 target genes were analyzed by Chromatin immunoprecipitation sequencing (ChIP-Seq). PCR and WB analysis was performed to detect the expression of related genes. ChIP and luciferase activity assays were used to identify NRF1 binding sites. Results Our results showed that NRF1 expression was upregulated in LIHC compared to normal tissues. NRF1 expression was associated with tumour size and poor prognosis in patients. Knockdown of NRF1 repressed cell proliferation and overexpression of NRF1 accelerated the G1/S phase transition. Additionally, data from ChIP-seq pointed out that some NRF1 target genes are involved in the cell cycle. Our findings indicated that NRF1 directly binds to the E2F1 promoter as a transcription factor and regulates its gene expression. Conclusion Therefore, this study revealed that NRF1 promotes cancer cell growth via the indirect transcriptional activation of E2F1 and is a potential biomarker in LIHC. Supplementary Information The online version contains supplementary material available at 10.1186/s12876-022-02260-7.
Collapse
Affiliation(s)
- Dan Wang
- Institute of Special Environmental Medicine, Nantong University, 9 Se Yuan Road, Nantong, 226019, Jiangsu, China
| | - Baolan Wan
- Institute of Special Environmental Medicine, Nantong University, 9 Se Yuan Road, Nantong, 226019, Jiangsu, China
| | - Xiaojing Zhang
- Department of Clinical Biobank, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Pingping Sun
- Department of Clinical Biobank, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Shu Lu
- Department of Intensive Care Unit, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Chenxu Liu
- Department of Biochemistry and Molecular Biology, Medical School, Nantong University, Nantong, 226001, Jiangsu, China
| | - Li Zhu
- Institute of Special Environmental Medicine, Nantong University, 9 Se Yuan Road, Nantong, 226019, Jiangsu, China.
| |
Collapse
|
80
|
Fan Y, Cheng Z, Mao L, Xu G, Li N, Zhang M, Weng P, Zheng L, Dong X, Hu S, Wang B, Qin X, Jiang X, Chen C, Zhang J, Zou Z. PINK1/TAX1BP1-directed mitophagy attenuates vascular endothelial injury induced by copper oxide nanoparticles. J Nanobiotechnology 2022; 20:149. [PMID: 35305662 PMCID: PMC8934125 DOI: 10.1186/s12951-022-01338-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/26/2022] [Indexed: 12/22/2022] Open
Abstract
Copper oxide nanoparticles (CuONPs) are widely used metal oxide NPs owing to their excellent physical–chemical properties. Circulation translocation of CuONPs after inhalation leads to vascular endothelial injury. Mitochondria, an important regulatory hub for maintaining cell functions, are signaling organelles in responses to NPs-induced injury. However, how mitochondrial dynamics (fission and fusion) and mitophagy (an autophagy process to degrade damaged mitochondria) are elaborately orchestrated to maintain mitochondrial homeostasis in CuONPs-induced vascular endothelial injury is still unclear. In this study, we demonstrated that CuONPs exposure disturbed mitochondrial dynamics through oxidative stress-dependent manner in vascular endothelial cells, as evidenced by the increase of mitochondrial fission and the accumulation of fragmented mitochondria. Inhibition of mitochondrial fission with Mdivi-1 aggravated CuONPs-induced mtROS production and cell death. Furthermore, we found that mitochondrial fission led to the activation of PINK1-mediated mitophagy, and pharmacological inhibition with wortmannin, chloroquine or genetical inhibition with siRNA-mediated knockdown of PINK1 profoundly repressed mitophagy, suggesting that the protective role of mitochondrial fission and PINK1-mediated mitophagy in CuONPs-induced toxicity. Intriguingly, we identified that TAX1BP1 was the primary receptor to link the ubiquitinated mitochondria with autophagosomes, since TAX1BP1 knockdown elevated mtROS production, decreased mitochondrial clearance and aggravated CuONPs-induced cells death. More importantly, we verified that urolithin A, a mitophagy activator, promoted mtROS clearance and the removal of damaged mitochondria induced by CuONPs exposure both in vitro and in vivo. Overall, our findings indicated that modulating mitophagy may be a therapeutic strategy for pathological vascular endothelial injury caused by NPs exposure. CuONPs disturb mitochondrial dynamics and trigger mitophagy in vascular endothelial cells and mouse blood vessel. PINK1/TAX1BP1-mediated mitophagy regulates the removal of excessive ROS and aberrant mitochondria in CuONPs-treated vascular endothelial cells. The mitophagy activator urolithin A attenuates CuONPs-induced vascular endothelial cells death and mice vascular injury.
Collapse
Affiliation(s)
- Yinzhen Fan
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Zhenli Cheng
- Department of Cardiovascular Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China.,Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
| | - Lejiao Mao
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China.,Dongsheng Lung‒Brain Diseases Joint Laboratory, Chongqing Medical University, Chongqing, 400016, China
| | - Ge Xu
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Na Li
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Mengling Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Ping Weng
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Lijun Zheng
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xiaomei Dong
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Siyao Hu
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Bin Wang
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xia Qin
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,Dongsheng Lung‒Brain Diseases Joint Laboratory, Chongqing Medical University, Chongqing, 400016, China
| | - Xuejun Jiang
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, 400016, People's Republic of China.,Dongsheng Lung‒Brain Diseases Joint Laboratory, Chongqing Medical University, Chongqing, 400016, China
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.,Dongsheng Lung‒Brain Diseases Joint Laboratory, Chongqing Medical University, Chongqing, 400016, China
| | - Jun Zhang
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China. .,Dongsheng Lung‒Brain Diseases Joint Laboratory, Chongqing Medical University, Chongqing, 400016, China.
| | - Zhen Zou
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China. .,Dongsheng Lung‒Brain Diseases Joint Laboratory, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
81
|
Li G, Li J, Shao R, Zhao J, Chen M. FUNDC1: A Promising Mitophagy Regulator at the Mitochondria-Associated Membrane for Cardiovascular Diseases. Front Cell Dev Biol 2022; 9:788634. [PMID: 35096821 PMCID: PMC8797154 DOI: 10.3389/fcell.2021.788634] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/29/2021] [Indexed: 02/05/2023] Open
Abstract
Mitochondrial autophagy (or mitophagy) regulates the mitochondrial network and function to contribute to multiple cellular processes. The protective effect of homeostatic mitophagy in cardiovascular diseases (CVDs) has attracted increasing attention. FUN14 domain containing 1 (FUNDC1), an identified mitophagy receptor, plays an essential role in CVDs. Different expression levels of FUNDC1 and its phosphorylated state at different sites alleviate or exacerbate hypoxia and ischemia/reperfusion injury, cardiac hypertrophy, or metabolic damage through promotion or inhibition of mitophagy. In addition, FUNDC1 can be enriched at contact sites between mitochondria and the endoplasmic reticulum (ER), determining the formation of mitochondria-associated membranes (MAMs) that regulate cellular calcium (Ca2+) homeostasis and mitochondrial dynamics to prevent heart dysfunction. Moreover, FUNDC1 has also been involved in inflammatory cardiac diseases such as septic cardiomyopathy. In this review, we collect and summarize the evidence on the roles of FUNDC1 exclusively in various CVDs, describing its interactions with different cellular organelles, its involvement in multiple cellular processes, and its associated signaling pathways. FUNDC1 may become a promising therapeutic target for the prevention and management of various CVDs.
Collapse
Affiliation(s)
- Guoyong Li
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China.,Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China.,West China School of Medicine, Sichuan University, Chengdu, China
| | - Junli Li
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Ruochen Shao
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China.,Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China.,West China School of Medicine, Sichuan University, Chengdu, China
| | - Jiahao Zhao
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China.,West China School of Medicine, Sichuan University, Chengdu, China
| | - Mao Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
82
|
Liu L, Li Y, Chen Q. The Emerging Role of FUNDC1-Mediated Mitophagy in Cardiovascular Diseases. Front Physiol 2022; 12:807654. [PMID: 34975548 PMCID: PMC8718682 DOI: 10.3389/fphys.2021.807654] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/19/2021] [Indexed: 01/27/2023] Open
Abstract
Mitochondria are highly dynamic organelles and play essential role in ATP synthase, ROS production, innate immunity, and apoptosis. Mitochondria quality control is critical for maintaining the cellular function in response to cellular stress, growth, and differentiation Signals. Damaged or unwanted mitochondria are selectively removed by mitophagy, which is a crucial determinant of cell viability. Mitochondria-associated Endoplasmic Reticulum Membranes (MAMs) are the cellular structures that connect the ER and mitochondria and are involved in calcium signaling, lipid transfer, mitochondrial dynamic, and mitophagy. Abnormal mitochondrial quality induced by mitophagy impairment and MAMs dysfunction is associated with many diseases, including cardiovascular diseases (CVDs), metabolic syndrome, and neurodegenerative diseases. As a mitophagy receptor, FUNDC1 plays pivotal role in mitochondrial quality control through regulation of mitophagy and MAMs and is closely related to the occurrence of several types of CVDs. This review covers the regulation mechanism of FUNDC1-mediated mitophagy and MAMs formation, with a particular focus on its role in CVDs.
Collapse
Affiliation(s)
- Lei Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yimei Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Quan Chen
- Interdisciplinary Center of Cell Response, State key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
83
|
Denisenko TV, Gogvadze V, Zhivotovsky B. Mitophagy in carcinogenesis and cancer treatment. Discov Oncol 2021; 12:58. [PMID: 35201480 PMCID: PMC8777571 DOI: 10.1007/s12672-021-00454-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023] Open
Abstract
In order to maintain a functional mitochondrial network, cells have developed a quality control mechanism, namely mitophagy. This process can be induced through different pathways. The most studied is the so-called PINK1/Parkin pathway, which is associated with ubiquitylation of several mitochondrial proteins that were initially found to be related to Parkinson's disease. Another type of mitophagy is known as receptor-mediated mitophagy, which includes proteins, such as BNIP3 and BNIP3L, also known as Nix. Through these two mechanisms, mitophagy fulfills its functions and maintains cellular homeostasis. Here, we summarize the current knowledge about the mechanisms of mitophagy regulation and their interplay with cancer progression as well as anticancer treatment.
Collapse
Affiliation(s)
| | - Vladimir Gogvadze
- MV Lomonosov Moscow State University, 119991, Moscow, Russia
- Institute of Environmental Medicine, Division of Toxicology, Karolinska Institutet, Box 210, 171 77, Stockholm, Sweden
| | - Boris Zhivotovsky
- MV Lomonosov Moscow State University, 119991, Moscow, Russia.
- Institute of Environmental Medicine, Division of Toxicology, Karolinska Institutet, Box 210, 171 77, Stockholm, Sweden.
| |
Collapse
|
84
|
Bisdemethoxycurcumin Protects Small Intestine from Lipopolysaccharide-Induced Mitochondrial Dysfunction via Activating Mitochondrial Antioxidant Systems and Mitochondrial Biogenesis in Broiler Chickens. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9927864. [PMID: 34795844 PMCID: PMC8595021 DOI: 10.1155/2021/9927864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 10/04/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022]
Abstract
Bisdemethoxycurcumin is one of the three curcuminoids of turmeric and exhibits good antioxidant activity in animal models. This study is aimed at investigating the effect of bisdemethoxycurcumin on small intestinal mitochondrial dysfunction in lipopolysaccharide- (LPS-) treated broilers, especially on the mitochondrial thioredoxin 2 system and mitochondrial biogenesis. A total of 320 broiler chickens were randomly assigned into four experimental diets using a 2 × 2 factorial arrangement with diet (0 and 150 mg/kg bisdemethoxycurcumin supplementation) and stress (saline or LPS challenge) for 20 days. Broilers received a dose of LPS (1 mg/kg body weight) or sterile saline intraperitoneally on days 16, 18, and 20 of the trial. Bisdemethoxycurcumin mitigated the mitochondrial dysfunction of jejunum and ileum induced by LPS, as evident by the reduced reactive oxygen species levels and the increased mitochondrial membrane potential. Bisdemethoxycurcumin partially reversed the decrease in the mitochondrial DNA copy number and the depletion of ATP levels. Bisdemethoxycurcumin activated the mitochondrial antioxidant response, including the prevention of lipid peroxidation, enhancement of manganese superoxide dismutase activity, and the upregulation of the mitochondrial glutaredoxin 5 and thioredoxin 2 system. The enhanced mitochondrial respiratory complex activities in jejunum and ileum were also attributed to bisdemethoxycurcumin treatment. In addition, bisdemethoxycurcumin induced mitochondrial biogenesis via transcriptional regulation of proliferator-activated receptor-gamma coactivator-1alpha pathway. In conclusion, our results demonstrated the potential of bisdemethoxycurcumin to attenuate small intestinal mitochondrial dysfunction, which might be mediated via activating the mitochondrial antioxidant system and mitochondrial biogenesis in LPS-treated broilers.
Collapse
|
85
|
Yin Y, Shen H. Advances in Cardiotoxicity Induced by Altered Mitochondrial Dynamics and Mitophagy. Front Cardiovasc Med 2021; 8:739095. [PMID: 34616789 PMCID: PMC8488107 DOI: 10.3389/fcvm.2021.739095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/27/2021] [Indexed: 11/25/2022] Open
Abstract
Mitochondria are the most abundant organelles in cardiac cells, and are essential to maintain the normal cardiac function, which requires mitochondrial dynamics and mitophagy to ensure the stability of mitochondrial quantity and quality. When mitochondria are affected by continuous injury factors, the balance between mitochondrial dynamics and mitophagy is broken. Aging and damaged mitochondria cannot be completely removed in cardiac cells, resulting in energy supply disorder and accumulation of toxic substances in cardiac cells, resulting in cardiac damage and cardiotoxicity. This paper summarizes the specific underlying mechanisms by which various adverse factors interfere with mitochondrial dynamics and mitophagy to produce cardiotoxicity and emphasizes the crucial role of oxidative stress in mitophagy. This review aims to provide fresh ideas for the prevention and treatment of cardiotoxicity induced by altered mitochondrial dynamics and mitophagy.
Collapse
Affiliation(s)
- Yiyuan Yin
- Department of Emergency Medicine, ShengJing Hospital of China Medical University, Shenyang, China
| | - Haitao Shen
- Department of Emergency Medicine, ShengJing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
86
|
Abstract
Mitochondria, which resemble their α-proteobacteria ancestors, are a major cellular asset, producing energy 'on the cheap' through oxidative phosphorylation. They are also a liability. Increased oxidative phosphorylation means increased oxidative stress, and damaged mitochondria incite inflammation through release of their bacteria-like macromolecules. Mitophagy (the selective macroautophagy of mitochondria) controls mitochondria quality and number to manage these risky assets. Parkin, BNIP3 and NIX were identified as being part of the first mitophagy pathways identified in mammals over a decade ago, with additional pathways, including that mediated by FUNDC1 reported more recently. Loss of Parkin or PINK1 function causes Parkinson's disease, highlighting the importance of mitophagy as a quality control mechanism in the brain. Additionally, mitophagy is induced in idiopathic Parkinson's disease and Alzheimer's disease, protects the heart and other organs against energy stress and lipotoxicity, regulates metabolism by controlling mitochondrial number in brown and beige fat, and clears mitochondria during terminal differentiation of glycolytic cells, such as red blood cells and neurons. Despite its importance in disease, mitophagy is likely dispensable under physiological conditions. This Review explores the in vivo roles of mitophagy in mammalian systems, focusing on the best studied examples - mitophagy in neurodegeneration, cardiomyopathy, metabolism, and red blood cell development - to draw out common themes.
Collapse
Affiliation(s)
- Derek P. Narendra
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
87
|
Luciani A, Denley MCS, Govers LP, Sorrentino V, Froese DS. Mitochondrial disease, mitophagy, and cellular distress in methylmalonic acidemia. Cell Mol Life Sci 2021; 78:6851-6867. [PMID: 34524466 PMCID: PMC8558192 DOI: 10.1007/s00018-021-03934-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/18/2021] [Accepted: 08/30/2021] [Indexed: 01/09/2023]
Abstract
Mitochondria—the intracellular powerhouse in which nutrients are converted into energy in the form of ATP or heat—are highly dynamic, double-membraned organelles that harness a plethora of cellular functions that sustain energy metabolism and homeostasis. Exciting new discoveries now indicate that the maintenance of this ever changing and functionally pleiotropic organelle is particularly relevant in terminally differentiated cells that are highly dependent on aerobic metabolism. Given the central role in maintaining metabolic and physiological homeostasis, dysregulation of the mitochondrial network might therefore confer a potentially devastating vulnerability to high-energy requiring cell types, contributing to a broad variety of hereditary and acquired diseases. In this Review, we highlight the biological functions of mitochondria-localized enzymes from the perspective of understanding—and potentially reversing—the pathophysiology of inherited disorders affecting the homeostasis of the mitochondrial network and cellular metabolism. Using methylmalonic acidemia as a paradigm of complex mitochondrial dysfunction, we discuss how mitochondrial directed-signaling circuitries govern the homeostasis and physiology of specialized cell types and how these may be disturbed in disease. This Review also provides a critical analysis of affected tissues, potential molecular mechanisms, and novel cellular and animal models of methylmalonic acidemia which are being used to develop new therapeutic options for this disease. These insights might ultimately lead to new therapeutics, not only for methylmalonic acidemia, but also for other currently intractable mitochondrial diseases, potentially transforming our ability to regulate homeostasis and health.
Collapse
Affiliation(s)
- Alessandro Luciani
- Mechanisms of Inherited Kidney Diseases Group, Institute of Physiology, University of Zurich, 8032, Zurich, Switzerland.
| | - Matthew C S Denley
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, University of Zurich, 8032, Zurich, Switzerland
| | - Larissa P Govers
- Mechanisms of Inherited Kidney Diseases Group, Institute of Physiology, University of Zurich, 8032, Zurich, Switzerland
| | - Vincenzo Sorrentino
- Department of Musculo-Skeletal Health, Nestlé Institute of Health Sciences, Nestlé Research, 1015, Lausanne, Switzerland.
| | - D Sean Froese
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, University of Zurich, 8032, Zurich, Switzerland.
| |
Collapse
|
88
|
Jadiya P, Garbincius JF, Elrod JW. Reappraisal of metabolic dysfunction in neurodegeneration: Focus on mitochondrial function and calcium signaling. Acta Neuropathol Commun 2021; 9:124. [PMID: 34233766 PMCID: PMC8262011 DOI: 10.1186/s40478-021-01224-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/27/2021] [Indexed: 02/06/2023] Open
Abstract
The cellular and molecular mechanisms that drive neurodegeneration remain poorly defined. Recent clinical trial failures, difficult diagnosis, uncertain etiology, and lack of curative therapies prompted us to re-examine other hypotheses of neurodegenerative pathogenesis. Recent reports establish that mitochondrial and calcium dysregulation occur early in many neurodegenerative diseases (NDDs), including Alzheimer's disease, Parkinson's disease, Huntington's disease, and others. However, causal molecular evidence of mitochondrial and metabolic contributions to pathogenesis remains insufficient. Here we summarize the data supporting the hypothesis that mitochondrial and metabolic dysfunction result from diverse etiologies of neuropathology. We provide a current and comprehensive review of the literature and interpret that defective mitochondrial metabolism is upstream and primary to protein aggregation and other dogmatic hypotheses of NDDs. Finally, we identify gaps in knowledge and propose therapeutic modulation of mCa2+ exchange and mitochondrial function to alleviate metabolic impairments and treat NDDs.
Collapse
Affiliation(s)
- Pooja Jadiya
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, 3500 N Broad St, MERB 949, Philadelphia, PA, 19140, USA
| | - Joanne F Garbincius
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, 3500 N Broad St, MERB 949, Philadelphia, PA, 19140, USA
| | - John W Elrod
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, 3500 N Broad St, MERB 949, Philadelphia, PA, 19140, USA.
| |
Collapse
|
89
|
Guan Y, Wang Y, Li B, Shen K, Li Q, Ni Y, Huang L. Mitophagy in carcinogenesis, drug resistance and anticancer therapeutics. Cancer Cell Int 2021; 21:350. [PMID: 34225732 PMCID: PMC8256582 DOI: 10.1186/s12935-021-02065-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023] Open
Abstract
The mitochondrion is an organelle that plays a vital role in energy production, cytoplasmic protein degradation and cell death. Mitophagy is an autophagic procedure that specifically clears damaged mitochondria and maintains its homeostasis. Emerging evidence indicates that mitophagy is involved in many physiological processes, including cellular homeostasis, cellular differentiation and nerve protection. In this review, we describe the regulatory mechanisms of mitophagy in mammals and yeasts and highlight the recent advances relevant to its function in carcinogenesis and drug resistance. Finally, a section has been dedicated to describing the role of mitophagy in anticancer therapeutics, which is a new frontier that offers a precise and promising strategy.
Collapse
Affiliation(s)
- Yanjie Guan
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, People's Republic of China
| | - Yifei Wang
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, People's Republic of China
| | - Bo Li
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, People's Republic of China
| | - Kai Shen
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, People's Republic of China
| | - Quanfu Li
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, People's Republic of China.,Innovative Research Team of High-Level Local Universities in Shanghai, Shanghai, People's Republic of China
| | - Yingyin Ni
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, People's Republic of China. .,Innovative Research Team of High-Level Local Universities in Shanghai, Shanghai, People's Republic of China.
| | - Lei Huang
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, People's Republic of China. .,Innovative Research Team of High-Level Local Universities in Shanghai, Shanghai, People's Republic of China.
| |
Collapse
|
90
|
Liu L, Li Y, Wang J, Zhang D, Wu H, Li W, Wei H, Ta N, Fan Y, Liu Y, Wang X, Wang J, Pan X, Liao X, Zhu Y, Chen Q. Mitophagy receptor FUNDC1 is regulated by PGC-1α/NRF1 to fine tune mitochondrial homeostasis. EMBO Rep 2021; 22:e50629. [PMID: 33554448 DOI: 10.15252/embr.202050629] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 11/27/2020] [Accepted: 12/15/2020] [Indexed: 12/28/2022] Open
Abstract
Mitophagy is an essential cellular autophagic process that selectively removes superfluous and damaged mitochondria, and it is coordinated with mitochondrial biogenesis to fine tune the quantity and quality of mitochondria. Coordination between these two opposing processes to maintain the functional mitochondrial network is of paramount importance for normal cellular and organismal metabolism. However, the underlying mechanism is not completely understood. Here we report that PGC-1α and nuclear respiratory factor 1 (NRF1), master regulators of mitochondrial biogenesis and metabolic adaptation, also transcriptionally upregulate the gene encoding FUNDC1, a previously characterized mitophagy receptor, in response to cold stress in brown fat tissue. NRF1 binds to the classic consensus site in the promoter of Fundc1 to upregulate its expression and to enhance mitophagy through its interaction with LC3. Specific knockout of Fundc1 in BAT results in reduced mitochondrial turnover and accumulation of functionally compromised mitochondria, leading to impaired adaptive thermogenesis. Our results demonstrate that FUNDC1-dependent mitophagy is directly coupled with mitochondrial biogenesis through the PGC-1α/NRF1 pathway, which dictates mitochondrial quantity, quality, and turnover and contributes to adaptive thermogenesis.
Collapse
Affiliation(s)
- Lei Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yanjun Li
- College of Life Sciences, Nankai University, Tianjin, China
| | - Jianing Wang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Di Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, Nankai University, Tianjin, China
| | - Hao Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wenhui Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Huifang Wei
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Na Ta
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuyuan Fan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yujiao Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohui Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jun Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xin Pan
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Xudong Liao
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yushan Zhu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Quan Chen
- College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|