51
|
In Silico Prediction of the Binding, Folding, Insertion, and Overall Stability of Membrane-Active Peptides. Methods Mol Biol 2021; 2315:161-182. [PMID: 34302676 DOI: 10.1007/978-1-0716-1468-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Membrane-active peptides (MAPs) are short-length peptides used for potential biomedical applications in diagnostic imaging of tissues, targeted drug delivery, gene delivery, and antimicrobials and antibiotics. The broad appeal of MAPs is that they are infinitely variable, relatively low cost, and biocompatible. However, experimentally characterizing the specific properties of a MAP or its many variants is a low-resolution and potentially time-consuming endeavor; molecular dynamics (MD) simulations have emerged as an invaluable tool in identifying the biophysical interactions that are fundamental to the function of MAPs. In this chapter, a step-by-step approach to discreetly model the binding, folding, and insertion of a membrane-active peptide to a model lipid bilayer using MD simulations is described. Detailed discussion is devoted to the critical aspects of running these types of simulations: prior knowledge of the system, understanding the strengths and weaknesses of molecular mechanics force fields, proper construction and equilibration of the system, realistically estimating both experimental and computational timescales, and leveraging analysis to make direct comparisons to experimental results as often as possible.
Collapse
|
52
|
Complexation of Alkali and Alkaline-Earth Metal Cations at Spodumene-Saltwater Interfaces by Molecular Simulation: Impact on Oleate Adsorption. MINERALS 2020. [DOI: 10.3390/min11010012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Spodumene, a lithium aluminum inosilicate, is recovered by froth flotation using surfactants, so-called collectors. Therefore, the behavior and properties of the water-mineral interface in saline solutions are central. Here, molecular dynamics simulations are used to study the adsorption of alkali and alkaline-earth metal cations from concentrated solutions on the weakest (110) surface plane of negatively-charged spodumene. Results include the envelope density function of inner-sphere complexes for each cation and the density of complexes according to their adsorption contacts. Visualization of complexes for each cation is also included. Once the structure of the cation layers adsorbed on the surface of spodumene is defined, its role as a catalyst or barrier for adsorption of the spodumene collector in flotation is evaluated. The collector studied is the typical sodium oleate. The results show that oleate adsorption is poor and that the few adsorption contacts are mainly via cation bridges. The findings here indicate that molecular simulation can facilitate the search for effective collectors for environmentally sustainable spodumene flotation processes in saltwater.
Collapse
|
53
|
Coimbra JTS, Feghali R, Ribeiro RP, Ramos MJ, Fernandes PA. The importance of intramolecular hydrogen bonds on the translocation of the small drug piracetam through a lipid bilayer. RSC Adv 2020; 11:899-908. [PMID: 35423709 PMCID: PMC8693363 DOI: 10.1039/d0ra09995c] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022] Open
Abstract
The number of hydrogen bond donors and acceptors is a fundamental molecular descriptor to predict the oral bioavailability of small drug candidates. In fact, the most widely used oral bioavailability rules (such as the Lipinsky's rule-of-five and the Veber rules) make use of this molecular descriptor. It is generally assumed that hydrogen bond donors and acceptors impact on passive diffusion across cell membranes, a fundamental event during drug absorption and distribution. Although the relationship between the number of these motifs and the probability of having good oral bioavailability has been studied and described for more than 20 years, little attention has been given to their spatial distribution in the molecule. In this paper, we used molecular dynamics to describe the effect of intramolecular hydrogen bonding on the passive diffusion of a small drug (piracetam) through a lipid membrane. The results indicated that the formation of an intramolecular hydrogen bond decreases the barrier for translocation by ca. 4 kcal mol-1 and increases the permeability of the tested molecule, partially compensating the desolvation penalty arising from the penetration of the drug into the biological membrane core. This effect was apparent in simulations where the formation of this interaction was prevented with the help of modified potentials, and in simulations with a similar compound to piracetam that was not able to form this intramolecular hydrogen bond due to a larger distance between the hydrogen bond donor and acceptor groups. These results were also supported by coarse-grained methods, which are becoming an important resource for sampling a larger chemical space of molecules, with reduced computational effort. Furthermore, entropy and enthalpy derived profiles were also obtained as the compounds translocated across the membrane, suggesting that, even though the process of formation of internal hydrogen bonds is entropically unfavorable, the enthalpic gain is such that the formation of these interactions is beneficial for the passive diffusion across cell membranes.
Collapse
Affiliation(s)
- João T S Coimbra
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto Rua do Campo Alegre, s/n 4169-007 Porto Portugal
| | - Ralph Feghali
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto Rua do Campo Alegre, s/n 4169-007 Porto Portugal
| | - Rui P Ribeiro
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto Rua do Campo Alegre, s/n 4169-007 Porto Portugal
| | - Maria J Ramos
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto Rua do Campo Alegre, s/n 4169-007 Porto Portugal
| | - Pedro A Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto Rua do Campo Alegre, s/n 4169-007 Porto Portugal
| |
Collapse
|
54
|
Singhal A, Schneible JD, Lilova RL, Hall CK, Menegatti S, Grafmüller A. A multiscale coarse-grained model to predict the molecular architecture and drug transport properties of modified chitosan hydrogels. SOFT MATTER 2020; 16:10591-10610. [PMID: 33156313 DOI: 10.1039/d0sm01243b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hydrogels constructed with functionalized polysaccharides are of interest in a multitude of applications, chiefly the design of therapeutic and regenerative formulations. Tailoring the chemical modification of polysaccharide-based hydrogels to achieve specific drug release properties involves the optimization of many tunable parameters, including (i) the type, degree (χ), and pattern of the functional groups, (ii) the water-polymer ratio, and (iii) the drug payload. To guide the design of modified polysaccharide hydrogels for drug release, we have developed a computational toolbox that predicts the structure and physicochemical properties of acylated chitosan chains, and their impact on the transport of drug molecules. Herein, we present a multiscale coarse-grained model to investigate the structure of networks of chitosan chains modified with acetyl, butanoyl, or heptanoyl moieties, as well as the diffusion of drugs doxorubicin (Dox) and gemcitabine (Gem) through the resulting networks. The model predicts the formation of different network structures, in particular the hydrophobically-driven transition from a uniform to a cluster/channel morphology and the formation of fibers of chitin chains. The model also describes the impact of structural and physicochemical properties on drug transport, which was confirmed experimentally by measuring Dox and Gem diffusion through an ensemble of modified chitosan hydrogels.
Collapse
Affiliation(s)
- Ankush Singhal
- Department of Theory and Biosystems, Max Planck Institute for Colloids and Interfaces, Potsdam 14476, Germany.
| | | | | | | | | | | |
Collapse
|
55
|
Buglak AA, Samokhvalov AV, Zherdev AV, Dzantiev BB. Methods and Applications of In Silico Aptamer Design and Modeling. Int J Mol Sci 2020; 21:E8420. [PMID: 33182550 PMCID: PMC7698023 DOI: 10.3390/ijms21228420] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/04/2020] [Accepted: 11/08/2020] [Indexed: 02/07/2023] Open
Abstract
Aptamers are nucleic acid analogues of antibodies with high affinity to different targets, such as cells, viruses, proteins, inorganic materials, and coenzymes. Empirical approaches allow the design of in vitro aptamers that bind particularly to a target molecule with high affinity and selectivity. Theoretical methods allow significant expansion of the possibilities of aptamer design. In this study, we review theoretical and joint theoretical-experimental studies dedicated to aptamer design and modeling. We consider aptamers with different targets, such as proteins, antibiotics, organophosphates, nucleobases, amino acids, and drugs. During nucleic acid modeling and in silico design, a full set of in silico methods can be applied, such as docking, molecular dynamics (MD), and statistical analysis. The typical modeling workflow starts with structure prediction. Then, docking of target and aptamer is performed. Next, MD simulations are performed, which allows for an evaluation of the stability of aptamer/ligand complexes and determination of the binding energies with higher accuracy. Then, aptamer/ligand interactions are analyzed, and mutations of studied aptamers made. Subsequently, the whole procedure of molecular modeling can be reiterated. Thus, the interactions between aptamers and their ligands are complex and difficult to understand using only experimental approaches. Docking and MD are irreplaceable when aptamers are studied in silico.
Collapse
Affiliation(s)
- Andrey A. Buglak
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky prospect 33, 119071 Moscow, Russia; (A.V.S.); (A.V.Z.); (B.B.D.)
- Physical Faculty, St. Petersburg State University, 7/9 Universitetskaya naberezhnaya, 199034 St. Petersburg, Russia
| | - Alexey V. Samokhvalov
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky prospect 33, 119071 Moscow, Russia; (A.V.S.); (A.V.Z.); (B.B.D.)
| | - Anatoly V. Zherdev
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky prospect 33, 119071 Moscow, Russia; (A.V.S.); (A.V.Z.); (B.B.D.)
| | - Boris B. Dzantiev
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky prospect 33, 119071 Moscow, Russia; (A.V.S.); (A.V.Z.); (B.B.D.)
| |
Collapse
|
56
|
Piccinni V, Reiter S, Keefer D, de Vivie-Riedle R. Multiscale Conformational Sampling Reveals Excited-State Locality in DNA Self-Repair Mechanism. J Phys Chem A 2020; 124:9133-9140. [PMID: 33089694 DOI: 10.1021/acs.jpca.0c07207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ultraviolet (UV) irradiation is known to be responsible for DNA damage. However, experimental studies in DNA oligonucleotides have shown that UV light can also induce sequence-specific self-repair. Following charge transfer from a guanine adenine sequence adjacent to a cyclobutane pyrimidine dimer (CPD), the covalent bond between the two thymines could be cleaved, recovering the intact base sequence. Mechanistic details promoting the self-repair remained unclear, however. In our theoretical study, we investigated whether optical excitation could directly lead to a charge-transfer state, thereby initiating the repair, or whether the initial excited state remains localized on a single nucleobase. We performed conformational sampling of 200 geometries of the damaged DNA double strand solvated in water and used a hybrid quantum and molecular mechanics approach to compute excited states at the complete active space perturbation level of theory. Analysis of the conformational data set clearly revealed that the excited-state properties are uniformly distributed across the fluctuations of the nucleotide in its natural environment. From the electronic wavefunction, we learned that the electronic transitions remained predominantly local on either adenine or guanine, and no direct charge transfer occurred in the experimentally accessed energy range. The investigated base sequence is not only specific to the CPD repair mechanism but ubiquitously occurs in nucleic acids. Our results therefore give a very general insight into the charge locality of UV-excited DNA, a property that is regarded to have determining relevance in the structural consequences following absorption of UV photons.
Collapse
Affiliation(s)
- Viviana Piccinni
- Department Chemie, Ludwig-Maximilians-Universität München, München D-81377, Germany
| | - Sebastian Reiter
- Department Chemie, Ludwig-Maximilians-Universität München, München D-81377, Germany
| | - Daniel Keefer
- Department Chemie, Ludwig-Maximilians-Universität München, München D-81377, Germany
| | | |
Collapse
|
57
|
Singh N, Villoutreix BO. Demystifying the Molecular Basis of Pyrazoloquinolinones Recognition at the Extracellular α1+/β3- Interface of the GABA A Receptor by Molecular Modeling. Front Pharmacol 2020; 11:561834. [PMID: 33041802 PMCID: PMC7518038 DOI: 10.3389/fphar.2020.561834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/26/2020] [Indexed: 12/16/2022] Open
Abstract
GABAA receptors are pentameric ligand-gated ion channels that serve as major inhibitory neurotransmitter receptors in the mammalian brain and the target of numerous clinically relevant drugs interacting with different ligand binding sites. Here, we report an in silico approach to investigate the binding of pyrazoloquinolinones (PQs) that mediate allosteric effects through the extracellular α+/β- interface of GABAA receptors. First, we docked a potent prototype of PQs into the α1+/β3- site of a homology model of the human α1β3γ2 subtype of the GABAA receptor. Next, for each docking pose, we computationally derived protein-ligand complexes for 18 PQ analogs with known experimental potency. Subsequently, binding energy was calculated for all complexes using the molecular mechanics-generalized Born surface area method. Finally, docking poses were quantitatively assessed in the light of experimental data to derive a binding hypothesis. Collectively, the results indicate that PQs at the α1+/β3- site likely exhibit a common binding mode that can be characterized by a hydrogen bond interaction with β3Q64 and hydrophobic interactions involving residues α1F99, β3Y62, β3M115, α1Y159, and α1Y209. Importantly, our results are in good agreement with the recently resolved cryo-Electron Microscopy structures of the human α1β3γ2 and α1β2γ2 subtypes of GABAA receptors.
Collapse
Affiliation(s)
- Natesh Singh
- Univ. Lille, INSERM, Institut Pasteur de Lille, U1177–Drugs and Molecules for Living Systems, Lille, France
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Bruno O. Villoutreix
- Univ. Lille, INSERM, Institut Pasteur de Lille, U1177–Drugs and Molecules for Living Systems, Lille, France
| |
Collapse
|
58
|
Li H, Ma A. Kinetic energy flows in activated dynamics of biomolecules. J Chem Phys 2020; 153:094109. [DOI: 10.1063/5.0020275] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Huiyu Li
- Department of Bioengineering, The University of Illinois at Chicago, 851 South Morgan Street, Chicago, Illinois 60607, USA
| | - Ao Ma
- Department of Bioengineering, The University of Illinois at Chicago, 851 South Morgan Street, Chicago, Illinois 60607, USA
| |
Collapse
|
59
|
Erendjenova AA, Armeev GA, Shaitan KV. The Effect of the Viscosity of the Medium on the Molecular Dynamics of the Formation of Secondary Structure of (AlaGly)25 and (AlaGly)75 Polypeptides. Biophysics (Nagoya-shi) 2020. [DOI: 10.1134/s000635092005005x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
60
|
Zhang L, Wu S, Feng Y, Wang D, Jia X, Liu Z, Liu J, Wang W. Ligand-bound glutamine binding protein assumes multiple metastable binding sites with different binding affinities. Commun Biol 2020; 3:419. [PMID: 32747735 PMCID: PMC7400645 DOI: 10.1038/s42003-020-01149-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/14/2020] [Indexed: 11/08/2022] Open
Abstract
Protein dynamics plays key roles in ligand binding. However, the microscopic description of conformational dynamics-coupled ligand binding remains a challenge. In this study, we integrate molecular dynamics simulations, Markov state model (MSM) analysis and experimental methods to characterize the conformational dynamics of ligand-bound glutamine binding protein (GlnBP). We show that ligand-bound GlnBP has high conformational flexibility and additional metastable binding sites, presenting a more complex energy landscape than the scenario in the absence of ligand. The diverse conformations of GlnBP demonstrate different binding affinities and entail complex transition kinetics, implicating a concerted ligand binding mechanism. Single molecule fluorescence resonance energy transfer measurements and mutagenesis experiments are performed to validate our MSM-derived structure ensemble as well as the binding mechanism. Collectively, our study provides deeper insights into the protein dynamics-coupled ligand binding, revealing an intricate regulatory network underlying the apparent binding affinity.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China.
| | - Shaowen Wu
- Department of Chemistry, Institutes of Biomedical Sciences, Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, China
| | - Yitao Feng
- Department of Chemistry, Institutes of Biomedical Sciences, Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, China
| | - Dan Wang
- Department of Chemistry, Institutes of Biomedical Sciences, Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, China
| | - Xilin Jia
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhijun Liu
- National Center for Protein Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Jianwei Liu
- Department of Chemistry, Institutes of Biomedical Sciences, Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, China
| | - Wenning Wang
- Department of Chemistry, Institutes of Biomedical Sciences, Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, China.
| |
Collapse
|
61
|
Folberth A, Polák J, Heyda J, van der Vegt NFA. Pressure, Peptides, and a Piezolyte: Structural Analysis of the Effects of Pressure and Trimethylamine- N-oxide on the Peptide Solvation Shell. J Phys Chem B 2020; 124:6508-6519. [PMID: 32615760 DOI: 10.1021/acs.jpcb.0c03319] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The osmolyte trimethylamine-N-oxide (TMAO) is able to increase the thermodynamic stability of folded proteins, counteracting pressure denaturation. Herein, we report experimental solubility data on penta-alanine (pAla) in aqueous TMAO solutions (at pH = 7 and pH = 13) together with molecular simulation data for pAla, penta-serine (pSer), and an elastin-like peptide (ELP) sequence (VPGVG) under varying pH and pressure conditions. The effect of the peptide end groups on TMAO-peptide interactions is investigated by comparing the solvation of zwitterionic and negatively charged pentamers with the solvation of pentamers with charge-neutral C- and N-termini and linear, virtually infinite, peptide chains stretched across the periodic boundaries of the simulation cell. The experiments and simulations consistently show that TMAO is net-depleted from the pAla-water interface, but local accumulation of TMAO is observed just outside the first hydration shell of the peptide. While the same observations are also made in the simulations of the zwitterionic pentamers (Ala, Ser, and ELP) and virtually infinite peptide chains (Ala and ELP), weak preferential binding of TMAO is instead observed for pAla with neutral end groups at a 1 M TMAO concentration and for an ELP pentamer with capped neutral end groups at a 0.55 M TMAO concentration studied in previous work (Y.-T. Liao et al. Proc. Natl. Acad. Sci. USA, 2017, 114, 2479-2484). The above observations made at 1 bar ambient pressure remain qualitatively unchanged at 500 bar and 2 kbar. Local accumulation of TMAO correlates with a reduction in the total number of peptide-solvent hydrogen bonds, independent of the peptide's primary sequence and the applied pressure. By weakening water hydrogen bonds with the protein backbone, TMAO indirectly contributes to stabilizing internal hydrogen bonds in proteins, thus providing a protein stabilization mechanism beyond net depletion.
Collapse
Affiliation(s)
- Angelina Folberth
- Eduard-Zintl-Institut fuer Anorganische und Physikalische Chemie, Technical University of Darmstadt, Alarich-Weiss-Strasse 10, 64287 Darmstadt, Germany
| | - Jakub Polák
- Physical Chemistry Department, University of Chemistry and Technology, Prague Technicka 5, 16628 Prague 6, Czech Republic
| | - Jan Heyda
- Physical Chemistry Department, University of Chemistry and Technology, Prague Technicka 5, 16628 Prague 6, Czech Republic
| | - Nico F A van der Vegt
- Eduard-Zintl-Institut fuer Anorganische und Physikalische Chemie, Technical University of Darmstadt, Alarich-Weiss-Strasse 10, 64287 Darmstadt, Germany
| |
Collapse
|
62
|
Qiu Y, Smith DGA, Stern CD, Feng M, Jang H, Wang LP. Driving torsion scans with wavefront propagation. J Chem Phys 2020; 152:244116. [PMID: 32610969 DOI: 10.1063/5.0009232] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The parameterization of torsional/dihedral angle potential energy terms is a crucial part of developing molecular mechanics force fields. Quantum mechanical (QM) methods are often used to provide samples of the potential energy surface (PES) for fitting the empirical parameters in these force field terms. To ensure that the sampled molecular configurations are thermodynamically feasible, constrained QM geometry optimizations are typically carried out, which relax the orthogonal degrees of freedom while fixing the target torsion angle(s) on a grid of values. However, the quality of results and computational cost are affected by various factors on a non-trivial PES, such as dependence on the chosen scan direction and the lack of efficient approaches to integrate results started from multiple initial guesses. In this paper, we propose a systematic and versatile workflow called TorsionDrive to generate energy-minimized structures on a grid of torsion constraints by means of a recursive wavefront propagation algorithm, which resolves the deficiencies of conventional scanning approaches and generates higher quality QM data for force field development. The capabilities of our method are presented for multi-dimensional scans and multiple initial guess structures, and an integration with the MolSSI QCArchive distributed computing ecosystem is described. The method is implemented in an open-source software package that is compatible with many QM software packages and energy minimization codes.
Collapse
Affiliation(s)
- Yudong Qiu
- Department of Chemistry, UC Davis, Davis, California 95616, USA
| | - Daniel G A Smith
- The Molecular Sciences Software Institute, Blacksburg, Virginia 24060, USA
| | - Chaya D Stern
- Computational and Systems Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Mudong Feng
- Department of Chemistry and Biochemistry, UC San Diego, La Jolla, California 92093, USA
| | - Hyesu Jang
- Department of Chemistry, UC Davis, Davis, California 95616, USA
| | - Lee-Ping Wang
- Department of Chemistry, UC Davis, Davis, California 95616, USA
| |
Collapse
|
63
|
Banerjee P, Lipowsky R, Santer M. Coarse-Grained Molecular Model for the Glycosylphosphatidylinositol Anchor with and without Protein. J Chem Theory Comput 2020; 16:3889-3903. [PMID: 32392421 PMCID: PMC7303967 DOI: 10.1021/acs.jctc.0c00056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Indexed: 01/17/2023]
Abstract
Glycosylphosphatidylinositol (GPI) anchors are a unique class of complex glycolipids that anchor a great variety of proteins to the extracellular leaflet of plasma membranes of eukaryotic cells. These anchors can exist either with or without an attached protein called GPI-anchored protein (GPI-AP) both in vitro and in vivo. Although GPIs are known to participate in a broad range of cellular functions, it is to a large extent unknown how these are related to GPI structure and composition. Their conformational flexibility and microheterogeneity make it difficult to study them experimentally. Simplified atomistic models are amenable to all-atom computer simulations in small lipid bilayer patches but not suitable for studying their partitioning and trafficking in complex and heterogeneous membranes. Here, we present a coarse-grained model of the GPI anchor constructed with a modified version of the MARTINI force field that is suited for modeling carbohydrates, proteins, and lipids in an aqueous environment using MARTINI's polarizable water. The nonbonded interactions for sugars were reparametrized by calculating their partitioning free energies between polar and apolar phases. In addition, sugar-sugar interactions were optimized by adjusting the second virial coefficients of osmotic pressures for solutions of glucose, sucrose, and trehalose to match with experimental data. With respect to the conformational dynamics of GPI-anchored green fluorescent protein, the accessible time scales are now at least an order of magnitude larger than for the all-atom system. This is particularly important for fine-tuning the mutual interactions of lipids, carbohydrates, and amino acids when comparing to experimental results. We discuss the prospective use of the coarse-grained GPI model for studying protein-sorting and trafficking in membrane models.
Collapse
Affiliation(s)
- Pallavi Banerjee
- Max
Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany
- Institute
of Biochemistry and Biology, University
of Potsdam, Potsdam 14469, Germany
| | - Reinhard Lipowsky
- Max
Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany
- Institute
of Biochemistry and Biology, University
of Potsdam, Potsdam 14469, Germany
| | - Mark Santer
- Max
Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany
| |
Collapse
|
64
|
Baran Ł, Rżysko W, Słyk E. Simulations of the 2D self-assembly of tripod-shaped building blocks. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:884-890. [PMID: 32566438 PMCID: PMC7296195 DOI: 10.3762/bjnano.11.73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
We introduce a molecular dynamics (MD) coarse-grained model for the description of tripod building blocks. This model has been used by us already for linear, V-shape, and tetratopic molecules. We wanted to further extend its possibilities to trifunctional molecules to prove its versatility. For the chosen systems we have also compared the MD results with Monte Carlo results on a triangular lattice. We have shown that the constraints present in the latter method can enforce the formation of completely different structures, not reproducible with off-lattice simulations. In addition to that, we have characterized the obtained structures regarding various parameters such as theoretical diffraction pattern and average association number.
Collapse
Affiliation(s)
- Łukasz Baran
- Department for Theoretical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Poland
| | - Wojciech Rżysko
- Department for Theoretical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Poland
| | - Edyta Słyk
- Department for Theoretical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Poland
| |
Collapse
|
65
|
Bremer PL, De Boer D, Alvarado W, Martinez X, Sorin EJ. Overcoming the Heuristic Nature of k-Means Clustering: Identification and Characterization of Binding Modes from Simulations of Molecular Recognition Complexes. J Chem Inf Model 2020; 60:3081-3092. [PMID: 32383869 DOI: 10.1021/acs.jcim.9b01137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The accurate and reproducible detection and description of thermodynamic states in computational data is a nontrivial problem, particularly when the number of states is unknown a priori and for large, flexible chemical systems and complexes. To this end, we report a novel clustering protocol that combines high-resolution structural representation, brute-force repeat clustering, and optimization of clustering statistics to reproducibly identify the number of clusters present in a data set (k) for simulated ensembles of butyrylcholinesterase in complex with two previously studied organophosphate inhibitors. Each structure within our simulated ensembles was depicted as a high-dimensionality vector with components defined by specific protein-inhibitor contacts at the chemical group level and the magnitudes of these components defined by their respective extents of pair-wise atomic contact, thus allowing for algorithmic differentiation between varying degrees of interaction. These surface-weighted interaction fingerprints were tabulated for each of over 1 million structures from more than 100 μs of all-atom molecular dynamics simulation per complex and used as the input for repetitive k-means clustering. Minimization of cluster population variance and range afforded accurate and reproducible identification of k, thereby allowing for the characterization of discrete binding modes from molecular simulation data in the form of contact tables that concisely encapsulate the observed intermolecular contact motifs. While the protocol presented herein to determine k and achieve non-heuristic clustering is demonstrated on data from massive atomistic simulation, our approach is generalizable to other data types and clustering algorithms, and is tractable with limited computational resources.
Collapse
|
66
|
Gu RX, de Groot BL. Lipid-protein interactions modulate the conformational equilibrium of a potassium channel. Nat Commun 2020; 11:2162. [PMID: 32358584 PMCID: PMC7195391 DOI: 10.1038/s41467-020-15741-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/18/2020] [Indexed: 01/17/2023] Open
Abstract
Cell membranes actively participate in the regulation of protein structure and function. In this work, we conduct molecular dynamics simulations to investigate how different membrane environments affect protein structure and function in the case of MthK, a potassium channel. We observe different ion permeation rates of MthK in membranes with different properties, and ascribe them to a shift of the conformational equilibrium between two states of the channel that differ according to whether a transmembrane helix has a kink. Further investigations indicate that two key residues in the kink region mediate a crosstalk between two gates at the selectivity filter and the central cavity, respectively. Opening of one gate eventually leads to closure of the other. Our simulations provide an atomistic model of how lipid-protein interactions affect the conformational equilibrium of a membrane protein. The gating mechanism revealed for MthK may also apply to other potassium channels.
Collapse
Affiliation(s)
- Ruo-Xu Gu
- Department of Theoretical and Computational Biophysics, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Bert L de Groot
- Department of Theoretical and Computational Biophysics, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
67
|
Dobrev P, Vemulapalli SPB, Nath N, Griesinger C, Grubmüller H. Probing the Accuracy of Explicit Solvent Constant pH Molecular Dynamics Simulations for Peptides. J Chem Theory Comput 2020; 16:2561-2569. [PMID: 32192342 DOI: 10.1021/acs.jctc.9b01232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Protonation states of titratable amino acids play a key role in many biomolecular processes. Knowledge of protonatable residue charges at a given pH is essential for a correct understanding of protein catalysis, inter- and intramolecular interactions, substrate binding, and protein dynamics for instance. However, acquiring experimental values for individual amino acid protonation states of complex systems is not straightforward; therefore, several in silico approaches have been developed to tackle this issue. In this work, we assess the accuracy of our previously developed constant pH MD approach by comparing our theoretically obtained pKa values for titratable residues with experimental values from an equivalent NMR study. We selected a set of four pentapeptides, of adequately small size to ensure comprehensive sampling, but concurrently, due to their charge composition, posing a challenge for protonation state calculation. The comparison of the pKa values shows good agreement of the experimental and the theoretical approach with a largest difference of 0.25 pKa units. Further, the corresponding titration curves are in fair agreement, although the shift of the Hill coefficient from a value of 1 was not always reproduced in simulations. The phase space overlap in Cartesian space between trajectories generated in constant pH and standard MD simulations is fair and suggests that our constant pH MD approach reasonably well preserves the dynamics of the system, allowing dynamic protonation MD simulations without introducing structural artifacts.
Collapse
Affiliation(s)
- Plamen Dobrev
- Max-Planck-Institut fur Biophysikalische Chemie, Theoretical and computational biophysics, Gottingen 37077, Germany
| | | | - Nilamoni Nath
- Max Planck Institute for Biophysical Chemistry, NMR-based Structural Biology, Gottingen 37077, Germany.,Gauhati University, Department of Chemistry, Guwahati, 781014 Assam, India
| | - Christian Griesinger
- Max Planck Institute for Biophysical Chemistry, NMR-based Structural Biology, Gottingen 37077, Germany
| | - Helmut Grubmüller
- Max-Planck-Institut fur Biophysikalische Chemie, Theoretical and computational biophysics, Gottingen 37077, Germany
| |
Collapse
|
68
|
First JT, Novelli ET, Webb LJ. Beyond pKa: Experiments and Simulations of Nitrile Vibrational Probes in Staphylococcal Nuclease Show the Importance of Local Interactions. J Phys Chem B 2020; 124:3387-3399. [DOI: 10.1021/acs.jpcb.0c00747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jeremy T. First
- Department of Chemistry, Texas Materials Institute, and Institute for Cell and Molecular Biology The University of Texas at Austin 105 East 24th Street STOP A5300, Austin, Texas 78712-1224, United States
| | - Elisa T. Novelli
- Department of Chemistry, Texas Materials Institute, and Institute for Cell and Molecular Biology The University of Texas at Austin 105 East 24th Street STOP A5300, Austin, Texas 78712-1224, United States
| | - Lauren J. Webb
- Department of Chemistry, Texas Materials Institute, and Institute for Cell and Molecular Biology The University of Texas at Austin 105 East 24th Street STOP A5300, Austin, Texas 78712-1224, United States
| |
Collapse
|
69
|
Kim JY, Nagamani S, Liu L, Elghazaly AH, Solin N, Inganäs O. A DNA and Self-Doped Conjugated Polyelectrolyte Assembled for Organic Optoelectronics and Bioelectronics. Biomacromolecules 2020; 21:1214-1221. [PMID: 32031372 DOI: 10.1021/acs.biomac.9b01667] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Deoxyribonucleic acid (DNA) and a self-doped conjugated polyelectrolyte, poly(4-(2,3-dihydrothieno[3,4-b]-[1,4]dioxin-2-yl-methoxy)-1-butanesulfonic acid (PEDOT-S), are assembled for organic optoelectronics and bioelectronics. The DNA's helix-coil phase transition in water is studied as a function of composition by thermo-optical analysis. DNA and PEDOT-S are functionalized by using a surfactant, cetyltrimethylammonium chloride (CTMA), and DNA:CTMA, PEDOT-S:CTMA, and DNA:CTMA:PEDOT-S:CTMA complexes were characterized regarding thermal, optical, morphological, and structural properties. Finally, DNA and DNA:PEDOT-S mixtures are processed in water for fabricating organized films through brushing. The electrical properties of these films are characterized using an interdigitated electrode. The films show an electronic conductivity of ∼10-6-10-5 S/cm in a range of semiconductors.
Collapse
Affiliation(s)
- Jung Yong Kim
- Biomolecular and Organic Electronics, Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping, Sweden.,School of Chemical Engineering, Jimma Institute of Technology, Jimma University, P.O. 378, Jimma, Ethiopia
| | - Selvakumaran Nagamani
- Biomolecular and Organic Electronics, Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping, Sweden
| | - Lianlian Liu
- Biomolecular and Organic Electronics, Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping, Sweden
| | - Ahmed H Elghazaly
- Biomolecular and Organic Electronics, Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping, Sweden
| | - Niclas Solin
- Biomolecular and Organic Electronics, Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping, Sweden
| | - Olle Inganäs
- Biomolecular and Organic Electronics, Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping, Sweden
| |
Collapse
|
70
|
Molecular dynamics simulations of the conformation and diffusion of partially hydrolyzed polyacrylamide in highly saline solutions. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2019.115366] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
71
|
Del Toro D, Carrasquero-Ordaz MA, Chu A, Ruff T, Shahin M, Jackson VA, Chavent M, Berbeira-Santana M, Seyit-Bremer G, Brignani S, Kaufmann R, Lowe E, Klein R, Seiradake E. Structural Basis of Teneurin-Latrophilin Interaction in Repulsive Guidance of Migrating Neurons. Cell 2020; 180:323-339.e19. [PMID: 31928845 PMCID: PMC6978801 DOI: 10.1016/j.cell.2019.12.014] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/15/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
Teneurins are ancient metazoan cell adhesion receptors that control brain development and neuronal wiring in higher animals. The extracellular C terminus binds the adhesion GPCR Latrophilin, forming a trans-cellular complex with synaptogenic functions. However, Teneurins, Latrophilins, and FLRT proteins are also expressed during murine cortical cell migration at earlier developmental stages. Here, we present crystal structures of Teneurin-Latrophilin complexes that reveal how the lectin and olfactomedin domains of Latrophilin bind across a spiraling beta-barrel domain of Teneurin, the YD shell. We couple structure-based protein engineering to biophysical analysis, cell migration assays, and in utero electroporation experiments to probe the importance of the interaction in cortical neuron migration. We show that binding of Latrophilins to Teneurins and FLRTs directs the migration of neurons using a contact repulsion-dependent mechanism. The effect is observed with cell bodies and small neurites rather than their processes. The results exemplify how a structure-encoded synaptogenic protein complex is also used for repulsive cell guidance. Crystal structures reveal binding site for Latrophilin on the Teneurin YD shell A ternary Latrophilin-Teneurin-FLRT complex forms in vitro and in vivo Latrophilin controls cortical migration by binding to Teneurins and FLRTs Latrophilin elicits repulsion of cortical cell bodies/small neurites but not axons
Collapse
Affiliation(s)
- Daniel Del Toro
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, Martinsried 82152, Germany; Department of Biological Sciences, Institute of Neurosciences, IDIBAPS, CIBERNED, University of Barcelona, Barcelona, Spain
| | | | - Amy Chu
- Department of Biochemistry, Oxford University, Oxford OX1 3QU, UK
| | - Tobias Ruff
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, Martinsried 82152, Germany
| | - Meriam Shahin
- Department of Biochemistry, Oxford University, Oxford OX1 3QU, UK
| | - Verity A Jackson
- Department of Biochemistry, Oxford University, Oxford OX1 3QU, UK
| | | | | | - Goenuel Seyit-Bremer
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, Martinsried 82152, Germany
| | - Sara Brignani
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, Martinsried 82152, Germany
| | - Rainer Kaufmann
- Center for Structural Systems Biology, University of Hamburg, Hamburg 22607, Germany; Department of Physics, University of Hamburg, Hamburg 20355, Germany
| | - Edward Lowe
- Department of Biochemistry, Oxford University, Oxford OX1 3QU, UK
| | - Rüdiger Klein
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, Martinsried 82152, Germany.
| | - Elena Seiradake
- Department of Biochemistry, Oxford University, Oxford OX1 3QU, UK.
| |
Collapse
|
72
|
Kabelka I, Pachler M, Prévost S, Letofsky-Papst I, Lohner K, Pabst G, Vácha R. Magainin 2 and PGLa in Bacterial Membrane Mimics II: Membrane Fusion and Sponge Phase Formation. Biophys J 2019; 118:612-623. [PMID: 31952806 DOI: 10.1016/j.bpj.2019.12.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/06/2019] [Accepted: 12/16/2019] [Indexed: 12/23/2022] Open
Abstract
We studied the synergistic mechanism of equimolar mixtures of magainin 2 (MG2a) and PGLa in phosphatidylethanolamine/phosphatidylglycerol mimics of Gram-negative cytoplasmic membranes. In a preceding article of this series, we reported on the early onset of parallel heterodimer formation of the two antimicrobial peptides already at low concentrations and the resulting defect formation in the membranes. Here, we focus on the structures of the peptide-lipid aggregates occurring in the synergistic regime at elevated peptide concentrations. Using a combination of calorimetric, scattering, electron microscopic, and in silico techniques, we demonstrate that the two peptides, even if applied individually, transform originally large unilamellar vesicles into multilamellar vesicles with a collapsed interbilayer spacing resulting from peptide-induced adhesion. Interestingly, the adhesion does not lead to a peptide-induced lipid separation of charged and charge-neutral species. In addition to this behavior, equimolar mixtures of MG2a and PGLa formed surface-aligned fibril-like structures, which induced adhesion zones between the membranes and the formation of transient fusion stalks in molecular dynamics simulations and a coexisting sponge phase observed by small-angle x-ray scattering. The previously reported increased leakage of lipid vesicles of identical composition in the presence of MG2a/PGLa mixtures is therefore related to a peptide-induced cross-linking of bilayers.
Collapse
Affiliation(s)
- Ivo Kabelka
- CEITEC-Central European Institute of Technology, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Michael Pachler
- Biophysics Division, Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria
| | | | - Ilse Letofsky-Papst
- Institute for Electron Microscopy and Nanoanalysis and Center for Electron Microscopy, Graz University of Technology, Graz, Austria
| | - Karl Lohner
- Biophysics Division, Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria
| | - Georg Pabst
- Biophysics Division, Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria
| | - Robert Vácha
- CEITEC-Central European Institute of Technology, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic; Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
73
|
Pachler M, Kabelka I, Appavou MS, Lohner K, Vácha R, Pabst G. Magainin 2 and PGLa in Bacterial Membrane Mimics I: Peptide-Peptide and Lipid-Peptide Interactions. Biophys J 2019; 117:1858-1869. [PMID: 31703802 PMCID: PMC7031808 DOI: 10.1016/j.bpj.2019.10.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/08/2019] [Accepted: 10/15/2019] [Indexed: 11/30/2022] Open
Abstract
We addressed the onset of synergistic activity of the two well-studied antimicrobial peptides magainin 2 (MG2a) and PGLa using lipid-only mimics of Gram-negative cytoplasmic membranes. Specifically, we coupled a joint analysis of small-angle x-ray and neutron scattering experiments on fully hydrated lipid vesicles in the presence of MG2a and L18W-PGLa to all-atom and coarse-grained molecular dynamics simulations. In agreement with previous studies, both peptides, as well as their equimolar mixture, were found to remain upon adsorption in a surface-aligned topology and to induce significant membrane perturbation, as evidenced by membrane thinning and hydrocarbon order parameter changes in the vicinity of the inserted peptide. These effects were particularly pronounced for the so-called synergistic mixture of 1:1 (mol/mol) L18W-PGLa/MG2a and cannot be accounted for by a linear combination of the membrane perturbations of two peptides individually. Our data are consistent with the formation of parallel heterodimers at concentrations below a synergistic increase of dye leakage from vesicles. Our simulations further show that the heterodimers interact via salt bridges and hydrophobic forces, which apparently makes them more stable than putatively formed antiparallel L18W-PGLa and MG2a homodimers. Moreover, dimerization of L18W-PGLa and MG2a leads to a relocation of the peptides within the lipid headgroup region as compared to the individual peptides. The early onset of dimerization of L18W-PGLa and MG2a at low peptide concentrations consequently appears to be key to their synergistic dye-releasing activity from lipid vesicles at high concentrations.
Collapse
Affiliation(s)
- Michael Pachler
- Biophysics Division, Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, Austria; BioTechMed Graz, Graz, Austria
| | - Ivo Kabelka
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Marie-Sousai Appavou
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum, Forschungszentrum Jülich GmbH, Germany
| | - Karl Lohner
- Biophysics Division, Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, Austria; BioTechMed Graz, Graz, Austria
| | - Robert Vácha
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic; Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Georg Pabst
- Biophysics Division, Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, Austria; BioTechMed Graz, Graz, Austria.
| |
Collapse
|
74
|
Biocatalytic production of D-p-hydroxyphenylglycine by optimizing protein expression and cell wall engineering in Escherichia coli. Appl Microbiol Biotechnol 2019; 103:8839-8851. [DOI: 10.1007/s00253-019-10155-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/19/2019] [Accepted: 09/24/2019] [Indexed: 10/25/2022]
|
75
|
Kashid SM, Singh RK, Kwon H, Kim YS, Mukherjee A, Bagchi S. Arresting an Unusual Amide Tautomer Using Divalent Cations. J Phys Chem B 2019; 123:8419-8424. [PMID: 31532998 DOI: 10.1021/acs.jpcb.9b08463] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Ion-specific effects on peptides and proteins are key to biomolecular structure and stability. The subtle roles of the cations are far less understood, compared to the pronounced effects of the anions on proteins. Most importantly, divalent cations such as Ca2+ and Mg2+ are crucial to several biological functions. Herein, we demonstrate that an amide-iminolate equilibrium is triggered by the binding of the divalent cations to the amide oxygen in aqueous solution. The excellent agreement between the experimental and theoretical results confirms the arrest of an unusual amide tautomer by the divalent cations, which is a rarely known phenomenon that might open up an array of applications in chemistry and biology.
Collapse
Affiliation(s)
- Somnath M Kashid
- Physical and Materials Chemistry Division , CSIR-National Chemical Laboratory , Pune 411008 , India.,Academy of Scientific and Innovative Research (AcSIR) , Ghaziabad - 201002 , India
| | - Reman K Singh
- Department of Chemistry , Indian Institute of Science Education and Research , Pune 411008 , India
| | - Hyejin Kwon
- Department of Chemistry , Ulsan National Institute of Science and Technology (UNIST) , 50 UNIST-gil , Ulsan 44919 , Korea
| | - Yung Sam Kim
- Department of Chemistry , Ulsan National Institute of Science and Technology (UNIST) , 50 UNIST-gil , Ulsan 44919 , Korea
| | - Arnab Mukherjee
- Department of Chemistry , Indian Institute of Science Education and Research , Pune 411008 , India
| | - Sayan Bagchi
- Physical and Materials Chemistry Division , CSIR-National Chemical Laboratory , Pune 411008 , India.,Academy of Scientific and Innovative Research (AcSIR) , Ghaziabad - 201002 , India
| |
Collapse
|
76
|
Batista PR, Karas LJ, Viesser RV, de Oliveira CC, Gonçalves MB, Tormena CF, Rittner R, Ducati LC, de Oliveira PR. Dealing with Hydrogen Bonding on the Conformational Preference of 1,3-Aminopropanols: Experimental and Molecular Dynamics Approaches. J Phys Chem A 2019; 123:8583-8594. [PMID: 31517493 DOI: 10.1021/acs.jpca.9b05619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study expands the knowledge on the conformational preference of 1,3-amino alcohols in the gas phase and in solution. By employing Fourier transform infrared spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, density functional theory (DFT) calculations, quantum theory of atoms in molecules (QTAIM), natural bond orbital (NBO) analysis, and molecular dynamics (MD), the compounds 3-aminopropan-1-ol (1), 3-methylaminopropan-1-ol (2), and 3-dimethylaminopropan-1-ol (3) are evaluated. The results show that the most stable conformation of each compound in the gas phase and in nonpolar solvents exhibited an O-H···N intramolecular hydrogen bond (IHB). Based on the experimental and theoretical OH-stretching frequencies, the IHB becomes stronger from 1 to 3. In addition, from the experimental NMR J-couplings, the IHB conformers are predominant in nonbasic solvents, representing 70-80% of the conformational equilibrium, while in basic solvents, such conformers only represent 10%. DFT calculations and QTAIM analysis in the gas phase support the occurrence of IHBs in these compounds. The MD simulation indicates that the non-hydrogen-bonded conformers are the lowest energy conformations in the solution because of molecular interactions with the solvent, while they are absent in the implicit solvation model based on density. NBO analysis suggests that methyl groups attached on the nitrogen atom affect the charge transfer energy involved in the IHB. This effect occurs mostly because of a decrease in the s-character of the LPN orbital along with weakening of the charge transfer from LPN to σ*OH, which is caused by an increase in the C-C-N bond angle.
Collapse
Affiliation(s)
- Patrick R Batista
- Department of Fundamental Chemistry, Institute of Chemistry , University of São Paulo , Av. Prof. Lineu Prestes , P.O. Box 748, 05508-000 São Paulo , São Paulo , Brazil
| | - Lucas J Karas
- Department of Chemistry , University of Houston , Houston , Texas 77204 , United States
| | - Renan V Viesser
- Physical Organic Chemistry Laboratory, Institute of Chemistry , University of Campinas , P.O. Box 6154, 13083-970 Campinas , São Paulo , Brazil
| | - Cynthia C de Oliveira
- Academic Department of Physics , Federal Technological University of Paraná , 80230-901 Curitiba , Paraná , Brazil
| | - Marcos B Gonçalves
- Academic Department of Physics , Federal Technological University of Paraná , 80230-901 Curitiba , Paraná , Brazil
| | - Cláudio F Tormena
- Physical Organic Chemistry Laboratory, Institute of Chemistry , University of Campinas , P.O. Box 6154, 13083-970 Campinas , São Paulo , Brazil
| | - Roberto Rittner
- Physical Organic Chemistry Laboratory, Institute of Chemistry , University of Campinas , P.O. Box 6154, 13083-970 Campinas , São Paulo , Brazil
| | - Lucas C Ducati
- Department of Fundamental Chemistry, Institute of Chemistry , University of São Paulo , Av. Prof. Lineu Prestes , P.O. Box 748, 05508-000 São Paulo , São Paulo , Brazil
| | - Paulo R de Oliveira
- Conformational Analysis and Renewable Resources Laboratory, Department of Chemistry and Biology , Federal Technological University of Paraná , P.O. Box 5000, 81280-340 Curitiba , Paraná , Brazil
| |
Collapse
|
77
|
Brunetti J, Riolo G, Depau L, Mandarini E, Bernini A, Karousou E, Passi A, Pini A, Bracci L, Falciani C. Unraveling Heparan Sulfate Proteoglycan Binding Motif for Cancer Cell Selectivity. Front Oncol 2019; 9:843. [PMID: 31620357 PMCID: PMC6759624 DOI: 10.3389/fonc.2019.00843] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/19/2019] [Indexed: 12/18/2022] Open
Abstract
Membrane heparan sulfate proteoglycans (HSPG) regulate cell proliferation, migration, and differentiation and are therefore considered key players in cancer cell development processes. Here, we used the NT4 peptide to investigate how the sulfation pattern of HSPG on cells drives binding specificity. NT4 is a branched peptide that binds the glycosaminoglycan (GAG) chains of HSPG. It has already been shown to inhibit growth factor-induced migration and invasiveness of cancer cells, implying antagonist binding of HSPG. The binding affinity of NT4 with recombinant HSPG showed that NT4 bound glypican-3 and -4 and, with lower affinity, syndecan-4. NT4 binding to the cancer cell membrane was inversely correlated with sulfatase expression. NT4 binding was higher in cell lines with lower expression of SULF-1 and SULF-2, which confirms the determinant role of sulfate groups for recognition by NT4. Using 8-mer and 9-mer heparan sulfate (HS) oligosaccharides with analog disaccharide composition and different sulfation sites, a possible recognition motif was identified that includes repeated 6-O-sulfates alternating with N- and/or 2-O-sulfates. Molecular modeling provided a fully descriptive picture of binding architecture, showing that sulfate groups on opposite sides of the oligosaccharide can interact with positive residues on two peptide sequences of the branched structure, thus favoring multivalent binding and explaining the high affinity and selectivity of NT4 for highly sulfated GAGs. NT4 and possibly newly selected branched peptides will be essential probes for reconstructing and unraveling binding sites for cancer-involved ligands on GAGs and will pave the way for new cancer detection and treatment options.
Collapse
Affiliation(s)
- Jlenia Brunetti
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Giulia Riolo
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Lorenzo Depau
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | | | - Andrea Bernini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Evgenia Karousou
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Alessandro Pini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Luisa Bracci
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Chiara Falciani
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
78
|
Sun Z, Wang X. Thermodynamics of Helix formation in small peptides of varying lengthin vacuo, implicit solvent and explicit solvent: Comparison between AMBER force fields. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2019. [DOI: 10.1142/s0219633619500159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Helix formation is of great significance in protein folding. The helix-forming tendencies of amino acids are accumulated along the sequence to determine the helix-forming tendency of peptides. Computer simulation can be used to model this process in atomic details and give structural insights. In the current work, we employ equilibrate-state free energy simulation to systematically study the folding/unfolding thermodynamics of a series of mutated peptides. Two AMBER force fields including AMBER99SB and AMBER14SB are compared. The new 14SB force field uses refitted torsion parameters compared with 99SB and they share the same atomic charge scheme. We find that in vacuo the helix formation is mutation dependent, which reflects the different helix propensities of different amino acids. In general, there are helix formers, helix indifferent groups and helix breakers. The helical structure becomes more favored when the length of the sequence becomes longer, which arises from the formation of additional backbone hydrogen bonds in the lengthened sequence. Therefore, the helix indifferent groups and helix breakers will become helix formers in long sequences. Also, protonation-dependent helix formation is observed for ionizable groups. In 14SB, the helical structures are more stable than in 99SB and differences can be observed in their grouping schemes, especially in the helix indifferent group. In solvents, all mutations are helix indifferent due to protein–solvent interactions. The decrease in the number of backbone hydrogen bonds is the same with the increase in the number of protein–water hydrogen bonds. The 14SB in explicit solvent is able to capture the free energy minima in the helical state while 14SB in implicit solvent, 99SB in explicit solvent and 99SB in implicit solvent cannot. The helix propensities calculated under 14SB agree with the corresponding experimental values, while the 99SB results obviously deviate from the references. Hence, implicit solvent models are unable to correctly describe the thermodynamics even for the simple helix formation in isolated peptides. Well-developed force fields and explicit solvents are needed to correctly describe the protein dynamics. Aside from the free energy, differences in conformational ensemble under different force fields in different solvent models are observed. The numbers of hydrogen bonds formed under different force fields agree and they are mostly determined by the solvent model.
Collapse
Affiliation(s)
- Zhaoxi Sun
- State Key Laboratory of Precision Spectroscopy, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
- Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Xiaohui Wang
- State Key Laboratory of Precision Spectroscopy, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
- Institute of Computational Science, Universitàdella Svizzeraitaliana (USI), Via Giuseppe Buffi 13, CH-6900 Lugano, Ticino, Switzerland
| |
Collapse
|
79
|
Zerze GH, Zheng W, Best RB, Mittal J. Evolution of All-Atom Protein Force Fields to Improve Local and Global Properties. J Phys Chem Lett 2019; 10:2227-2234. [PMID: 30990694 PMCID: PMC7507668 DOI: 10.1021/acs.jpclett.9b00850] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Experimental studies on intrinsically disordered and unfolded proteins have shown that in isolation they typically have low populations of secondary structure and exhibit distance scalings suggesting that they are at near-theta-solvent conditions. Until recently, however, all-atom force fields failed to reproduce these fundamental properties of intrinsically disordered proteins (IDPs). Recent improvements by refining against ensemble-averaged experimental observables for polypeptides in aqueous solution have addressed deficiencies including secondary structure bias, global conformational properties, and thermodynamic parameters of biophysical reactions such as folding and collapse. To date, studies utilizing these improved all-atom force fields have mostly been limited to a small set of unfolded or disordered proteins. Here, we present data generated for a diverse library of unfolded or disordered proteins using three progressively improved generations of Amber03 force fields, and we explore how global and local properties are affected by each successive change in the force field. We find that the most recent force field refinements significantly improve the agreement of the global properties such as radii of gyration and end-to-end distances with experimental estimates. However, these global properties are largely independent of the local secondary structure propensity. This result stresses the need to validate force fields with reference to a combination of experimental data providing information about both local and global structure formation.
Collapse
Affiliation(s)
- Gül H Zerze
- Department of Chemical and Biomolecular Engineering , Lehigh University , Bethlehem , Pennsylvania 18015 , United States
| | - Wenwei Zheng
- College of Integrative Sciences and Arts , Arizona State University , Mesa , Arizona 85212 , United States
| | - Robert B Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Jeetain Mittal
- Department of Chemical and Biomolecular Engineering , Lehigh University , Bethlehem , Pennsylvania 18015 , United States
| |
Collapse
|
80
|
Alvarado W, Bremer PL, Choy A, Dinh HN, Eung A, Gonzalez J, Ly P, Tran T, Nakayama K, Schwans JP, Sorin EJ. Understanding the enzyme-ligand complex: insights from all-atom simulations of butyrylcholinesterase inhibition. J Biomol Struct Dyn 2019; 38:1028-1041. [PMID: 30909811 DOI: 10.1080/07391102.2019.1596836] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
All-atom molecular dynamics simulations of butyrylcholinesterase (BChE) sans inhibitor and in complex with each of 15 dialkyl phenyl phosphate derivatives were conducted to characterize inhibitor binding modes and strengths. Each system was sampled on the 250 ns timescale in explicit ionic solvent, for a total of over 4 μs of simulation time. A K-means algorithm was used to cluster the resulting structures into distinct binding modes, which were further characterized based on atomic-level contacts between inhibitor chemical groups and active site residues. Comparison of experimentally observed inhibition constants (KI) with the resulting contact tables provides structural explanations for relative binding coefficients and highlights several notable interaction motifs. These include ubiquitous contact between glycines in the oxyanion hole and the inhibitor phosphate group; a sterically driven binding preference for positional isomers that extend aromaticity; a stereochemical binding preference for choline-containing inhibitors, which mimic natural BChE substrates; and the mechanically induced opening of the omega loop region to fully expose the active site gorge in the presence of choline-containing inhibitors. Taken together, these observations can greatly inform future design of BChE inhibitors, and the approach reported herein is generalizable to other enzyme-inhibitor systems and similar complexes that depend on non-covalent molecular recognition.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Walter Alvarado
- Department of Physics & Astronomy, California State University Long Beach, Long Beach, CA, USA
| | - Parker Ladd Bremer
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, CA, USA
| | - Angela Choy
- Department of Chemical Engineering, California State University Long Beach, Long Beach, CA, USA
| | - Helen N Dinh
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, CA, USA
| | - Aingty Eung
- Department of Computer Engineering & Computer Science, California State University Long Beach, Long Beach, CA, USA
| | - Jeannette Gonzalez
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA, USA
| | - Phillippe Ly
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, CA, USA
| | - Trina Tran
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, CA, USA
| | - Kensaku Nakayama
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, CA, USA
| | - Jason P Schwans
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, CA, USA
| | - Eric J Sorin
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, CA, USA
| |
Collapse
|
81
|
Jas GS, Childs EW, Kuczera K. Kinetic pathway analysis of an α-helix in two protonation states: Direct observation and optimal dimensionality reduction. J Chem Phys 2019; 150:074902. [PMID: 30795683 DOI: 10.1063/1.5082192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Thermodynamically stable conformers of secondary structural elements make a stable tertiary/quaternary structure that performs its proper biological function efficiently. Formation mechanisms of secondary and tertiary/quaternary structural elements from the primary structure are driven by the kinetic properties of the respective systems. Here we have carried out thermodynamic and kinetic characterization of an alpha helical heteropeptide in two protonation states, created with the addition and removal of a proton involving a single histidine residue in the primary structure. Applying far-UV circular dichroism spectroscopy, the alpha helix is observed to be significantly more stable in the deprotonated state. Nanosecond laser temperature jump spectroscopy monitoring time-resolved tryptophan fluorescence on the protonated conformer is carried out to measure the kinetics of this system. The measured relaxation rates at a final temperature between 296K and 314 K generated a faster component of 20 ns-11 ns and a slower component of 314 ns-198 ns. Atomically detailed characterization of the helix-coil kinetic pathways is performed based on all-atom molecular dynamics trajectories of the two conformers. Application of clustering and kinetic coarse-graining with optimum dimensionality reduction produced description of the trajectories in terms of kinetic models with two to five states. These models include aggregate states corresponding to helix, coil, and intermediates. The "coil" state involves the largest number of conformations, consistent with the expected high entropy of this structural ensemble. The "helix" aggregate states are found to be mixed with the full helix and partially folded forms. The experimentally observed higher helix stability in the deprotonated form of the alpha helical heteropeptide is reflected in the nature of the "helix" aggregate state arising from the kinetic model. In the protonated form, the "coil" state exhibits the lowest free energy and longest lifetime, while in the deprotonated form, it is the "helix" that is found to be most stable. Overall, the coarse grained models suggest that the protonation of a single histidine residue in the primary structure induces significant changes in the free energy landscape and kinetic network of the studied helix-forming heteropeptide.
Collapse
Affiliation(s)
- Gouri S Jas
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, USA
| | - Ed W Childs
- Department of Surgery, Morehouse School of Medicine, Atlanta, Georgia 30310, USA
| | - Krzysztof Kuczera
- Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas 66047, USA
| |
Collapse
|
82
|
Nagarajan B, Sankaranarayanan NV, Desai UR. Perspective on computational simulations of glycosaminoglycans. WILEY INTERDISCIPLINARY REVIEWS. COMPUTATIONAL MOLECULAR SCIENCE 2019; 9:e1388. [PMID: 31080520 PMCID: PMC6504973 DOI: 10.1002/wcms.1388] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/07/2018] [Indexed: 01/06/2023]
Abstract
Glycosaminoglycans (GAGs) represent a formidable frontier for chemists, biochemists, biologists, medicinal chemists and drug delivery specialists because of massive structural complexity. GAGs are arguably the most complex, natural linear biopolymers with theoretical diversity orders of magnitude higher than proteins and nucleic acids. Yet, this diversity remains generally untapped. Computational approaches offer major routes to understand GAG structure and dynamics so as to enable novel applications of these biopolymers. In fact, computational algorithms, softwares, online tools and techniques have reached a level of sophistication that help understand atomistic details of conformational variation and protein recognition of individual GAG sequences. This review describes current approaches and challenges in computational study of GAGs. It presents a history of major findings since the earliest mention of GAGs (the 1960s), the development of parameters and force fields specific for GAGs, and the application of these tools in understanding GAG structure-function relationship. This review also presents a section on how to perform simulation of GAGs, which is directed toward researchers interested in entering this promising field with potential to impact therapy.
Collapse
Affiliation(s)
- Balaji Nagarajan
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond,
VA 23298, USA
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Nehru Viji Sankaranarayanan
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond,
VA 23298, USA
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Umesh R. Desai
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond,
VA 23298, USA
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
83
|
Molecular simulation of peptides coming of age: Accurate prediction of folding, dynamics and structures. Arch Biochem Biophys 2019; 664:76-88. [DOI: 10.1016/j.abb.2019.01.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 12/24/2022]
|
84
|
Weng J, Wang W. Structural Features and Energetics of the Periplasmic Entrance Opening of the Outer Membrane Channel TolC Revealed by Molecular Dynamics Simulation and Markov State Model Analysis. J Chem Inf Model 2019; 59:2359-2366. [DOI: 10.1021/acs.jcim.8b00957] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jingwei Weng
- Department of Chemistry, Institute of Biomedical Sciences and Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, China 200433
| | - Wenning Wang
- Department of Chemistry, Institute of Biomedical Sciences and Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, China 200433
| |
Collapse
|
85
|
Acharyya A, Ge Y, Wu H, DeGrado WF, Voelz VA, Gai F. Exposing the Nucleation Site in α-Helix Folding: A Joint Experimental and Simulation Study. J Phys Chem B 2019; 123:1797-1807. [PMID: 30694671 DOI: 10.1021/acs.jpcb.8b12220] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
One of the fundamental events in protein folding is α-helix formation, which involves sequential development of a series of helical hydrogen bonds between the backbone C═O group of residues i and the -NH group of residues i + 4. While we now know a great deal about α-helix folding dynamics, a key question that remains to be answered is where the productive helical nucleation event occurs. Statistically, a helical nucleus (or the first helical hydrogen-bond) can form anywhere within the peptide sequence in question; however, the one that leads to productive folding may only form at a preferred location. This consideration is based on the fact that the α-helical structure is inherently asymmetric, due to the specific alignment of the helical hydrogen bonds. While this hypothesis is plausible, validating it is challenging because there is not an experimental observable that can be used to directly pinpoint the location of the productive nucleation process. Therefore, in this study we combine several techniques, including peptide cross-linking, laser-induced temperature-jump infrared spectroscopy, and molecular dynamics simulations, to tackle this challenge. Taken together, our experimental and simulation results support an α-helix folding mechanism wherein the productive nucleus is formed at the N-terminus, which propagates toward the C-terminal end of the peptide to yield the folded structure. In addition, our results show that incorporation of a cross-linker can lead to formation of differently folded conformations, underscoring the need for all-atom simulations to quantitatively assess the proposed cross-linking design.
Collapse
Affiliation(s)
- Arusha Acharyya
- Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Yunhui Ge
- Department of Chemistry , Temple University , Philadelphia , Pennsylvania 19122 , United States
| | - Haifan Wu
- Department of Pharmaceutical Chemistry , University of California , San Francisco , California 94158 , United States
| | - William F DeGrado
- Department of Pharmaceutical Chemistry , University of California , San Francisco , California 94158 , United States
| | - Vincent A Voelz
- Department of Chemistry , Temple University , Philadelphia , Pennsylvania 19122 , United States
| | - Feng Gai
- Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
86
|
Turner MW, Marquart LA, Phillips PD, McDougal OM. Mutagenesis of α-Conotoxins for Enhancing Activity and Selectivity for Nicotinic Acetylcholine Receptors. Toxins (Basel) 2019; 11:E113. [PMID: 30781866 PMCID: PMC6409848 DOI: 10.3390/toxins11020113] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 02/04/2023] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are found throughout the mammalian body and have been studied extensively because of their implication in a myriad of diseases. α-Conotoxins (α-CTxs) are peptide neurotoxins found in the venom of marine snails of genus Conus. α-CTxs are potent and selective antagonists for a variety of nAChR isoforms. Over the past 40 years, α-CTxs have proven to be valuable molecular probes capable of differentiating between closely related nAChR subtypes and have contributed greatly to understanding the physiological role of nAChRs in the mammalian nervous system. Here, we review the amino acid composition and structure of several α-CTxs that selectively target nAChR isoforms and explore strategies and outcomes for introducing mutations in native α-CTxs to direct selectivity and enhance binding affinity for specific nAChRs. This review will focus on structure-activity relationship studies involving native α-CTxs that have been rationally mutated and molecular interactions that underlie binding between ligand and nAChR isoform.
Collapse
Affiliation(s)
- Matthew W Turner
- Biomolecular Sciences Graduate Programs, Boise State University; Boise, ID 83725, USA.
| | - Leanna A Marquart
- Department of Chemistry and Biochemistry, Boise State University; Boise, ID 83725, USA.
| | - Paul D Phillips
- Department of Chemistry and Biochemistry, Boise State University; Boise, ID 83725, USA.
| | - Owen M McDougal
- Department of Chemistry and Biochemistry, Boise State University; Boise, ID 83725, USA.
| |
Collapse
|
87
|
Wang D, Weng J, Wang W. An unconventional ligand‐binding mechanism of substrate‐binding proteins: MD simulation and Markov state model analysis of BtuF. J Comput Chem 2019; 40:1440-1448. [DOI: 10.1002/jcc.25798] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/22/2018] [Accepted: 01/28/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Dongdong Wang
- Department of Chemistry, Institutes of Biomedical Sciences and Multiscale Research Institute of Complex System Fudan University Shanghai 200438 People's Republic of China
| | - Jingwei Weng
- Department of Chemistry, Institutes of Biomedical Sciences and Multiscale Research Institute of Complex System Fudan University Shanghai 200438 People's Republic of China
| | - Wenning Wang
- Department of Chemistry, Institutes of Biomedical Sciences and Multiscale Research Institute of Complex System Fudan University Shanghai 200438 People's Republic of China
| |
Collapse
|
88
|
Schöberl M, Zabaras N, Koutsourelakis PS. Predictive collective variable discovery with deep Bayesian models. J Chem Phys 2019; 150:024109. [DOI: 10.1063/1.5058063] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Markus Schöberl
- Center for Informatics and Computational Science, University of Notre Dame, 311 Cushing Hall, Notre Dame, Indiana 46556, USA
- Continuum Mechanics Group, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
| | - Nicholas Zabaras
- Center for Informatics and Computational Science, University of Notre Dame, 311 Cushing Hall, Notre Dame, Indiana 46556, USA
| | | |
Collapse
|
89
|
Characterization of the First OXA-10 Natural Variant with Increased Carbapenemase Activity. Antimicrob Agents Chemother 2018; 63:AAC.01817-18. [PMID: 30397053 DOI: 10.1128/aac.01817-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 10/26/2018] [Indexed: 12/25/2022] Open
Abstract
While carbapenem resistance in Gram-negative bacteria is mainly due to the production of efficient carbapenemases, β-lactamases with a narrower spectrum may also contribute to resistance when combined with additional mechanisms. OXA-10-type class D β-lactamases, previously shown to be weak carbapenemases, could represent such a case. In this study, two novel OXA-10 variants were identified as the sole carbapenem-hydrolyzing enzymes in meropenem-resistant enterobacteria isolated from hospital wastewater and found by next-generation sequencing to express additional β-lactam resistance mechanisms. The new variants, OXA-655 and OXA-656, were carried by two related IncQ1 broad-host-range plasmids. Compared to the sequence of OXA-10, they both harbored a Thr26Met substitution, with OXA-655 also bearing a leucine instead of a valine in position 117 of the SAV catalytic motif. Susceptibility profiling of laboratory strains replicating the natural bla OXA plasmids and of recombinant clones expressing OXA-10 and the novel variants in an isogenic background indicated that OXA-655 is a more efficient carbapenemase. The carbapenemase activity of OXA-655 is due to the Val117Leu substitution, as shown by steady-state kinetic experiments, where the k cat of meropenem hydrolysis was increased 4-fold. In contrast, OXA-655 had no activity toward oxyimino-β-lactams, while its catalytic efficiency against oxacillin was significantly reduced. Moreover, the Val117Leu variant was more efficient against temocillin and cefoxitin. Molecular dynamics indicated that Val117Leu affects the position 117-Leu155 interaction, leading to structural shifts in the active site that may alter carbapenem alignment. The evolutionary potential of OXA-10 enzymes toward carbapenem hydrolysis combined with their spread by promiscuous plasmids indicates that they may pose a future clinical threat.
Collapse
|
90
|
Smith LG, Tan Z, Spasic A, Dutta D, Salas-Estrada LA, Grossfield A, Mathews DH. Chemically Accurate Relative Folding Stability of RNA Hairpins from Molecular Simulations. J Chem Theory Comput 2018; 14:6598-6612. [PMID: 30375860 DOI: 10.1021/acs.jctc.8b00633] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
To benchmark RNA force fields, we compared the folding stabilities of three 12-nucleotide hairpin stem loops estimated by simulation to stabilities determined by experiment. We used umbrella sampling and a reaction coordinate of end-to-end (5' to 3' hydroxyl oxygen) distance to estimate the free energy change of the transition from the native conformation to a fully extended conformation with no hydrogen bonds between non-neighboring bases. Each simulation was performed four times using the AMBER FF99+bsc0+χOL3 force field, and each window, spaced at 1 Å intervals, was sampled for 1 μs, for a total of 552 μs of simulation. We compared differences in the simulated free energy changes to analogous differences in free energies from optical melting experiments using thermodynamic cycles where the free energy change between stretched and random coil sequences is assumed to be sequence-independent. The differences between experimental and simulated ΔΔ G° are, on average, 0.98 ± 0.66 kcal/mol, which is chemically accurate and suggests that analogous simulations could be used predictively. We also report a novel method to identify where replica free energies diverge along a reaction coordinate, thus indicating where additional sampling would most improve convergence. We conclude by discussing methods to more economically perform these simulations.
Collapse
Affiliation(s)
- Louis G Smith
- Department of Biochemistry & Biophysics , University of Rochester , Rochester , New York 14642 , United States.,Center for RNA Biology , University of Rochester , Rochester , New York 14642 , United States
| | - Zhen Tan
- Department of Biochemistry & Biophysics , University of Rochester , Rochester , New York 14642 , United States.,Center for RNA Biology , University of Rochester , Rochester , New York 14642 , United States
| | - Aleksandar Spasic
- Department of Biochemistry & Biophysics , University of Rochester , Rochester , New York 14642 , United States.,Center for RNA Biology , University of Rochester , Rochester , New York 14642 , United States
| | - Debapratim Dutta
- Department of Biochemistry & Biophysics , University of Rochester , Rochester , New York 14642 , United States.,Center for RNA Biology , University of Rochester , Rochester , New York 14642 , United States
| | - Leslie A Salas-Estrada
- Department of Biochemistry & Biophysics , University of Rochester , Rochester , New York 14642 , United States
| | - Alan Grossfield
- Department of Biochemistry & Biophysics , University of Rochester , Rochester , New York 14642 , United States
| | - David H Mathews
- Department of Biochemistry & Biophysics , University of Rochester , Rochester , New York 14642 , United States.,Department of Biostatistics and Computational Biology , University of Rochester , Rochester , New York 14642 , United States.,Center for RNA Biology , University of Rochester , Rochester , New York 14642 , United States
| |
Collapse
|
91
|
Jas GS, Kuczera K. Helix-Coil Transition Courses Through Multiple Pathways and Intermediates: Fast Kinetic Measurements and Dimensionality Reduction. J Phys Chem B 2018; 122:10806-10816. [PMID: 30395709 DOI: 10.1021/acs.jpcb.8b07924] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nanosecond laser temperature jumps with tryptophan fluorescence detection and molecular dynamics simulation with kinetic dimensionality reduction were used to study the helix-coil transition in a 21-residue α-helical heteropeptide. Analysis of the temperature- dependent relaxation dynamics of this heteropeptide identified a distinct faster component of 20-35 ns, besides a slower component of 300-400 ns at temperatures between 296 and 280 K. To understand the mechanism of progression from a non-structured coil state to a structured helical state, we carried out a 12 μs molecular dynamics simulation of this peptide system. Clustering and optimal dimensionality reduction were applied to the molecular dynamics trajectory to generate low-dimensional coarse-grained models of the underlying kinetic network in terms of 2-5 metastable states. In accord with the generally accepted understanding of the multiple conformations and high entropy of the unfolded ensemble of states, the "coil" metastable set contains the largest number of structures. Interestingly, the helix metastable state was also found to be structurally heterogeneous, consisting of the completely helical form and several partly folded conformers that interconvert at a time scale faster that global folding. The intermediate states contain the fewest structures, have lowest populations, and have the shortest lifetimes. As the number of considered metastable states increases, more intermediates and more folding paths appear in the coarse-grained models. One of these intermediates corresponds to the transition state for folding, which involves an "off-center" helical region over residues 11-16. The kinetic network model is consistent with a statistical picture of folding following a simple reaction coordinate counting the helical population of individual residues. On the basis of simulations, we propose that the fast relaxation time should be assigned to cooperative folding/unfolding of segments of 1-4 neighboring residues.
Collapse
Affiliation(s)
- Gouri S Jas
- Department of Pharmaceutical Chemistry , The University of Kansas , Lawrence , Kansas 66047 , United States
| | | |
Collapse
|
92
|
Liu C, Weng J, Wang D, Yang M, Jia M, Wang W. A Residue outside the Binding Site Determines the Gα Binding Specificity of GoLoco Motifs. Biochemistry 2018; 57:6562-6569. [PMID: 30406994 DOI: 10.1021/acs.biochem.8b00848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
GoLoco motif-containing proteins regulate the nucleotide-binding state of Gα proteins in various signaling pathways. As guanine nucleotide dissociation inhibitors (GDIs), they bind Gα·GDP and inhibit GDP to GTP exchange. GoLoco proteins show binding selectivity toward different members of the Gα family. Although the Gαi1·GDP/RGS14 crystal structure explains the specific binding selectivity of the RGS14 GoLoco domain well, the mechanism of selective binding has not been understood for the more general features of short GoLoco domains found in tandem arrays in proteins like GPSM2/LGN/ dPins and GPSM1/AGS3. We explored the mechanism of differential interactions of GoLoco protein LGN with hGαi3 and hGαo. By combining mutagenesis experiments and molecular dynamics simulations, we identified a residue (Asp229 in hGαi3) away from the binding interface that remarkably affects the interaction between LGN and hGαi/o. A negatively charged residue at this position is required for high binding affinity. This affinity regulation mechanism was further verified by the cases of hGαi2 and dGαo, suggesting that this pathway is conserved among members of the Gα family.
Collapse
Affiliation(s)
- Chunhua Liu
- Multiscale Research Institute of Complex Systems, Department of Chemistry, and Institutes of Biomedical Sciences , Fudan University , Shanghai 200433 , P. R. China
| | - Jingwei Weng
- Multiscale Research Institute of Complex Systems, Department of Chemistry, and Institutes of Biomedical Sciences , Fudan University , Shanghai 200433 , P. R. China
| | - Dan Wang
- Multiscale Research Institute of Complex Systems, Department of Chemistry, and Institutes of Biomedical Sciences , Fudan University , Shanghai 200433 , P. R. China
| | - Maohua Yang
- Multiscale Research Institute of Complex Systems, Department of Chemistry, and Institutes of Biomedical Sciences , Fudan University , Shanghai 200433 , P. R. China
| | - Min Jia
- Multiscale Research Institute of Complex Systems, Department of Chemistry, and Institutes of Biomedical Sciences , Fudan University , Shanghai 200433 , P. R. China
| | - Wenning Wang
- Multiscale Research Institute of Complex Systems, Department of Chemistry, and Institutes of Biomedical Sciences , Fudan University , Shanghai 200433 , P. R. China
| |
Collapse
|
93
|
Novelli ET, First JT, Webb LJ. Quantitative Measurement of Intrinsic GTP Hydrolysis for Carcinogenic Glutamine 61 Mutants in H-Ras. Biochemistry 2018; 57:6356-6366. [PMID: 30339365 DOI: 10.1021/acs.biochem.8b00878] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mutations of human oncoprotein p21H-Ras (hereafter "Ras") at glutamine 61 are known to slow the rate of guanosine triphosphate (GTP) hydrolysis and transform healthy cells into malignant cells. It has been hypothesized that this glutamine plays a role in the intrinsic mechanism of GTP hydrolysis by interacting with an active site water molecule that stabilizes the formation of the charged transition state at the γ-phosphate during hydrolysis. However, there is no comprehensive data set of the effects of mutations to Q61 on the protein's intrinsic catalytic rate, structure, or interactions with water at the active site. Here, we present the first comprehensive and quantitative set of initial rates of intrinsic hydrolysis for all stable variants of RasQ61X. We further conducted enhanced molecular dynamics (MD) simulations of each construct to determine the solvent accessible surface area (SASA) of the side chain at position 61 and compared these results to previously measured changes in electric fields caused by RasQ61X mutations. For polar and negatively charged residues, we found that the rates are normally distributed about an optimal electrostatic contribution, close to that of the native Q61 residue, and the rates are strongly correlated to the number of waters in the active site. Together, these results support a mechanism of GTP hydrolysis in which Q61 stabilizes a transient hydronium ion, which then stabilizes the transition state while the γ-phosphate is undergoing nucleophilic attack by a second, catalytically active water molecule. We discuss the implications of such a mechanism on future strategies for combating Ras-based cancers.
Collapse
Affiliation(s)
- Elisa T Novelli
- Department of Chemistry, Texas Materials Institute, Institute for Cell and Molecular Biology , The University of Texas at Austin , 105 E 24th Street STOP A5300 , Austin , Texas 78712-1224 , United States
| | - Jeremy T First
- Department of Chemistry, Texas Materials Institute, Institute for Cell and Molecular Biology , The University of Texas at Austin , 105 E 24th Street STOP A5300 , Austin , Texas 78712-1224 , United States
| | - Lauren J Webb
- Department of Chemistry, Texas Materials Institute, Institute for Cell and Molecular Biology , The University of Texas at Austin , 105 E 24th Street STOP A5300 , Austin , Texas 78712-1224 , United States
| |
Collapse
|
94
|
Jiang Z, Zhang Z, Cui G, Sun Z, Song G, Liu Y, Zhong G. DNA Topoisomerase 1 Structure-BASED Design, Synthesis, Activity Evaluation and Molecular Simulations Study of New 7-Amide Camptothecin Derivatives Against Spodoptera frugiperda. Front Chem 2018; 6:456. [PMID: 30345269 PMCID: PMC6182061 DOI: 10.3389/fchem.2018.00456] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 09/13/2018] [Indexed: 02/04/2023] Open
Abstract
Camptothecin and its derivatives (CPTs) have strong toxicity to eukaryotic cells by targeting their DNA topoisomerase 1 (Top1) protein and have been increasingly explored as potential pesticides for plant protection. However, the detailed structure-binding mechanism of the interactions between CPTs and the insect Top1 protein remains unclear, which significantly hinders the development of novel CPTs as new insecticides. Herein, a series of 7-amide camptothecin analogs based on the binding mode of camptothecin in complex with Top1 (Sf Top1)-DNA from Spodoptera frugiperda cultured cell line Sf9 were designed and synthesized. Fifteen of these compounds exhibited excellent cytotoxic activity (values of IC50 from 2.01 to 6.78 μM) compared with camptothecin (29.47 μM). The molecular simulations revealed the binding mechanism when the camptothecin parent rings were inserting parallel to DNA bases and stabling the ternary complex by π-π stacked and hydrogen-bond interactions, and further suggested that introduction of lipophilic and some electron-withdrawing groups on the amide linkage of camptothecin could be beneficial to its activity via some non-covalent interactions. Furthermore, almost all the synthesized compounds could inhibit the growth of Spodoptera litura larvae strongly (Inhibition rate from 50.20 to 79.05%), superior or comparable to camptothecin (55.69%) after 8 days of exposure. In particular, the compounds 4c, 4d, 4f, and 4j, which presented more than 70% inhibitory activities, were deserved to be developed as potential biorational pesticides. The information described here would be useful for the further design and development of potentially effective pesticides in the field of plant protection.
Collapse
Affiliation(s)
- Zhiyan Jiang
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, and Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Zhijun Zhang
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, and Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Gaofeng Cui
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, and Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Zhipeng Sun
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, and Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Gaopeng Song
- College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Yingqian Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Guohua Zhong
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, and Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, College of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
95
|
Žuvela P, Liu JJ, Yi M, Pomastowski PP, Sagandykova G, Belka M, David J, Bączek T, Szafrański K, Żołnowska B, Sławiński J, Supuran CT, Wong MW, Buszewski B. Target-based drug discovery through inversion of quantitative structure-drug-property relationships and molecular simulation: CA IX-sulphonamide complexes. J Enzyme Inhib Med Chem 2018; 33:1430-1443. [PMID: 30220229 PMCID: PMC6151961 DOI: 10.1080/14756366.2018.1511551] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In this work, a target-based drug screening method is proposed exploiting the synergy effect of ligand-based and structure-based computer-assisted drug design. The new method provides great flexibility in drug design and drug candidates with considerably lower risk in an efficient manner. As a model system, 45 sulphonamides (33 training, 12 testing ligands) in complex with carbonic anhydrase IX were used for development of quantitative structure-activity-lipophilicity (property)-relationships (QSPRs). For each ligand, nearly 5,000 molecular descriptors were calculated, while lipophilicity (logkw) and inhibitory activity (logKi) were used as drug properties. Genetic algorithm-partial least squares (GA-PLS) provided a QSPR model with high prediction capability employing only seven molecular descriptors. As a proof-of-concept, optimal drug structure was obtained by inverting the model with respect to reference drug properties. 3509 ligands were ranked accordingly. Top 10 ligands were further validated through molecular docking. Large-scale MD simulations were performed to test the stability of structures of selected ligands obtained through docking complemented with biophysical experiments.
Collapse
Affiliation(s)
- Petar Žuvela
- a Department of Chemistry , National University of Singapore , Singapore.,b Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry , Nicolaus Copernicus University , Toruń , Poland
| | - J Jay Liu
- c Department of Chemical Engineering , Pukyong National University , Busan , Korea
| | - Myunggi Yi
- d Department of Biomedical Engineering , Pukyong National University , Busan , Korea
| | - Paweł P Pomastowski
- b Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry , Nicolaus Copernicus University , Toruń , Poland
| | - Gulyaim Sagandykova
- e Interdisciplinary Centre for Modern Technologies, Nicolaus Copernicus University , Toruń , Poland
| | - Mariusz Belka
- f Department of Pharmaceutical Chemistry , Medical University of Gdańsk , Gdańsk , Poland
| | - Jonathan David
- a Department of Chemistry , National University of Singapore , Singapore
| | - Tomasz Bączek
- f Department of Pharmaceutical Chemistry , Medical University of Gdańsk , Gdańsk , Poland
| | - Krzysztof Szafrański
- g Department of Organic Chemistry , Medical University of Gdańsk , Gdańsk , Poland
| | - Beata Żołnowska
- g Department of Organic Chemistry , Medical University of Gdańsk , Gdańsk , Poland
| | - Jarosław Sławiński
- g Department of Organic Chemistry , Medical University of Gdańsk , Gdańsk , Poland
| | - Claudiu T Supuran
- h Dipartimento di Chimica, Universita degli Studi di Firenze , Polo Scientifico, Laboratorio di Chimica Bioinorganica , Sesto Fiorentino (Florence) , Italy.,i NEUROFARBA Department, Sezione di Scienze Farmaceutiche , Università degli Studi di Firenze , Sesto Fiorentino (Florence) , Italy
| | - Ming Wah Wong
- a Department of Chemistry , National University of Singapore , Singapore
| | - Bogusław Buszewski
- b Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry , Nicolaus Copernicus University , Toruń , Poland.,e Interdisciplinary Centre for Modern Technologies, Nicolaus Copernicus University , Toruń , Poland
| |
Collapse
|
96
|
Krah A, Bond PJ. Single mutations in the ε subunit from thermophilic Bacillus PS3 generate a high binding affinity site for ATP. PeerJ 2018; 6:e5505. [PMID: 30202650 PMCID: PMC6129141 DOI: 10.7717/peerj.5505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/02/2018] [Indexed: 01/23/2023] Open
Abstract
The ε subunit from ATP synthases acts as an ATP sensor in the bacterial cell to prevent ATP hydrolysis and thus the waste of ATP under conditions of low ATP concentration. However, the ATP binding affinities from various bacterial organisms differ markedly, over several orders of magnitude. For example, the ATP synthases from thermophilic Bacillus PS3 and Escherichia coli exhibit affinities of 4 µM and 22 mM, respectively. The recently reported R103A/R115A double mutant of Bacillus PS3 ATP synthase demonstrated an increased binding affinity by two orders of magnitude with respect to the wild type. Here, we used atomic-resolution molecular dynamics simulations to determine the role of the R103A and R115A single mutations. These lead us to predict that both single mutations also cause an increased ATP binding affinity. Evolutionary analysis reveals R103 and R115 substitutions in the ε subunit from other bacillic organisms, leading us to predict they likely have a higher ATP binding affinity than previously expected.
Collapse
Affiliation(s)
- Alexander Krah
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Republic of Korea.,Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Peter J Bond
- Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
97
|
Kabelka I, Vácha R. Optimal Hydrophobicity and Reorientation of Amphiphilic Peptides Translocating through Membrane. Biophys J 2018; 115:1045-1054. [PMID: 30177443 DOI: 10.1016/j.bpj.2018.08.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/06/2018] [Accepted: 08/09/2018] [Indexed: 11/28/2022] Open
Abstract
Cell-penetrating and some antimicrobial peptides can translocate across lipid bilayers without disrupting the membrane structure. However, the molecular properties required for efficient translocation are not fully understood. We employed the Metropolis Monte Carlo method together with coarse-grained models to systematically investigate free-energy landscapes associated with the translocation of secondary amphiphilic peptides. We studied α-helical peptides with different length, amphiphilicity, and distribution of hydrophobic content and found a common translocation path consisting of adsorption, tilting, and insertion. In the adsorbed state, the peptides are parallel to the membrane plane, whereas, in the inserted state, the peptides are perpendicular to the membrane. Our simulations demonstrate that, for all tested peptides, there is an optimal ratio of hydrophilic/hydrophobic content at which the peptides cross the membrane the easiest. Moreover, we show that the hydrophobicity of peptide termini has an important effect on the translocation barrier. These results provide general guidance to optimize peptides for use as carriers of molecular cargos or as therapeutics themselves.
Collapse
Affiliation(s)
- Ivo Kabelka
- CEITEC-Central European Institute of Technology, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Robert Vácha
- CEITEC-Central European Institute of Technology, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic; Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
98
|
Georgiev VN, Grafmüller A, Bléger D, Hecht S, Kunstmann S, Barbirz S, Lipowsky R, Dimova R. Area Increase and Budding in Giant Vesicles Triggered by Light: Behind the Scene. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800432. [PMID: 30128249 PMCID: PMC6096984 DOI: 10.1002/advs.201800432] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/18/2018] [Indexed: 06/08/2023]
Abstract
Biomembranes are constantly remodeled and in cells, these processes are controlled and modulated by an assortment of membrane proteins. Here, it is shown that such remodeling can also be induced by photoresponsive molecules. The morphological control of giant vesicles in the presence of a water-soluble ortho-tetrafluoroazobenzene photoswitch (F-azo) is demonstrated and it is shown that the shape transformations are based on an increase in membrane area and generation of spontaneous curvature. The vesicles exhibit budding and the buds can be retracted by using light of a different wavelength. In the presence of F-azo, the membrane area can increase by more than 5% as assessed from vesicle electrodeformation. To elucidate the underlying molecular mechanism and the partitioning of F-azo in the membrane, molecular dynamics simulations are employed. Comparison with theoretically calculated shapes reveals that the budded shapes are governed by curvature elasticity, that the spontaneous curvature can be decomposed into a local and a nonlocal contribution, and that the local spontaneous curvature is about 1/(2.5 µm). The results show that exo- and endocytotic events can be controlled by light and that these photoinduced processes provide an attractive method to change membrane area and morphology.
Collapse
Affiliation(s)
- Vasil N. Georgiev
- Department of Theory and Bio‐SystemsMax Planck Institute of Colloids and InterfacesScience Park Golm14424PotsdamGermany
| | - Andrea Grafmüller
- Department of Theory and Bio‐SystemsMax Planck Institute of Colloids and InterfacesScience Park Golm14424PotsdamGermany
| | - David Bléger
- Department of Chemistry & IRIS AdlershofHumboldt‐Universität zu BerlinBrook‐Taylor‐Str. 212489BerlinGermany
| | - Stefan Hecht
- Department of Chemistry & IRIS AdlershofHumboldt‐Universität zu BerlinBrook‐Taylor‐Str. 212489BerlinGermany
| | - Sonja Kunstmann
- Department of Theory and Bio‐SystemsMax Planck Institute of Colloids and InterfacesScience Park Golm14424PotsdamGermany
- Physikalische BiochemieUniversität PotsdamKarl‐Liebknecht‐Str. 24‐2514476PotsdamGermany
| | - Stefanie Barbirz
- Physikalische BiochemieUniversität PotsdamKarl‐Liebknecht‐Str. 24‐2514476PotsdamGermany
| | - Reinhard Lipowsky
- Department of Theory and Bio‐SystemsMax Planck Institute of Colloids and InterfacesScience Park Golm14424PotsdamGermany
| | - Rumiana Dimova
- Department of Theory and Bio‐SystemsMax Planck Institute of Colloids and InterfacesScience Park Golm14424PotsdamGermany
| |
Collapse
|
99
|
Pulido D, Rebollido-Rios R, Valle J, Andreu D, Boix E, Torrent M. Structural similarities in the CPC clip motif explain peptide-binding promiscuity between glycosaminoglycans and lipopolysaccharides. J R Soc Interface 2018; 14:rsif.2017.0423. [PMID: 29187635 DOI: 10.1098/rsif.2017.0423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/30/2017] [Indexed: 11/12/2022] Open
Abstract
Lipopolysaccharides (LPSs) and glycosaminoglycans (GAGs) are polymeric structures containing negatively charged disaccharide units that bind to specialized proteins and peptides in the human body and control fundamental processes such as inflammation and coagulation. Surprisingly, some proteins can bind both LPSs and GAGs with high affinity, suggesting that a cross-communication between these two pathways can occur. Here, we explore whether GAGs and LPSs can share common binding sites in proteins and what are the structural determinants of this binding. We found that the LPS-binding peptide YI12WF, derived from protein FhuA, can bind both heparin and E. coli LPS with high affinity. Most interestingly, mutations decreasing heparin binding in the peptide also reduce LPS affinity. We show that such mutations involve the CPC clip motif in the peptide, a small three-dimensional signature required for heparin binding. Overall, we conclude that negatively charged polysaccharide-containing polymers such as GAGs and LPSs can compete for similar binding sites in proteins, and that the CPC clip motif is essential to bind both ligands. Our results provide a structural framework to explain why these polymers can cross-interact with the same proteins and peptides and thus contribute to the regulation of apparently unrelated processes in the body.
Collapse
Affiliation(s)
- David Pulido
- Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, London SW7 2AZ, UK
| | - Rocío Rebollido-Rios
- Microbiology Service, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Javier Valle
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - David Andreu
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Ester Boix
- Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Marc Torrent
- Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain .,Microbiology Service, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| |
Collapse
|
100
|
First JT, Slocum JD, Webb LJ. Quantifying the Effects of Hydrogen Bonding on Nitrile Frequencies in GFP: Beyond Solvent Exposure. J Phys Chem B 2018; 122:6733-6743. [DOI: 10.1021/acs.jpcb.8b03907] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jeremy T. First
- Department of Chemistry, Texas Materials Institute, and Institute for Cell and Molecular Biology, The University of Texas at Austin, 105E 24th Street, STOP A5300, Austin, Texas 78712-1224, United States
| | - Joshua D. Slocum
- Department of Chemistry, Texas Materials Institute, and Institute for Cell and Molecular Biology, The University of Texas at Austin, 105E 24th Street, STOP A5300, Austin, Texas 78712-1224, United States
| | - Lauren J. Webb
- Department of Chemistry, Texas Materials Institute, and Institute for Cell and Molecular Biology, The University of Texas at Austin, 105E 24th Street, STOP A5300, Austin, Texas 78712-1224, United States
| |
Collapse
|