51
|
Harris HJ, Davis C, Mullins JGL, Hu K, Goodall M, Farquhar MJ, Mee CJ, McCaffrey K, Young S, Drummer H, Balfe P, McKeating JA. Claudin association with CD81 defines hepatitis C virus entry. J Biol Chem 2010; 285:21092-102. [PMID: 20375010 PMCID: PMC2898367 DOI: 10.1074/jbc.m110.104836] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Viruses initiate infection by attaching to molecules or receptors at the cell surface. Hepatitis C virus (HCV) enters cells via a multistep process involving tetraspanin CD81, scavenger receptor class B member I, and the tight junction proteins Claudin-1 and Occludin. CD81 and scavenger receptor class B member I interact with HCV-encoded glycoproteins, suggesting an initial role in mediating virus attachment. In contrast, there are minimal data supporting Claudin-1 association with HCV particles, raising questions as to its role in the virus internalization process. In the present study we demonstrate a relationship between receptor active Claudins and their association and organization with CD81 at the plasma membrane by fluorescence resonance energy transfer and stoichiometric imaging methodologies. Mutation of residues 32 and 48 in the Claudin-1 first extracellular loop ablates CD81 association and HCV receptor activity. Furthermore, mutation of the same residues in the receptor-inactive Claudin-7 molecule enabled CD81 complex formation and virus entry, demonstrating an essential role for Claudin-CD81 complexes in HCV infection. Importantly, Claudin-1 associated with CD81 at the basolateral membrane of polarized HepG2 cells, whereas tight junction-associated pools of Claudin-1 demonstrated a minimal association with CD81. In summary, we demonstrate an essential role for Claudin-CD81 complexes in HCV infection and their localization at the basolateral surface of polarized hepatoma cells, consistent with virus entry into the liver via the sinusoidal blood and association with basal expressed forms of the receptors.
Collapse
Affiliation(s)
- Helen J Harris
- Institute for Biomedical Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Gründer S, Chen X. Structure, function, and pharmacology of acid-sensing ion channels (ASICs): focus on ASIC1a. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2010; 2:73-94. [PMID: 21383888 PMCID: PMC3047259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 03/10/2010] [Indexed: 05/30/2023]
Abstract
Acid-sensing ion channels (ASICs) are H(+)-gated Na(+) channels, which are present in most, if not all, neurons. The typical ASIC current is transient and is elicited by a rapid drop in the extracellular pH. In the human genome, four genes for ASICs are present: asic1 - 4. In this review, we will focus on ASIC1a, one of the key subunits in the central nervous system. We will describe the structure of this channel, a topic that has enormously profited from the recent elucidation of the first crystal structure of an ASIC. We will then relate the ASIC1 structure to current models of the gating mechanism of ASICs. Finally, we will review the pharmacology of ASIC1a. Advances in the pharmacological inhibition of individual ASIC currents have greatly contributed to our current knowledge of the functional roles of this channel in physiology, including learning, memory, and fear conditioning, and in pathophysiological states, including the neurodegeneration accompanying stroke, and axonal degeneration in autoimmune inflammation.
Collapse
Affiliation(s)
- Stefan Gründer
- Department of Physiology, RWTH Aachen UniversityAachen, Germany
| | - Xuanmao Chen
- Department of Physiology, University of TorontoToronto, Canada
| |
Collapse
|
53
|
Staruschenko A, Jeske NA, Akopian AN. Contribution of TRPV1-TRPA1 interaction to the single channel properties of the TRPA1 channel. J Biol Chem 2010; 285:15167-15177. [PMID: 20231274 DOI: 10.1074/jbc.m110.106153] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Several lines of evidence suggest that TRPA1 and TRPV1 mutually control the transduction of inflammation-induced noxious stimuli in sensory neurons. It was recently shown that certain TRPA1 properties are modulated by TRPV1. However, direct interaction between TRPA1 and TRPV1 as well as regulation of TRPA1 intrinsic characteristics by the TRPV1 channel have not been examined. To address these questions, we have studied a complex formation between TRPA1 and TRPV1 and characterized the influence of TRPV1 on single channel TRPA1-mediated currents. Co-immunoprecipitation analysis revealed direct interactions between TRPA1 and TRPV1 in an expression system as well as in sensory neurons. Data generated with total internal reflection fluorescence-based fluorescence resonance energy transfer indicate that a TRPA1-TRPV1 complex can be formed on the plasma membrane. The fluorescence resonance energy transfer interaction between TRPA1 and TRPV1 channels is as effective as for TRPV1 or TRPA1 homomers. Single channel analysis in a heterologous expression system and in sensory neurons of wild type and TRPV1 knock-out mice demonstrated that co-expression of TRPV1 with TRPA1 results in outward rectification of single channel mustard oil (I(MO)) current-voltage relationships (I-V) and substantial modulation of the open probability at negative holding potentials. TRPV1 also does not influence the characteristics of single channel I(MO) in Ca(2+)-free extracellular solution. However, association of TRPA1 with TRPV1 was not affected in Ca(2+)-free media. To assess a role of intracellular Ca(2+) in TRPV1-dependent modulation of TRPA1 modulation, the TRPA1-mediated single channel WIN55,212-2-gated current (I(WIN)) was recorded in inside-out configuration. Our data indicate that single channel properties of TRPA1 are regulated by TRPV1 independently of intracellular Ca(2+). In summary, our results support the hypothesis that TRPV1 and TRPA1 form a complex and that TRPV1 influences intrinsic characteristics of the TRPA1 channel.
Collapse
Affiliation(s)
- Alexander Staruschenko
- Department of Physiology and Kidney Disease Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226-0509
| | - Nathaniel A Jeske
- Departments of Oral and Maxillofacial Surgery, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Armen N Akopian
- Departments of Endodontics, University of Texas Health Science Center, San Antonio, Texas 78229.
| |
Collapse
|
54
|
Mironova E, Stockand JD. Activation of a latent nuclear localization signal in the NH2 terminus of γ-ENaC initiates feedback regulation of channel activity. Am J Physiol Renal Physiol 2010; 298:F1188-96. [PMID: 20147367 DOI: 10.1152/ajprenal.00600.2009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Proteolytic enzymes cleave the epithelial Na(+) channel (ENaC) at several positions releasing, in part, the NH(2) terminus of the γ-subunit. Cleavage increases ENaC activity by increasing open probability; however, the role of polypeptides cleaved from the channel core remains unclear. We find that the cytosolic NH(2) terminus of γ-ENaC unexpectedly targets to the nucleus being particularly strong in nucleoli. In contrast, the cytosolic COOH terminus targets to the cytoplasm and plasma membrane in a manner similar to full-length subunits. Targeting of the cytosolic NH(2) terminus of γ-ENaC to the nucleus has functional consequences for coexpression of eGFP-fusion proteins containing this segment of the channel, but not the COOH terminus, decrease ENaC activity in a dose-dependent manner. The mechanism of this negative regulation is associated with a decrease in the functional half-life of ENaC at the plasma membrane. Inspection of the primary amino acid sequence of γ-ENaC reveals possible nuclear localization signals (NLS) conserved at the extreme NH(2) terminus and just preceding the first transmembrane domain. Disruption of the putative NLS preceding the first transmembrane domain in γ-ENaC but not that at the extreme NH(2) terminus abolishes both targeting to the nucleus and negative regulation of ENaC activity. These findings are consistent with the release of the NH(2) terminus of γ-ENaC following cleavage being functionally important for signaling to the nucleus in a manner similar to Notch signaling and release of the cytosolic COOH-terminal tail of polycystin-1.
Collapse
Affiliation(s)
- Elena Mironova
- Department of Physiology, University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA
| | | |
Collapse
|
55
|
Dudev T, Lim C. Factors Governing the Na+ vs K+ Selectivity in Sodium Ion Channels. J Am Chem Soc 2010; 132:2321-32. [DOI: 10.1021/ja909280g] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Todor Dudev
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, and the Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Carmay Lim
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, and the Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
56
|
Sobczak K, Segal A, Bangel-Ruland N, Semmler J, Van Driessche W, Lindemann H, Heermann R, Weber WM. Specific inhibition of epithelial Na+ channels by antisense oligonucleotides for the treatment of Na+ hyperabsorption in cystic fibrosis. J Gene Med 2009; 11:813-23. [PMID: 19533590 DOI: 10.1002/jgm.1363] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Cystic fibrosis (CF) respiratory epithelia are characterized by a defect Cl(-) secretion and an increased Na(+) absorption through epithelial Na(+) channels (ENaC). The present study aimed to find an effective inhibitor of human ENaC with respect to replacing amiloride therapy for CF patients. Therefore, we developed specific antisense oligonucleotides (AON) that efficiently suppress Na(+) hyperabsorption by inhibiting the expression of the alpha-ENaC subunit. METHODS We heterologously expressed ENaC in oocytes of Xenopus laevis for mass screening of AON. Additionally, primary cultures of human nasal epithelia were transfected with AON and were used for Ussing chamber experiments, as well as biochemical and fluorescence optical analyses. RESULTS Screening of several AON by co-injection or sequential microinjection of AON and ENaC mRNA in X. laevis oocytes led to a sustained decrease in amiloride-sensitive current and conductance. Using primary cultures of human nasal epithelia, we show that AON effectively suppress amiloride-sensitive Na(+) absorption mediated by ENaC in CF and non-CF tissues. In western blot experiments, it could be shown that the amount of ENaC protein is effectively reduced after AON transfection. CONCLUSIONS Our data comprise an initial step towards a preclinical test with AON to reduce Na(+) hyperabsorption in CF epithelia.
Collapse
Affiliation(s)
- Katja Sobczak
- Institute of Animal Physiology, Westphalian Wilhelms-University Muenster, Muenster, Germany
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Pochynyuk O, Kucher V, Boiko N, Mironova E, Staruschenko A, Karpushev AV, Tong Q, Hendron E, Stockand J. Intrinsic voltage dependence of the epithelial Na+ channel is masked by a conserved transmembrane domain tryptophan. J Biol Chem 2009; 284:25512-21. [PMID: 19620245 DOI: 10.1074/jbc.m109.015917] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Tryptophan residues critical to function are frequently located at the lipid-water interface of transmembrane domains. All members of the epithelial Na+ channel (ENaC)/Degenerin (Deg) channel superfamily contain an absolutely conserved Trp at the base of their first transmembrane domain. Here, we test the importance of this conserved Trp to ENaC/Deg function. Targeted substitution of this Trp in mouse ENaC and rat ASIC subunits decrease channel activity. Differential substitution with distinct amino acids in alpha-mENaC shows that it is loss of this critical Trp rather than introduction of residues having novel properties that changes channel activity. Surprisingly, Trp substitution unmasks voltage sensitivity. Mutant ENaC has increased steady-state activity at hyperpolarizing compared with depolarizing potentials associated with transient activation and deactivation times, respectively. The times of activation and deactivation change 1 ms/mV in a linear manner with rising and decreasing slopes, respectively. Increases in macroscopic currents at hyperpolarizing potentials results from a voltage-dependent increase in open probability. Voltage sensitivity is not influenced by divalent cations; however, it is Na+-dependent with a 63-mV decrease in voltage required to reach half-maximal activity per log increase in [Na+]. Mutant channels are particularly sensitive to intracellular [Na+] for removing this sodium abolishes voltage dependence. We conclude that the conserved Trp at the base of TM1 in ENaC/Deg channels protects against voltage by masking an inhibitory allosteric or pore block mechanism, which decreases activity in response to intracellular Na+.
Collapse
Affiliation(s)
- Oleh Pochynyuk
- Department of Physiology, University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Gumz ML, Stow LR, Lynch IJ, Greenlee MM, Rudin A, Cain BD, Weaver DR, Wingo CS. The circadian clock protein Period 1 regulates expression of the renal epithelial sodium channel in mice. J Clin Invest 2009; 119:2423-34. [PMID: 19587447 DOI: 10.1172/jci36908] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 05/13/2009] [Indexed: 11/17/2022] Open
Abstract
The mineralocorticoid aldosterone is a major regulator of sodium transport in target epithelia and contributes to the control of blood pressure and cardiac function. It specifically functions to increase renal absorption of sodium from tubular fluid via regulation of the alpha subunit of the epithelial sodium channel (alphaENaC). We previously used microarray technology to identify the immediate transcriptional targets of aldosterone in a mouse inner medullary collecting duct cell line and found that the transcript induced to the greatest extent was the circadian clock gene Period 1. Here, we investigated the role of Period 1 in mediating the downstream effects of aldosterone in renal cells. Aldosterone treatment stimulated expression of Period 1 (Per1) mRNA in renal collecting duct cell lines and in the rodent kidney. RNA silencing of Period 1 dramatically decreased expression of mRNA encoding alphaENaC in the presence or absence of aldosterone. Furthermore, expression of alphaENaC-encoding mRNA was attenuated in the renal medulla of mice with disruption of the Per1 gene, and these mice exhibited increased urinary sodium excretion. Renal alphaENaC-encoding mRNA was expressed in an apparent circadian pattern, and this pattern was dramatically altered in mice lacking functional Period genes. These results suggest a role for Period 1 in the regulation of the renal epithelial sodium channel and more broadly implicate the circadian clock in control of sodium balance.
Collapse
|
59
|
Kapoor N, Bartoszewski R, Qadri YJ, Bebok Z, Bubien JK, Fuller CM, Benos DJ. Knockdown of ASIC1 and epithelial sodium channel subunits inhibits glioblastoma whole cell current and cell migration. J Biol Chem 2009; 284:24526-41. [PMID: 19561078 DOI: 10.1074/jbc.m109.037390] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
High grade gliomas such as glioblastoma multiforme express multiple members of the epithelial sodium channel (ENaC)/Degenerin family, characteristically displaying a basally active amiloride-sensitive cation current not seen in normal human astrocytes or lower grade gliomas. Using quantitative real time PCR, we have shown higher expression of ASIC1, alphaENaC, and gammaENaC in D54-MG human glioblastoma multiforme cells compared with primary human astrocytes. We hypothesize that this glioma current is mediated by a hybrid channel composed of a mixture of ENaC and acid-sensing ion channel (ASIC) subunits. To test this hypothesis we made dominant negative cDNAs for ASIC1, alphaENaC, gammaENaC, and deltaENaC. D54-MG cells transfected with the dominant negative constructs for ASIC1, alphaENaC, or gammaENaC showed reduced protein expression and a significant reduction in the amiloride-sensitive whole cell current as compared with untransfected D54-MG cells. Knocking down alphaENaC or gammaENaC also abolished the high P(K)(+)/P(Na)(+) of D54-MG cells. Knocking down deltaENaC in D54-MG cells reduced deltaENaC protein expression but had no effect on either the whole cell current or K(+) permeability. Using co-immunoprecipitation we show interactions between ASIC1, alphaENaC, and gammaENaC, consistent with these subunits interacting with each other to form an ion channel in glioma cells. We also found a significant inhibition of D54-MG cell migration after ASIC1, alphaENaC, or gammaENaC knockdown, consistent with the hypothesis that ENaC/Degenerin subunits play an important role in glioma cell biology.
Collapse
Affiliation(s)
- Niren Kapoor
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | |
Collapse
|
60
|
Bangel-Ruland N, Sobczak K, Christmann T, Kentrup D, Langhorst H, Kusche-Vihrog K, Weber WM. Characterization of the epithelial sodium channel delta-subunit in human nasal epithelium. Am J Respir Cell Mol Biol 2009; 42:498-505. [PMID: 19520916 DOI: 10.1165/rcmb.2009-0053oc] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The epithelial sodium channel (ENaC) mediates the first step in Na+ reabsorption in epithelial cells such as kidney, colon, and airways and may consist of four homologous subunits (alpha, beta, gamma, delta). Predominantly, the alpha-subunit is expressed in these epithelia, and it usually forms functional channels with the beta- and gamma-subunits. The delta-subunit was first found in human brain and kidney, but the expression was also detected in human cell lines of lung, pancreatic, and colonic origin. When co-expressed with beta and gamma accessory subunits in heterologous systems, the two known isoforms of the delta-ENaC subunit (delta1 and delta2) can build amiloride-sensitive Na+ channels. In the present study we demonstrate the expression and function of the delta-subunit in human nasal epithelium (HNE). We cloned and sequenced the full-length cDNA of the delta-ENaC subunit and were able to show that in nasal tissue at least isoform 1 is expressed. Furthermore, we performed Western blot analyses and compared the cell surface expression of the delta-subunit with the classically expressed alpha-subunit by using immunofluorescence experiments. Thereby, we could show that the quantity of both subunits is almost similar. In addition, we show the functional expression of the delta-ENaC subunit with measurements in modified Ussing chambers, and demonstrate that in HNE a large portion of the Na+ transport is mediated by the delta-ENaC subunit. Therefore, we suppose that the delta-subunit may possess an important regulatory function and might interact with other ENaC subunits or members of the DEG/ENaC family in the human respiratory epithelium.
Collapse
Affiliation(s)
- Nadine Bangel-Ruland
- Institute of Animal Physiology, University of Muenster, Hindenburgplatz 55, 48143 Muenster, Germany.
| | | | | | | | | | | | | |
Collapse
|
61
|
Son CD, Moss FJ, Cohen BN, Lester HA. Nicotine normalizes intracellular subunit stoichiometry of nicotinic receptors carrying mutations linked to autosomal dominant nocturnal frontal lobe epilepsy. Mol Pharmacol 2009; 75:1137-48. [PMID: 19237585 PMCID: PMC2672806 DOI: 10.1124/mol.108.054494] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Accepted: 02/23/2009] [Indexed: 11/22/2022] Open
Abstract
Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is linked with high penetrance to several distinct nicotinic receptor (nAChR) mutations. We studied (alpha4)(3)(beta2)(2) versus (alpha4)(2)(beta2)(3) subunit stoichiometry for five channel-lining M2 domain mutations: S247F, S252L, 776ins3 in alpha4, V287L, and V287M in beta2. alpha4 and beta2 subunits were constructed with all possible combinations of mutant and wild-type (WT) M2 regions, of cyan and yellow fluorescent protein, and of fluorescent and nonfluorescent M3-M4 loops. Sixteen fluorescent subunit combinations were expressed in N2a cells. Förster resonance energy transfer (FRET) was analyzed by donor recovery after acceptor photobleaching and by pixel-by-pixel sensitized emission, with confirmation by fluorescence intensity ratios. Because FRET efficiency is much greater for adjacent than for nonadjacent subunits and the alpha4 and beta2 subunits occupy specific positions in nAChR pentamers, observed FRET efficiencies from (alpha4)(3)(beta2)(2) carrying fluorescent alpha4 subunits were significantly higher than for (alpha4)(2)(beta2)(3); the converse was found for fluorescent beta2 subunits. All tested ADNFLE mutants produced 10 to 20% increments in the percentage of intracellular (alpha4)(3)(beta2)(2) receptors compared with WT subunits. In contrast, 24- to 48-h nicotine (1 muM) exposure increased the proportion of (alpha4)(2)(beta2)(3) in WT receptors and also returned subunit stoichiometry to WT levels for alpha4S248F and beta2V287L nAChRs. These observations may be relevant to the decreased seizure frequency in patients with ADNFLE who use tobacco products or nicotine patches. Fluorescence-based investigations of nAChR subunit stoichiometry may provide efficient drug discovery methods for nicotine addiction or for other disorders that result from dysregulated nAChRs.
Collapse
Affiliation(s)
- Cagdas D Son
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
62
|
Hoover DK, Lee EJ, Yousaf MN. Total internal reflection fluorescence microscopy of cell adhesion on patterned self-assembled monolayers on gold. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:2563-2566. [PMID: 19437680 DOI: 10.1021/la803927k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We report the use of total internal reflection fluorescence microscopy (TIRFM) to study cell adhesion on patterned self-assembled monolayers (SAMs) on gold surfaces. Microcontact printing was used to pattern hydrophobic features to which the extracellular protein fibronectin was adsorbed, while dip-pen nanolithography was used to produce electroactive nanoarrays of hydroquinone-terminated alkanethiol on gold-coated quartz substrates. The hydroquinone was electrochemically oxidized to the corresponding quinone, and an oxyamine-tethered linear Arg-Gly-Asp (RGD) peptide was chemoselectively immobilized. A prism-based method of TIRFM was used to examine adhered cells on both the microscale and nanoscale features. We also demonstrate that, following imaging with TIRFM, the substrates can be visualized using conventional fluorescence microscopy.
Collapse
Affiliation(s)
- Diana K Hoover
- Department of Chemistry, Carolina Center for Genome Science, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | | | | |
Collapse
|
63
|
Regulation of ENaC expression at the cell surface by Rab11. Biochem Biophys Res Commun 2008; 377:521-525. [PMID: 18926797 DOI: 10.1016/j.bbrc.2008.10.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Accepted: 10/03/2008] [Indexed: 11/20/2022]
Abstract
The epithelial Na(+) channel (ENaC) is an essential channel responsible for Na(+) reabsorption. Coexpression of Rab11a and Rab3a small G proteins with ENaC results in a significant increase in channel activity. In contrast, coexpression of Rab5, Rab27a, and Arf-1 had no effect or slightly decreased ENaC activity. Inhibition of MEK with PD98059, Rho-kinase with Y27632 or PI3-kinase with LY294002 had no effect on ENaC activity in Rab11a-transfected CHO cells. Fluorescence imaging methods demonstrate that Rab11a colocalized with ENaC. Rab11a increases ENaC activity in an additive manner with dominant-negative dynamin, which is a GTPase responsible for endocytosis. Brefeldin A, an inhibitor of intracellular protein translocation, blocked the stimulatory action of Rab11a on ENaC activity. We conclude that ENaC channels, present on the apical plasma membrane, are being exchanged with channels from the intracellular pool in a Rab11-dependent manner.
Collapse
|
64
|
Stockand JD, Staruschenko A, Pochynyuk O, Booth RE, Silverthorn DU. Insight toward epithelial Na +channel mechanism revealed by the acid-sensing ion channel 1 structure. IUBMB Life 2008; 60:620-628. [DOI: 10.1002/iub.89] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
65
|
Mace OJ, Woollhead AM, Baines DL. AICAR activates AMPK and alters PIP2 association with the epithelial sodium channel ENaC to inhibit Na+ transport in H441 lung epithelial cells. J Physiol 2008; 586:4541-57. [PMID: 18669532 DOI: 10.1113/jphysiol.2008.158253] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Changes in amiloride-sensitive epithelial Na(+) channel (ENaC) activity (NP(o)) in the lung lead to pathologies associated with dysregulation of lung fluid balance. UTP activation of purinergic receptors and hydrolysis of PIP(2) via activation of phospholipase C (PLC) or AICAR activation of AMP-activated protein kinase (AMPK) inhibited amiloride-sensitive Na(+) transport across human H441 epithelial cell monolayers. Neither treatment altered alpha, beta or gamma ENaC subunit abundance (N) in the apical membrane indicating that the mechanism of inhibition was via a change in channel open state probability (P(o)). We found that UTP depleted PIP(2) abundance in the apical membrane whilst activation of AMPK prevented the binding of beta and gamma ENaC subunits to PIP(2.) The association of PIP(2) with the ENaC subunits is required to maintain channel activity via P(o). Thus, these data show for the first time that AICAR activation of AMPK inhibits Na(+) transport via a mechanism that perturbs the PIP(2)-ENaC channel interaction to alter P(o). In addition, we show that dissociation of PIP(2) from ENaC together with activation of AMPK further reduced Na(+) transport by a secondary effect that correlated with ENaC subunit internalization. Thus, when PIP(2)-ENaC subunit interactions were compromised, ENaC protein retrieval was initiated, indicating that AMPK can modulate ENaC P(o) and N.
Collapse
Affiliation(s)
- Oliver J Mace
- Division of Basic Medical Sciences, St George's University of London, Cranmer Terrace, London SW17 0RE, UK.
| | | | | |
Collapse
|
66
|
del Mónaco S, Assef Y, Kotsias BA. Epithelial sodium channel in a human trophoblast cell line (BeWo). J Membr Biol 2008; 223:127-39. [PMID: 18665318 DOI: 10.1007/s00232-008-9119-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Accepted: 07/01/2008] [Indexed: 11/26/2022]
Abstract
The present study was performed to assay sodium currents in BeWo cells. These cells comprise a human trophoblast cell line which displays many of the biochemical and morphological properties similar to those reported for the in uterus proliferative cytotrophoblast. For whole-cell patch-clamp experiments, BeWo cells treated for 12 h with 100 nM aldosterone were exposed to 8Br-cAMP, a membrane-permeable cAMP analogue, to induce channel activity. Cells showed an amiloride-sensitive ion current (IC50 of 5.77 microM). Ion substitution experiments showed that the amiloride-sensitive current carried cations with a permeability rank order of Li+ > Na+ > K+ > NMDG (PLi/PNa = 1.3, PK/PNa = 0.6, PNMDG/PNa = 0.2). In cells pretreated with aldosterone, we observed that nearly half of successful patches had sodium channels with a linear conductance of 6.4 +/- 1.8 pS, a low voltage-independent Po and a PK/PNa of 0.19. Using RT-PCR, we determined that control cells express the alpha-, but not beta- and gamma-, epithelial sodium channel (ENaC) mRNA. When cells were treated with aldosterone (100 nM, 12 h), all alpha-, beta- and gamma-ENaC mRNAs were detected. The presence of ENaC subunit proteins in these cells was confirmed by Western blot analysis and immunolocalization with specific ENaC primary antibodies. In summary, our results suggest that BeWo cells express ENaC subunits and that aldosterone was able to modulate a selective response by generating amiloride-sensitive sodium currents similar to those observed in other human tissues.
Collapse
Affiliation(s)
- Silvana del Mónaco
- Laboratorio de Neurofisiología, Instituto de Investigaciones Médicas A. Lanari, University of Buenos Aires, C. de Malvinas 3150, Buenos Aires 1427, Argentina
| | | | | |
Collapse
|
67
|
Falin RA, Cotton CU. Acute downregulation of ENaC by EGF involves the PY motif and putative ERK phosphorylation site. ACTA ACUST UNITED AC 2007; 130:313-28. [PMID: 17724164 PMCID: PMC2151644 DOI: 10.1085/jgp.200709775] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The epithelial sodium channel (ENaC) is expressed in a variety of tissues, including the renal collecting duct, where it constitutes the rate-limiting step for sodium reabsorption. Liddle's syndrome is caused by gain-of-function mutations in the β and γ subunits of ENaC, resulting in enhanced Na reabsorption and hypertension. Epidermal growth factor (EGF) causes acute inhibition of Na absorption in collecting duct principal cells via an extracellular signal–regulated kinase (ERK)–dependent mechanism. In experiments with primary cultures of collecting duct cells derived from a mouse model of Liddle's disease (β-ENaC truncation), it was found that EGF inhibited short-circuit current (Isc) by 24 ± 5% in wild-type cells but only by 6 ± 3% in homozygous mutant cells. In order to elucidate the role of specific regions of the β-ENaC C terminus, Madin-Darby canine kidney (MDCK) cell lines that express β-ENaC with mutation of the PY motif (P616L), the ERK phosphorylation site (T613A), and C terminus truncation (R564stop) were created using the Phoenix retroviral system. All three mutants exhibited significant attenuation of the EGF-induced inhibition of sodium current. In MDCK cells with wild-type β-ENaC, EGF-induced inhibition of Isc (<30 min) was fully reversed by exposure to an ERK kinase inhibitor and occurred with no change in ENaC surface expression, indicative of an effect on channel open probability (Po). At later times (>30 min), EGF-induced inhibition of Isc was not reversed by an ERK kinase inhibitor and was accompanied by a decrease in ENaC surface expression. Our results are consistent with an ERK-mediated decrease in ENaC open probability and enhanced retrieval of sodium channels from the apical membrane.
Collapse
Affiliation(s)
- Rebecca A Falin
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA
| | | |
Collapse
|
68
|
Pochynyuk O, Tong Q, Medina J, Vandewalle A, Staruschenko A, Bugaj V, Stockand JD. Molecular determinants of PI(4,5)P2 and PI(3,4,5)P3 regulation of the epithelial Na+ channel. ACTA ACUST UNITED AC 2007; 130:399-413. [PMID: 17893193 PMCID: PMC2151653 DOI: 10.1085/jgp.200709800] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) are physiologically important second messengers. These molecules bind effector proteins to modulate activity. Several types of ion channels, including the epithelial Na+ channel (ENaC), are phosphoinositide effectors capable of directly interacting with these signaling molecules. Little, however, is known of the regions within ENaC and other ion channels important to phosphoinositide binding and modulation. Moreover, the molecular mechanism of this regulation, in many instances, remains obscure. Here, we investigate modulation of ENaC by PI(3,4,5)P3 and PI(4,5)P2 to begin identifying the molecular determinants of this regulation. We identify intracellular regions near the inner membrane interface just following the second transmembrane domains in β- and γ- but not α-ENaC as necessary for PI(3,4,5)P2 but not PI(4,5)P2 modulation. Charge neutralization of conserved basic amino acids within these regions demonstrated that these polar residues are critical to phosphoinositide regulation. Single channel analysis, moreover, reveals that the regions just following the second transmembrane domains in β- and γ-ENaC are critical to PI(3,4,5)P3 augmentation of ENaC open probability, thus, defining mechanism. Unexpectedly, intracellular domains within the extreme N terminus of β- and γ-ENaC were identified as being critical to down-regulation of ENaC activity and Po in response to depletion of membrane PI(4,5)P2. These regions of the channel played no identifiable role in a PI(3,4,5)P3 response. Again, conserved positive-charged residues within these domains were particularly important, being necessary for exogenous PI(4,5)P2 to increase open probability. We conclude that β and γ subunits bestow phosphoinositide sensitivity to ENaC with distinct regions of the channel being critical to regulation by PI(3,4,5)P3 and PI(4,5)P2. This argues that these phosphoinositides occupy distinct ligand-binding sites within ENaC to modulate open probability.
Collapse
Affiliation(s)
- Oleh Pochynyuk
- University of Texas Health Science Center, Department of Physiology, San Antonio, TX 78229, USA
| | | | | | | | | | | | | |
Collapse
|
69
|
Das SK, Darshi M, Cheley S, Wallace MI, Bayley H. Membrane protein stoichiometry determined from the step-wise photobleaching of dye-labelled subunits. Chembiochem 2007; 8:994-9. [PMID: 17503420 DOI: 10.1002/cbic.200600474] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Somes K Das
- Department of Molecular & Cellular Medicine, The Texas A&M University System Health Science Center, College Station, TX 77843-1114, USA
| | | | | | | | | |
Collapse
|
70
|
Pochynyuk O, Bugaj V, Vandewalle A, Stockand JD. Purinergic control of apical plasma membrane PI(4,5)P2 levels sets ENaC activity in principal cells. Am J Physiol Renal Physiol 2007; 294:F38-46. [PMID: 17913833 DOI: 10.1152/ajprenal.00403.2007] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Activity of the epithelial sodium channel (ENaC) is limiting for Na(+) reabsorption at the distal nephron. Phosphoinositides, such as phosphatidylinositol 4,5-biphosphate [PI(4,5)P(2)] modulate the activity of this channel. Activation of purinergic receptors triggers multiple events, including activation of PKC and PLC, with the latter depleting plasma membrane PI(4,5)P(2). Here, we investigate regulation of ENaC in renal principal cells by purinergic receptors via PLC and PI(4,5)P(2). Purinergic signaling rapidly decreases ENaC open probability and apical membrane PI(4,5)P(2) levels with similar time courses. Moreover, inhibiting purinergic signaling with suramin rescues ENaC activity. The PLC inhibitor U73122, but not U73343, its inactive analog, recapitulates the action of suramin. In contrast, modulating PKC signaling failed to affect purinergic regulation of ENaC. Unexpectedly, inhibiting either purinergic receptors or PLC in resting cells dramatically increased ENaC activity above basal levels, indicating tonic activation of purinergic signaling in these polarized renal epithelial cells. Increased ENaC activity was associated with elevation of apical membrane PI(4,5)P(2) levels. Subsequent treatment with ATP in the presence of inhibited purinergic signaling failed to decrease ENaC activity and apical membrane PI(4,5)P(2) levels. Dwell-time analysis reveals that depletion of PI(4,5)P(2) forces ENaC toward a closed state. In contrast, increasing PI(4,5)P(2) levels above basal values locks the channel in an open state interrupted by brief closings. Thus our results suggest that purinergic control of apical membrane PI(4,5)P(2) levels is a major regulator of ENaC activity in renal epithelial cells.
Collapse
Affiliation(s)
- Oleh Pochynyuk
- Department of Physiology, University of Texas Health Science Center, 7703 Floyd Curl Dr., San Antonio TX 78229-3900, USA.
| | | | | | | |
Collapse
|
71
|
Bangel N, Dahlhoff C, Sobczak K, Weber WM, Kusche-Vihrog K. Upregulated expression of ENaC in human CF nasal epithelium. J Cyst Fibros 2007; 7:197-205. [PMID: 17766193 DOI: 10.1016/j.jcf.2007.07.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 05/10/2007] [Accepted: 07/27/2007] [Indexed: 11/21/2022]
Abstract
Cystic fibrosis (CF) is characterised by the absence of CFTR function resulting in a reduced Cl(-) secretion and an increase in Na+ absorption. This Na+ hyperabsorption is mediated by the human amiloride-sensitive epithelial sodium channel (ENaC), but the underlying mechanisms are still unknown. After demonstrating functional differences of the Na+ absorption in CF and non-CF epithelia in Ussing chamber experiments with human primary cultures, we compared ENaC sequences from CF and non-CF human nasal tissue (hnENaC), investigated the mRNA transcription levels via real-time PCR and studied the protein expression in Western blot analyses. We found no differences in the sequences of CF and non-CF hnENaC, but identified some polymorphisms. The real-time experiments revealed an enhanced mRNA amount of all three hnENaC subunits in CF tissue. By comparing the two groups on the protein level, we observed differences in the abundance of the Na+ channel. While the alpha- and beta-hnENaC protein amount was increased in CF tissue the gamma-hnENaC was decreased. We conclude that the Na+ hyperabsorption in CF is not caused by mutations in hnENaC, but by an increase in the transcription of the hnENaC subunits. This could be induced by a disturbed regulation of the channel in CF.
Collapse
Affiliation(s)
- Nadine Bangel
- Institute of Animal Physiology, University of Muenster, Hindenburgplatz 55, 48143 Muenster, Germany
| | | | | | | | | |
Collapse
|
72
|
Jasti J, Furukawa H, Gonzales EB, Gouaux E. Structure of acid-sensing ion channel 1 at 1.9 Å resolution and low pH. Nature 2007; 449:316-23. [PMID: 17882215 DOI: 10.1038/nature06163] [Citation(s) in RCA: 820] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 08/10/2007] [Indexed: 12/19/2022]
Abstract
Acid-sensing ion channels (ASICs) are voltage-independent, proton-activated receptors that belong to the epithelial sodium channel/degenerin family of ion channels and are implicated in perception of pain, ischaemic stroke, mechanosensation, learning and memory. Here we report the low-pH crystal structure of a chicken ASIC1 deletion mutant at 1.9 A resolution. Each subunit of the chalice-shaped homotrimer is composed of short amino and carboxy termini, two transmembrane helices, a bound chloride ion and a disulphide-rich, multidomain extracellular region enriched in acidic residues and carboxyl-carboxylate pairs within 3 A, suggesting that at least one carboxyl group bears a proton. Electrophysiological studies on aspartate-to-asparagine mutants confirm that these carboxyl-carboxylate pairs participate in proton sensing. Between the acidic residues and the transmembrane pore lies a disulphide-rich 'thumb' domain poised to couple the binding of protons to the opening of the ion channel, thus demonstrating that proton activation involves long-range conformational changes.
Collapse
Affiliation(s)
- Jayasankar Jasti
- Vollum Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA
| | | | | | | |
Collapse
|
73
|
Meltzer RH, Kapoor N, Qadri YJ, Anderson SJ, Fuller CM, Benos DJ. Heteromeric Assembly of Acid-sensitive Ion Channel and Epithelial Sodium Channel Subunits. J Biol Chem 2007; 282:25548-59. [PMID: 17613525 DOI: 10.1074/jbc.m703825200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Amiloride-sensitive ion channels are formed from homo- or heteromeric combinations of subunits from the epithelial Na+ channel (ENaC)/degenerin superfamily, which also includes the acid-sensitive ion channel (ASIC) family. These channel subunits share sequence homology and topology. In this study, we have demonstrated, using confocal fluorescence resonance energy transfer microscopy and co-immunoprecipitation, that ASIC and ENaC subunits are capable of forming cross-clade intermolecular interactions. We have also shown that combinations of ASIC1 with ENaC subunits exhibit novel electrophysiological characteristics compared with ASIC1 alone. The results of this study suggest that heteromeric complexes of ASIC and ENaC subunits may underlie the diversity of amiloride-sensitive cation conductances observed in a wide variety of tissues and cell types where co-expression of ASIC and ENaC subunits has been observed.
Collapse
Affiliation(s)
- Robert H Meltzer
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | |
Collapse
|
74
|
Anantharam A, Palmer LG. Determination of epithelial Na+ channel subunit stoichiometry from single-channel conductances. ACTA ACUST UNITED AC 2007; 130:55-70. [PMID: 17562820 PMCID: PMC2154365 DOI: 10.1085/jgp.200609716] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The epithelial Na+ channel (ENaC) is a multimeric membrane protein consisting of three subunits, α, β, and γ. The total number of subunits per functional channel complex has been described variously to follow either a tetrameric arrangement of 2α:1β:1γ or a higher-ordered stoichiometry of 3α:3β:3γ. Therefore, while it is clear that all three ENaC subunits are required for full channel activity, the number of the subunits required remains controversial. We used a new approach, based on single-channel measurements in Xenopus oocytes to address this issue. Individual mutations that alter single-channel conductance were made in pore-lining residues of ENaC α, β, or γ subunits. Recordings from patches in oocytes expressing a single species, wild type or mutant, of α, β, and γ showed a well-defined current transition amplitude with a single Gaussian distribution. When cRNAs for all three wild-type subunits were mixed with an equimolar amount of a mutant α-subunit (either S589D or S592T), amplitudes corresponding to pure wild-type or mutant conductances could be observed in the same patch, along with a third intermediate amplitude most likely arising from channels with at least one wild-type and at least 1 mutant α-subunit. However, intermediate or hybrid conductances were not observed with coexpression of wild-type and mutant βG529A or γG534E subunits. Our results support a tetrameric arrangement of ENaC subunits where 2α, 1β, and 1γ come together around central pore.
Collapse
Affiliation(s)
- Arun Anantharam
- Graduate Program in Neuroscience, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | |
Collapse
|
75
|
Sobczak K, Willing A, Kusche K, Bangel N, Weber WM. Amiloride-sensitive sodium absorption is different in vertebrates and invertebrates. Am J Physiol Regul Integr Comp Physiol 2007; 292:R2318-27. [PMID: 17332162 DOI: 10.1152/ajpregu.00549.2006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Amiloride-sensitive Na+absorption is a well-described feature of numerous transporting epithelia in vertebrates. Yet, very little is known about this important physiological process regarding invertebrates. In the present paper, we compare vertebrate Na+absorption mediated by the amiloride-sensitive epithelial Na+channel (ENaC) and its invertebrate counterpart. We used the dorsal skin of the annelid Hirudo medicinalis as a model for the Na+absorption of invertebrate epithelia. In applying electrophysiological, molecular, and biochemical techniques we found striking functional and structural differences between vertebrate and invertebrate amiloride-sensitive Na+absorption. Using modified Ussing chambers, we analyzed the influence of different known blockers and effectors of vertebrate ENaC on leech epithelial Na+absorption. We demonstrate that the serine protease trypsin had no effect on the Na+transport across leech integument, while it strongly activates vertebrate ENaC. While protons, and the divalent cations Ni2+and Zn2+stimulate vertebrate ENaC, amiloride-sensitive Na+currents in leech integument were substantially reduced. For molecular studies, we constructed a cDNA library of Hirudo medicinalis and screened it with specific ENaC antibodies. We performed numerous PCR approaches using a vast number of different degenerated and specific ENaC primers to identify ENaC-like structures. Yet, both strategies did not reveal any ENaC-like sequence in leech integument. From these data we conclude that amiloride-sensitive Na+absorption in leech skin is not mediated by an ENaC-like Na+channel but by a still unknown invertebrate member of the ENaC/DEG family that we termed lENaTP (leech epithelial Na+transporting protein).
Collapse
Affiliation(s)
- Katja Sobczak
- Institute of Animal Physiology, Westphalian Wilhelms-University Muenster, Hindenburgplatz 55, D-48143 Muenster, Germany
| | | | | | | | | |
Collapse
|
76
|
Sheng S, Maarouf AB, Bruns JB, Hughey RP, Kleyman TR. Functional role of extracellular loop cysteine residues of the epithelial Na+ channel in Na+ self-inhibition. J Biol Chem 2007; 282:20180-90. [PMID: 17522058 DOI: 10.1074/jbc.m611761200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The epithelial Na(+) channel (ENaC) is typically formed by three homologous subunits (alpha, beta, and gamma) that possess a characteristic large extracellular loop (ECL) containing 16 conserved cysteine (Cys) residues. We investigated the functional role of these Cys residues in Na(+) self-inhibition, an allosteric inhibition of ENaC activity by extracellular Na(+). All 16 Cys residues within alpha and gamma ECLs and selected beta ECL Cys residues were individually mutated to alanine or serine residues. The Na(+) self-inhibition response of wild type and mutant channels expressed in Xenopus oocytes was determined by whole cell voltage clamp. Individual mutation of eight alpha (Cys-1, -4, -5, -6, -7, -10, -13, or -16), one beta (Cys-7), and nine gamma (Cys-3, -4, -6, -7, -10, -11, -12, -13, or -16) residues significantly reduced the magnitude of Na(+) self-inhibition. Na(+) self-inhibition was eliminated by simultaneous mutations of either the last three alpha ECL Cys residues (Cys-14, -15, and -16) or Cys-7 within both alpha and gamma ECLs. By analyzing the Na(+) self-inhibition responses and the effects of a methanethiosulfonate reagent on channel currents in single and double Cys mutants, we identified five Cys pairs within the alphaECL (alphaCys-1/alphaCys-6, alphaCys-4/alphaCys-5, alphaCys-7/alphaCys-16, alphaCys-10/alphaCys-13, and alphaCys-11/alphaCys-12) and one pair within the gammaECL (gammaCys-7/gammaCys-16) that likely form intrasubunit disulfide bonds. We conclude that approximately half of the ECL Cys residues in the alpha and gamma ENaC subunits are required to establish the tertiary structure that ensures a proper Na(+) self-inhibition response, likely by formation of multiple intrasubunit disulfide bonds.
Collapse
Affiliation(s)
- Shaohu Sheng
- Renal-Electrolyte Division, Department of Medicine, School of Medicine, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15261, USA.
| | | | | | | | | |
Collapse
|
77
|
Staruschenko A, Pochynyuk O, Vandewalle A, Bugaj V, Stockand JD. Acute regulation of the epithelial Na+ channel by phosphatidylinositide 3-OH kinase signaling in native collecting duct principal cells. J Am Soc Nephrol 2007; 18:1652-61. [PMID: 17442787 DOI: 10.1681/asn.2007010020] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Activity of the epithelial Na(+) channel (ENaC) is limiting for Na(+) reabsorption in the aldosterone-sensitive distal nephron. Hormones, including aldosterone and insulin, increase ENaC activity, in part by stimulating phosphatidylinositide 3-OH kinase (PI3-K) signaling. Recent studies in heterologous expression systems reveal a close spatiotemporal coupling between PI3-K signaling and ENaC activity with the phospholipid product of this kinase, PI(3,4,5)P(3), in some cases, directly binding the channel and increasing open probability (P(o)). This study tested whether this tight coupling plays a physiologic role in modulating ENaC activity in native tissue and polarized epithelial cells. IGF-I was found to increase Na(+) reabsorption across mpkCCD(c14) principal cell monolayers in a PI3-K-sensitive manner. Inhibition of PI3-K signaling, moreover, rapidly decreased Na(+) reabsorption and ENaC activity in mpkCCD(c14) cells that were treated with corticosteroids and IGF-I. These decreases paralleled changes in apical membrane PI(3,4,5)P(3) levels, demonstrating tight spatiotemporal coupling between ENaC activity and PI3-K/PI(3,4,5)P(3) signaling within this membrane. For further probing of the mechanism underpinning this coupling, cortical collecting ducts (CCD) were isolated from rat and split open to expose the apical membrane for patch-clamp analysis. Inhibition of PI3-K signaling with wortmannin and LY294002 but not its inactive analogue rapidly and markedly decreased the P(o) of ENaC. Moreover, IGF-I acutely increased P(o) of ENaC in CCD principal cells in a PI3-K-sensitive manner. Together, these observations stress the importance of tight spatiotemporal coupling between PI3-K signaling and ENaC within the apical membrane of principal cells to the physiologic control of this ion channel.
Collapse
Affiliation(s)
- Alexander Staruschenko
- Department of Physiology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | | | | | | | | |
Collapse
|
78
|
Pochynyuk O, Staruschenko A, Bugaj V, Lagrange L, Stockand JD. Quantifying RhoA facilitated trafficking of the epithelial Na+ channel toward the plasma membrane with total internal reflection fluorescence-fluorescence recovery after photobleaching. J Biol Chem 2007; 282:14576-85. [PMID: 17376773 DOI: 10.1074/jbc.m701348200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The epithelial Na(+) channel (ENaC) plays a central role in control of epithelial surface hydration and vascular volume. Similar to other ion channels, ENaC activity is set, in part, by its membrane levels. The small G protein RhoA increases ENaC activity by increasing the membrane levels of this channel. We hypothesize that RhoA increases ENaC activity by promoting channel trafficking to the plasma membrane. Few experimental methods are available to directly visualize trafficking of ion channels to the plasma membrane. Here we combine electrophysiology with two complementary imaging methods, total internal reflection fluorescence microscopy and fluorescence recovery after photobleaching, to study the mechanistic basis of RhoA actions on ENaC. Patch clamp results demonstrate that RhoA increases ENaC activity in an additive manner with dominant-negative dynamin. This is consistent with a mechanism of increased ENaC trafficking to the membrane. Direct visualization of ENaC movement near the plasma membrane with total internal reflection fluorescence-fluorescence recovery after photobleaching revealed that RhoA accelerates ENaC trafficking toward the membrane. RhoA-facilitated movement of the channel was sensitive to disrupting the endomembrane system. Moreover, facilitating retrieval decreased ENaC activity but not trafficking toward the membrane. ENaC at the plasma membrane clustered and was laterally immobile suggesting that the cytoskeleton tethers or corrals membrane resident channels or membrane-directed vesicles containing ENaC. Disrupting microtubules but not microfilaments led to reorganization of ENaC clusters and slowed trafficking toward the membrane. The cytoskeleton is an established target for RhoA signaling. We conclude that RhoA, likely through effects on the cytoskeleton, promotes ENaC trafficking to the plasma membrane to increase channel membrane levels and activity.
Collapse
Affiliation(s)
- Oleh Pochynyuk
- Department of Physiology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | | | | | | | | |
Collapse
|
79
|
Bhalla V, Oyster NM, Fitch AC, Wijngaarden MA, Neumann D, Schlattner U, Pearce D, Hallows KR. AMP-activated Kinase Inhibits the Epithelial Na+ Channel through Functional Regulation of the Ubiquitin Ligase Nedd4-2. J Biol Chem 2006; 281:26159-69. [PMID: 16844684 DOI: 10.1074/jbc.m606045200] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We recently found that the metabolic sensor AMP-activated kinase (AMPK) inhibits the epithelial Na+ channel (ENaC) through decreased plasma membrane ENaC expression, an effect requiring the presence of a binding motif in the cytoplasmic tail of the beta-ENaC subunit for the ubiquitin ligase Nedd4-2. To further examine the role of Nedd4-2 in the regulation of ENaC by AMPK, we studied the effects of AMPK activation on ENaC currents in Xenopus oocytes co-expressing ENaC and wild-type (WT) or mutant forms of Nedd4-2. ENaC inhibition by AMPK was preserved in oocytes expressing WT Nedd4-2 but blocked in oocytes expressing either a dominant-negative (DN) or constitutively active (CA) Nedd4-2 mutant, suggesting that AMPK-dependent modulation of Nedd4-2 function is involved. Similar experiments utilizing WT or mutant forms of the serum- and glucocorticoid-regulated kinase (SGK1), modulators of protein kinase A (PKA), or extracellular-regulated kinase (ERK) did not affect ENaC inhibition by AMPK, suggesting that these pathways known to modulate the Nedd4-2-ENaC interaction are not responsible. AMPK-dependent phosphorylation of Nedd4-2 expressed in HEK-293 cells occurred both in vitro and in vivo, suggesting a potential mechanism for modulation of Nedd4-2 and thus cellular ENaC activity. Moreover, cellular AMPK activation significantly enhanced the interaction of the beta-ENaC subunit with Nedd4-2, as measured by co-immunoprecipitation assays in HEK-293 cells. In summary, these results suggest a novel mechanism for ENaC regulation in which AMPK promotes ENaC-Nedd4-2 interaction, thereby inhibiting ENaC by increasing Nedd4-2-dependent ENaC retrieval from the plasma membrane. AMPK-dependent ENaC inhibition may limit cellular Na+ loading under conditions of metabolic stress when AMPK becomes activated.
Collapse
Affiliation(s)
- Vivek Bhalla
- Division of Nephrology, Department of Medicine, University of California at San Francisco, San Francisco, California 94107, USA
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Kashlan OB, Maarouf AB, Kussius C, Denshaw RM, Blumenthal KM, Kleyman TR. Distinct structural elements in the first membrane-spanning segment of the epithelial sodium channel. J Biol Chem 2006; 281:30455-62. [PMID: 16912051 DOI: 10.1074/jbc.m604615200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Epithelial Na+ channels (ENaCs) comprise three subunits that have been proposed to be arranged in either an alpha2betagamma or a higher ordered configuration. Each subunit has two putative membrane-spanning segments (M1 and M2), intracellular amino and carboxyl termini, and a large extracellular loop. We have used the TOXCAT assay (a reporter assay for transmembrane segment homodimerization) to identify residues within the transmembrane segments of ENaC that may participate in important structural interactions within ENaC, with which we identified a candidate site within alphaM1. We performed site-directed mutagenesis at this site and found that, although the mutants reduced channel activity, ENaC protein expression at the plasma membrane was unaffected. To deduce the role of alphaM1 in the pore structure of ENaC, we performed tryptophan-scanning mutagenesis throughout alphaM1 (residues 110-130). We found that mutations within the amino-terminal part of alphaM1 had effects on activity and selectivity with a periodicity consistent with a helical structure but no effect on channel surface expression. We also observed that mutations within the carboxyl-terminal part of alphaM1 had effects on activity and selectivity but with no apparent periodicity. Additionally, these mutants reduced channel surface expression. Our data support a model in which the amino-terminal half of alphaM1 is alpha-helical and packs against structural element(s) that contribute to the ENaC pore. Furthermore, these data suggest that the carboxyl-terminal half of alphaM1 may be helical or assume a different conformation and may be involved in tertiary interactions essential to proper channel folding or assembly. Together, our data suggest that alphaM1 is divided into two distinct regions.
Collapse
Affiliation(s)
- Ossama B Kashlan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | |
Collapse
|
81
|
Pochynyuk O, Medina J, Gamper N, Genth H, Stockand JD, Staruschenko A. Rapid translocation and insertion of the epithelial Na+ channel in response to RhoA signaling. J Biol Chem 2006; 281:26520-7. [PMID: 16829523 DOI: 10.1074/jbc.m603716200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Activity of the epithelial Na+ channel (ENaC) is limiting for Na+ absorption across many epithelia. Consequently, ENaC is a central effector impacting systemic blood volume and pressure. Two members of the Ras superfamily of small GTPases, K-Ras and RhoA, activate ENaC. K-Ras activates ENaC via a signaling pathway involving phosphatidylinositol 3-kinase and production of phosphatidylinositol 3,4,5-trisphosphate with the phospholipid directly interacting with the channel to increase open probability. How RhoA increases ENaC activity is less clear. Here we report that RhoA and K-Ras activate ENaC through independent signaling pathways and final mechanisms of action. Activation of RhoA signaling rapidly increases the membrane levels of ENaC likely by promoting channel insertion. This process dramatically increases functional ENaC current, resulting in tight spatial-temporal control of these channels. RhoA signals to ENaC via a transduction pathway, including the downstream effectors Rho kinase and phosphatidylinositol-4-phosphate 5-kinase. Phosphatidylinositol 4,5-biphosphate produced by activated phosphatidylinositol 4-phosphate 5-kinase may play a role in targeting vesicles containing ENaC to the plasma membrane.
Collapse
Affiliation(s)
- Oleh Pochynyuk
- Department of Physiology, University of Texas Health Science Center, San Antonio, Texas 78229, USA
| | | | | | | | | | | |
Collapse
|
82
|
Sheng S, Carattino MD, Bruns JB, Hughey RP, Kleyman TR. Furin cleavage activates the epithelial Na+channel by relieving Na+self-inhibition. Am J Physiol Renal Physiol 2006; 290:F1488-96. [PMID: 16449353 DOI: 10.1152/ajprenal.00439.2005] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Epithelial Na+channels (ENaC) are inhibited by extracellular Na+, a process referred to as Na+self-inhibition. We previously demonstrated that mutation of key residues within two furin cleavage consensus sites in α, or one site in γ, blocked subunit proteolysis and inhibited channel activity when mutant channels were expressed in Xenopus laevis oocytes (Hughey RP, Bruns JB, Kinlough CL, Harkleroad KL, Tong Q, Carattino MD, Johnson JP, Stockand JD, and Kleyman TR. J Biol Chem 279: 18111–18114, 2004). Cleavage of subunits was also blocked by these mutations when expressed in Madin-Darby canine kidney cells, and both subunit cleavage and channel activity were blocked when wild-type subunits were expressed in furin-deficient Chinese hamster ovary cells. We now report that channels with mutant α-subunits lacking either one or both furin cleavage sites exhibited a marked enhancement of the Na+self-inhibition response, while channels with a mutant γ-subunit showed a modestly enhanced Na+self-inhibition response. Analysis of Na+self-inhibition at varying [Na+] indicates that channels containing mutant α-subunits exhibit an increased Na+affinity. At the single-channel level, channels with a mutant α-subunit had a low open probability ( Po) in the presence of a high external [Na+] in the patch pipette. Podramatically increased when trypsin was also present, or when a low external [Na+] was in the patch pipette. Our results suggest that furin cleavage of ENaC subunits activates the channels by relieving Na+self-inhibition and that activation requires that the α-subunit be cleaved twice. Moreover, we demonstrate for the first time a clear relationship between ENaC Poand extracellular [Na+], supporting the notion that Na+self-inhibition reflects a Poreduction due to high extracellular [Na+].
Collapse
Affiliation(s)
- Shaohu Sheng
- Dept. of Medicine, Univ. of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
83
|
Ji HL, Su XF, Kedar S, Li J, Barbry P, Smith PR, Matalon S, Benos DJ. Delta-subunit confers novel biophysical features to alpha beta gamma-human epithelial sodium channel (ENaC) via a physical interaction. J Biol Chem 2006; 281:8233-41. [PMID: 16423824 DOI: 10.1074/jbc.m512293200] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Native amiloride-sensitive Na+ channels exhibit a variety of biophysical properties, including variable sensitivities to amiloride, different ion selectivities, and diverse unitary conductances. The molecular basis of these differences has not been elucidated. We tested the hypothesis that co-expression of delta-epithelial sodium channel (ENaC) underlies, at least in part, the multiplicity of amiloride-sensitive Na+ conductances in epithelial cells. For example, the delta-subunit may form multimeric channels with alpha beta gamma-ENaC. Reverse transcription-PCR revealed that delta-ENaC is co-expressed with alpha beta gamma-subunits in cultured human lung (H441 and A549), pancreatic (CFPAC), and colonic epithelial cells (Caco-2). Indirect immunofluorescence microscopy revealed that delta-ENaC is co-expressed with alpha-, beta-, and gamma-ENaC in H441 cells at the protein level. Measurement of current-voltage that cation selectivity ratios for the revealed relationships Na+/Li+/K+/Cs+/Ca2+/Mg2+, the apparent dissociation constant (Ki) for amiloride, and unitary conductances for delta alpha beta gamma-ENaC differed from those of both alpha beta gamma- and delta beta gamma-ENaC (n = 6). The contribution of the delta subunit to P(Li)/P(Na) ratio and unitary Na+ conductance under bi-ionic conditions depended on the injected cRNA concentration. In addition, the EC50 for proton activation, mean open and closed times, and the self-inhibition time of delta alpha beta gamma-ENaC differed from those of alpha beta gamma- and delta beta gamma-ENaC. Co-immunoprecipitation of delta-ENaC with alpha- and gamma-subunits in H441 and transfected COS-7 cells suggests an interaction among these proteins. We, therefore, concluded that the interactions of delta-ENaC with other subunits could account for heterogeneity of native epithelial channels.
Collapse
Affiliation(s)
- Hong-Long Ji
- Department of Anesthesiology, University of Alabama at Birmingham, Alabama 35205, USA
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Abstract
The epithelial Na(+) channel (ENaC) is a pathway for Na(+) transport across epithelia, including the kidney collecting duct, lung, and distal colon. ENaC is critical for Na(+) homeostasis and blood pressure control; defects in ENaC function and regulation are responsible for inherited forms of hypertension and hypotension and may contribute to the pathogenesis of cystic fibrosis and other lung diseases. An emerging theme is that epithelial Na(+) transport is regulated in large part through trafficking mechanisms that control ENaC expression at the cell surface. ENaC trafficking is regulated at multiple steps. Delivery of channels to the cell surface is regulated by aldosterone (and corticosteroids) and vasopressin, which increase ENaC synthesis and exocytosis, respectively. Conversely, endocytosis and degradation is controlled by a sequence located in the C terminus of alpha, beta, and gammaENaC (PPPXYXXL). This sequence functions as an endocytosis motif and as a binding site for Nedd4-2, an E3 ubiquitin protein ligase that targets ENaC for degradation. Mutations that delete or disrupt this motif cause accumulation of channels at the cell surface, resulting in Liddle's syndrome, an inherited form of hypertension. Nedd4-2 is a central convergence point for ENaC regulation by aldosterone and vasopressin; both induce phosphorylation of a common set of three Nedd4-2 residues, which blocks Nedd4-2 binding to ENaC. Thus, aldosterone and vasopressin regulate epithelial Na(+) transport in part by altering ENaC trafficking to and from the cell surface.
Collapse
Affiliation(s)
- Peter M Snyder
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, 52242, USA.
| |
Collapse
|
85
|
Pochynyuk O, Staruschenko A, Tong Q, Medina J, Stockand JD. Identification of a functional phosphatidylinositol 3,4,5-trisphosphate binding site in the epithelial Na+ channel. J Biol Chem 2005; 280:37565-71. [PMID: 16154997 DOI: 10.1074/jbc.m509071200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Membrane phospholipids, such as phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P(3)), are signaling molecules that can directly modulate the activity of ion channels, including the epithelial Na(+) channel (ENaC). Whereas PI(3,4,5)P(3) directly activates ENaC, its binding site within the channel has not been identified. We identify here a region of gamma-mENaC just following the second trans-membrane domain (residues 569-583) important to PI(3,4,5)P(3) binding and regulation. Deletion of this track decreases activity of ENaC heterologously expressed in Chinese hamster ovary cells. K-Ras and its first effector phosphoinositide 3-OH kinase (PI3-K), as well as RhoA and its effector phosphatidylinositol 4-phosphate 5-kinase increase ENaC activity. Whereas the former, via generation of PI(3,4,5)P(3), increases ENaC open probability, the latter increases activity by increasing membrane levels of the channel. Deletion of the region just distal to the second trans-membrane domain disrupted regulation by K-Ras and PI3-K but not RhoA and phosphatidylinositol 4-phosphate 5-kinase. Moreover, PI(3,4,5)P(3) binds ENaC with deletion of the region following the second transmembrane domain disrupting this interaction and disrupting direct activation of the channel by PI(3,4,5)P(3). Mutation analysis revealed the importance of conserved positive and negative charged residues as well as bulky amino acids within this region to modulation of ENaC by PI3-K. The current results identify the region just distal to the second trans-membrane domain within gamma-mENaC as being part of a functional PI(3,4,5)P(3) binding site that directly impacts ENaC activity. Phospholipid binding to this site is probably mediated by the positively charged amino acids within this track, with negatively charged and bulky residues also influencing specificity of interactions.
Collapse
Affiliation(s)
- Oleh Pochynyuk
- Department of Physiology, University of Texas Health Science Center, San Antonio, 78229-3900, USA
| | | | | | | | | |
Collapse
|