51
|
The evolution of acquired resistance to BRAF inhibitor is sustained by IGF1-driven tumor vascular remodeling. J Invest Dermatol 2021; 142:445-458. [PMID: 34358527 DOI: 10.1016/j.jid.2021.07.162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 06/15/2021] [Accepted: 07/09/2021] [Indexed: 02/08/2023]
Abstract
As hallmark of cancer, angiogenesis plays a pivotal role in carcinogenesis. The correlation between angiogenesis and evolution of BRAF inhibitor acquired resistance is, however, still poorly understood. Here, we reported that the molecular signatures of angiogenesis were enriched in early on-treated biopsies but not in disease progressed biopsies. The process of drug resistance development was accompanied by remodeling of vascular morphology, which was potentially manipulated by tumor-secreted pro-angiogenic factors. Further transcriptomic dissection indicated that tumor-secreted IGF1 drove the vascular remodeling through activating IGF1/IGF1R axis on endothelial cells, and sustained the prompt re-growth of resistant tumor. Blockade of IGF1R with small molecules at early stage of response disrupted vascular reconstruction, and subsequently delayed tumor relapse. Our findings not only demonstrated the correlation between IGF1-mediated tumor vascular remodeling and the development of acquired resistance to BRAFi but also provided a potential therapeutic strategy for the prevention of tumor relapse in clinical application.
Collapse
|
52
|
Olmos-Ortiz A, Flores-Espinosa P, Díaz L, Velázquez P, Ramírez-Isarraraz C, Zaga-Clavellina V. Immunoendocrine Dysregulation during Gestational Diabetes Mellitus: The Central Role of the Placenta. Int J Mol Sci 2021; 22:8087. [PMID: 34360849 PMCID: PMC8348825 DOI: 10.3390/ijms22158087] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
Gestational Diabetes Mellitus (GDM) is a transitory metabolic condition caused by dysregulation triggered by intolerance to carbohydrates, dysfunction of beta-pancreatic and endothelial cells, and insulin resistance during pregnancy. However, this disease includes not only changes related to metabolic distress but also placental immunoendocrine adaptations, resulting in harmful effects to the mother and fetus. In this review, we focus on the placenta as an immuno-endocrine organ that can recognize and respond to the hyperglycemic environment. It synthesizes diverse chemicals that play a role in inflammation, innate defense, endocrine response, oxidative stress, and angiogenesis, all associated with different perinatal outcomes.
Collapse
Affiliation(s)
- Andrea Olmos-Ortiz
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes (INPer), Ciudad de México 11000, Mexico; (A.O.-O.); (P.F.-E.)
| | - Pilar Flores-Espinosa
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes (INPer), Ciudad de México 11000, Mexico; (A.O.-O.); (P.F.-E.)
| | - Lorenza Díaz
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico;
| | - Pilar Velázquez
- Departamento de Ginecología y Obstetricia, Hospital Ángeles México, Ciudad de México 11800, Mexico;
| | - Carlos Ramírez-Isarraraz
- Clínica de Urología Ginecológica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes (INPer), Ciudad de México 11000, Mexico;
| | - Verónica Zaga-Clavellina
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes (INPer), Ciudad de México 11000, Mexico
| |
Collapse
|
53
|
Wang Y, Fan Y, Liu H. Macrophage Polarization in Response to Biomaterials for Vascularization. Ann Biomed Eng 2021; 49:1992-2005. [PMID: 34282494 DOI: 10.1007/s10439-021-02832-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/08/2021] [Indexed: 12/14/2022]
Abstract
Vascularization of tissue engineering constructs is an urgent need for delivering oxygen and nutrients and promoting tissue remodeling. As we all know, almost all implanted biomaterials elicit immune responses. Interestingly, the immunomodulatory biomaterials can utilize the inherent regenerative capability of endogenous cells and stem cells recruited by the activated immune cells to facilitate anagenesis and tissue remodeling. Macrophages, as almost ones of the first responses upon the implantation of biomaterials, play a vital role in guiding vascular formation and tissue remodeling. The polarization of macrophages can be influenced by the physical and chemical properties of biomaterials and thus they display diverse function states. Here, this review focus on the macrophage polarization in response to biomaterials and the interactions between them. It also summarizes the current strategies to promote vascularization of tissue engineering constructs through macrophage responses.
Collapse
Affiliation(s)
- Yuqing Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, People's Republic of China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, People's Republic of China
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, People's Republic of China.
| |
Collapse
|
54
|
LeRoith D, Holly JMP, Forbes BE. Insulin-like growth factors: Ligands, binding proteins, and receptors. Mol Metab 2021; 52:101245. [PMID: 33962049 PMCID: PMC8513159 DOI: 10.1016/j.molmet.2021.101245] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/09/2021] [Accepted: 04/28/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The insulin-like growth factor family of ligands (IGF-I, IGF-II, and insulin), receptors (IGF-IR, M6P/IGF-IIR, and insulin receptor [IR]), and IGF-binding proteins (IGFBP-1-6) play critical roles in normal human physiology and disease states. SCOPE OF REVIEW Insulin and insulin receptors are the focus of other chapters in this series and will therefore not be discussed further. Here we review the basic components of the IGF system, their role in normal physiology and in critical pathology's. While this review concentrates on the role of IGFs in human physiology, animal models have been essential in providing understanding of the IGF system, and its regulation, and are briefly described. MAJOR CONCLUSIONS IGF-I has effects via the circulation and locally within tissues to regulate cellular growth, differentiation, and survival, thereby controlling overall body growth. IGF-II levels are highest prenatally when it has important effects on growth. In adults, IGF-II plays important tissue-specific roles, including the maintenance of stem cell populations. Although the IGF-IR is closely related to the IR it has distinct physiological roles both on the cell surface and in the nucleus. The M6P/IGF-IIR, in contrast, is distinct and acts as a scavenger by mediating internalization and degradation of IGF-II. The IGFBPs bind IGF-I and IGF-II in the circulation to prolong their half-lives and modulate tissue access, thereby controlling IGF function. IGFBPs also have IGF ligand-independent cell effects.
Collapse
Affiliation(s)
- Derek LeRoith
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeff M P Holly
- Translational Health Sciences, Bristol Medical School, Learning & Research Building, Southmead Hospital, Bristol, BS10 5NB, UK.
| | - Briony E Forbes
- Discipline of Medical Biochemistry, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, 5042, Australia
| |
Collapse
|
55
|
Duan H, Zhang Q, Liu J, Li R, Wang D, Peng W, Wu C. Suppression of apoptosis in vascular endothelial cell, the promising way for natural medicines to treat atherosclerosis. Pharmacol Res 2021; 168:105599. [PMID: 33838291 DOI: 10.1016/j.phrs.2021.105599] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 03/09/2021] [Accepted: 04/02/2021] [Indexed: 12/16/2022]
Abstract
Atherosclerosis, a chronic multifactorial disease, is closely related to the development of cardiovascular diseases and is one of the predominant causes of death worldwide. Normal vascular endothelial cells play an important role in maintaining vascular homeostasis and inhibiting atherosclerosis by regulating vascular tension, preventing thrombosis and regulating inflammation. Currently, accumulating evidence has revealed that endothelial cell apoptosis is the first step of atherosclerosis. Excess apoptosis of endothelial cells induced by risk factors for atherosclerosis is a preliminary event in atherosclerosis development and might be a target for preventing and treating atherosclerosis. Interestingly, accumulating evidence shows that natural medicines have great potential to treat atherosclerosis by inhibiting endothelial cell apoptosis. Therefore, this paper reviewed current studies on the inhibitory effect of natural medicines on endothelial cell apoptosis and summarized the risk factors that may induce endothelial cell apoptosis, including oxidized low-density lipoprotein (ox-LDL), reactive oxygen species (ROS), angiotensin II (Ang II), tumor necrosis factor-α (TNF-α), homocysteine (Hcy) and lipopolysaccharide (LPS). We expect this review to highlight the importance of natural medicines, including extracts and monomers, in the treatment of atherosclerosis by inhibiting endothelial cell apoptosis and provide a foundation for the development of potential antiatherosclerotic drugs from natural medicines.
Collapse
Affiliation(s)
- Huxinyue Duan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, PR China
| | - Qing Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, PR China
| | - Jia Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, PR China
| | - Ruolan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, PR China
| | - Dan Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, PR China
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, PR China.
| | - Chunjie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, PR China.
| |
Collapse
|
56
|
Scheiner KC, Maas-Bakker RF, van Steenbergen MJ, Schwendeman SP, Hennink WE, Kok RJ. Post-loading of proangiogenic growth factors in PLGA microspheres. Eur J Pharm Biopharm 2021; 158:1-10. [DOI: 10.1016/j.ejpb.2020.10.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 02/07/2023]
|
57
|
Pandey Y, Pooja AR, Devi HL, Jalmeria NS, Punetha M, Kumar S, Paul A, Kumar K, Sonawane A, Samad HA, Singh G, Bag S, Sarkar M, Chouhan VS. Expression and functional role of IGFs during early pregnancy in placenta of water buffalo. Theriogenology 2020; 161:313-331. [PMID: 33373934 DOI: 10.1016/j.theriogenology.2020.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 01/16/2023]
Abstract
Adequate vascularisation is a key factor for successful fetal development. We hypothesized that Insulin-Like Growth Factor (IGF) family members regulate angiogenesis along with promoting fetal development and growth. In this experiment, we determined the expression and functional role of IGF family in placental compartments (caruncle; CAR, cotyledon; COT) during different stages of early pregnancy in the water buffalo (Bubalus bubalis). Samples were collected from early pregnancy 1 (EP1, 28-45 days), early pregnancy 2 (EP2, 45-90 days), and third stage of estrous cycle (11-16 days), which was taken as control. In addition, the role of IGF1 on mRNA expression of vWF, StAR, CYP11A1, 3βHSD, PCNA, and BAX were elucidated in cultured trophoblast cells (TCC) obtained from EP2. Quantitative real-time PCR (q-PCR), westernblot, and immunohistochemistry were done to investigate the gene expression, protein expression, and localization of examined factors, and RIA was also done to assess progesterone (P4) concentration. Expression of IGFs, its receptors and binding proteins were found to be significantly higher (p < 0.05) in both CAR and COT as compared to control during early pregnancy, except binding proteins IGFBP1, 3 and 4 which were significantly (p < 0.05) downregulated in COT with advancement of pregnancy. mRNA expression was consistent with the findings of immunoblotting and immunolocalization experiments. Trophoblasts cell culture (TCC) study showed a significant time and dose-dependent effect of IGF1 onsteroidogenic transcript, which was found to be maximum at 100 ng/ml that paralleled with P4 accretion in the media (p < 0.05). Further, IGF1 upregulated the transcripts of vWF, PCNA, and downregulated BAX at the same concentration (p < 0.05). Overall, our results demonstrated that the expression of IGFs is a site-specific phenomenon in placentome, which indicates autocrine/paracrine and endocrine function. Our in-vitro finding support that IGF1 plays a critical role in placental development by promoting angiogenesis, steroid synthesis, and cell proliferation during early pregnancy.
Collapse
Affiliation(s)
- Y Pandey
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - A R Pooja
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - H Lakshmi Devi
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - N Singh Jalmeria
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Meeti Punetha
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - S Kumar
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - A Paul
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - K Kumar
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Arvind Sonawane
- Animal Genetics Division, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - H A Samad
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - G Singh
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - S Bag
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - M Sarkar
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - V S Chouhan
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India.
| |
Collapse
|
58
|
Abstract
Acromegaly is characterized by Growth Hormone (GH) and Insulin-like Growth Factor 1 (IGF-1) excess. Uncontrolled acromegaly is associated with a strongly increased risk of cardiovascular disease (CVD), and numerous cardiovascular risk factors remain present after remission. GH and IGF-1 have numerous effects on the immune and cardiovascular system. Since endothelial damage and systemic inflammation are strongly linked to the development of CVD, and have been suggested to be present in both controlled as uncontrolled acromegaly, they may explain the presence of both micro- and macrovascular dysfunction in these patients. In addition, these changes seem to be only partially reversible after remission, as illustrated by the often reported presence of endothelial dysfunction and microvascular damage in controlled acromegaly. Previous studies suggest that insulin resistance, oxidative stress, and endothelial dysfunction are involved in the development of CVD in acromegaly. Not surprisingly, these processes are associated with systemic inflammation and respond to GH/IGF-1 normalizing treatment.
Collapse
Affiliation(s)
- Thalijn L C Wolters
- Department of Internal Medicine, Radboud University Medical Center Nijmegen, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, The Netherlands.
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center Nijmegen, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, The Netherlands
- Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center Nijmegen, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, The Netherlands
| | - Adrianus R M M Hermus
- Department of Internal Medicine, Radboud University Medical Center Nijmegen, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, The Netherlands
| | - Romana T Netea-Maier
- Department of Internal Medicine, Radboud University Medical Center Nijmegen, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, The Netherlands
| |
Collapse
|
59
|
Gordon SR, Reaume DR, Perkins TR. Insulin and IGF-2 support rat corneal endothelial cell growth and wound repair in the organ cultured tissue. Growth Factors 2020; 38:269-281. [PMID: 34388064 DOI: 10.1080/08977194.2021.1963721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The ability of insulin and IGF-2 to support wound repair in the organ-cultured rat corneal endothelium was investigated. Corneas given a circular transcorneal freeze injury, were explanted into organ cultures containing either insulin or IGF-2 and cultured up to72 h. Both factors increased [3H]-thymidine incorporation and mitotic levels compared to controls. Insulin's ability to mediate wound closure without serum was dependent on its continuous presence in the medium. PKC was also investigated in endothelial repair using the PKC promoter phorbol 12-myristate 13-acetate (PMA). Concentrations between 10-6 and 10-8 M, PMA failed to accelerate wound closure. When injured endothelia were cultured in the presence of insulin and the PKC inhibitor H-7, wound closure was also unaffected. These results indicate that insulin and IGF-2 stimulate cell growth in injured rat corneal endothelium and that insulin without the benefit of serum promotes wound closure in situ independent of the PKC pathway.
Collapse
Affiliation(s)
- Sheldon R Gordon
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - Darryl R Reaume
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - Thomas R Perkins
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| |
Collapse
|
60
|
Yin H, Favreau-Lessard AJ, deKay JT, Herrmann YR, Robich MP, Koza RA, Prudovsky I, Sawyer DB, Ryzhov S. Protective role of ErbB3 signaling in myeloid cells during adaptation to cardiac pressure overload. J Mol Cell Cardiol 2020; 152:1-16. [PMID: 33259856 DOI: 10.1016/j.yjmcc.2020.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/06/2020] [Accepted: 11/23/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND Myeloid cells play an important role in a wide variety of cardiovascular disorders, including both ischemic and non-ischemic cardiomyopathies. Neuregulin-1 (NRG-1)/ErbB signaling has recently emerged as an important factor contributing to the control of inflammatory activation of myeloid cells after an ischemic injury. However, the role of ErbB signaling in myeloid cells in non-ischemic cardiomyopathy is not fully understood. This study investigated the role of ErbB3 receptors in the regulation of early adaptive response using a mouse model of transverse aortic constriction (TAC) for non-ischemic cardiomyopathy. METHODS AND RESULTS TAC surgery was performed in groups of age- and sex-matched myeloid cell-specific ErbB3-deficient mice (ErbB3MyeKO) and control animals (ErbB3MyeWT). The number of cardiac CD45 immune cells, CD11b myeloid cells, Ly6G neutrophils, and Ly6C monocytes was determined using flow cytometric analysis. Five days after TAC, survival was dramatically reduced in male but not female ErbB3MyeKO mice or control animals. The examination of lung weight to body weight ratio suggested that acute pulmonary edema was present in ErbB3MyeKO male mice after TAC. To determine the cellular and molecular mechanisms involved in the increased mortality in ErbB3MyeKO male mice, cardiac cell populations were examined at day 3 post-TAC using flow cytometry. Myeloid cells accumulated in control but not in ErbB3MyeKO male mouse hearts. This was accompanied by increased proliferation of Sca-1 positive non-immune cells (endothelial cells and fibroblasts) in control but not ErbB3MyeKO male mice. No significant differences in intramyocardial accumulation of myeloid cells or proliferation of Sca-1 cells were found between the groups of ErbB3MyeKO and ErbB3MyeWT female mice. An antibody-based protein array analysis revealed that IGF-1 expression was significantly downregulated only in ErbB3MyeKO mice hearts compared to control animals after TAC. CONCLUSION Our data demonstrate the crucial role of myeloid cell-specific ErbB3 signaling in the cardiac accumulation of myeloid cells, which contributes to the activation of cardiac endothelial cells and fibroblasts and development of an early adaptive response to cardiac pressure overload in male mice.
Collapse
Affiliation(s)
- Haifeng Yin
- Maine Medical Center Research Institute, Scarborough, ME, United States of America
| | | | - Joanne T deKay
- Maine Medical Center Research Institute, Scarborough, ME, United States of America
| | - Yodit R Herrmann
- Maine Medical Center Research Institute, Scarborough, ME, United States of America
| | - Michael P Robich
- Maine Medical Center Research Institute, Scarborough, ME, United States of America; Maine Medical Center, Cardiovascular Institute, Portland, ME, United States of America
| | - Robert A Koza
- Maine Medical Center Research Institute, Scarborough, ME, United States of America
| | - Igor Prudovsky
- Maine Medical Center Research Institute, Scarborough, ME, United States of America
| | - Douglas B Sawyer
- Maine Medical Center Research Institute, Scarborough, ME, United States of America; Maine Medical Center, Cardiovascular Institute, Portland, ME, United States of America
| | - Sergey Ryzhov
- Maine Medical Center Research Institute, Scarborough, ME, United States of America.
| |
Collapse
|
61
|
Zhu S, Wang H, Zhang Z, Ma M, Zheng Z, Xu X, Sun T. IGFBP‑rP1‑silencing promotes hypoxia‑induced angiogenic potential of choroidal endothelial cells via the RAF/MEK/ERK signaling pathway. Mol Med Rep 2020; 22:4837-4847. [PMID: 33173998 PMCID: PMC7646924 DOI: 10.3892/mmr.2020.11578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 08/25/2020] [Indexed: 12/29/2022] Open
Abstract
Insulin-like growth factor binding protein-related protein 1 (IGFBP-rP1) has been reported to have various functions in different cellular contexts. Our previous investigation discovered that IGFBP-rP1 inhibited retinal angiogenesis in vitro and in vivo by inhibiting the pro-angiogenic effect of VEGF and downregulating VEGF expression. Recently, IGFBP-rP1 was confirmed to be downregulated in the aqueous humor of patients with neovascular age-related macular degeneration compared with controls; however, its specific role remains unknown. The present study applied the technique of gene silencing, reverse transcription-quantitative PCR, western blotting, cell viability assays, cell motility assays and tube formation assays. Chemical hypoxic conditions and choroidal endothelial (RF/6A) cells were used to explore the effect of IGFBP-rP1-silencing on the phenotype activation of RF/6A cells under hypoxic conditions and to elucidate the underlying mechanisms. siRNA achieved IGFBP-rP1-silencing in RF/6A cells without cytotoxicity. IGFBP-rP1-silencing significantly restored the viability of RF/6A cells in hypoxia and enhanced hypoxia-induced migration and capillary-like tube formation of RF/6A cells. Furthermore, IGFBP-rP1-silencing significantly upregulated the expression of B-RAF, phosphorylated (p)-MEK, p-ERK and VEGF in RF/6A cells under hypoxic conditions; however, these upregulations were inhibited by exogenous IGFBP-rP1. These data indicated that silencing IGFBP-rP1 expression in RF/6A cells effectively promoted the hypoxia-induced angiogenic potential of choroidal endothelial cells by upregulating RAF/MEK/ERK signaling pathway activation and VEGF expression.
Collapse
Affiliation(s)
- Shuting Zhu
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Hong Wang
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Zhihua Zhang
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Mingming Ma
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Zhi Zheng
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Xun Xu
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Tao Sun
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| |
Collapse
|
62
|
Gula G, Rumiński S, Niderla-Bielińska J, Jasińska A, Kiernozek E, Jankowska-Steifer E, Flaht-Zabost A, Ratajska A. Potential functions of embryonic cardiac macrophages in angiogenesis, lymphangiogenesis and extracellular matrix remodeling. Histochem Cell Biol 2020; 155:117-132. [PMID: 33130914 PMCID: PMC7847984 DOI: 10.1007/s00418-020-01934-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2020] [Indexed: 12/20/2022]
Abstract
The role of cardiac tissue macrophages (cTMs) during pre- and postnatal developmental stages remains in many aspects unknown. We aimed to characterize cTM populations and their potential functions based on surface markers. Our in situ studies of immunostained cardiac tissue specimens of murine fetuses (from E11to E17) revealed that a significant number of embryonic cTMs (phenotyped by CD45, CD68, CD64, F4/80, CD11b, CD206, Lyve-1) resided mostly in the subepicardial space, not in the entire myocardial wall, as observed in adult individuals. cTMs accompanied newly developed blood and lymphatic vessels adhering to vessel walls by cellular processes. A subpopulation of CD68-positive cells was found to form accumulations in areas of massive apoptosis during the outflow tract remodeling and shortening. Flow cytometry analysis at E14 and E17 stages revealed newly defined three subpopulations:CD64low, CD64highCD206-and CD64highCD206+. The levels of mRNA expression for genes related to regulation of angiogenesis (VEGFa, VEGFb, VEGFc, bFGF), lymphangiogenesis (VEGFc) and extracellular matrix (ECM) remodeling (MMP13, Arg1, Ym1/Chil3, Retlna/FIZZ1) differed among the selected populations and/or embryonic stages. Our results demonstrate a diversity of embryonic cTMs and their tissue-specific locations, suggesting their various potential roles in regulating angiogenesis, lymphangiogenesis and ECM remodeling.
Collapse
Affiliation(s)
- Grzegorz Gula
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland.,Department of Ophthalmology, Central Clinical Hospital of the MSWiA, Warsaw, Poland
| | - Sławomir Rumiński
- Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland.,Centre for Preclinical Research and Technology, Warsaw, Poland
| | | | - Agnieszka Jasińska
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Warsaw, Student's Scientific Circle at Department of Pathology MUW, Warsaw, Poland
| | | | - Ewa Jankowska-Steifer
- Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland
| | - Aleksandra Flaht-Zabost
- Department of Pathology, Medical University of Warsaw, Chałubińskiego 5, 02-004, Warsaw, Poland
| | - Anna Ratajska
- Department of Pathology, Medical University of Warsaw, Chałubińskiego 5, 02-004, Warsaw, Poland.
| |
Collapse
|
63
|
Lee EJ, Jain M, Alimperti S. Bone Microvasculature: Stimulus for Tissue Function and Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:313-329. [PMID: 32940150 DOI: 10.1089/ten.teb.2020.0154] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bone is a highly vascularized organ, providing structural support to the body, and its development, regeneration, and remodeling depend on the microvascular homeostasis. Loss or impairment of vascular function can develop diseases, such as large bone defects, avascular necrosis, osteoporosis, osteoarthritis, and osteopetrosis. In this review, we summarize how vasculature controls bone development and homeostasis in normal and disease cases. A better understanding of this process will facilitate the development of novel disease treatments that promote bone regeneration and remodeling. Specifically, approaches based on tissue engineering components, such as stem cells and growth factors, have demonstrated the capacity to induce bone microvasculature regeneration and mineralization. This knowledge will have relevant clinical implications for the treatment of bone disorders by developing novel pharmaceutical approaches and bone grafts. Finally, the tissue engineering approaches incorporating vascular components may widely be applied to treat other organ diseases by enhancing their regeneration capacity. Impact statement Bone vasculature is imperative in the process of bone development, regeneration, and remodeling. Alterations or disruption of the bone vasculature leads to loss of bone homeostasis and the development of bone diseases. In this study, we review the role of vasculature on bone diseases and how vascular tissue engineering strategies, with a detailed emphasis on the role of stem cells and growth factors, will contribute to bone therapeutics.
Collapse
Affiliation(s)
- Eun-Jin Lee
- American Dental Association Science and Research Institute, Gaithersburg, Maryland, USA
| | - Mahim Jain
- Kennedy Krieger Institute, John Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Stella Alimperti
- American Dental Association Science and Research Institute, Gaithersburg, Maryland, USA
| |
Collapse
|
64
|
Zheng Y, Sun Q, Xu X, Wang W. Novel peptide derived from IGF-2 displays anti-angiogenic activity in vitro and inhibits retinal angiogenesis in a model of oxygen-induced retinopathy. Clin Exp Ophthalmol 2020; 48:1261-1275. [PMID: 33026147 DOI: 10.1111/ceo.13864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Retinopathy of prematurity (ROP), a major cause of significant visual morbidity and blindness in preterm infants, is closely related to pathological angiogenesis. The aim of the study is to evaluate the effect of a new 12-aa peptide (named peptide CW-703) from human insulin-like growth factor-2, against angiogenesis in ROP. METHODS In order to evaluate the inhibitory effect of CW-703 on the proliferation, migration, tube formation and apoptosis of human umbilical vein endothelial cells (ScienCell) in vitro, we used MTS assays, a modified Boyden chamber, Matrigel system and TUNEL assays. Effects in vivo were assayed using chorioallantoic membrane assays and oxygen-induced retinopathy (OIR) models in mice. We also performed eletrophysiological and histologic examinations to evaluate the possible toxicity of the peptide. Real-time PCR, ELISA and western blotting were used to elucidate the mechanism of CW-703. RESULTS CW-703 inhibited angiogenesis in vitro by suppressing endothelial cell proliferation, migration and tube formation. CW-703 also prevented angiogenesis in chicken chorioallantoic membrane assays and OIR assays in mice. No evident functional or morphologic abnormalities in neuroretina after CW-703 injection were revealed in electrophysiological tests and histological examinations. Moreover, we elucidated that CW-703 competed for binding to IGF-1R and inhibited angiogenesis by inhibiting IGF-1R/PI3K/AKT activation and downregulating vascular endothelial growth factor expression. CONCLUSION The novel peptide CW-703 may act as an effective inhibitor of ocular pathologic angiogenesis, especially in treating ROP.
Collapse
Affiliation(s)
- Ying Zheng
- Department of Ophthalmology, Shanghai General Hospital affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Qiao Sun
- Department of Ophthalmology, Shanghai General Hospital affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Xun Xu
- Department of Ophthalmology, Shanghai General Hospital affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Weijun Wang
- Department of Ophthalmology, Shanghai General Hospital affiliated to Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
65
|
Yu H, Zhao L, Zhao Y, Fei J, Zhang W. Circular RNA circ_0029589 regulates proliferation, migration, invasion, and apoptosis in ox-LDL-stimulated VSMCs by regulating miR-424-5p/IGF2 axis. Vascul Pharmacol 2020; 135:106782. [PMID: 32860985 DOI: 10.1016/j.vph.2020.106782] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/23/2020] [Accepted: 08/16/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND Circular RNAs (circRNAs) have been identified to be critical mediators in the progression of atherosclerosis (AS). However, the exact roles and molecular mechanism of circ_0029589 in AS are far from understood. METHODS Vascular smooth muscle cells (VSMCs) stimulated by oxidized low-density lipoprotein (ox-LDL) were served as a cellular model of AS. The expression levels of circ_0029589, microRNA (miR)-424-5p, and insulin-like growth factor 2 (IGF2) were measured by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot analysis. Cell proliferation was determined by Cell Counting Kit-8 (CCK-8) assay and colony formation assay. Cell apoptosis, migration and invasion were examined by flow cytometry and transwell assay. The relationship between miR-424-5p and circ_0029589 or IGF2 was predicted by starbase and verified by dual-luciferase reporter assay. RESULTS Circ_0029589 and IGF2 were upregulated and miR-424-5p was downregulated in VSMCs treated with ox-LDL. Silence of circ_0029589 inhibited proliferation, migration and invasion but induced apoptosis in ox-LDL-treated VSMCs. MiR-424-5p was a target of circ_0029589 and its knockdown reversed the effects of circ_0029589 interference on proliferation, migration, invasion, and apoptosis in ox-LDL-stimulated VSMCs. IGF2 was a target of miR-424-5p and miR-424-5p overexpression suppressed proliferation, migration and invasion while promoted apoptosis in ox-LDL-treated VSMCs by downregulating IGF2. Circ_0029589 positively modulated IGF2 expression by sponging miR-424-5p. CONCLUSION Circ_0029589 silence might inhibit the progression of AS by regulating miR-424-5p/IGF2 axis, providing a novel mechanism for pathogenesis of AS.
Collapse
Affiliation(s)
- Hui Yu
- Department of Cardiopulmonary Rehabilitation, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Luosha Zhao
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Zhao
- Department of Cardiopulmonary Rehabilitation, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiayue Fei
- Department of Cardiopulmonary Rehabilitation, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenli Zhang
- Department of Cardiopulmonary Rehabilitation, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
66
|
Hernández R, Rodríguez FM, Gareis NC, Rey F, Barbeito CG, Diessler ME. Abundance of insulin-like growth factors 1 and 2, and type 1 insulin-like growth factor receptor in placentas of dogs. Anim Reprod Sci 2020; 221:106554. [PMID: 32861116 DOI: 10.1016/j.anireprosci.2020.106554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 10/23/2022]
Abstract
Insulin-like growth factors (IGFs) are among the primary compounds regulating placental development. In bitches, relative abundance of IGF1, IGF2 and IGFR1 mRNA transcripts have been studied in the pre-implantation uterus and early endotheliochorial placentas. The IGF2 and IGFR1 distribution has also been previously described in the uterus before embryo implantation. The aim of this study was to detect, characterize, and localize the presence of IGF1, IGF2, and IGFR1 in early-developing and mature placentas of dogs. Placentas of 15 bitches were analyzed using immunohistochemistry. The IGFs were located in endometrial epithelium and glands, with the staining pattern and intensity being less in mature placentas. Cytotrophoblast cells (CTB) and syncytiotrophoblast (STB) cells contained both IGFs; the labeling was greater in CTB of the early-developing than mature placentas. The maternal endothelium was positively stained for both IGFs, while the vascular endothelium of the chorioallantoic membrane were only stained for IGF2. The IGFR1 was detected in all cell populations evaluated. Results regarding trophoblastic IGF are quite consistent with those reported in human placentas. Spatiotemporal IGFs/IGFR1 pattern might reflect the occurrence of autocrine and paracrine signaling during placentation in bitches, and the involvement in early placental developmental processes. Furthermore, it is hypothesized that, besides hemotrophic actions of plasma IGFs, endometrial secreted IGFs may promote early placental development through histotrophic signaling.
Collapse
Affiliation(s)
- Rocío Hernández
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (FCV, UNLP), Avda. 60 y 118, 1900, La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), FCV, UNLP, La Plata, Argentina.
| | - Fernanda M Rodríguez
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina.
| | - Natalia C Gareis
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina.
| | - Florencia Rey
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina.
| | - Claudio G Barbeito
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (FCV, UNLP), Avda. 60 y 118, 1900, La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), FCV, UNLP, La Plata, Argentina.
| | - Mónica E Diessler
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (FCV, UNLP), Avda. 60 y 118, 1900, La Plata, Argentina.
| |
Collapse
|
67
|
Smith JR, Ashander LM, Arruda SL, Cordeiro CA, Lie S, Rochet E, Belfort R, Furtado JM. Pathogenesis of ocular toxoplasmosis. Prog Retin Eye Res 2020; 81:100882. [PMID: 32717377 DOI: 10.1016/j.preteyeres.2020.100882] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 12/12/2022]
Abstract
Ocular toxoplasmosis is a retinitis -almost always accompanied by vitritis and choroiditis- caused by intraocular infection with Toxoplasma gondii. Depending on retinal location, this condition may cause substantial vision impairment. T. gondii is an obligate intracellular protozoan parasite, with both sexual and asexual life cycles, and infection is typically contracted orally by consuming encysted bradyzoites in undercooked meat, or oocysts on unwashed garden produce or in contaminated water. Presently available anti-parasitic drugs cannot eliminate T. gondii from the body. In vitro studies using T. gondii tachyzoites, and human retinal cells and tissue have provided important insights into the pathogenesis of ocular toxoplasmosis. T. gondii may cross the vascular endothelium to access human retina by at least three routes: in leukocyte taxis; as a transmigrating tachyzoite; and after infecting endothelial cells. The parasite is capable of navigating the human neuroretina, gaining access to a range of cell populations. Retinal Müller glial cells are preferred initial host cells. T. gondii infection of the retinal pigment epithelial cells alters the secretion of growth factors and induces proliferation of adjacent uninfected epithelial cells. This increases susceptibility of the cells to parasite infection, and may be the basis of the characteristic hyperpigmented toxoplasmic retinal lesion. Infected epithelial cells also generate a vigorous immunologic response, and influence the activity of leukocytes that infiltrate the retina. A range of T. gondii genotypes are associated with human ocular toxoplasmosis, and individual immunogenetics -including polymorphisms in genes encoding innate immune receptors, human leukocyte antigens and cytokines- impacts the clinical manifestations. Research into basic pathogenic mechanisms of ocular toxoplasmosis highlights the importance of prevention and suggests new biological drug targets for established disease.
Collapse
Affiliation(s)
- Justine R Smith
- Eye & Vision Health and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine & Public Health, Adelaide, Australia; Formerly of Casey Eye Institute, Oregon Health & Science University, USA.
| | - Liam M Ashander
- Eye & Vision Health and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine & Public Health, Adelaide, Australia; Formerly of Casey Eye Institute, Oregon Health & Science University, USA
| | - Sigrid L Arruda
- Department of Ophthalmology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Cynthia A Cordeiro
- Cordeiro et Costa Ophtalmologie, Campos dos Goytacazes, Brazil; Formerly of Department of Ophthalmology, Federal University of Minas Gerais School of Medicine, Belo Horizonte, Brazil
| | - Shervi Lie
- Eye & Vision Health and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine & Public Health, Adelaide, Australia
| | - Elise Rochet
- Eye & Vision Health and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine & Public Health, Adelaide, Australia
| | - Rubens Belfort
- Department of Ophthalmology, Federal University of São Paulo, São Paulo, Brazil
| | - João M Furtado
- Department of Ophthalmology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Formerly of Casey Eye Institute, Oregon Health & Science University, USA
| |
Collapse
|
68
|
Dysregulated Cardiac IGF-1 Signaling and Antioxidant Response Are Associated with Radiation Sensitivity. Int J Mol Sci 2020; 21:ijms21145049. [PMID: 32708958 PMCID: PMC7404117 DOI: 10.3390/ijms21145049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/07/2020] [Accepted: 07/12/2020] [Indexed: 12/29/2022] Open
Abstract
Acute exposure to ionizing radiation leads to Hematopoietic Acute Radiation Syndrome (H-ARS). To understand the inter-strain cellular and molecular mechanisms of radiation sensitivity, adult males of two strains of minipig, one with higher radiosensitivity, the Gottingen minipig (GMP), and another strain with comparatively lower radiosensitivity, the Sinclair minipig (SMP), were exposed to total body irradiation (TBI). Since Insulin-like Growth Factor-1 (IGF-1) signaling is associated with radiation sensitivity and regulation of cardiovascular homeostasis, we investigated the link between dysregulation of cardiac IGF-1 signaling and radiosensitivity. The adult male GMP; n = 48, and SMP; n = 24, were irradiated using gamma photons at 1.7–2.3 Gy doses. The animals that survived to day 45 after irradiation were euthanized and termed the survivors. Those animals that were euthanized prior to day 45 post-irradiation due to severe illness or health deterioration were termed the decedents. Cardiac tissue analysis of unirradiated and irradiated animals showed that inter-strain radiosensitivity and survival outcomes in H-ARS are associated with activation status of the cardiac IGF-1 signaling and nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated induction of antioxidant gene expression. Our data link H-ARS with dysregulation of cardiac IGF-1 signaling, and highlight the role of oxidative stress and cardiac antioxidant response in radiation sensitivity.
Collapse
|
69
|
Jonker SS, Giraud GD, Chang EI, Elman MR, Louey S. Coronary vascular growth matches IGF-1-stimulated cardiac growth in fetal sheep. FASEB J 2020; 34:10041-10055. [PMID: 32573852 DOI: 10.1096/fj.202000215r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/24/2020] [Accepted: 05/07/2020] [Indexed: 01/01/2023]
Abstract
As loss of contractile function in heart disease could often be mitigated by increased cardiomyocyte number, expansion of cardiomyocyte endowment paired with increased vascular supply is a desirable therapeutic goal. Insulin-like growth factor 1 (IGF-1) administration increases fetal cardiomyocyte proliferation and heart mass, but how fetal IGF-1 treatment affects coronary growth and function is unknown. Near-term fetal sheep underwent surgical instrumentation and were studied from 127 to 134 d gestation (term = 147 d), receiving either IGF-1 LR3 or vehicle. Coronary growth and function were interrogated using pressure-flow relationships, an episode of acute hypoxia with progressive blockade of adenosine receptors and nitric oxide synthase, and by modeling the determinants of coronary flow. The main findings were that coronary conductance was preserved on a per-gram basis following IGF-1 treatment, adenosine and nitric oxide contributed to hypoxia-mediated coronary vasodilation similarly in IGF-1-treated and Control fetuses, and the relationships between coronary flow and blood oxygen contents were similar between groups. We conclude that IGF-1-stimulated fetal myocardial growth is accompanied by appropriate expansion and function of the coronary vasculature. These findings support IGF-1 as a potential strategy to increase cardiac myocyte and coronary vascular endowment at birth.
Collapse
Affiliation(s)
- Sonnet S Jonker
- Knight Cardiovascular Institute, Center for Developmental Health, Oregon Health & Science University, Portland, OR, USA
| | - George D Giraud
- Knight Cardiovascular Institute, Center for Developmental Health, Oregon Health & Science University, Portland, OR, USA.,Division of Cardiology, VA Portland Health Care System, Portland, OR, USA
| | - Eileen I Chang
- Knight Cardiovascular Institute, Center for Developmental Health, Oregon Health & Science University, Portland, OR, USA
| | - Miriam R Elman
- School of Public Health, Oregon Health & Science University-Portland State University, Portland, OR, USA
| | - Samantha Louey
- Knight Cardiovascular Institute, Center for Developmental Health, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
70
|
Seedorf G, Kim C, Wallace B, Mandell EW, Nowlin T, Shepherd D, Abman SH. rhIGF-1/BP3 Preserves Lung Growth and Prevents Pulmonary Hypertension in Experimental Bronchopulmonary Dysplasia. Am J Respir Crit Care Med 2020; 201:1120-1134. [PMID: 32101461 PMCID: PMC7193843 DOI: 10.1164/rccm.201910-1975oc] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/25/2020] [Indexed: 12/03/2022] Open
Abstract
Rationale: Antenatal factors, such as chorioamnionitis, preeclampsia, and postnatal injury, are associated with an increased risk for bronchopulmonary dysplasia (BPD) and pulmonary hypertension (PH) after preterm birth. IGF-1 (insulin-like growth factor-1) is markedly decreased in normal preterm infants, but whether IGF-1 treatment can prevent BPD or PH is unknown.Objectives: To evaluate whether postnatal treatment with rhIGF-1 (recombinant human IGF-1)/BP3 (binding peptide 3) improves lung growth and prevents PH in two antenatal models of BPD induced by intraamniotic exposure to endotoxin (ETX) or sFlt-1 (soluble fms-like tyrosine kinase 1), and in a postnatal model due to prolonged hyperoxia.Methods: ETX or sFlt-1 were administered into the amniotic sac of pregnant rats at Embryonic Day 20 to simulate antenatal models of chorioamnionitis and preeclampsia, respectively. Pups were delivered by cesarean section at Embryonic Day 22 and treated with rhIGF-1/BP3 (0.02-20 mg/kg/d intraperitoneal) or buffer for 2 weeks. Study endpoints included radial alveolar counts (RACs), vessel density, and right ventricular hypertrophy (RVH). Direct effects of rhIGF-1/BP3 (250 ng/ml) on fetal lung endothelial cell proliferation and tube formation and alveolar type 2 cell proliferation were studied by standard methods in vitro.Measurements and Main Results: Antenatal ETX and antenatal sFlt-1 reduced RAC and decreased RVH in infant rats. In both models, postnatal rhIGF-1/BP3 treatment restored RAC and RVH to normal values when compared with placebo injections. rhIGF-1/BP3 treatment also preserved lung structure and prevented RVH after postnatal hyperoxia. In vitro studies showed that rhIGF-1/BP3 treatment increased lung endothelial cell and alveolar type 2 cell proliferation.Conclusions: Postnatal rhIGF-1/BP3 treatment preserved lung structure and prevented RVH in antenatal and postnatal BPD models. rhIGF-1/BP3 treatment may provide a novel strategy for the prevention of BPD in preterm infants.
Collapse
Affiliation(s)
| | - Christina Kim
- Pediatric Heart Lung Center
- Department of Surgery, and
| | | | | | | | - Douglas Shepherd
- Pediatric Heart Lung Center
- Department of Pharmacology, University of Colorado Anschutz Medical Center and Children’s Hospital Colorado, Aurora, Colorado; and
- Department of Physics, Center for Biological Physics, Arizona State University, Tempe, Arizona
| | | |
Collapse
|
71
|
Mirza-Aghazadeh-Attari M, Reiter RJ, Rikhtegar R, Jalili J, Hajalioghli P, Mihanfar A, Majidinia M, Yousefi B. Melatonin: An atypical hormone with major functions in the regulation of angiogenesis. IUBMB Life 2020; 72:1560-1584. [PMID: 32329956 DOI: 10.1002/iub.2287] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/10/2020] [Accepted: 03/26/2020] [Indexed: 02/06/2023]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine), a pleotropic molecule with a wide distribution, has received considerable attention in recent years, mostly because of its various major effects on tissues or cells since it has both receptor-dependent and receptor-independent actions over a wide range of concentrations. These biological and physiological functions of melatonin include regulation of circadian rhythms by modulating the expression of core oscillator genes, scavenging the reactive oxygen species and reactive nitrogen species, modulating the immune system and inflammatory response, and exerting cytoprotective and antiapoptotic effects. Given the multiple critical roles of melatonin, dysregulation of its production or any disruption in signaling through its receptors may have contributed in the development of a wide range of disorders including type 2 diabetes, aging, immune-mediated diseases, hypertension, and cancer. Herein, we focus on the modulatory effects of melatonin on angiogenesis and its implications as a therapeutic strategy in cancer and related diseases.
Collapse
Affiliation(s)
- Mohammad Mirza-Aghazadeh-Attari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Reza Rikhtegar
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Jalili
- Radiology Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Hajalioghli
- Radiology Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ainaz Mihanfar
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
72
|
IGF-binding proteins 3 and 4 are regulators of sprouting angiogenesis. Mol Biol Rep 2020; 47:2561-2572. [PMID: 32133604 DOI: 10.1007/s11033-020-05339-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 02/18/2020] [Indexed: 12/29/2022]
Abstract
PURPOSE We have previously identified insulin-like growth factor 2 (IGF2) and insulin-like growth factor 1 receptor (IGF1R) as essential proteins for tip cell maintenance and sprouting angiogenesis. In this study, we aim to identify other IGF family members involved in endothelial sprouting angiogenesis. METHODS Effects on sprouting were analyzed in human umbilical vein endothelial cells (HUVECs) using the spheroid-based sprouting model, and were quantified as mean number of sprouts per spheroid and average sprout length. RNA silencing technology was used to knockdown gene expression. Recombinant forms of the ligands (IGF1 and IGF2, insulin) and the IGF-binding proteins (IGFBP) 3 and 4 were used to induce excess effects. Effects on the tip cell phenotype were analyzed by measuring the fraction of CD34+ tip cells using flow cytometry and immunohistochemistry in a 3D angiogenesis model. Experiments were performed in the presence and absence of serum. RESULTS Knockdown of IGF2 inhibited sprouting in HUVECs, in particular when cultured in the absence of serum, suggesting that components in serum influence the signaling of IGF2 in angiogenesis in vitro. We then determined the effects of IGFBP3 and IGFBP4, which are both present in serum, on IGF2-IGF1R signaling in sprouting angiogenesis in the absence of serum: knockdown of IGFBP3 significantly reduced sprouting angiogenesis, whereas knockdown of IGFBP4 resulted in increased sprouting angiogenesis in both flow cytometry analysis and immunohistochemical analysis of the 3D angiogenesis model. Other IGF family members except INSR did not affect IGF2-IGF1R signaling. CONCLUSIONS Serum components and IGF binding proteins regulate IGF2 effects on sprouting angiogenesis. Whereas IGFBP3 acts as co-factor for IGF2-IGF1R binding, IGFBP4 inhibits IGF2 signaling.
Collapse
|
73
|
|
74
|
Wu X, Zheng X, Cheng J, Zhang K, Ma C. LncRNA TUG1 regulates proliferation and apoptosis by regulating miR-148b/IGF2 axis in ox-LDL-stimulated VSMC and HUVEC. Life Sci 2020; 243:117287. [DOI: 10.1016/j.lfs.2020.117287] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/30/2019] [Accepted: 01/07/2020] [Indexed: 12/20/2022]
|
75
|
Short-term starvation reduces IGF-1 levels to sensitize lung tumors to PD-1 immune checkpoint blockade. ACTA ACUST UNITED AC 2020; 1:75-85. [DOI: 10.1038/s43018-019-0007-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/14/2019] [Indexed: 01/31/2023]
|
76
|
Haywood NJ, Slater TA, Drozd M, Warmke N, Matthews C, Cordell PA, Smith J, Rainford J, Cheema H, Maher C, Bridge KI, Yuldasheva NY, Cubbon RM, Kearney MT, Wheatcroft SB. IGFBP-1 in Cardiometabolic Pathophysiology-Insights From Loss-of-Function and Gain-of-Function Studies in Male Mice. J Endocr Soc 2020; 4:bvz006. [PMID: 32190801 PMCID: PMC7074193 DOI: 10.1210/jendso/bvz006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/24/2019] [Indexed: 12/17/2022] Open
Abstract
We have previously reported that overexpression of human insulin-like growth factor binding protein (IGFBP)-1 in mice leads to vascular insulin sensitization, increased nitric oxide bioavailability, reduced atherosclerosis, and enhanced vascular repair, and in the setting of obesity improves glucose tolerance. Human studies suggest that low levels of IGFBP-1 are permissive for the development of diabetes and cardiovascular disease. Here we seek to determine whether loss of IGFBP-1 plays a causal role in the predisposition to cardiometabolic disease. Metabolic phenotyping was performed in transgenic mice with homozygous knockout of IGFBP-1. This included glucose, insulin, and insulin-like growth factor I tolerance testing under normal diet and high-fat feeding conditions. Vascular phenotyping was then performed in the same mice using vasomotor aortic ring studies, flow cytometry, vascular wire injury, and angiogenesis assays. These were complemented with vascular phenotyping of IGFBP-1 overexpressing mice. Metabolic phenotype was similar in IGFBP-1 knockout and wild-type mice subjected to obesity. Deletion of IGFBP-1 inhibited endothelial regeneration following injury, suggesting that IGFBP-1 is required for effective vascular repair. Developmental angiogenesis was unaltered by deletion or overexpression of IGFBP-1. Recovery of perfusion following hind limb ischemia was unchanged in mice lacking or overexpressing IGFBP-1; however, overexpression of IGFBP-1 stimulated hindlimb perfusion and angiogenesis in insulin-resistant mice. These findings provide new insights into the role of IGFBP-1 in metabolic and vascular pathophysiology. Irrespective of whether loss of IGFBP-1 plays a causal role in the development of cardiometabolic disorders, increasing IGFBP-1 levels appears effective in promoting neovascularization in response to ischemia.
Collapse
Affiliation(s)
- Natalie J Haywood
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Thomas A Slater
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Michael Drozd
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Nele Warmke
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Connor Matthews
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Paul A Cordell
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Jessica Smith
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Jethro Rainford
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Harneet Cheema
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Caitlyn Maher
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Katherine I Bridge
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Nadira Y Yuldasheva
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Richard M Cubbon
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Mark T Kearney
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Stephen B Wheatcroft
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| |
Collapse
|
77
|
Nieuwenhuis S, Okkersen K, Widomska J, Blom P, 't Hoen PAC, van Engelen B, Glennon JC. Insulin Signaling as a Key Moderator in Myotonic Dystrophy Type 1. Front Neurol 2019; 10:1229. [PMID: 31849810 PMCID: PMC6901991 DOI: 10.3389/fneur.2019.01229] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/05/2019] [Indexed: 12/15/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is an autosomal dominant genetic disease characterized by multi-system involvement. Affected organ system includes skeletal muscle, heart, gastro-intestinal system and the brain. In this review, we evaluate the evidence for alterations in insulin signaling and their relation to clinical DM1 features. We start by summarizing the molecular pathophysiology of DM1. Next, an overview of normal insulin signaling physiology is given, and evidence for alterations herein in DM1 is presented. Clinically, evidence for involvement of insulin signaling pathways in DM1 is based on the increased incidence of insulin resistance seen in clinical practice and recent trial evidence of beneficial effects of metformin on muscle function. Indirectly, further support may be derived from certain CNS derived symptoms characteristic of DM1, such as obsessive-compulsive behavior features, for which links with altered insulin signaling has been demonstrated in other diseases. At the basic scientific level, several pathophysiological mechanisms that operate in DM1 may compromise normal insulin signaling physiology. The evidence presented here reflects the importance of insulin signaling in relation to clinical features of DM1 and justifies further basic scientific and clinical, therapeutically oriented research.
Collapse
Affiliation(s)
- Sylvia Nieuwenhuis
- Department of Cognitive Neuroscience, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Kees Okkersen
- Department of Neurology, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Joanna Widomska
- Department of Cognitive Neuroscience, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Paul Blom
- VDL Enabling Technologies Group B.V., Eindhoven, Netherlands
| | - Peter A C 't Hoen
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Baziel van Engelen
- Department of Neurology, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Jeffrey C Glennon
- Department of Cognitive Neuroscience, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| |
Collapse
|
78
|
EASIX and mortality after allogeneic stem cell transplantation. Bone Marrow Transplant 2019; 55:553-561. [PMID: 31558788 DOI: 10.1038/s41409-019-0703-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 01/05/2023]
Abstract
Allogeneic stem cell transplantation (alloSCT) is an effective immunotherapy in patients with hematological malignancies. Endothelial dysfunction was linked to major complications after alloSCT. We asked the question if the "Endothelial Activation and Stress Index" (EASIX; [(creatinine × LDH) ÷ thrombocytes]) can predict mortality after alloSCT. We performed a retrospective cohort analysis in five alloSCT centers in the USA and Germany. EASIX was assessed prior to conditioning (EASIX-pre) and correlated with mortality in 755 patients of a training cohort in multivariable models. The predictive model established in the training cohort was validated in 1267 adult allo-recipients. Increasing EASIX-pre predicted lower overall survival (OS) after alloSCT, and successful model validation was achieved for the validation cohort. We found that EASIX-pre predicts OS irrespective of established scores. Moreover, EASIX-pre was also a significant prognostic factor for transplant-associated microangiopathy. Finally, EASIX-pre correlated with biomarkers of endothelial homeostasis such as CXCL8, interleukin-18, and insulin-like-growth-factor-1 serum levels. This study establishes EASIX-pre based on a standard laboratory biomarker panel as a predictor of individual risk of mortality after alloSCT independently from established clinical criteria.
Collapse
|
79
|
Swirski FK, Nahrendorf M. Cardioimmunology: the immune system in cardiac homeostasis and disease. Nat Rev Immunol 2019; 18:733-744. [PMID: 30228378 DOI: 10.1038/s41577-018-0065-8] [Citation(s) in RCA: 521] [Impact Index Per Article: 86.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The past few decades have generated growing recognition that the immune system makes an important contribution to cardiac development, composition and function. Immune cells infiltrate the heart at gestation and remain in the myocardium, where they participate in essential housekeeping functions throughout life. After myocardial infarction or in response to infection, large numbers of immune cells are recruited to the heart to remove dying tissue, scavenge pathogens and promote healing. Under some circumstances, immune cells can cause irreversible damage, contributing to heart failure. This Review focuses on the role of the immune system in the heart under both homeostatic and perturbed conditions.
Collapse
Affiliation(s)
- Filip K Swirski
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Matthias Nahrendorf
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
80
|
Skelly DA, Squiers GT, McLellan MA, Bolisetty MT, Robson P, Rosenthal NA, Pinto AR. Single-Cell Transcriptional Profiling Reveals Cellular Diversity and Intercommunication in the Mouse Heart. Cell Rep 2019; 22:600-610. [PMID: 29346760 DOI: 10.1016/j.celrep.2017.12.072] [Citation(s) in RCA: 370] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/22/2017] [Accepted: 12/20/2017] [Indexed: 12/24/2022] Open
Abstract
Characterization of the cardiac cellulome, the network of cells that form the heart, is essential for understanding cardiac development and normal organ function and for formulating precise therapeutic strategies to combat heart disease. Recent studies have reshaped our understanding of cardiac cellular composition and highlighted important functional roles for non-myocyte cell types. In this study, we characterized single-cell transcriptional profiles of the murine non-myocyte cardiac cellular landscape using single-cell RNA sequencing (scRNA-seq). Detailed molecular analyses revealed the diversity of the cardiac cellulome and facilitated the development of techniques to isolate understudied cardiac cell populations, such as mural cells and glia. Our analyses also revealed extensive networks of intercellular communication and suggested prevalent sexual dimorphism in gene expression in the heart. This study offers insights into the structure and function of the mammalian cardiac cellulome and provides an important resource that will stimulate studies in cardiac cell biology.
Collapse
Affiliation(s)
| | | | - Micheal A McLellan
- The Jackson Laboratory, Bar Harbor, ME, USA; Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA
| | | | - Paul Robson
- The Jackson Laboratory, Bar Harbor, ME, USA; The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Department of Genetics and Genome Sciences, University of Connecticut, Farmington, CT, USA
| | - Nadia A Rosenthal
- The Jackson Laboratory, Bar Harbor, ME, USA; Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA; The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia; National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| | - Alexander R Pinto
- The Jackson Laboratory, Bar Harbor, ME, USA; Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
81
|
Khodeer DM, Bilasy SE, Farag NE, Mehana AE, Elbaz AA. Sitagliptin protects diabetic rats with acute myocardial infarction through induction of angiogenesis: role of IGF-1 and VEGF. Can J Physiol Pharmacol 2019; 97:1053-1063. [PMID: 31116952 DOI: 10.1139/cjpp-2018-0670] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Angiogenesis is regulated in a tissue-specific manner in all patients, especially those with diabetes. In this study, we describe a novel molecular pathway of angiogenesis regulation in diabetic rats with myocardial infarction (MI) and examine the cardioprotective effects of different doses of sitagliptin. Male rats were divided into 5 groups: normal vehicle group, diabetic group, diabetic + MI, diabetic + MI + 5 mg/kg sitagliptin, and diabetic + MI + 10 mg/kg sitagliptin. Isoproterenol in diabetic rats resulted in significant (p < 0.05) disturbance to the electrocardiogram, cardiac histopathological manifestations, and an increase in inflammatory markers compared with the vehicle and diabetic groups. Treatment with sitagliptin improved the electrocardiogram and histopathological sections, upregulated vascular endothelial growth factor (VEGF) and transmembrane phosphoglycoprotein protein (CD34) in cardiac tissues, and increased serum insulin-like growth factor 1 (IGF-1) and decreased cardiac tissue homogenate for interleukin 6 (IL-6) and cyclooxygenase 2 (COX-2). A relationship was found between serum IGF-1 and cardiac VEGF and CD34 accompanied by an improvement in cardiac function of diabetic rats with MI. Therefore, the observed effects of sitagliptin occurred at least partly through an improvement in angiogenesis and the mitigation of inflammation. Consequently, these data suggest that sitagliptin may contribute, in a dose-dependent manner, to protection against acute MI in diabetic individuals.
Collapse
Affiliation(s)
- Dina M Khodeer
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Shymaa E Bilasy
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Noha E Farag
- Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Amir E Mehana
- Department of Zoology, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Amani A Elbaz
- Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
82
|
Ishikawa J, Kano F, Ando Y, Hibi H, Yamamoto A. Monocyte chemoattractant protein-1 and secreted ectodomain of sialic acid-binding Ig-like lectin-9 enhance bone regeneration by inducing M2 macrophages. JOURNAL OF ORAL AND MAXILLOFACIAL SURGERY, MEDICINE, AND PATHOLOGY 2019. [DOI: 10.1016/j.ajoms.2018.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
83
|
Solé M, Esteban-Lopez M, Taltavull B, Fábregas C, Fadó R, Casals N, Rodríguez-Álvarez J, Miñano-Molina AJ, Unzeta M. Blood-brain barrier dysfunction underlying Alzheimer's disease is induced by an SSAO/VAP-1-dependent cerebrovascular activation with enhanced Aβ deposition. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2189-2202. [PMID: 31047972 DOI: 10.1016/j.bbadis.2019.04.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/03/2019] [Accepted: 04/26/2019] [Indexed: 12/11/2022]
Abstract
Dysfunctions of the vascular system directly contribute to the onset and progression of Alzheimer's disease (AD). The blood-brain barrier (BBB) shows signs of malfunction at early stages of the disease. When Abeta peptide (Aβ) is deposited on brain vessels, it induces vascular degeneration by producing reactive oxygen species and promoting inflammation. These molecular processes are also related to an excessive SSAO/VAP-1 (semicarbazide-sensitive amine oxidase) enzymatic activity, observed in plasma and in cerebrovascular tissue of AD patients. We studied the contribution of vascular SSAO/VAP-1 to the BBB dysfunction in AD using in vitro BBB models. Our results show that SSAO/VAP-1 expression is associated to endothelial activation by altering the release of pro-inflammatory and pro-angiogenic angioneurins, most highly IL-6, IL-8 and VEGF. It is also related to a BBB structure alteration, with a decrease in tight-junction proteins such as zona occludens or claudin-5. Moreover, the BBB function reveals increased permeability and leukocyte adhesion in cells expressing SSAO/VAP-1, as well as an enhancement of the vascular Aβ deposition induced by mechanisms both dependent and independent of the enzymatic activity of SSAO/VAP-1. These results reveal an interesting role of vascular SSAO/VAP-1 in BBB dysfunction related to AD progression, opening a new window in the search of alternative therapeutic targets for fighting AD.
Collapse
Affiliation(s)
- Montse Solé
- Biochemistry and Molecular Biology Department, Institute of Neurosciences (INc), Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain.
| | - María Esteban-Lopez
- Biochemistry and Molecular Biology Department, Institute of Neurosciences (INc), Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Biel Taltavull
- Biochemistry and Molecular Biology Department, Institute of Neurosciences (INc), Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Cristina Fábregas
- Biochemistry and Molecular Biology Department, Institute of Neurosciences (INc), Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Rut Fadó
- Basic Sciences Department, Facultat de Medicina i Ciències de la Salut, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain
| | - Núria Casals
- Basic Sciences Department, Facultat de Medicina i Ciències de la Salut, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Santiago de Compostela, Spain
| | - Jose Rodríguez-Álvarez
- Biochemistry and Molecular Biology Department, Institute of Neurosciences (INc), Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Alfredo J Miñano-Molina
- Biochemistry and Molecular Biology Department, Institute of Neurosciences (INc), Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Mercedes Unzeta
- Biochemistry and Molecular Biology Department, Institute of Neurosciences (INc), Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain.
| |
Collapse
|
84
|
Alexandru N, Safciuc F, Constantin A, Nemecz M, Tanko G, Filippi A, Dragan E, Bãdilã E, Georgescu A. Platelets of Healthy Origins Promote Functional Improvement of Atherosclerotic Endothelial Progenitor Cells. Front Pharmacol 2019; 10:424. [PMID: 31068820 PMCID: PMC6491786 DOI: 10.3389/fphar.2019.00424] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/03/2019] [Indexed: 11/13/2022] Open
Abstract
The purpose was to evaluate the effect of platelets on functional properties of late endothelial progenitor cells (EPCs), in the direct co-culture conditions, and to investigate the involved mediators, in experimental induced atherosclerosis. The late EPCs obtained from two animal groups, hypertensive-hyperlipidemic (HH) and control (C) hamsters, named late EPCs-HH and late EPCs-C, were co-incubated with or without platelets isolated from both groups. Our results have showed that exposure to platelets from control animals: (i) promoted the late EPCs-C capacity to form colonies and capillary-like structures, and also to proliferate and migrate; (ii) improved the functional properties of late EPCs-HH; (iii) strengthened the direct binding EPCs-platelets; (iv) increased SDF-1α,VEGF, PDGF, and reduced CD40L, IL-1β,-6,-8 levels; and (v) enhanced miR-223 and IGF-1R expressions. Platelets from HH group diminished functional abilities for both EPC types and had opposite effects on these pro-angiogenic and pro-inflammatory molecules. Furthermore, testing the direct effect of miR-223 and IGF-1R on late EPCs disclosed that these molecular factors improve late EPC functional properties in atherosclerosis in terms of stimulation of the proliferation and migration abilities. In conclusion, in vitro exposure to platelets of healthy origins had a positive effect on functional properties of atherosclerotic late EPCs. The most likely candidates mediating EPC-platelet interaction can be SDF-1α, VEGF, CD40L, PDGF, IL-1β,-6,-8, miR-223, and IGF-1R. The current study brings evidences that the presence of healthy origin platelets is of utmost importance on functional improvement of EPCs in atherosclerosis.
Collapse
Affiliation(s)
- Nicoleta Alexandru
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania
| | - Florentina Safciuc
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania
| | - Alina Constantin
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania
| | - Miruna Nemecz
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania
| | - Gabriela Tanko
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania
| | - Alexandru Filippi
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania
| | - Emanuel Dragan
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania
| | - Elisabeta Bãdilã
- Internal Medicine Clinic, Emergency Clinical Hospital, Bucharest, Romania.,'Carol Davila' University of Medicine and Pharmacy, Bucharest, Romania
| | - Adriana Georgescu
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania
| |
Collapse
|
85
|
Higashi Y, Gautam S, Delafontaine P, Sukhanov S. IGF-1 and cardiovascular disease. Growth Horm IGF Res 2019; 45:6-16. [PMID: 30735831 PMCID: PMC6504961 DOI: 10.1016/j.ghir.2019.01.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/17/2018] [Accepted: 01/30/2019] [Indexed: 12/14/2022]
Abstract
Atherosclerosis is an inflammatory arterial pathogenic condition, which leads to ischemic cardiovascular diseases, such as coronary artery disease and myocardial infarction, stroke, and peripheral arterial disease. Atherosclerosis is a multifactorial disorder and its pathophysiology is highly complex. Changes in expression of multiple genes coupled with environmental and lifestyle factors initiate cascades of adverse events involving multiple types of cells (e.g. vascular endothelial cells, smooth muscle cells, and macrophages). IGF-1 is a pleiotropic factor, which is found in the circulation (endocrine IGF-1) and is also produced locally in arteries (endothelial cells and smooth muscle cells). IGF-1 exerts a variety of effects on these cell types in the context of the pathogenesis of atherosclerosis. In fact, there is an increasing body of evidence suggesting that IGF-1 has beneficial effects on the biology of atherosclerosis. This review will discuss recent findings relating to clinical investigations on the relation between IGF-1 and cardiovascular disease and basic research using animal models of atherosclerosis that have elucidated some of the mechanisms underlying atheroprotective effects of IGF-1.
Collapse
Affiliation(s)
- Yusuke Higashi
- Department of Medicine, School of Medicine, University of Missouri, Columbia, MO, United States; Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States.
| | - Sandeep Gautam
- Department of Medicine, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Patrick Delafontaine
- Department of Medicine, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Sergiy Sukhanov
- Department of Medicine, School of Medicine, University of Missouri, Columbia, MO, United States
| |
Collapse
|
86
|
van Bel F, Vaes J, Groenendaal F. Prevention, Reduction and Repair of Brain Injury of the Preterm Infant. Front Physiol 2019; 10:181. [PMID: 30949060 PMCID: PMC6435588 DOI: 10.3389/fphys.2019.00181] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/14/2019] [Indexed: 12/15/2022] Open
Affiliation(s)
- Frank van Bel
- Department of Neonatology, Wilhelmina Children’s Hospital and Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Josine Vaes
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Floris Groenendaal
- Department of Neonatology, Wilhelmina Children’s Hospital and Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
87
|
Zhang Y, Yu M, Zhao X, Dai M, Chen C, Tian W. Optimizing adipose tissue extract isolation with stirred suspension culture. Connect Tissue Res 2019; 60:178-188. [PMID: 29852798 DOI: 10.1080/03008207.2018.1483357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Adherent culture which is used to collect adipose tissue extract (ATE) previously brings the problem of inhomogeneity and non-repeatability. Here we aim to extract ATE with stirred suspension culture to speed up the extraction process, stabilize the yield, and improve consistent potency metrics of ATE. MATERIALS AND METHODS ATE was collected with adherent culture (ATE-A) and stirred suspension culture (ATE-S) separately. Protein yield and composition were detected by SDS-PAGE, while cytokines in ATE were determined with ELISA. The adipogenic and angiogenic potential of ATE were compared by western blot and qPCR. In addition, haematoxylin and eosin staining and lactate dehydrogenase (LDH) activity assays were used to analyze the cell viability of adipose tissue cultured with different methods. RESULTS The yield of ATE-S was consistent while ATE-A varied notably. Characterization of the protein composition and exosome-like vesicles (ELVs) indicated no significant difference between ATE-S and ATE-A. The concentrations of cytokines (VEGF, bFGF, and IL-6) showed no significant difference, while IGF in ATE-S was higher than that in ATE-A. ATE-S showed upregulated adipogenic and angiogenic potential compared to ATE-A. Morever, stirred suspension culture decreased the LDH activity of ATE while increased the number of viable adipocytes and reduced adipose tissue necrosis. CONCLUSION Compared with adherent culture, stirred suspension culture is a reliable, time- and labor-saving method to collect ATE, which might be used to improve the downstream applications of ATE.
Collapse
Affiliation(s)
- Yan Zhang
- a State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology , Sichuan University , Chengdu , China
| | - Mei Yu
- a State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology , Sichuan University , Chengdu , China
| | - Xueyong Zhao
- a State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology , Sichuan University , Chengdu , China
| | - Minjia Dai
- a State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology , Sichuan University , Chengdu , China
| | - Chang Chen
- a State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology , Sichuan University , Chengdu , China
| | - Weidong Tian
- a State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology , Sichuan University , Chengdu , China
| |
Collapse
|
88
|
Maffei P, Dassie F, Wennberg A, Parolin M, Vettor R. The Endothelium in Acromegaly. Front Endocrinol (Lausanne) 2019; 10:437. [PMID: 31396153 PMCID: PMC6667653 DOI: 10.3389/fendo.2019.00437] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/18/2019] [Indexed: 12/12/2022] Open
Abstract
Growth hormone (GH) and insulin like growth factor-1 (IGF-1) excess induce well-known deleterious effects on the cardiovascular system, especially after long-term exposition. Acromegaly, a condition of chronic GH and IGF-1 hypersecretion, is frequently associated to cardiovascular complications, although recent studies have shown a reduction in the prevalence of these comorbidities in well-controlled patients and a mortality risk similar to normal aging population. Many factors could contribute to the increased cardiovascular risk of acromegaly patients. Among these factors, the endothelium plays a key role in the pathogenesis of atherosclerotic plaques and could be considered an early marker of atherosclerosis and cardiovascular dysfunction. In this review we examined the relationship between GH/IGF-1 excess and the endothelium, from basic studies to clinical evidence. Many studies involving various arterial districts (microvascular arteries of retina, kidney and brain, and major vessels as carotid and aorta) showed that GH/IGF-1 excess promotes endothelial dysfunction via several different mechanisms. Increased endothelial proliferation, dysfunction of endothelial progenitor cells, increased oxidative stress, and compromised oxidative defenses are the main factors that are associated with endothelial dysfunction. In the general population, these alterations are associated with the development of atherosclerosis with an increased incidence of coronary artery disease and cerebrovascular complications. However, in acromegaly this is still a debated issue, despite the presence of many pro-atherogenic factors and comorbidities, such as hypertension, diabetes, sleep apnoea, and metabolic syndrome. Preclinical markers of atherosclerosis as arterial intima media thickness, pulse wave velocity and flow mediated dilation seem to be impaired in acromegaly and partly mediated by the endothelium dysfunction. In conclusion, the pathophysiology of endothelial dysfunction in the condition of GH and IGF-1 excess remains a crucial area of investigation to fully dissect the association of acromegaly with cardiovascular disease complications.
Collapse
Affiliation(s)
- Pietro Maffei
- Clinica Medica 3, Department of Medicine (DIMED), Padua University Hospital, Padua, Italy
- *Correspondence: Pietro Maffei
| | - Francesca Dassie
- Clinica Medica 3, Department of Medicine (DIMED), Padua University Hospital, Padua, Italy
| | - Alexandra Wennberg
- Clinica Neurologica, Department of Neurosciences (DNS), Padua University Hospital, Padua, Italy
| | - Matteo Parolin
- Clinica Medica 3, Department of Medicine (DIMED), Padua University Hospital, Padua, Italy
| | - Roberto Vettor
- Clinica Medica 3, Department of Medicine (DIMED), Padua University Hospital, Padua, Italy
| |
Collapse
|
89
|
Anderson SR, Vetter ML. Developmental roles of microglia: A window into mechanisms of disease. Dev Dyn 2019; 248:98-117. [PMID: 30444278 PMCID: PMC6328295 DOI: 10.1002/dvdy.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/21/2018] [Accepted: 10/21/2018] [Indexed: 12/12/2022] Open
Abstract
Microglia are engineers of the central nervous system (CNS) both in health and disease. In addition to the canonical immunological roles of clearing damaging entities and limiting the spread of toxicity and death, microglia remodel the CNS throughout life. While they have been extensively studied in disease and injury, due to their highly variable functions, their precise role in these contexts still remains uncertain. Over the past decade, we have greatly expanded our understanding of microglial function, including their essential homeostatic roles during development. Here, we review these developmental roles, identify parallels in disease, and speculate whether developmental mechanisms re-emerge in disease and injury. Developmental Dynamics 248:98-117, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sarah R Anderson
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, Utah
| | - Monica L Vetter
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah
| |
Collapse
|
90
|
Oncofoetal insulin receptor isoform A marks the tumour endothelium; an underestimated pathway during tumour angiogenesis and angiostatic treatment. Br J Cancer 2018; 120:218-228. [PMID: 30559346 PMCID: PMC6342959 DOI: 10.1038/s41416-018-0347-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/17/2018] [Accepted: 10/24/2018] [Indexed: 12/29/2022] Open
Abstract
Background In a genomic screen for determinants of the tumour vasculature, we identified insulin receptor (INSR) to mark the tumour endothelium. As a functional role for insulin/INSR in cancer has been suggested and markers of the tumour endothelium may be attractive therapeutic targets, we investigated the role of INSR in angiogenesis. Methods In a genomic screen for determinants of the tumour vasculature we identified insulin receptor to mark the tumour endothelium. Results The current report demonstrates the following: (i) the heavy overexpression of INSR on angiogenic vasculature in human tumours and the correlation to short survival, (ii) that INSR expression in the tumour vasculature is mainly representing the short oncofoetal and non-metabolic isoform INSR-A, (iii) the angiogenic activity of insulin on endothelial cells (EC) in vitro and in vivo, (iv) suppression of proliferation and sprouting of EC in vitro after antibody targeting or siRNA knockdown, and (v) inhibition of in vivo angiogenesis in the chicken chorioallantoic membrane (CAM) by anti-INSR antibodies. We additionally show, using preclinical mouse as well as patient data, that treatment with the inhibitor sunitinib significantly reduces the expression of INSR-A. Conclusions The current study underscores the oncogenic impact of INSR and suggests that targeting the INSR-A isoform should be considered in therapeutic settings.
Collapse
|
91
|
Meng LB, Chen K, Zhang YM, Gong T. Common Injuries and Repair Mechanisms in the Endothelial Lining. Chin Med J (Engl) 2018; 131:2338-2345. [PMID: 30246720 PMCID: PMC6166454 DOI: 10.4103/0366-6999.241805] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Objective: Endothelial cells (ECs) are important metabolic and endocrinal organs which play a significant role in regulating vascular function. Vascular ECs, located between the blood and vascular tissues, can not only complete the metabolism of blood and interstitial fluid but also synthesize and secrete a variety of biologically active substances to maintain vascular tension and keep a normal flow of blood and long-term patency. Therefore, this article presents a systematic review of common injuries and healing mechanisms for the vascular endothelium. Data Sources: An extensive search in the PubMed database was undertaken, focusing on research published after 2003 with keywords including endothelium, vascular, wounds and injuries, and wound healing. Study Selection: Several types of articles, including original studies and literature reviews, were identified and reviewed to summarize common injury and repair processes of the endothelial lining. Results: Endothelial injury is closely related to the development of multiple cardiovascular and cerebrovascular diseases. However, the mechanism of vascular endothelial injury is not fully understood. Numerous studies have shown that the mechanisms of EC injury mainly involve inflammatory reactions, physical stimulation, chemical poisons, concurrency of related diseases, and molecular changes. Endothelial progenitor cells play an important role during the process of endothelial repair after such injuries. What's more, a variety of restorative cells, changes in cytokines and molecules, chemical drugs, certain RNAs, regulation of blood pressure, and physical fitness training protect the endothelial lining by reducing the inducing factors, inhibiting inflammation and oxidative stress reactions, and delaying endothelial caducity. Conclusions: ECs are always in the process of being damaged. Several therapeutic targets and drugs were seeked to protect the endothelium and promote repair.
Collapse
Affiliation(s)
- Ling-Bing Meng
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Kun Chen
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Yuan-Meng Zhang
- Department of Internal Medicine, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Tao Gong
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| |
Collapse
|
92
|
Cannavicci A, Zhang Q, Dai SC, Faughnan ME, Kutryk MJB. Decreased levels of miR-28-5p and miR-361-3p and increased levels of insulin-like growth factor 1 mRNA in mononuclear cells from patients with hereditary hemorrhagic telangiectasia 1. Can J Physiol Pharmacol 2018; 97:562-569. [PMID: 30512964 DOI: 10.1139/cjpp-2018-0508] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is a rare vascular disorder inherited in an autosomal dominant manner. Patients with HHT can develop vascular dysplasias called telangiectasias and arteriovenous malformations (AVMs). Our objective was to profile and characterize micro-RNAs (miRNAs), short noncoding RNAs that regulate gene expression posttranscriptionally, in HHT patient-derived peripheral blood mononuclear cells (PBMCs). PBMCs, comprised mostly of lymphocytes and monocytes, have been reported to be dysfunctional in HHT. A total of 40 clinically confirmed HHT patients and 22 controls were enrolled in this study. PBMCs were isolated from 16 mL of peripheral blood and purified for total RNA. MiRNA expression profiling was conducted with a human miRNA array analysis. Select dysregulated miRNAs and miRNA targets were validated with reverse transcription-quantitative polymerase chain reaction. Of the 377 miRNAs screened, 41 dysregulated miRNAs were identified. Both miR-28-5p and miR-361-3p, known to target insulin-like growth factor 1 (IGF1), a potent angiogenic growth factor, were found to be significantly downregulated in HHT patients. Consequently, IGF1 mRNA levels were found to be significantly elevated. Our research successfully identified miRNA dysregulation and elevated IGF1 mRNA levels in PBMCs from HHT patients. This novel discovery represents a potential pathogenic mechanism that could be targeted to alleviate clinical manifestations of HHT.
Collapse
Affiliation(s)
- Anthony Cannavicci
- a Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada.,b Division of Cardiology, Keenan Research Center for Biomedical Sciences, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada
| | - Qiuwang Zhang
- b Division of Cardiology, Keenan Research Center for Biomedical Sciences, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada
| | - Si-Cheng Dai
- b Division of Cardiology, Keenan Research Center for Biomedical Sciences, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada
| | - Marie E Faughnan
- c Division of Respirology, Keenan Research Center for Biomedical Sciences, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada
| | - Michael J B Kutryk
- a Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada.,b Division of Cardiology, Keenan Research Center for Biomedical Sciences, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
93
|
Wu S, Xia B, Mai S, Feng Z, Wang X, Liu Y, Liu R, Li Z, Xiao Y, Chen Z, Chen Z. Sodium Fluoride under Dose Range of 2.4–24 μM, a Promising Osteoimmunomodulatory Agent for Vascularized Bone Formation. ACS Biomater Sci Eng 2018; 5:817-830. [PMID: 33405842 DOI: 10.1021/acsbiomaterials.8b00570] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shiyu Wu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, P. R. China
| | - Binbin Xia
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, P. R. China
| | - Sui Mai
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, P. R. China
| | - Zhicai Feng
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, P. R. China
| | - Xiaoshuang Wang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, P. R. China
| | - Yudong Liu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, P. R. China
| | - Runheng Liu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, P. R. China
| | - Zhipeng Li
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, P. R. China
| | - Yin Xiao
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, P. R. China
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, Queensland 4059, Australia
| | - Zhuofan Chen
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, P. R. China
| | - Zetao Chen
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, P. R. China
| |
Collapse
|
94
|
Legesse B, Kaur A, Kenchegowda D, Hritzo B, Culp WE, Moroni M. Neulasta Regimen for the Hematopoietic Acute Radiation Syndrome: Effects Beyond Neutrophil Recovery. Int J Radiat Oncol Biol Phys 2018; 103:935-944. [PMID: 30496878 DOI: 10.1016/j.ijrobp.2018.11.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/19/2018] [Accepted: 11/19/2018] [Indexed: 12/17/2022]
Abstract
PURPOSE Understanding the physiopathology underlying the acute radiation syndrome (ARS) and the mechanism of action of drugs known to ameliorate ARS is expected to help identify novel countermeasure candidates and improve the outcome for victims exposed to radiation. Granulocyte colony-stimulating factor (G-CSF) has been approved by the US Food and Drug Administration for treatment of hematopoietic ARS (H-ARS) because of its ability to alleviate myelosuppression. Besides its role in hematopoiesis, G-CSF is known to protect the cardiovascular and neurologic systems, to attenuate vascular injury and cardiac toxicity, to preserve gap junction function, and to modulate inflammation and oxidative stress. Here, we characterized the protective effects of G-CSF beyond neutrophil recovery in minipigs exposed to H-ARS doses. METHODS AND MATERIALS Twenty male Göttingen minipigs were exposed to total body, acute ionizing radiation. Animals received either pegylated G-CSF (Neulasta) or dextrose at days 1 and 8 after irradiation. Survival was monitored over a 45-day period. RESULTS Neulasta decreased mortality compared with the control, reduced nadir and duration of neutropenia, and lowered prevalence of organ hemorrhage and frank bleeding episodes. Neulasta also increased plasma concentration of IGF-1 hormone, activated the cardiovascular protective IGF-1R/PI3K/Akt/eNOS/NO pathway, and enhanced membrane expression of VE-cadherin in the heart, improving vascular tone and barrier function. Expression of the acute phase protein CRP, a mediator of cardiovascular diseases and a negative regulator of the IGF-1 pathway, was also induced but at much lower extent compared with IGF-1. Activity of catalase and superoxide dismutase (SOD-1) was only marginally affected, whereas activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase was downregulated. CONCLUSIONS In addition to a neutrophilic effect, amelioration of endothelial homeostasis and barrier function and reduction in NADPH oxidase contribute to the beneficial effects of Neulasta for the treatment of H-ARS.
Collapse
Affiliation(s)
- Betre Legesse
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| | - Amandeep Kaur
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| | - Doreswamy Kenchegowda
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| | - Bernadette Hritzo
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| | - William E Culp
- Biomedical Instrumentation Center, Uniformed Services University of the Health Sciences, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Maria Moroni
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, Maryland.
| |
Collapse
|
95
|
Tonietto L, Vasquez AF, Dos Santos LA, Weber JB. Histological and structural evaluation of growth hormone and PLGA incorporation in macroporous scaffold of α-tricalcium phosphate cement. J Biomater Appl 2018; 33:866-875. [PMID: 30426862 DOI: 10.1177/0885328218812173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An in vivo study was conducted to evaluate the effects of the incorporation of fibers of poly(lactic acid-co-glycolic acid, PLGA) and poly(isoprene) blend and recombinant human growth hormone (rhGH) in a macroporous scaffold of α-tricalcium phosphate cement (α-TCP) samples inserted into calvarial defects (8 mm in diameter) of 48 Wistar rats. The samples of α-TCP + PLGA/poly(isoprene) blend fibers were also submitted to a mechanical test of flexural strength. The animals of the different experimental groups [1] α-TCP (n = 6); [2] α-TCP + PLGA/poly(isoprene) blend fibers (n = 6); [3] α-TCP + rhGH, (n = 6) and [4] α-TCP + PLGA/poly(isoprene) blend fibers + rhGH, (n = 6) (the numbers within square brackets identify the experimental groups), after two weeks (subdivision "a") and four weeks (subdivision "b"), were euthanized and the implants removed for histological analysis. There was no statistical difference (p > 0.05) between the samples with and without fibers in the mechanical test. Light microscopy revealed good integration of the material in the host tissue, represented by tissue penetration into the macropores and adequate angiogenesis. In the two-week period, the groups [3a] and [4a] were significantly superior (p < 0.05) to the other groups with regard to angiogenesis and bone neoformation. In the four-week period, the group [3b] was significantly superior (p < 0.05) to the other groups with regard to bone neoformation. We conclude that the macroporous α-TCP scaffold used in this study has low mechanical resistance, is biocompatible and has significantly improved the osteoconductive capacity when rhGH is incorporated into its structure.
Collapse
Affiliation(s)
- Leonardo Tonietto
- 1 School of Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Andres F Vasquez
- 2 Laboratory of Biomaterials (LABIOMAT), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Luís A Dos Santos
- 2 Laboratory of Biomaterials (LABIOMAT), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - João Bb Weber
- 1 School of Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| |
Collapse
|
96
|
Niderla-Bielińska J, Bartkowiak K, Ciszek B, Jankowska-Steifer E, Krejner A, Ratajska A. Sulodexide inhibits angiogenesis via decreasing Dll4 and Notch1 expression in mouse proepicardial explant cultures. Fundam Clin Pharmacol 2018; 33:159-169. [PMID: 30246884 DOI: 10.1111/fcp.12418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/17/2018] [Accepted: 09/19/2018] [Indexed: 12/28/2022]
Abstract
Sulodexide (SDX) is a mixed drug containing low-molecular-weight heparin sulfate and dermatan sulfate. It exerts mild anticoagulant action but can also affect leukocytes, macrophages, and cell-cell adhesion and may interact with growth factors although its direct influence on endothelial cells is not well described. Clinically, SDX is used for the treatment of cardiovascular diseases, where it exerts anti-inflammatory and endothelial protective effects. The aim of this study was to determine the influence of SDX on tubule formation and angiogenesis-related proteins' mRNA expression in endothelial cell line C166 and mouse proepicardial explants. C166 cells and explants were stimulated with a proangiogenic cocktail containing bFGF/VEGF-A120 /VEGF-A164 enriched with SDX. After stimulation, the number and morphology of tubules stained with anti-CD31 antibody were examined under confocal microscope and expression of mRNA for VEGF-A, VEGF-B, VEGF-C, bFGF, IGF-1, Dll4, and Notch1 was measured with real-time PCR. In C166 cell line, there was no difference in tubule formation and mRNA expression, but in proepicardial explants, we observed reduction in tubule number and in mRNA level for DLL4 and Notch1 after SDX administration. In conclusion, SDX indirectly inhibits angiogenesis in mouse proepicardial explant cultures but has no direct effect on the C166 endothelial cell line.
Collapse
Affiliation(s)
- Justyna Niderla-Bielińska
- Department of Histology and Embryology, Medical Univertiry of Warsaw, Chałubinskiego 5 St, Warsaw, 02-004, Poland
| | - Krzysztof Bartkowiak
- Department of Histology and Embryology, Medical Univertiry of Warsaw, Chałubinskiego 5 St, Warsaw, 02-004, Poland
| | - Bogdan Ciszek
- Department of Clinical Anatomy, Medical Univertiry of Warsaw, Chałubinskiego 5 St, Warsaw, 02-004, Poland
| | - Ewa Jankowska-Steifer
- Department of Histology and Embryology, Medical Univertiry of Warsaw, Chałubinskiego 5 St, Warsaw, 02-004, Poland
| | - Alicja Krejner
- Department of Histology and Embryology, Medical Univertiry of Warsaw, Chałubinskiego 5 St, Warsaw, 02-004, Poland
| | - Anna Ratajska
- Department of Pathology, Medical University of Warsaw, Chałubinskiego 5 St, Warsaw, 02-004, Poland
| |
Collapse
|
97
|
Yamashita T, Jinnin M, Makino K, Kajihara I, Aoi J, Masuguchi S, Fukushima S, Ihn H. Serum cytokine profiles are altered in patients with progressive infantile hemangioma. Biosci Trends 2018; 12:438-441. [DOI: 10.5582/bst.2018.01118] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Tomoka Yamashita
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University
| | - Masatoshi Jinnin
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University
| | - Katsunari Makino
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University
| | - Ikko Kajihara
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University
| | - Jun Aoi
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University
| | - Shinichi Masuguchi
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University
| | - Satoshi Fukushima
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University
| | - Hironobu Ihn
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University
| |
Collapse
|
98
|
Dallinga MG, Yetkin-Arik B, Kayser RP, Vogels IMC, Nowak-Sliwinska P, Griffioen AW, van Noorden CJF, Klaassen I, Schlingemann RO. IGF2 and IGF1R identified as novel tip cell genes in primary microvascular endothelial cell monolayers. Angiogenesis 2018; 21:823-836. [PMID: 29951828 PMCID: PMC6208896 DOI: 10.1007/s10456-018-9627-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/18/2018] [Indexed: 12/12/2022]
Abstract
Tip cells, the leading cells of angiogenic sprouts, were identified in cultures of human umbilical vein endothelial cells (HUVECs) by using CD34 as a marker. Here, we show that tip cells are also present in primary human microvascular endothelial cells (hMVECs), a more relevant endothelial cell type for angiogenesis. By means of flow cytometry, immunocytochemistry, and qPCR, it is shown that endothelial cell cultures contain a dynamic population of CD34+ cells with many hallmarks of tip cells, including filopodia-like extensions, elevated mRNA levels of known tip cell genes, and responsiveness to stimulation with VEGF and inhibition by DLL4. Furthermore, we demonstrate that our in vitro tip cell model can be exploited to investigate cellular and molecular mechanisms in tip cells and to discover novel targets for anti-angiogenesis therapy in patients. Small interfering RNA (siRNA) was used to knockdown gene expression of the known tip cell genes angiopoietin 2 (ANGPT2) and tyrosine kinase with immunoglobulin-like and EGF-like domains 1 (TIE1), which resulted in similar effects on tip cells and sprouting as compared to inhibition of tip cells in vivo. Finally, we identified two novel tip cell-specific genes in CD34+ tip cells in vitro: insulin-like growth factor 2 (IGF2) and IGF-1-receptor (IGF1R). Knockdown of these genes resulted in a significant decrease in the fraction of tip cells and in the extent of sprouting in vitro and in vivo. In conclusion, this study shows that by using our in vitro tip cell model, two novel essential tip cells genes are identified.
Collapse
Affiliation(s)
- Marchien G Dallinga
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, The Netherlands
| | - Bahar Yetkin-Arik
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, The Netherlands
| | - Richelle P Kayser
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, The Netherlands
| | - Ilse M C Vogels
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, The Netherlands
| | - Cornelis J F van Noorden
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, The Netherlands
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Ingeborg Klaassen
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, The Netherlands.
- Ocular Angiogenesis Group, Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, Meibergdreef 15, Room L3-154, 1105 AZ, Amsterdam, The Netherlands.
| | - Reinier O Schlingemann
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, The Netherlands
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| |
Collapse
|
99
|
McSkane M, Stintzing S, Heinemann V, Puccini A, Naseem M, Cao S, Lenz HJ, Jelas I. Association Between Height and Clinical Outcome in Metastatic Colorectal Cancer Patients Enrolled Onto a Randomized Phase 3 Clinical Trial: Data From the FIRE-3 Study. Clin Colorectal Cancer 2018; 17:215-222.e3. [PMID: 29880436 DOI: 10.1016/j.clcc.2018.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Previous studies have found significant relationships between height and colorectal cancer (CRC) risk. Increased growth has been associated with activated pathways such as insulin-like growth factor 1. This study examined the impact of height on outcomes in metastatic CRC patients enrolled onto the FIRE-3 study, a randomized phase 3 clinical trial. PATIENTS AND METHODS A total of 695 patients with metastatic CRC were studied and height was measured in centimeters. Male patients were grouped as ≤ 165, 166-175, 176-185, and ≥ 186 cm in height; female patients were grouped as ≤ 154, 155-164, 165-174, and ≥ 175 cm in height. Primary end point was overall survival (OS); secondary end point was progression-free survival. RESULTS When patients' heights were categorized into 4 groups, the tallest group showed a worse OS compared to the shortest group; however, there was no linear relationship between height and OS. To investigate this, we showed the association between height as a continuous variable and OS. Patients shorter than 172 cm had a worse OS as their height decreased. Patients taller than 172 cm had a worse OS as their height increased. Moreover, patients with heights between 165 and 179 cm had a better OS compared to other patients (P = .05). This effect was independent of treatment arm and gender. CONCLUSION Patients shorter than 165 cm and taller than 179 cm have a worse OS, while those between 165 and 179 cm have a better OS. Hence, clinicians should consider height as an important prognostic factor when treating metastatic CRC patients. Future prospective studies are warranted to shed light on the mechanisms underlying the worse OS in taller patients.
Collapse
Affiliation(s)
- Michelle McSkane
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Sebastian Stintzing
- Comprehensive Cancer Center, Ludwig-Maximilian-University of Munich, Munich, Germany
| | - Volker Heinemann
- Comprehensive Cancer Center, Ludwig-Maximilian-University of Munich, Munich, Germany
| | - Alberto Puccini
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Madiha Naseem
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Shu Cao
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA; Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA.
| | - Ivan Jelas
- Comprehensive Cancer Center, Ludwig-Maximilian-University of Munich, Munich, Germany
| |
Collapse
|
100
|
Casco-Robles RM, Watanabe A, Eto K, Takeshima K, Obata S, Kinoshita T, Ariizumi T, Nakatani K, Nakada T, Tsonis PA, Casco-Robles MM, Sakurai K, Yahata K, Maruo F, Toyama F, Chiba C. Novel erythrocyte clumps revealed by an orphan gene Newtic1 in circulating blood and regenerating limbs of the adult newt. Sci Rep 2018; 8:7455. [PMID: 29748592 PMCID: PMC5945717 DOI: 10.1038/s41598-018-25867-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 05/01/2018] [Indexed: 11/16/2022] Open
Abstract
The newt, a group of urodele amphibians, has outstanding ability to repeatedly regenerate various body parts, even in the terrestrial life-stage. In this animal, when the limb is amputated, a cell mass named the blastema appears on the stump and eventually gives rise to a new functional limb. Erythrocytes (red blood cells) in most non-mammalian vertebrates, including the newt, preserve their nucleus throughout their life-span, although physiological roles of such nucleated erythrocytes, other than oxygen delivery, are not known. Here we report novel behavior of erythrocytes in the newt. We identified an orphan gene Newtic1, whose transcripts significantly increased in the blastema. Newtic1 was expressed in a subset of erythrocytes that formed a novel clump (EryC). EryC formed a complex with monocytes and was circulating throughout the body. When the limb was amputated, EryCs were newly generated in the stump and accumulated into a distal portion of the growing blastema. Our data suggested that the newt erythrocytes carried multiple secretory molecules including growth factors and matrix metalloproteases, and were capable of delivering these molecules into the blastema as a form of EryCs. This study provides insight into regulations and roles of nucleated erythrocytes, that are independent of oxygen delivery.
Collapse
Affiliation(s)
- Roman M Casco-Robles
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan
| | - Akihiko Watanabe
- Biological Division, Faculty of Science, Yamagata University, Kojirakawa 1-4-12, Yamagata, 990-8560, Japan
| | - Ko Eto
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kurokami 2-39-1, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Kazuhito Takeshima
- Radioisotope Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Shuichi Obata
- Department of Anatomical Sciences, Faculty of Allied Health Sciences, Kitasato University, Kitasato 1-15-1, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Tsutomu Kinoshita
- Department of Life Science, Faculty of Science, Rikkyo University, Nishi-Ikebukuro 3-34-1, Toshima-ku, Tokyo, 171-8501, Japan
| | - Takashi Ariizumi
- Department of Agri-Production Sciences, College of Agriculture, Tamagawa University, Tamagawagakuen 6-1-1, Machida, Tokyo, 194-8610, Japan
| | - Kei Nakatani
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan
| | - Tomoaki Nakada
- Department of Comparative and Behavioral Medicine, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, Kyonan-cho 1-7-1, Musashino, Tokyo, 180-8602, Japan
| | - Panagiotis A Tsonis
- Department of Biology and Center for Tissue Regeneration and Engineering at Dayton, University of Dayton, Dayton, Ohio, 45469-2320, USA
| | - Martin M Casco-Robles
- Department of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan
| | - Keisuke Sakurai
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan
| | - Kensuke Yahata
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan
| | - Fumiaki Maruo
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan
| | - Fubito Toyama
- Graduate School of Engineering, Utsunomiya University, Yoto 7-1-2, Utsunomiya, Tochigi, 321-8585, Japan.
| | - Chikafumi Chiba
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|