51
|
julius seizure, a Drosophila Mutant, Defines a Neuronal Population Underlying Epileptogenesis. Genetics 2017; 205:1261-1269. [PMID: 28082408 DOI: 10.1534/genetics.116.199083] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/06/2017] [Indexed: 11/18/2022] Open
Abstract
Epilepsy is a neural disorder characterized by recurrent seizures. Bang-sensitive Drosophila represent an important model for studying epilepsy and neuronal excitability. Previous work identified the bang-sensitive gene slamdance (sda) as an allele of the aminopeptidase N gene. Here we show through extensive genetic analysis, including recombination frequency, deficiency mapping, transposon insertion complementation testing, RNA interference (RNAi), and genetic rescue that the gene responsible for the seizure sensitivity is julius seizure (jus), formerly CG14509, which encodes a novel transmembrane domain protein. We also describe more severe genetic alleles of jus RNAi-mediated knockdown of jus revealed that it is required only in neurons and not glia, and that partial bang-sensitivity is caused by knockdown in GABAergic or cholinergic but not glutamatergic neurons. RNAi knockdown of jus at the early pupal stages leads to strong seizures in adult animals, implicating that stage as critical for epileptogenesis. A C-terminal-tagged version of Jus was generated from a fosmid genomic clone. This fosmid fusion rescued the bang-sensitive phenotype and was expressed in the optic lobes and the subesophageal and thoracic abdominal ganglia. The protein was primarily localized in axons, especially in the neck connectives, extending into the thoracic abdominal ganglion.
Collapse
|
52
|
Lin WH, Giachello CNG, Baines RA. Seizure control through genetic and pharmacological manipulation of Pumilio in Drosophila: a key component of neuronal homeostasis. Dis Model Mech 2016; 10:141-150. [PMID: 28067623 PMCID: PMC5312004 DOI: 10.1242/dmm.027045] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 12/05/2016] [Indexed: 12/15/2022] Open
Abstract
Epilepsy is a significant disorder for which approximately one-third of patients do not respond to drug treatments. Next-generation drugs, which interact with novel targets, are required to provide a better clinical outcome for these individuals. To identify potential novel targets for antiepileptic drug (AED) design, we used RNA sequencing to identify changes in gene transcription in two seizure models of the fruit fly Drosophila melanogaster The first model compared gene transcription between wild type (WT) and bangsenseless1 (parabss), a gain-of-function mutant in the sole fly voltage-gated sodium channel (paralytic). The second model compared WT with WT fed the proconvulsant picrotoxin (PTX). We identified 743 genes (FDR≤1%) with significant altered expression levels that are common to both seizure models. Of these, 339 are consistently upregulated and 397 downregulated. We identify pumilio (pum) to be downregulated in both seizure models. Pum is a known homeostatic regulator of action potential firing in both flies and mammals, achieving control of neuronal firing through binding to, and regulating translation of, the mRNA transcripts of voltage-gated sodium channels (Nav). We show that maintaining expression of pum in the CNS of parabss flies is potently anticonvulsive, whereas its reduction through RNAi-mediated knockdown is proconvulsive. Using a cell-based luciferase reporter screen, we screened a repurposed chemical library and identified 12 compounds sufficient to increase activity of pum Of these compounds, we focus on avobenzone, which significantly rescues seizure behaviour in parabss flies. The mode of action of avobenzone includes potentiation of pum expression and mirrors the ability of this homeostatic regulator to reduce the persistent voltage-gated Na+ current (INaP) in an identified neuron. This study reports a novel approach to suppress seizure and highlights the mechanisms of neuronal homeostasis as potential targets for next-generation AEDs.
Collapse
Affiliation(s)
- Wei-Hsiang Lin
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Carlo N G Giachello
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Richard A Baines
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
53
|
Fogle KJ, Hertzler JI, Shon JH, Palladino MJ. The ATP-sensitive K channel is seizure protective and required for effective dietary therapy in a model of mitochondrial encephalomyopathy. J Neurogenet 2016; 30:247-258. [PMID: 27868454 DOI: 10.1080/01677063.2016.1252765] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Effective therapies are lacking for mitochondrial encephalomyopathies (MEs). MEs are devastating diseases that predominantly affect the energy-demanding tissues of the nervous system and muscle, causing symptoms such as seizures, cardiomyopathy, and neuro- and muscular degeneration. Even common anti-epileptic drugs which are frequently successful in ameliorating seizures in other diseases tend to have a lower success rate in ME, highlighting the need for novel drug targets, especially those that may couple metabolic sensitivity to neuronal excitability. Furthermore, alternative epilepsy therapies such as dietary modification are gaining in clinical popularity but have not been thoroughly studied in ME. Using the Drosophila ATP61 model of ME, we have studied dietary therapy throughout disease progression and found that it is highly effective against the seizures of ME, especially a high fat/ketogenic diet, and that the benefits are dependent upon a functional KATP channel complex. Further experiments with KATP show that it is seizure-protective in this model, and that pharmacological promotion of its open state also ameliorates seizures. These studies represent important steps forward in the development of novel therapies for a class of diseases that is notoriously difficult to treat, and lay the foundation for mechanistic studies of currently existing therapies in the context of metabolic disease.
Collapse
Affiliation(s)
- Keri J Fogle
- a Department of Pharmacology & Chemical Biology , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA.,b Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine , Pittsburgh , PA , USA
| | - J Ian Hertzler
- a Department of Pharmacology & Chemical Biology , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA.,b Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine , Pittsburgh , PA , USA
| | - Joy H Shon
- a Department of Pharmacology & Chemical Biology , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA.,b Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine , Pittsburgh , PA , USA
| | - Michael J Palladino
- a Department of Pharmacology & Chemical Biology , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA.,b Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine , Pittsburgh , PA , USA
| |
Collapse
|
54
|
Lithium-Responsive Seizure-Like Hyperexcitability Is Caused by a Mutation in the Drosophila Voltage-Gated Sodium Channel Gene paralytic. eNeuro 2016; 3:eN-NWR-0221-16. [PMID: 27844061 PMCID: PMC5103163 DOI: 10.1523/eneuro.0221-16.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/06/2016] [Indexed: 01/01/2023] Open
Abstract
Shudderer (Shu) is an X-linked dominant mutation in Drosophila melanogaster identified more than 40 years ago. A previous study showed that Shu caused spontaneous tremors and defects in reactive climbing behavior, and that these phenotypes were significantly suppressed when mutants were fed food containing lithium, a mood stabilizer used in the treatment of bipolar disorder (Williamson, 1982). This unique observation suggested that the Shu mutation affects genes involved in lithium-responsive neurobiological processes. In the present study, we identified Shu as a novel mutant allele of the voltage-gated sodium (Nav) channel gene paralytic (para). Given that hypomorphic para alleles and RNA interference-mediated para knockdown reduced the severity of Shu phenotypes, Shu was classified as a para hypermorphic allele. We also demonstrated that lithium could improve the behavioral abnormalities displayed by other Nav mutants, including a fly model of the human generalized epilepsy with febrile seizures plus. Our electrophysiological analysis of Shu showed that lithium treatment did not acutely suppress Nav channel activity, indicating that the rescue effect of lithium resulted from chronic physiological adjustments to this drug. Microarray analysis revealed that lithium significantly alters the expression of various genes in Shu, including those involved in innate immune responses, amino acid metabolism, and oxidation-reduction processes, raising the interesting possibility that lithium-induced modulation of these biological pathways may contribute to such adjustments. Overall, our findings demonstrate that Nav channel mutants in Drosophila are valuable genetic tools for elucidating the effects of lithium on the nervous system in the context of neurophysiology and behavior.
Collapse
|
55
|
Seizure Suppression by High Temperature via cAMP Modulation in Drosophila. G3-GENES GENOMES GENETICS 2016; 6:3381-3387. [PMID: 27558668 PMCID: PMC5068957 DOI: 10.1534/g3.116.034629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bang-sensitive (BS) Drosophila mutants display characteristic seizure-like activity (SLA) and paralysis after mechanical shock . After high-frequency electrical stimulation (HFS) of the brain, they generate robust seizures at very low threshold voltage. Here we report an important phenomenon, which effectively suppresses SLA in BS mutants. High temperature causes seizure suppression in all BS mutants (parabss1, eas, sda) examined in this study. This effect is fully reversible and flies show complete recovery from BS paralysis once the temperature effect is nullified. High temperature induces an increase in seizure threshold after a brief pulse of heat shock (HS). By genetic screening, we identified the involvement of cAMP in the suppression of seizures by high temperature. We propose that HS induces adenylyl cyclase which in turn increases cAMP concentration which eventually suppresses seizures in mutant flies. In summary, we describe an unusual phenomenon, where high temperature can suppress SLA in flies by modulating cAMP concentration.
Collapse
|
56
|
Ehaideb SN, Wignall EA, Kasuya J, Evans WH, Iyengar A, Koerselman HL, Lilienthal AJ, Bassuk AG, Kitamoto T, Manak JR. Mutation of orthologous prickle genes causes a similar epilepsy syndrome in flies and humans. Ann Clin Transl Neurol 2016; 3:695-707. [PMID: 27648459 PMCID: PMC5018582 DOI: 10.1002/acn3.334] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/24/2016] [Accepted: 06/27/2016] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE Genetically tractable fruit flies have been used for decades to study seizure disorders. However, there is a paucity of data specifically correlating fly and human seizure phenotypes. We have previously shown that mutation of orthologous PRICKLE genes from flies to humans produce seizures. This study aimed to determine whether the prickle-mediated seizure phenotypes in flies closely parallel the epilepsy syndrome found in PRICKLE patients. METHODS Virtually all fly seizure studies have relied upon characterizing seizures that are evoked. We have developed two novel approaches to more precisely characterize seizure-related phenotypes in their native state in prickle mutant flies. First, we used high-resolution videography to document spontaneous, unprovoked seizure events. Second, we developed a locomotion coordination assay to assess whether the prickle mutant flies were ataxic. Third, we treated the mutant flies with levetiracetam to determine whether the behavioral phenotypes could be suppressed by a common antiepileptic drug. RESULTS We find that the prickle mutant flies exhibit myoclonic-like spontaneous seizure events and are severely ataxic. Both these phenotypes are found in human patients with PRICKLE mutations, and can be suppressed by levetiracetam, providing evidence that the phenotypes are due to neurological dysfunction. These results document for the first time spontaneous, unprovoked seizure events at high resolution in a fly human seizure disorder model, capturing seizures in their native state. INTERPRETATION Collectively, these data underscore the striking similarities between the fly and human PRICKLE-mediated epilepsy syndromes, and provide a genetically tractable model for dissecting the underlying causes of the human syndromic phenotypes.
Collapse
Affiliation(s)
- Salleh N Ehaideb
- Interdisciplinary Graduate Program in Genetics University of Iowa Iowa City Iowa; King Abdullah International Medical Research Cente rKing Abdulaziz Medical City Riyadh Saudi Arabia; Department of Biology University of Iowa Iowa City Iowa
| | | | - Junko Kasuya
- Department of Anesthesia University of Iowa Iowa City Iowa
| | | | - Atulya Iyengar
- Department of Biology University of Iowa Iowa City Iowa; Interdisciplinary Graduate Program in Neuroscience University of Iowa Iowa City Iowa
| | | | | | | | - Toshihiro Kitamoto
- Interdisciplinary Graduate Program in Genetics University of Iowa Iowa City Iowa; Department of Anesthesia University of Iowa Iowa City Iowa; Interdisciplinary Graduate Program in Neuroscience University of Iowa Iowa City Iowa
| | - J Robert Manak
- Interdisciplinary Graduate Program in Genetics University of Iowa Iowa City Iowa; Department of Biology University of Iowa Iowa City Iowa; Interdisciplinary Graduate Program in Neuroscience University of Iowa Iowa City Iowa; Department of Pediatrics University of Iowa Iowa City Iowa
| |
Collapse
|
57
|
Abstract
Many of the internal organ systems of Drosophila melanogaster are functionally analogous to those in vertebrates, including humans. Although humans and flies differ greatly in terms of their gross morphological and cellular features, many of the molecular mechanisms that govern development and drive cellular and physiological processes are conserved between both organisms. The morphological differences are deceiving and have led researchers to undervalue the study of invertebrate organs in unraveling pathogenic mechanisms of diseases. In this review and accompanying poster, we highlight the physiological and molecular parallels between fly and human organs that validate the use of Drosophila to study the molecular pathogenesis underlying human diseases. We discuss assays that have been developed in flies to study the function of specific genes in the central nervous system, heart, liver and kidney, and provide examples of the use of these assays to address questions related to human diseases. These assays provide us with simple yet powerful tools to study the pathogenic mechanisms associated with human disease-causing genes.
Collapse
Affiliation(s)
- Berrak Ugur
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kuchuan Chen
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hugo J Bellen
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| |
Collapse
|
58
|
Calcium Imaging of Neuronal Activity in Drosophila Can Identify Anticonvulsive Compounds. PLoS One 2016; 11:e0148461. [PMID: 26863447 PMCID: PMC4749298 DOI: 10.1371/journal.pone.0148461] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/18/2016] [Indexed: 12/17/2022] Open
Abstract
Although there are now a number of antiepileptic drugs (AEDs) available, approximately one-third of epilepsy patients respond poorly to drug intervention. The reasons for this are complex, but are probably reflective of the increasing number of identified mutations that predispose individuals to this disease. Thus, there is a clear requirement for the development of novel treatments to address this unmet clinical need. The existence of gene mutations that mimic a seizure-like behaviour in the fruit fly, Drosophila melanogaster, offers the possibility to exploit the powerful genetics of this insect to identify novel cellular targets to facilitate design of more effective AEDs. In this study we use neuronal expression of GCaMP, a potent calcium reporter, to image neuronal activity using a non-invasive and rapid method. Expression in motoneurons in the isolated CNS of third instar larvae shows waves of calcium-activity that pass between segments of the ventral nerve cord. Time between calcium peaks, in the same neurons, between adjacent segments usually show a temporal separation of greater than 200 ms. Exposure to proconvulsants (picrotoxin or 4-aminopyridine) reduces separation to below 200 ms showing increased synchrony of activity across adjacent segments. Increased synchrony, characteristic of epilepsy, is similarly observed in genetic seizure mutants: bangsenseless1 (bss1) and paralyticK1270T (paraK1270T). Exposure of bss1 to clinically-used antiepileptic drugs (phenytoin or gabapentin) significantly reduces synchrony. In this study we use the measure of synchronicity to evaluate the effectiveness of known and novel anticonvulsive compounds (antipain, isethionate, etopiside rapamycin and dipyramidole) to reduce seizure-like CNS activity. We further show that such compounds also reduce the Drosophila voltage-gated persistent Na+ current (INaP) in an identified motoneuron (aCC). Our combined assays provide a rapid and reliable method to screen unknown compounds for potential to function as anticonvulsants.
Collapse
|
59
|
Schutte SS, Schutte RJ, Barragan EV, O'Dowd DK. Model systems for studying cellular mechanisms of SCN1A-related epilepsy. J Neurophysiol 2016; 115:1755-66. [PMID: 26843603 DOI: 10.1152/jn.00824.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/22/2016] [Indexed: 11/22/2022] Open
Abstract
Mutations in SCN1A, the gene encoding voltage-gated sodium channel NaV1.1, cause a spectrum of epilepsy disorders that range from genetic epilepsy with febrile seizures plus to catastrophic disorders such as Dravet syndrome. To date, more than 1,250 mutations in SCN1A have been linked to epilepsy. Distinct effects of individual SCN1A mutations on neuronal function are likely to contribute to variation in disease severity and response to treatment in patients. Several model systems have been used to explore seizure genesis in SCN1A epilepsies. In this article we review what has been learned about cellular mechanisms and potential new therapies from these model systems, with a particular emphasis on the novel model system of knock in Drosophila and a look toward the future with expanded use of patient-specific induced pluripotent stem cell-derived neurons.
Collapse
Affiliation(s)
- Soleil S Schutte
- Department of Developmental and Cell Biology and Department of Anatomy and Neurobiology, University of California, Irvine, California
| | - Ryan J Schutte
- Department of Developmental and Cell Biology and Department of Anatomy and Neurobiology, University of California, Irvine, California
| | - Eden V Barragan
- Department of Developmental and Cell Biology and Department of Anatomy and Neurobiology, University of California, Irvine, California
| | - Diane K O'Dowd
- Department of Developmental and Cell Biology and Department of Anatomy and Neurobiology, University of California, Irvine, California
| |
Collapse
|
60
|
Saras A, Tanouye MA. Mutations of the Calcium Channel Gene cacophony Suppress Seizures in Drosophila. PLoS Genet 2016; 12:e1005784. [PMID: 26771829 PMCID: PMC4714812 DOI: 10.1371/journal.pgen.1005784] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 12/12/2015] [Indexed: 11/30/2022] Open
Abstract
Bang sensitive (BS) Drosophila mutants display characteristic seizure-like phenotypes resembling, in some aspects, those of human seizure disorders such as epilepsy. The BS mutant parabss1, caused by a gain-of-function mutation of the voltage-gated Na+ channel gene, is extremely seizure-sensitive with phenotypes that have proven difficult to ameliorate by anti-epileptic drug feeding or by seizure-suppressor mutation. It has been presented as a model for intractable human epilepsy. Here we show that cacophony (cacTS2), a mutation of the Drosophila presynaptic Ca++ channel α1 subunit gene, is a particularly potent seizure-suppressor mutation, reverting seizure-like phenotypes for parabss1 and other BS mutants. Seizure-like phenotypes for parabss1 may be suppressed by as much as 90% in double mutant combinations with cacTS2. Unexpectedly, we find that parabss1 also reciprocally suppresses cacTS2 seizure-like phenotypes. The cacTS2 mutant displays these seizure-like behaviors and spontaneous high-frequency action potential firing transiently after exposure to high temperature. We find that this seizure-like behavior in cacTS2 is ameliorated by 85% in double mutant combinations with parabss1. Seizure disorders, such as epilepsy, are a serious health concern because of the large number of patients affected and a limited availability of treatment options. About 10% of the population will have at least one seizure during their lifetime, and 1% will experience persistent, recurrent epileptic seizures. Moreover, for about one-third of patients, epilepsy is intractable with seizures that are not controlled with any available drugs. Genetic seizure suppressors are modifier mutations that are capable of reverting seizure susceptibility to wild type levels when combined with seizure-prone mutants in double mutant individuals. Suppressors are valuable in providing an experimental approach that can provide insight into mechanisms underlying seizure susceptibility. Also, they identify novel gene products that may be targets for therapeutic drug development. In the present study we show that a severe seizure phenotype of the Drosophila paralyticbss1(parabss1) mutant is 90% suppressed by the N-type calcium channel mutation cacophonyTS2(cacTS2). The effect of suppression is not restricted to parabss1, but cacTS2 can also revert seizure-like phenotypes of other Drosophila mutants like easily-shocked (eas) and slamdance (sda). Thus, cacTS2 acts as a highly potent, general seizure suppressor mutation. A surprising finding in this study is co-suppression: parabss1 also suppresses a seizure phenotype in cacTS2 mutants induced by elevated temperature. A current view of complex diseases such as epilepsy, is that multiple genes and environmental factors can each contribute small, additive effects that can summate to produce a disease state when some threshold value is exceeded. Our findings indicate that different pathogenic ion channel mutations can sometimes form therapeutic combinations with effects that mask one another.
Collapse
Affiliation(s)
- Arunesh Saras
- Department of Environmental Science, Policy and Management, Division of Organismal Biology, University of California Berkeley, Berkeley, California, United States of America
- * E-mail:
| | - Mark A. Tanouye
- Department of Environmental Science, Policy and Management, Division of Organismal Biology, University of California Berkeley, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
| |
Collapse
|
61
|
A roadmap for precision medicine in the epilepsies. Lancet Neurol 2015; 14:1219-28. [PMID: 26416172 PMCID: PMC4663979 DOI: 10.1016/s1474-4422(15)00199-4] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/20/2015] [Accepted: 07/27/2015] [Indexed: 12/18/2022]
Abstract
Technological advances have paved the way for accelerated genomic discovery and are bringing precision medicine clearly into view. Epilepsy research in particular is well suited to serve as a model for the development and deployment of targeted therapeutics in precision medicine because of the rapidly expanding genetic knowledge base in epilepsy, the availability of good in-vitro and in-vivo model systems to efficiently study the biological consequences of genetic mutations, the ability to turn these models into effective drug-screening platforms, and the establishment of collaborative research groups. Moving forward, it is crucial that these collaborations are strengthened, particularly through integrated research platforms, to provide robust analyses both for accurate personal genome analysis and gene and drug discovery. Similarly, the implementation of clinical trial networks will allow the expansion of patient sample populations with genetically defined epilepsy so that drug discovery can be translated into clinical practice.
Collapse
|
62
|
Giachello CNG, Baines RA. Inappropriate Neural Activity during a Sensitive Period in Embryogenesis Results in Persistent Seizure-like Behavior. Curr Biol 2015; 25:2964-8. [PMID: 26549258 PMCID: PMC4651905 DOI: 10.1016/j.cub.2015.09.040] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 08/04/2015] [Accepted: 09/16/2015] [Indexed: 11/30/2022]
Abstract
Maturation of neural circuits requires activity-dependent processes that underpin the emergence of appropriate behavior in the adult. It has been proposed that disruption of these events, during specific critical periods when they exert maximal influence, may lead to neurodevelopmental diseases, including epilepsy [1, 2, 3]. However, complexity of neurocircuitry, coupled with the lack of information on network formation in mammals, makes it difficult to directly investigate this hypothesis. Alternative models, including the fruit fly Drosophila melanogaster, show remarkable similarities between experimental seizure-like activity and clinical phenotypes [4, 5, 6]. In particular, a group of flies, termed bang-sensitive (bs) mutants have been extensively used to investigate the pathophysiological mechanisms underlying seizure [7, 8, 9, 10, 11, 12]. Seizure phenotype can be measured in larval stages using an electroshock assay, and this behavior in bs mutants is dramatically reduced following ingestion of typical anti-epileptic drugs (AEDs; [13]). In this study we describe a critical period of embryonic development in Drosophila during which manipulation of neural activity is sufficient to significantly influence seizure behavior at postembryonic stages. We show that inhibition of elevated activity, characteristic of bs seizure models, during the critical period is sufficient to suppress seizure. By contrast, increasing neuronal excitation during the same period in wild-type (WT) is sufficient to permanently induce a seizure behavior. Further, we show that induction of seizure in WT correlates with functional alteration of motoneuron inputs that is a characteristic of bs mutants. Induction of seizure is rescued by prior administration of AEDs, opening a new perspective for early drug intervention in the treatment of genetic epilepsy. Activity manipulation defines a critical period for circuit functionality Abnormal activity during the critical period induces seizure Early drug intervention prevents seizure occurrence at postembryonic stages Seizure behavior correlates with aberrant synaptic excitation of motoneurons
Collapse
Affiliation(s)
| | - Richard A Baines
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK.
| |
Collapse
|
63
|
Mitri C, Markianos K, Guelbeogo WM, Bischoff E, Gneme A, Eiglmeier K, Holm I, Sagnon N, Vernick KD, Riehle MM. The kdr-bearing haplotype and susceptibility to Plasmodium falciparum in Anopheles gambiae: genetic correlation and functional testing. Malar J 2015; 14:391. [PMID: 26445487 PMCID: PMC4596459 DOI: 10.1186/s12936-015-0924-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/29/2015] [Indexed: 11/25/2022] Open
Abstract
Background Members of the Anophelesgambiae species complex are primary vectors of human malaria in Africa. It is known that a large haplotype shared between An. gambiae and Anophelescoluzzii by introgression carries point mutations of the voltage-gated sodium channel gene para, including the L1014F kdr mutation associated with insensitivity to pyrethroid insecticides. Carriage of L1014F kdr is also correlated with higher susceptibility to infection with Plasmodium falciparum. However, the genetic mechanism and causative gene(s) underlying the parasite susceptibility phenotype are not known. Methods Mosquitoes from the wild Burkina Faso population were challenged by feeding on natural P. falciparum gametocytes. Oocyst infection phenotypes were determined and were tested for association with SNP genotypes. Candidate genes in the detected locus were prioritized and RNAi-mediated gene silencing was used to functionally test for gene effects on P. falciparum susceptibility. Results A genetic locus, Pfin6, was identified that influences infection levels of P. falciparum in mosquitoes. The locus segregates as a ~3 Mb haplotype carrying 65 predicted genes including the para gene. The haplotype carrying the kdr allele of para is linked to increased parasite infection prevalence, but many single nucleotide polymorphisms on the haplotype are also equally linked to the infection phenotype. Candidate genes in the haplotype were prioritized and functionally tested. Silencing of para did not influence P. falciparum infection, while silencing of a predicted immune gene, serine protease ClipC9, allowed development of significantly increased parasite numbers. Conclusions Genetic variation influencing Plasmodium infection in wild Anopheles is linked to a natural ~3 megabase haplotype on chromosome 2L that carries the kdr allele of the para gene. Evidence suggests that para gene function does not directly influence parasite susceptibility, and the association of kdr with infection may be due to tight linkage of kdr with other gene(s) on the haplotype. Further work will be required to determine if ClipC9 influences the outcome of P. falciparum infection in nature, as well as to confirm the absence of a direct influence by para. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-0924-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christian Mitri
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, CNRS Unit of Hosts, Vectors and Pathogens (URA3012), Lab GGIV, Institut Pasteur, 28 rue du Dr Roux, 75015, Paris, France.
| | - Kyriacos Markianos
- Program in Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Wamdaogo M Guelbeogo
- Centre National de Recherche et de Formation sur le Paludisme, 01 BP 2208, Ouagadougou, Burkina Faso.
| | - Emmanuel Bischoff
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, CNRS Unit of Hosts, Vectors and Pathogens (URA3012), Lab GGIV, Institut Pasteur, 28 rue du Dr Roux, 75015, Paris, France.
| | - Awa Gneme
- Centre National de Recherche et de Formation sur le Paludisme, 01 BP 2208, Ouagadougou, Burkina Faso.
| | - Karin Eiglmeier
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, CNRS Unit of Hosts, Vectors and Pathogens (URA3012), Lab GGIV, Institut Pasteur, 28 rue du Dr Roux, 75015, Paris, France.
| | - Inge Holm
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, CNRS Unit of Hosts, Vectors and Pathogens (URA3012), Lab GGIV, Institut Pasteur, 28 rue du Dr Roux, 75015, Paris, France.
| | - N'Fale Sagnon
- Centre National de Recherche et de Formation sur le Paludisme, 01 BP 2208, Ouagadougou, Burkina Faso.
| | - Kenneth D Vernick
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, CNRS Unit of Hosts, Vectors and Pathogens (URA3012), Lab GGIV, Institut Pasteur, 28 rue du Dr Roux, 75015, Paris, France. .,Department of Microbiology, University of Minnesota, Saint Paul, MN, 55108, USA.
| | - Michelle M Riehle
- Department of Microbiology, University of Minnesota, Saint Paul, MN, 55108, USA.
| |
Collapse
|
64
|
Disruption of Endocytosis with the Dynamin Mutant shibirets1 Suppresses Seizures in Drosophila. Genetics 2015; 201:1087-102. [PMID: 26341658 DOI: 10.1534/genetics.115.177600] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 08/31/2015] [Indexed: 11/18/2022] Open
Abstract
One challenge in modern medicine is to control epilepsies that do not respond to currently available medications. Since seizures consist of coordinated and high-frequency neural activity, our goal was to disrupt neurotransmission with a synaptic transmission mutant and evaluate its ability to suppress seizures. We found that the mutant shibire, encoding dynamin, suppresses seizure-like activity in multiple seizure-sensitive Drosophila genotypes, one of which resembles human intractable epilepsy in several aspects. Because of the requirement of dynamin in endocytosis, increased temperature in the shi(ts1) mutant causes impairment of synaptic vesicle recycling and is associated with suppression of the seizure-like activity. Additionally, we identified the giant fiber neuron as critical in the seizure circuit and sufficient to suppress seizures. Overall, our results implicate mutant dynamin as an effective seizure suppressor, suggesting that targeting or limiting the availability of synaptic vesicles could be an effective and general method of controlling epilepsy disorders.
Collapse
|
65
|
Kroll JR, Saras A, Tanouye MA. Drosophila sodium channel mutations: Contributions to seizure-susceptibility. Exp Neurol 2015; 274:80-7. [PMID: 26093037 DOI: 10.1016/j.expneurol.2015.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 06/14/2015] [Accepted: 06/16/2015] [Indexed: 01/10/2023]
Abstract
This paper reviews Drosophila voltage-gated Na(+) channel mutations encoded by the para (paralytic) gene and their contributions to seizure disorders in the fly. Numerous mutations cause seizure-sensitivity, for example, para(bss1), with phenotypes that resemble human intractable epilepsy in some aspects. Seizure phenotypes are also seen with human GEFS+ spectrum mutations that have been knocked into the Drosophila para gene, para(GEFS+) and para(DS) alleles. Other para mutations, para(ST76) and para(JS) act as seizure-suppressor mutations reverting seizure phenotypes in other mutants. Seizure-like phenotypes are observed from mutations and other conditions that cause a persistent Na(+) current through either changes in mRNA splicing or protein structure.
Collapse
Affiliation(s)
- Jason R Kroll
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Arunesh Saras
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA
| | - Mark A Tanouye
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA; Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
66
|
Madabattula ST, Strautman JC, Bysice AM, O'Sullivan JA, Androschuk A, Rosenfelt C, Doucet K, Rouleau G, Bolduc F. Quantitative Analysis of Climbing Defects in a Drosophila Model of Neurodegenerative Disorders. J Vis Exp 2015:e52741. [PMID: 26132637 DOI: 10.3791/52741] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Locomotive defects resulting from neurodegenerative disorders can be a late onset symptom of disease, following years of subclinical degeneration, and thus current therapeutic treatment strategies are not curative. Through the use of whole exome sequencing, an increasing number of genes have been identified to play a role in human locomotion. Despite identifying these genes, it is not known how these genes are crucial to normal locomotive functioning. Therefore, a reliable assay, which utilizes model organisms to elucidate the role of these genes in order to identify novel targets of therapeutic interest, is needed more than ever. We have designed a sensitized version of the negative geotaxis assay that allows for the detection of milder defects earlier and has the ability to evaluate these defects over time. The assay is performed in a glass graduated cylinder, which is sealed with a wax barrier film. By increasing the threshold distance to be climbed to 17.5 cm and increasing the experiment duration to 2 min we have observed a greater sensitivity in detecting mild mobility dysfunctions. The assay is cost effective and does not require extensive training to obtain highly reproducible results. This makes it an excellent technique for screening candidate drugs in Drosophila mutants with locomotion defects.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kacy Doucet
- Department of Pediatrics, University of Alberta
| | - Guy Rouleau
- Montreal Neurological Institute and Hospital, McGill University
| | | |
Collapse
|
67
|
Lucey BP, Leahy A, Rosas R, Shaw PJ. A new model to study sleep deprivation-induced seizure. Sleep 2015; 38:777-85. [PMID: 25515102 DOI: 10.5665/sleep.4674] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 11/07/2014] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND AND STUDY OBJECTIVES A relationship between sleep and seizures is well-described in both humans and rodent animal models; however, the mechanism underlying this relationship is unknown. Using Drosophila melanogaster mutants with seizure phenotypes, we demonstrate that seizure activity can be modified by sleep deprivation. DESIGN Seizure activity was evaluated in an adult bang-sensitive seizure mutant, stress sensitive B (sesB(9ed4)), and in an adult temperature sensitive seizure mutant seizure (sei(ts1)) under baseline and following 12 h of sleep deprivation. The long-term effect of sleep deprivation on young, immature sesB(9ed4) flies was also assessed. SETTING Laboratory. PARTICIPANTS Drosophila melanogaster. INTERVENTIONS Sleep deprivation. MEASUREMENTS AND RESULTS Sleep deprivation increased seizure susceptibility in adult sesB(9ed4)/+ and sei(ts1) mutant flies. Sleep deprivation also increased seizure susceptibility when sesB was disrupted using RNAi. The effect of sleep deprivation on seizure activity was reduced when sesB(9ed4)/+ flies were given the anti-seizure drug, valproic acid. In contrast to adult flies, sleep deprivation during early fly development resulted in chronic seizure susceptibility when sesB(9ed4)/+ became adults. CONCLUSIONS These findings show that Drosophila is a model organism for investigating the relationship between sleep and seizure activity.
Collapse
Affiliation(s)
- Brendan P Lucey
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO
| | - Averi Leahy
- Department of Anatomy and Neurobiology, Washington University School of Medicine, Saint Louis, MO
| | - Regine Rosas
- Department of Anatomy and Neurobiology, Washington University School of Medicine, Saint Louis, MO
| | - Paul J Shaw
- Department of Anatomy and Neurobiology, Washington University School of Medicine, Saint Louis, MO
| |
Collapse
|
68
|
Bosco G, Clamer M, Messulam E, Dare C, Yang Z, Zordan M, Reggiani C, Hu Q, Megighian A. Effects of oxygen concentration and pressure on Drosophila melanogaster: oxidative stress, mitochondrial activity, and survivorship. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2015; 88:222-234. [PMID: 25529352 DOI: 10.1002/arch.21217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Organisms are known to be equipped with an adaptive plasticity as the phenotype of traits in response to the imposed environmental challenges as they grow and develop. In this study, the effects of extreme changes in oxygen availability and atmospheric pressure on physiological phenotypes of Drosophila melanogaster were investigated to explore adaptation mechanisms. The changes in citrate synthase activity (CSA), lifespan, and behavioral function in different atmospheric conditions were evaluated. In the CAS test, hyperoxia significantly increased CSA; both hypoxia and hyperbaric conditions caused a significant decrease in CSA. In the survivorship test, all changed atmospheric conditions caused a significant reduction in lifespan. The lifespan reduced more after hypoxia exposure than after hyperbaria exposure. In behavioral function test, when mechanical agitation was conducted, bang-sensitive flies showed a stereotypical sequence of initial muscle spasm, paralysis, and recovery. The percentage of individuals that displayed paralysis or seizure was measured on the following day and after 2 weeks from each exposure. The majority of flies showed seizure behavior 15 days after exposure, especially after 3 h of exposure. The percentage of individuals that did not undergo paralysis or seizure and was able to move in the vial, was also tested. The number of flies that moved and raised the higher level of the vial decreased after exposure. Animal's speed decreased significantly 15 days after exposure to extreme environmental conditions. In summary, the alteration of oxygen availability and atmospheric pressure may lead to significant changes in mitochondria mass, lifespan, and behavioral function in D. melanogaster.
Collapse
Affiliation(s)
- Gerardo Bosco
- Department of Biomedical Science, University of Padua, Padua, Italy; Hyperbaric Center Association Hyperbaric Technicians ATIP, Padua, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Seizures are regulated by ubiquitin-specific peptidase 9 X-linked (USP9X), a de-ubiquitinase. PLoS Genet 2015; 11:e1005022. [PMID: 25763846 PMCID: PMC4357451 DOI: 10.1371/journal.pgen.1005022] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 01/22/2015] [Indexed: 01/10/2023] Open
Abstract
Epilepsy is a common disabling disease with complex, multifactorial genetic and environmental etiology. The small fraction of epilepsies subject to Mendelian inheritance offers key insight into epilepsy disease mechanisms; and pathologies brought on by mutations in a single gene can point the way to generalizable therapeutic strategies. Mutations in the PRICKLE genes can cause seizures in humans, zebrafish, mice, and flies, suggesting the seizure-suppression pathway is evolutionarily conserved. This pathway has never been targeted for novel anti-seizure treatments. Here, the mammalian PRICKLE-interactome was defined, identifying prickle-interacting proteins that localize to synapses and a novel interacting partner, USP9X, a substrate-specific de-ubiquitinase. PRICKLE and USP9X interact through their carboxy-termini; and USP9X de-ubiquitinates PRICKLE, protecting it from proteasomal degradation. In forebrain neurons of mice, USP9X deficiency reduced levels of Prickle2 protein. Genetic analysis suggests the same pathway regulates Prickle-mediated seizures. The seizure phenotype was suppressed in prickle mutant flies by the small-molecule USP9X inhibitor, Degrasyn/WP1130, or by reducing the dose of fat facets a USP9X orthologue. USP9X mutations were identified by resequencing a cohort of patients with epileptic encephalopathy, one patient harbored a de novo missense mutation and another a novel coding mutation. Both USP9X variants were outside the PRICKLE-interacting domain. These findings demonstrate that USP9X inhibition can suppress prickle-mediated seizure activity, and that USP9X variants may predispose to seizures. These studies point to a new target for anti-seizure therapy and illustrate the translational power of studying diseases in species across the evolutionary spectrum. Epilepsy is a common disabling disorder characterized by seizures with complex genetic and environmental components. The absence of a definitive pathophysiology for epilepsy stymies the development of effective treatment strategies. In a small fraction of epilepsy cases however, single gene mutations may illuminate seizure-causing mechanisms, which may open the door to the discovery of broader, more effective therapeutic strategies. We have previously shown that disruption of Prickle genes in multiple species including humans, results in a predisposition to seizures. Those findings support Prickle in a seizure-preventing role and presents a possible anti-seizure therapeutic target. We identified the deubiquitinase Usp9x (ubiquitin-specific peptidase 9 X-linked) as a new Prickle binding partner which stabilized Prickle by preventing its degradation. In mice lacking the Usp9x protein in their forebrains, Prickle2 was barely detectable. In seizure-prone prickle mutant Drosophila, reducing fat facets (Drosophila usp9x) genetically or by a small-molecule usp9x inhibitor (Degrasyn/WP1130) suppressed the seizures. We also found 2 epilepsy patients harboring mutations in USP9X. Our findings demonstrate that inhibition of Usp9x can arrest prickle-mediated seizures, and variations in USP9X may predispose to seizures. From these studies, we have elucidated a seizure-inducing mechanism, identified a potential anti-seizure target, and a potential anti-seizure drug.
Collapse
|
70
|
Lin WH, He M, Baines RA. Seizure suppression through manipulating splicing of a voltage-gated sodium channel. ACTA ACUST UNITED AC 2015; 138:891-901. [PMID: 25681415 PMCID: PMC5014079 DOI: 10.1093/brain/awv012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Voltage-gated persistent sodium current (INaP) is a tractable target for antiepileptic drugs. Using a strategy focused on INaP reduction, Lin et al. identify 95 regulators of voltage-gated sodium channel splicing for which RNAi knockdown reduces seizure duration in Drosophila. Manipulation of splicing regulators could improve control of epilepsy. Seizure can result from increased voltage-gated persistent sodium current expression. Although many clinically-approved antiepileptic drugs target voltage-gated persistent sodium current, none exclusively repress this current without also adversely affecting the transient voltage-gated sodium current. Achieving a more selective block has significant potential for the treatment of epilepsy. Recent studies show that voltage-gated persistent sodium current amplitude is regulated by alternative splicing offering the possibility of a novel route for seizure control. In this study we identify 291 splicing regulators that, on knockdown, alter splicing of the Drosophila voltage-gated sodium channel to favour inclusion of exon K, rather than the mutually exclusive exon L. This change is associated with both a significant reduction in voltage-gated persistent sodium current, without change to transient voltage-gated sodium current, and to rescue of seizure in this model insect. RNA interference mediated knock-down, in two different seizure mutants, shows that 95 of these regulators are sufficient to significantly reduce seizure duration. Moreover, most suppress seizure activity in both mutants, indicative that they are part of well conserved pathways and likely, therefore, to be optimal candidates to take forward to mammalian studies. We provide proof-of-principle for such studies by showing that inhibition of a selection of regulators, using small molecule inhibitors, is similarly effective to reduce seizure. Splicing of the Drosophila sodium channel shows many similarities to its mammalian counterparts, including altering the amplitude of voltage-gated persistent sodium current. Our study provides the impetus to investigate whether manipulation of splicing of mammalian voltage-gated sodium channels may be exploitable to provide effective seizure control.
Collapse
Affiliation(s)
- Wei-Hsiang Lin
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Miaomiao He
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Richard A Baines
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
71
|
Talsma AD, Chaves JF, LaMonaca A, Wieczorek ED, Palladino MJ. Genome-wide screen for modifiers of Na (+) /K (+) ATPase alleles identifies critical genetic loci. Mol Brain 2014; 7:89. [PMID: 25476251 PMCID: PMC4302446 DOI: 10.1186/s13041-014-0089-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/20/2014] [Indexed: 12/22/2022] Open
Abstract
Background Mutations affecting the Na+/ K+ATPase (a.k.a. the sodium-potassium pump) genes cause conditional locomotor phenotypes in flies and three distinct complex neurological diseases in humans. More than 50 mutations have been identified affecting the human ATP1A2 and ATP1A3 genes that are known to cause rapid-onset Dystonia Parkinsonism, familial hemiplegic migraine, alternating hemiplegia of childhood, and variants of familial hemiplegic migraine with neurological complications including seizures and various mood disorders. In flies, mutations affecting the ATPalpha gene have dramatic phenotypes including altered longevity, neural dysfunction, neurodegeneration, myodegeneration, and striking locomotor impairment. Locomotor defects can manifest as conditional bang-sensitive (BS) or temperature-sensitive (TS) paralysis: phenotypes well-suited for genetic screening. Results We performed a genome-wide deficiency screen using three distinct missense alleles of ATPalpha and conditional locomotor function assays to identify novel modifier loci. A secondary screen confirmed allele-specificity of the interactions and many of the interactions were mapped to single genes and subsequently validated. We successfully identified 64 modifier loci and used classical mutations and RNAi to confirm 50 single gene interactions. The genes identified include those with known function, several with unknown function or that were otherwise uncharacterized, and many loci with no described association with locomotor or Na+/K+ ATPase function. Conclusions We used an unbiased genome-wide screen to find regions of the genome containing elements important for genetic modulation of ATPalpha dysfunction. We have identified many critical regions and narrowed several of these to single genes. These data demonstrate there are many loci capable of modifying ATPalpha dysfunction, which may provide the basis for modifying migraine, locomotor and seizure dysfunction in animals. Electronic supplementary material The online version of this article (doi:10.1186/s13041-014-0089-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aaron D Talsma
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, BST3 7042, Pittsburgh, PA, 15261, USA. .,Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, BST3 7042, Pittsburgh, PA, 15261, USA.
| | - John F Chaves
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, BST3 7042, Pittsburgh, PA, 15261, USA. .,Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, BST3 7042, Pittsburgh, PA, 15261, USA.
| | - Alexandra LaMonaca
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, BST3 7042, Pittsburgh, PA, 15261, USA. .,Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, BST3 7042, Pittsburgh, PA, 15261, USA.
| | - Emily D Wieczorek
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, BST3 7042, Pittsburgh, PA, 15261, USA. .,Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, BST3 7042, Pittsburgh, PA, 15261, USA.
| | - Michael J Palladino
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, BST3 7042, Pittsburgh, PA, 15261, USA. .,Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, BST3 7042, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
72
|
The alternative oxidase AOX does not rescue the phenotype of tko25t mutant flies. G3-GENES GENOMES GENETICS 2014; 4:2013-21. [PMID: 25147191 PMCID: PMC4199707 DOI: 10.1534/g3.114.013946] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A point mutation [technical knockout25t (tko25t)] in the Drosophila gene coding for mitoribosomal protein S12 generates a phenotype of developmental delay and bang sensitivity. tko25t has been intensively studied as an animal model for human mitochondrial diseases associated with deficiency of mitochondrial protein synthesis and consequent multiple respiratory chain defects. Transgenic expression in Drosophila of the alternative oxidase (AOX) derived from Ciona intestinalis has previously been shown to mitigate the toxicity of respiratory chain inhibitors and to rescue mutant and knockdown phenotypes associated with cytochrome oxidase deficiency. We therefore tested whether AOX expression could compensate the mutant phenotype of tko25t using the GeneSwitch system to activate expression at different times in development. The developmental delay of tko25t was not mitigated by expression of AOX throughout development. AOX expression for 1 d after eclosion, or continuously throughout development, had no effect on the bang sensitivity of tko25t adults, and continued expression in adults older than 30 d also produced no amelioration of the phenotype. In contrast, transgenic expression of the yeast alternative NADH dehydrogenase Ndi1 was synthetically semi-lethal with tko25t and was lethal when combined with both AOX and tko25t. We conclude that AOX does not rescue tko25t and that the mutant phenotype is not solely due to limitations on electron flow in the respiratory chain, but rather to a more complex metabolic defect. The future therapeutic use of AOX in disorders of mitochondrial translation may thus be of limited value.
Collapse
|
73
|
Ehaideb SN, Iyengar A, Ueda A, Iacobucci GJ, Cranston C, Bassuk AG, Gubb D, Axelrod JD, Gunawardena S, Wu CF, Manak JR. prickle modulates microtubule polarity and axonal transport to ameliorate seizures in flies. Proc Natl Acad Sci U S A 2014; 111:11187-92. [PMID: 25024231 PMCID: PMC4121842 DOI: 10.1073/pnas.1403357111] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Recent analyses in flies, mice, zebrafish, and humans showed that mutations in prickle orthologs result in epileptic phenotypes, although the mechanism responsible for generating the seizures was unknown. Here, we show that Prickle organizes microtubule polarity and affects their growth dynamics in axons of Drosophila neurons, which in turn influences both anterograde and retrograde vesicle transport. We also show that enhancement of the anterograde transport mechanism is the cause of the seizure phenotype in flies, which can be suppressed by reducing the level of either of two Kinesin motor proteins responsible for anterograde vesicle transport. Additionally, we show that seizure-prone prickle mutant flies have electrophysiological defects similar to other fly mutants used to study seizures, and that merely altering the balance of the two adult prickle isoforms in neurons can predispose flies to seizures. These data reveal a previously unidentified pathway in the pathophysiology of seizure disorders and provide evidence for a more generalized cellular mechanism whereby Prickle mediates polarity by influencing microtubule-mediated transport.
Collapse
Affiliation(s)
- Salleh N Ehaideb
- Interdisciplinary Graduate Programs in Genetics,King Abdullah International Medical Research Center, King Abdulaziz Medical City, Riyadh 11426, Kingdom of Saudi Arabia
| | | | | | - Gary J Iacobucci
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260
| | | | | | - David Gubb
- Reponse Immunitaire et Developpment, Centre National de la Recherche Scientifique, 67084 Strasbourg Cedex, France; and
| | - Jeffrey D Axelrod
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| | - Shermali Gunawardena
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260
| | - Chun-Fang Wu
- Interdisciplinary Graduate Programs in Genetics,Neuroscience, andDepartments of Biology and
| | - J Robert Manak
- Interdisciplinary Graduate Programs in Genetics,Departments of Biology andPediatrics, University of Iowa, Iowa City, IA 52242;
| |
Collapse
|
74
|
Vartiainen S, Chen S, George J, Tuomela T, Luoto KR, O'Dell KMC, Jacobs HT. Phenotypic rescue of a Drosophila model of mitochondrial ANT1 disease. Dis Model Mech 2014; 7:635-48. [PMID: 24812436 PMCID: PMC4036471 DOI: 10.1242/dmm.016527] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A point mutation in the Drosophila gene that codes for the major adult isoform of adenine nuclear translocase (ANT) represents a model for human diseases that are associated with ANT insufficiency [stress-sensitive B1 (sesB1)]. We characterized the organismal, bioenergetic and molecular phenotype of sesB1 flies then tested strategies to compensate the mutant phenotype. In addition to developmental delay and mechanical-stress-induced seizures, sesB1 flies have an impaired response to sound, defective male courtship, female sterility and curtailed lifespan. These phenotypes, excluding the latter two, are shared with the mitoribosomal protein S12 mutant, tko25t. Mitochondria from sesB1 adults showed a decreased respiratory control ratio and downregulation of cytochrome oxidase. sesB1 adults exhibited ATP depletion, lactate accumulation and changes in gene expression that were consistent with a metabolic shift towards glycolysis, characterized by activation of lactate dehydrogenase and anaplerotic pathways. Females also showed downregulation of many genes that are required for oogenesis, and their eggs, although fertilized, failed to develop to the larval stages. The sesB1 phenotypes of developmental delay and mechanical-stress-induced seizures were alleviated by an altered mitochondrial DNA background. Female sterility was substantially rescued by somatic expression of alternative oxidase (AOX) from the sea squirt Ciona intestinalis, whereas AOX did not alleviate developmental delay. Our findings illustrate the potential of different therapeutic strategies for ANT-linked diseases, based on alleviating metabolic stress.
Collapse
Affiliation(s)
- Suvi Vartiainen
- BioMediTech and Tampere University Hospital, FI-33014 University of Tampere, Finland
| | - Shanjun Chen
- BioMediTech and Tampere University Hospital, FI-33014 University of Tampere, Finland
| | - Jack George
- BioMediTech and Tampere University Hospital, FI-33014 University of Tampere, Finland
| | - Tea Tuomela
- BioMediTech and Tampere University Hospital, FI-33014 University of Tampere, Finland
| | - Kaisa R Luoto
- BioMediTech and Tampere University Hospital, FI-33014 University of Tampere, Finland
| | - Kevin M C O'Dell
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Howard T Jacobs
- BioMediTech and Tampere University Hospital, FI-33014 University of Tampere, Finland. Research Program of Molecular Neurology, FI-00014 University of Helsinki, Finland.
| |
Collapse
|
75
|
Kroll JR, Tanouye MA. Rescue of easily shocked mutant seizure sensitivity in Drosophila adults. J Comp Neurol 2014; 521:3500-7. [PMID: 23682034 DOI: 10.1002/cne.23364] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/03/2013] [Accepted: 05/03/2013] [Indexed: 11/08/2022]
Abstract
Genetic factors that influence seizure susceptibility can act transiently during the development of neural circuits or might be necessary for the proper functioning of existing circuits. We provide evidence that the Drosophila seizure-sensitive mutant easily shocked (eas) represents a neurological disorder in which abnormal functioning of existing neural circuits leads to seizure sensitivity. The eas(+) gene encodes for the protein Ethanolamine Kinase, involved in phospholipid biosynthesis. We show that induction of eas(+) in adult mutant flies rescues them from seizure sensitivity despite previously known developmental defects in brain morphology. Additionally, through cell-type-specific rescue, our results suggest a specific role for eas(+) in excitatory rather than inhibitory neural transmission. Overall, our findings emphasize an important role for proper phospholipid metabolism in normal brain function and suggest that certain classes of epilepsy syndromes could have the potential to be treated with gene therapy techniques.
Collapse
Affiliation(s)
- Jason R Kroll
- Division of Neurobiology, Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720
| | | |
Collapse
|
76
|
Lin WH, Baines RA. Regulation of membrane excitability: a convergence on voltage-gated sodium conductance. Mol Neurobiol 2014; 51:57-67. [PMID: 24677068 PMCID: PMC4309913 DOI: 10.1007/s12035-014-8674-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/11/2014] [Indexed: 11/30/2022]
Abstract
The voltage-gated sodium channel (Nav) plays a key role in regulation of neuronal excitability. Aberrant regulation of Nav expression and/or function can result in an imbalance in neuronal activity which can progress to epilepsy. Regulation of Nav activity is achieved by coordination of a multitude of mechanisms including RNA alternative splicing and translational repression. Understanding of these regulatory mechanisms is complicated by extensive genetic redundancy: the mammalian genome encodes ten Navs. By contrast, the genome of the fruitfly, Drosophila melanogaster, contains just one Nav homologue, encoded by paralytic (DmNa v ). Analysis of splicing in DmNa v shows variants exhibit distinct gating properties including varying magnitudes of persistent sodium current (INaP). Splicing by Pasilla, an identified RNA splicing factor, alters INaP magnitude as part of an activity-dependent mechanism. Enhanced INaP promotes membrane hyperexcitability that is associated with seizure-like behaviour in Drosophila. Nova-2, a mammalian Pasilla homologue, has also been linked to splicing of Navs and, moreover, mouse gene knockouts display seizure-like behaviour.Expression level of Navs is also regulated through a mechanism of translational repression in both flies and mammals. The translational repressor Pumilio (Pum) can bind to Na v transcripts and repress the normal process of translation, thus regulating sodium current (INa) density in neurons. Pum2-deficient mice exhibit spontaneous EEG abnormalities. Taken together, aberrant regulation of Nav function and/or expression is often epileptogenic. As such, a better understanding of regulation of membrane excitability through RNA alternative splicing and translational repression of Navs should provide new leads to treat epilepsy.
Collapse
Affiliation(s)
- Wei-Hsiang Lin
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, UK
| | | |
Collapse
|
77
|
Stone B, Burke B, Pathakamuri J, Coleman J, Kuebler D. A low-cost method for analyzing seizure-like activity and movement in Drosophila. J Vis Exp 2014:e51460. [PMID: 24637378 DOI: 10.3791/51460] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Video tracking systems have been used widely to analyze Drosophila melanogaster movement and detect various abnormalities in locomotive behavior. While these systems can provide a wealth of behavioral information, the cost and complexity of these systems can be prohibitive for many labs. We have developed a low-cost assay for measuring locomotive behavior and seizure movement in D. melanogaster. The system uses a web-cam to capture images that can be processed using a combination of inexpensive and free software to track the distance moved, the average velocity of movement and the duration of movement during a specified time-span. To demonstrate the utility of this system, we examined a group of D. melanogaster mutants, the Bang-sensitive (BS) paralytics, which are 3-10 times more susceptible to seizure-like activity (SLA) than wild type flies. Using this novel system, we were able to detect that the BS mutant bang senseless (bss) exhibits lower levels of exploratory locomotion in a novel environment than wild type flies. In addition, the system was used to identify that the drug metformin, which is commonly used to treat type II diabetes, reduces the intensity of SLA in the BS mutants.
Collapse
Affiliation(s)
- Bryan Stone
- Department of Biology, Franciscan University of Steubenville
| | - Brian Burke
- Department of Biology, Franciscan University of Steubenville
| | | | - John Coleman
- Department of Computer Science, Franciscan University of Steubenville
| | - Daniel Kuebler
- Department of Biology, Franciscan University of Steubenville;
| |
Collapse
|
78
|
Howlett IC, Tanouye MA. Seizure-sensitivity in Drosophila is ameliorated by dorsal vessel injection of the antiepileptic drug valproate. J Neurogenet 2013; 27:143-50. [PMID: 23941042 DOI: 10.3109/01677063.2013.817574] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Drosophila is a powerful model organism that can be used for the development of new drugs directed against human disease. A limitation is the ability to deliver drugs for testing. We report on a novel delivery system for treating Drosophila neurological mutants, direct injection into the circulatory system. Using this method, we show that injection of the antiepileptic drug valproate can ameliorate seizure-sensitive phenotypes in several mutant genotypes in the bang-sensitive (BS) paralytic mutant class, sda, eas, and para(bss1). This drug-injection method is superior to drug-feeding methods that we have employed previously, presumably because it bypasses potent detoxification systems present in the fly. In addition, we find that utilizing blood-brain barrier mutations in the background may further improve the injection results under certain circumstances. We propose that this method of drug delivery is especially effective when using Drosophila to model human pathologies, especially neurological syndromes.
Collapse
Affiliation(s)
- Iris C Howlett
- Department of Molecular and Cell Biology, Division of Neurobiology, University of California , Berkeley, Berkeley, California , USA
| | | |
Collapse
|
79
|
Drosophila as a model for intractable epilepsy: gilgamesh suppresses seizures in para(bss1) heterozygote flies. G3-GENES GENOMES GENETICS 2013; 3:1399-407. [PMID: 23797108 PMCID: PMC3737179 DOI: 10.1534/g3.113.006130] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Intractable epilepsies, that is, seizure disorders that do not respond to currently available therapies, are difficult, often tragic, neurological disorders. Na+ channelopathies have been implicated in some intractable epilepsies, including Dravet syndrome (Dravet 1978), but little progress has been forthcoming in therapeutics. Here we examine a Drosophila model for intractable epilepsy, the Na+ channel gain-of-function mutant parabss1 that resembles Dravet syndrome in some aspects (parker et al. 2011a). In particular, we identify second-site mutations that interact with parabss1, seizure enhancers, and seizure suppressors. We describe one seizure-enhancer mutation named charlatan (chn). The chn gene normally encodes an Neuron-Restrictive Silencer Factor/RE1-Silencing Transcription factor transcriptional repressor of neuronal-specific genes. We identify a second-site seizure-suppressor mutation, gilgamesh (gish), that reduces the severity of several seizure-like phenotypes of parabss1/+ heterozygotes. The gish gene normally encodes the Drosophila ortholog of casein kinase CK1g3, a member of the CK1 family of serine-threonine kinases. We suggest that CK1g3 is an unexpected but promising new target for seizure therapeutics.
Collapse
|
80
|
Zhou Y, Zhao M, Fields GB, Wu CF, Branton WD. δ/ω-Plectoxin-Pt1a: an excitatory spider toxin with actions on both Ca(2+) and Na(+) channels. PLoS One 2013; 8:e64324. [PMID: 23691198 PMCID: PMC3653879 DOI: 10.1371/journal.pone.0064324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/13/2013] [Indexed: 11/22/2022] Open
Abstract
The venom of spider Plectreurys tristis contains a variety of peptide toxins that selectively target neuronal ion channels. O-palmitoylation of a threonine or serine residue, along with a characteristic and highly constrained disulfide bond structure, are hallmarks of a family of toxins found in this venom. Here, we report the isolation and characterization of a new toxin, δ/ω-plectoxin-Pt1a, from this spider venom. It is a 40 amino acid peptide containing an O-palmitoylated Ser-39. Analysis of δ/ω-plectoxin-Pt1a cDNA reveals a small precursor containing a secretion signal sequence, a 14 amino acid N-terminal propeptide, and a C-terminal amidation signal. The biological activity of δ/ω-plectoxin-Pt1a is also unique. It preferentially blocks a subset of Ca2+ channels that is apparently not required for neurotransmitter release; decreases threshold for Na+ channel activation; and slows Na+ channel inactivation. As δ/ω-plectoxin-Pt1a enhances synaptic transmission by prolonging presynaptic release of neurotransmitter, its effects on Na+ and Ca2+ channels may act synergistically to sustain the terminal excitability.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, United States of America
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- * E-mail: (YZ); (WDB)
| | - Mingli Zhao
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Gregg B. Fields
- Torrey Pines Institute for Molecular Studies, Port Saint Lucie, Florida, United States of America
| | - Chun-Fang Wu
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - W. Dale Branton
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- * E-mail: (YZ); (WDB)
| |
Collapse
|
81
|
A knock-in model of human epilepsy in Drosophila reveals a novel cellular mechanism associated with heat-induced seizure. J Neurosci 2013; 32:14145-55. [PMID: 23055484 DOI: 10.1523/jneurosci.2932-12.2012] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Over 40 missense mutations in the human SCN1A sodium channel gene are linked to an epilepsy syndrome termed genetic epilepsy with febrile seizures plus (GEFS+). Inheritance of GEFS+ is dominant, but the underlying cellular mechanisms remain poorly understood. Here we report that knock-in of a GEFS+ SCN1A mutation (K1270T) into the Drosophila sodium channel gene, para, causes a semidominant temperature-induced seizure phenotype. Electrophysiological studies of GABAergic interneurons in the brains of adult GEFS+ flies reveal a novel cellular mechanism underlying heat-induced seizures: the deactivation threshold for persistent sodium currents reversibly shifts to a more negative voltage when the temperature is elevated. This leads to sustained depolarizations in GABAergic neurons and reduced inhibitory activity in the central nervous system. Furthermore, our data indicate a natural temperature-dependent shift in sodium current deactivation (exacerbated by mutation) may contribute to febrile seizures in GEFS+ and perhaps normal individuals.
Collapse
|
82
|
Genetic and pharmacological manipulations that alter metabolism suppress seizure-like activity in Drosophila. Brain Res 2012; 1496:94-103. [PMID: 23247062 DOI: 10.1016/j.brainres.2012.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 11/21/2012] [Accepted: 12/06/2012] [Indexed: 01/01/2023]
Abstract
There is increasing evidence that alterations in metabolism can affect seizure susceptibility in a wide range of organisms. In order to investigate the link between metabolism and seizures, we took advantage of a group of Drosophila mutants, the Bang-sensitive (BS) paralytics, which are 3-10 times more susceptible to seizure-like activity (SLA) than wild type flies following a variety of stimuli including mechanical shock. To alter metabolism, we introduced the atsugari (atu) mutation into three of the BS mutants, easily shocked (eas), bang senseless (bss), and technical knockout (tko). The atu mutants, which exhibit reduced expression of the Drosophila ortholog of dystroglycan gene, have previously been shown to have a higher metabolic rate than wild type flies. Following mechanical shock, all three BS;atu double mutants displayed a reduction in SLA and the eas;atu and tko;atu double mutants recovered from the shock quicker than the respective single mutant BS flies. In addition, the eas;atu and tko;atu flies displayed higher levels of metabolism as compared to the single mutant BS flies. To further study the correlation between metabolism and seizure susceptibility, the three BS strains were fed a sulfonylurea drug (tolbutamide) known to both increase heamolymph glucose concentrations and stimulate lipid metabolism in flies. Following mechanical shock, the eas and tko mutants fed tolbutamide displayed less SLA and recovered quicker than unfed flies. While the bss mutants fed tolbutamide did not display a reduction in SLA, they did recover quicker than unfed controls. These data indicate that the upregulation of metabolism can have a protective effect against seizure susceptibility, a result that suggests new avenues for possible drug development.
Collapse
|
83
|
Johnson C, Chun-Jen Lin C, Stern M. Ras-dependent and Ras-independent effects of PI3K in Drosophila motor neurons. GENES BRAIN AND BEHAVIOR 2012; 11:848-58. [DOI: 10.1111/j.1601-183x.2012.00822.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 06/02/2012] [Accepted: 07/09/2012] [Indexed: 11/30/2022]
Affiliation(s)
- C. Johnson
- Department of Biochemistry and Cell Biology; Rice University; Houston; TX; USA
| | - C. Chun-Jen Lin
- Department of Biochemistry and Cell Biology; Rice University; Houston; TX; USA
| | - M. Stern
- Department of Biochemistry and Cell Biology; Rice University; Houston; TX; USA
| |
Collapse
|
84
|
Celotto AM, Liu Z, VanDemark AP, Palladino MJ. A novel Drosophila SOD2 mutant demonstrates a role for mitochondrial ROS in neurodevelopment and disease. Brain Behav 2012; 2:424-34. [PMID: 22950046 PMCID: PMC3432965 DOI: 10.1002/brb3.73] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 05/17/2012] [Accepted: 05/19/2012] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) play essential roles in cell signaling, survival, and homeostasis. Aberrant ROS lead to disease and contribute to the aging process. Numerous enzymes and vigilant antioxidant pathways are required to regulate ROS for normal cellular health. Mitochondria are a major source of ROS, and mechanisms to prevent elevated ROS during oxidative phosphorylation require super oxide dismutase (SOD) activity. SOD2, also known as MnSOD, is targeted to mitochondria and is instrumental in regulating ROS by conversion of superoxides to hydrogen peroxide, which is further broken down into H(2)O and oxygen. Here, we describe the identification of a novel mutation within the mitochondrial SOD2 enzyme in Drosophila that results in adults with an extremely shortened life span, sensitivity to hyperoxia, and neuropathology. Additional studies demonstrate that this novel mutant, SOD2(bewildered), exhibits abnormal brain morphology, suggesting a critical role for this protein in neurodevelopment. We investigated the basis of this neurodevelopmental defect and discovered an increase in aberrant axonal that could underlie the aberrant neurodevelopment and brain morphology defects. This novel allele, SOD2(bewildered), provides a unique opportunity to study the effects of increased mitochondrial ROS on neural development, axonal targeting, and neural cell degeneration in vivo.
Collapse
Affiliation(s)
- Alicia M. Celotto
- Department of Pharmacology and Chemical Biology University of Pittsburgh School of Medicine Pittsburgh Pennsylvania 15261
- Pittsburgh Institute for Neurodegenerative Diseases University of Pittsburgh School of Medicine Pittsburgh Pennsylvania 15261
| | - Zhaohui Liu
- Department of Pharmacology and Chemical Biology University of Pittsburgh School of Medicine Pittsburgh Pennsylvania 15261
- Pittsburgh Institute for Neurodegenerative Diseases University of Pittsburgh School of Medicine Pittsburgh Pennsylvania 15261
| | - Andrew P. VanDemark
- Department of Biological Sciences University of Pittsburgh Pittsburgh Pennsylvania 15260
| | - Michael J. Palladino
- Department of Pharmacology and Chemical Biology University of Pittsburgh School of Medicine Pittsburgh Pennsylvania 15261
- Pittsburgh Institute for Neurodegenerative Diseases University of Pittsburgh School of Medicine Pittsburgh Pennsylvania 15261
| |
Collapse
|
85
|
Burg MG, Wu CF. Mechanical and temperature stressor-induced seizure-and-paralysis behaviors in Drosophila bang-sensitive mutants. J Neurogenet 2012; 26:189-97. [PMID: 22716921 DOI: 10.3109/01677063.2012.690011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
"Bang-sensitive" mutants of Drosophila display characteristic repertoires of distinct seizure-and-paralysis behaviors upon mechanical shock (Ganetzky & Wu, 1982, Genetics, 100, 597-614). The authors found that each of the bang-sensitive mutants described in this paper (bas, bss, eas, and tko) also displayed similar behavioral repertoires upon exposure to either high or low temperature. These repertoires are composed of interspersed periods of seizure and paralysis, and appear to have interesting parallels with vertebrate epileptiform behavior. Analysis of gynandromorph mosaics of these bang-sensitive mutant flies indicated that anatomical foci required for these two types of behaviors do not totally overlap, as they were separable among mosaic flies. Observations on mosaic and decapitated flies demonstrated an all-or-none expression of the seizure-and-paralysis behaviors, indicating global activity and long-range interactions in the nervous system. Therefore, the diverse collection of currently available Drosophila bang-sensitive mutants may serve as a rich source for mutational and cellular analysis to identify interacting molecular networks that are responsible for seizure phenotypes.
Collapse
Affiliation(s)
- Martin G Burg
- PhD Program in Genetics and Department of Biology, University of Iowa, Iowa City, IA, USA.
| | | |
Collapse
|
86
|
Parker L, Howlett IC, Rusan ZM, Tanouye MA. Seizure and epilepsy: studies of seizure disorders in Drosophila. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 99:1-21. [PMID: 21906534 DOI: 10.1016/b978-0-12-387003-2.00001-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Despite the frequency of seizure disorders in the human population, the genetic and physiological basis for these defects has been difficult to resolve. Although many genetic contributions to seizure susceptibility have been identified, these involve disparate biological processes, many of which are not neural specific. The large number and heterogeneous nature of the genes involved makes it difficult to understand the complex factors underlying the etiology of seizure disorders. Examining the effect known genetic mutations have on seizure susceptibility is one approach that may prove fruitful. This approach may be helpful in both understanding how different physiological processes affect seizure susceptibility and identifying novel therapeutic treatments. We review here factors contributing to seizure susceptibility in Drosophila, a genetically tractable system that provides a model for human seizure disorders. Seizure-like neuronal activities and behaviors in the fruit fly are described, as well as a set of mutations that exhibit features resembling some human epilepsies and render the fly sensitive to seizures. Especially interesting are descriptions of a novel class of mutations that are second-site mutations that act as seizure suppressors. These mutations revert epilepsy phenotypes back to the wild-type range of seizure susceptibility. The genes responsible for seizure suppression are cloned with the goal of identifying targets for lead compounds that may be developed into new antiepileptic drugs.
Collapse
Affiliation(s)
- Louise Parker
- Department of Environmental Science, Policy and Management, Helen Wills Neuroscience Institute, 131 Life Sciences Addition, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|