51
|
Ross-Ibarra J, Wright SI, Foxe JP, Kawabe A, DeRose-Wilson L, Gos G, Charlesworth D, Gaut BS. Patterns of polymorphism and demographic history in natural populations of Arabidopsis lyrata. PLoS One 2008; 3:e2411. [PMID: 18545707 PMCID: PMC2408968 DOI: 10.1371/journal.pone.0002411] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 05/03/2008] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Many of the processes affecting genetic diversity act on local populations. However, studies of plant nucleotide diversity have largely ignored local sampling, making it difficult to infer the demographic history of populations and to assess the importance of local adaptation. Arabidopsis lyrata, a self-incompatible, perennial species with a circumpolar distribution, is an excellent model system in which to study the roles of demographic history and local adaptation in patterning genetic variation. PRINCIPAL FINDINGS We studied nucleotide diversity in six natural populations of Arabidopsis lyrata, using 77 loci sampled from 140 chromosomes. The six populations were highly differentiated, with a median FST of 0.52, and structure analysis revealed no evidence of admixed individuals. Average within-population diversity varied among populations, with the highest diversity found in a German population; this population harbors 3-fold higher levels of silent diversity than worldwide samples of A. thaliana. All A. lyrata populations also yielded positive values of Tajima's D. We estimated a demographic model for these populations, finding evidence of population divergence over the past 19,000 to 47,000 years involving non-equilibrium demographic events that reduced the effective size of most populations. Finally, we used the inferred demographic model to perform an initial test for local adaptation and identified several genes, including the flowering time gene FCA and a disease resistance locus, as candidates for local adaptation events. CONCLUSIONS Our results underscore the importance of population-specific, non-equilibrium demographic processes in patterning diversity within A. lyrata. Moreover, our extensive dataset provides an important resource for future molecular population genetic studies of local adaptation in A. lyrata.
Collapse
Affiliation(s)
- Jeffrey Ross-Ibarra
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, United States of America
| | | | | | - Akira Kawabe
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Leah DeRose-Wilson
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, United States of America
| | - Gesseca Gos
- Department of Biology, York University, Toronto, Canada
| | - Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Brandon S. Gaut
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, United States of America
| |
Collapse
|
52
|
Kawabe A, Forrest A, Wright SI, Charlesworth D. High DNA sequence diversity in pericentromeric genes of the plant Arabidopsis lyrata. Genetics 2008; 179:985-95. [PMID: 18505875 PMCID: PMC2429891 DOI: 10.1534/genetics.107.085282] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Accepted: 04/05/2008] [Indexed: 11/18/2022] Open
Abstract
Differences in neutral diversity at different loci are predicted to arise due to differences in mutation rates and from the "hitchhiking" effects of natural selection. Consistent with hitchhiking models, Drosophila melanogaster chromosome regions with very low recombination have unusually low nucleotide diversity. We compared levels of diversity from five pericentromeric regions with regions of normal recombination in Arabidopsis lyrata, an outcrossing close relative of the highly selfing A. thaliana. In contrast with the accepted theoretical prediction, and the pattern in Drosophila, we found generally high diversity in pericentromeric genes, which is consistent with the observation in A. thaliana. Our data rule out balancing selection in the pericentromeric regions, suggesting that hitchhiking is more strongly reducing diversity in the chromosome arms than the pericentromere regions.
Collapse
Affiliation(s)
- Akira Kawabe
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | | | | | | |
Collapse
|
53
|
Maureira-Butler IJ, Pfeil BE, Muangprom A, Osborn TC, Doyle JJ. The Reticulate History of Medicago (Fabaceae). Syst Biol 2008; 57:466-82. [DOI: 10.1080/10635150802172168] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Iván J. Maureira-Butler
- Department of Plant Biology, Cornell University Ithaca, NY 14853, USA; E-mail: (J.J.D.)
- Agro aquaculture Nutritional Genomic Center (CGNA) Plant Biotechnology Unit INIA-Carillanca P.O. Box 58-D, Temuco, Chile
| | - Bernard E. Pfeil
- Department of Plant Biology, Cornell University Ithaca, NY 14853, USA; E-mail: (J.J.D.)
- CSIRO Plant Industry GPO Box 1600, Canberra, ACT 2601, Australia I.J.M.-B. and B.E.P. contributed equally to this work
| | - Amorntip Muangprom
- National Center for Genetic Engineering and Biotechnology Klong Luang, Pathumthani 12120, Thailand
| | - Thomas C. Osborn
- Seminis Vegetable seeds (A Division of Monsanto) State Highway 16, Woodland, CA 95695, USA
| | - Jeff J. Doyle
- Department of Plant Biology, Cornell University Ithaca, NY 14853, USA; E-mail: (J.J.D.)
| |
Collapse
|
54
|
Strasburg JL, Rieseberg LH. Molecular demographic history of the annual sunflowers Helianthus annuus and H. petiolaris--large effective population sizes and rates of long-term gene flow. Evolution 2008; 62:1936-50. [PMID: 18462213 DOI: 10.1111/j.1558-5646.2008.00415.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Hybridization between distinct species may lead to introgression of genes across species boundaries, and this pattern can potentially persist for extended periods as long as selection at some loci or genomic regions prevents thorough mixing of gene pools. However, very few reliable estimates of long-term levels of effective migration are available between hybridizing species throughout their history. Accurate estimates of divergence dates and levels of gene flow require data from multiple unlinked loci as well as an analytical framework that can distinguish between lineage sorting and gene flow and incorporate the effects of demographic changes within each species. Here we use sequence data from 18 anonymous nuclear loci in two broadly sympatric sunflower species, Helianthus annuus and H. petiolaris, analyzed within an "isolation with migration" framework to make genome-wide estimates of the ages of these two species, long-term rates of gene flow between them, and effective population sizes and historical patterns of population growth. Our results indicate that H. annuus and H. petiolaris are approximately one million years old and have exchanged genes at a surprisingly high rate (long-term N(ef)m estimates of approximately 0.5 in each direction), with somewhat higher rates of introgression from H. annuus into H. petiolaris than vice versa. In addition, each species has undergone dramatic population expansion since divergence, and both species have among the highest levels of genetic diversity reported for flowering plants. Our results provide the most comprehensive estimate to date of long-term patterns of gene flow and historical demography in a nonmodel plant system, and they indicate that species integrity can be maintained even in the face of extensive gene flow over a prolonged period.
Collapse
Affiliation(s)
- Jared L Strasburg
- Department of Biology, Indiana University, 915 E. 3rd Street #150, Bloomington, Indiana 47405, USA.
| | | |
Collapse
|
55
|
Kamiya K, Moritsuka E, Yoshida T, Yahara T, Tachida H. High population differentiation and unusual haplotype structure in a shade-intolerant pioneer tree species, Zanthoxylum ailanthoides (Rutaceae) revealed by analysis of DNA polymorphism at four nuclear loci. Mol Ecol 2008; 17:2329-38. [PMID: 18429965 DOI: 10.1111/j.1365-294x.2008.03756.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Differences in demographic history, life-history traits, and breeding systems affect nucleotide variation patterns. It is expected that shade-intolerant pioneer tree species have different patterns of genetic polymorphism and population structure than climax species. We studied patterns of nucleotide polymorphism at four putative starch pathway loci (agpSA, agpSB, agpL, and GBSSI) in Zanthoxylum ailanthoides, a shade-intolerant pioneer tree species that occupies forest gaps in warm-temperate forests of East Asia. Genetic diversity was lower within each population than among populations, and differentiation among populations was high across the loci (F(ST) = 0.32-0.64), as expected from the insect-pollinated breeding system and the metapopulation structure of this pioneer species. Numbers of haplotypes were smaller than those expected from the observed numbers of segregating sites. Single haplotypes accounted for more than 47% of all the sampled genes at the respective loci. These variation patterns were incompatible with neutral predictions for populations of a finite island model. Complex population dynamics, such as bottleneck and/or admixture, in the history of this pioneer tree species might have resulted in the observed patterns of genetic variation and population structure, which are different from those of climax wind-pollinated tree species, such as conifers. In contrast to the other loci investigated in this study, agpL showed nearly no variation in Z. ailanthoides (one singleton only), but there was some extent of variation in a closely related species, Zanthoxylum schinifolium. This suggests possibly a recent selective sweep at or near the locus in Z. ailanthoides.
Collapse
Affiliation(s)
- K Kamiya
- Department of Biology, Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Chuo-ku, Fukuoka 810-8560, Japan
| | | | | | | | | |
Collapse
|
56
|
Slotte T, Huang H, Lascoux M, Ceplitis A. Polyploid Speciation Did Not Confer Instant Reproductive Isolation in Capsella (Brassicaceae). Mol Biol Evol 2008; 25:1472-81. [DOI: 10.1093/molbev/msn092] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
57
|
Population genetics of speciation in two closely related wild tomatoes (Solanum section Lycopersicon). Genetics 2008; 178:339-50. [PMID: 18202377 DOI: 10.1534/genetics.107.081810] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present a multilocus sequencing study to assess patterns of polymorphism and divergence in the closely related wild tomato species, Solanum peruvianum and S. chilense (Solanum section Lycopersicon, Solanaceae). The data set comprises seven mapped nuclear loci (approximately 9.3 kb of analyzed sequence across loci) and four local population samples per species that cover much of the species' range (between 80 and 88 sequenced alleles across both species). We employ the analytical framework of divergence population genetics (DPG) in evaluating the utility of the "isolation" model of speciation to explain observed patterns of polymorphism and divergence. Whereas the isolation model is not rejected by goodness-of-fit criteria established via coalescent simulations, patterns of intragenic linkage disequilibrium provide evidence for postdivergence gene flow at two of the seven loci. These results suggest that speciation occurred under residual gene flow, implying that natural selection is one of the evolutionary forces driving the divergence of these tomato species. This inference is fully consistent with their recent divergence, conservatively estimated to be <or=0.55 million years. We discuss possible biases in the demographic parameter estimates due to the current restriction of DPG algorithms to panmictic species.
Collapse
|
58
|
Hitch-hiking to a locus under balancing selection: high sequence diversity and low population subdivision at the S-locus genomic region inArabidopsis halleri. Genet Res (Camb) 2008; 90:37-46. [DOI: 10.1017/s0016672307008932] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SummaryHitch-hiking to a site under balancing selection is expected to produce a local increase in nucleotide polymorphism and a decrease in population differentiation compared with the background genomic level, but empirical evidence supporting these predictions is scarce. We surveyed molecular diversity at four genes flanking the region controlling self-incompatibility (the S-locus) in samples from six populations of the herbaceous plantArabidopsis halleri, and compared their polymorphism with sequences from five control genes unlinked to the S-locus. As a preliminary verification, the S-locus flanking genes were shown to co-segregate withSRK, the gene involved in the self-incompatibility reaction at the pistil level. In agreement with theory, our results demonstrated a significant peak of nucleotide diversity around the S-locus as well as a significant decrease in population genetic structure in the S-locus region compared with both control genes and a set of seven unlinked microsatellite markers. This is consistent with the theoretical expectation that balancing selection is increasing the effective migration rate in subdivided populations. Although only four S-locus flanking genes were investigated, our results suggest that these two signatures of the hitch-hiking effect are localized in a very narrow genomic region.
Collapse
|
59
|
Effective population size and tests of neutrality at cytoplasmic genes inArabidopsis. Genet Res (Camb) 2008; 90:119-28. [DOI: 10.1017/s0016672307008920] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SummaryCytoplasmic genomes typically lack recombination, implying that genetic hitch-hiking could be a predominant force structuring nucleotide polymorphism in the chloroplast and mitochondria. We test this hypothesis by analysing nucleotide polymorphism data at 28 loci across the chloroplast and mitochondria of the outcrossing plantArabidopsis lyrata, and compare patterns with multiple nuclear loci, and the highly selfingArabidopsis thaliana. The maximum likelihood estimate of the ratio of effective population size at cytoplasmic relative to nuclear genes inA. lyratadoes not depart from the neutral expectation of 0·5. Similarly, the ratio of effective size inA. thalianais close to unity, the neutral expectation for a highly selfing species. The results are thus consistent with neutral organelle polymorphism in these species or with comparable effects of hitch-hiking in both cytoplasmic and nuclear genes, in contrast to the results of recent studies on gynodioecious taxa. The four-gamete test and composite likelihood estimation provide evidence for very low levels of recombination in the organelles ofA. lyrata, although permutation tests do not suggest that adjacent polymorphic sites are more closely linked than more distant sites across the two genomes, suggesting that mutation hotspots or very low rates of gene conversion could explain the data.
Collapse
|
60
|
Ramos-Onsins SE, Puerma E, Balañá-Alcaide D, Salguero D, Aguadé M. Multilocus analysis of variation using a large empirical data set: phenylpropanoid pathway genes in Arabidopsis thaliana. Mol Ecol 2008; 17:1211-23. [PMID: 18221273 DOI: 10.1111/j.1365-294x.2007.03633.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Detecting the signature of adaptation on nucleotide variation is often difficult in species that like Arabidopsis thaliana might have a complex demographic history. Recent re-sequencing surveys in this species provided genome-wide information that would mainly reflect its demographic history. We have used a large empirical data set (LED) as well as multilocus coalescent simulations to analyse sequence variation at loci involved in the phenylpropanoid pathway of this species. We surveyed and examined DNA sequence variation at nine of these loci (about 19.7 kb) in 23 accessions of A. thaliana and one accession of its closely related species Arabidopsis lyrata. Nucleotide variation was lower at nonsynonymous sites than at silent sites in all loci, indicating generalized functional constraint at the protein level. No association between variation and position in the metabolic pathway was detected. When the data were contrasted against the standard neutral model, significant deviations for silent variation were detected with Tajima's D, Fu's F(S) and Fay and Wu's H multilocus test statistics. These deviations were in the same direction than in previous large-scale multilocus analyses, suggesting a genome-wide effect. When the nine-locus data set was contrasted against the large empirical data set, the level (Watterson's theta) and pattern of variation (Tajima's D) detected in these loci did not deviate either at the single-locus or multilocus level from the corresponding empirical distributions. These results would support an important role of the demographic history of A. thaliana in shaping nucleotide variation at the nine studied phenylpropanoid loci. The potential and limitations of the empirical distribution approach are discussed.
Collapse
Affiliation(s)
- S E Ramos-Onsins
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain.
| | | | | | | | | |
Collapse
|
61
|
Kawabe A, Fujimoto R, Charlesworth D. High Diversity Due to Balancing Selection in the Promoter Region of the Medea Gene in Arabidopsis lyrata. Curr Biol 2007; 17:1885-9. [DOI: 10.1016/j.cub.2007.09.051] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 09/07/2007] [Accepted: 09/17/2007] [Indexed: 11/26/2022]
|
62
|
Abstract
The perennial outcrossing Arabidopsis lyrata is becoming a plant model species for molecular ecology and evolution. However, its evolutionary history, and especially the impact of the climatic oscillations of the Pleistocene on its genetic diversity and population structure, is not well known. We analyzed the broad-scale population structure of the species based on microsatellite variation at 22 loci. A wide sample in Europe revealed that glaciations and postglacial colonization have caused high divergence and high variation in variability between populations. Colonization from Central Europe to Iceland and Scandinavia was associated with a strong decrease of genetic diversity from South to North. On the other hand, the Russian population included in our data set may originate from a different refugium probably located more to the East. These genome-wide patterns must be taken into account in studies aiming at elucidating the genetic basis of local adaptation. As shown by sequence data, most of the loci used in this study do not evolve like typical microsatellite loci and show variable levels of homoplasy: this mode of evolution makes these markers less suitable to investigate the between-continent divergence and more generally the worldwide evolution of the species. Finally, a strong negative correlation was detected between levels of within-population diversity and indices of differentiation such as F(ST). We discuss the causes of this correlation as well as the potential bias it induces on the quantification and interpretation of population structure.
Collapse
|
63
|
Castric V, Vekemans X. Evolution under strong balancing selection: how many codons determine specificity at the female self-incompatibility gene SRK in Brassicaceae? BMC Evol Biol 2007; 7:132. [PMID: 17683611 PMCID: PMC2045110 DOI: 10.1186/1471-2148-7-132] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Accepted: 08/06/2007] [Indexed: 11/10/2022] Open
Abstract
Background Molecular lock-and-key systems are common among reproductive proteins, yet their evolution remains a major puzzle in evolutionary biology. In the Brassicaceae, the genes encoding self-incompatibility have been identified, but technical challenges currently prevent detailed analyses of the molecular interaction between the male and female components. In the present study, we investigate sequence polymorphism in the female specificity determinant SRK of Arabidopsis halleri from throughout Europe. Using a comparative approach based on published SRK sequences in A. lyrata and Brassica, we track the signature of frequency-dependent selection acting on these genes at the codon level. Using simulations, we evaluate power and accuracy of our approach and estimate the proportion of codon sites involved in the molecular interaction.
Collapse
Affiliation(s)
- Vincent Castric
- Laboratoire de génétique et évolution des populations végétales UMR CNRS 8016, Cité Scientifique, Université des Sciences et Technologies de Lille 1, 59655 Villeneuve d'Ascq cedex, France
| | - Xavier Vekemans
- Laboratoire de génétique et évolution des populations végétales UMR CNRS 8016, Cité Scientifique, Université des Sciences et Technologies de Lille 1, 59655 Villeneuve d'Ascq cedex, France
| |
Collapse
|
64
|
Arunyawat U, Stephan W, Städler T. Using multilocus sequence data to assess population structure, natural selection, and linkage disequilibrium in wild tomatoes. Mol Biol Evol 2007; 24:2310-22. [PMID: 17675653 DOI: 10.1093/molbev/msm162] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We employed a multilocus approach to examine the effects of population subdivision and natural selection on DNA polymorphism in 2 closely related wild tomato species (Solanum peruvianum and Solanum chilense), using sequence data for 8 nuclear loci from populations across much of the species' range. Both species exhibit substantial levels of nucleotide variation. The species-wide level of silent nucleotide diversity is 18% higher in S. peruvianum (pi(sil) approximately 2.50%) than in S. chilense (pi(sil) approximately 2.12%). One of the loci deviates from neutral expectations, showing a clinal pattern of nucleotide diversity and haplotype structure in S. chilense. This geographic pattern of variation is suggestive of an incomplete (ongoing) selective sweep, but neutral explanations cannot be entirely dismissed. Both wild tomato species exhibit moderate levels of population differentiation (average F(ST) approximately 0.20). Interestingly, the pooled samples (across different demes) exhibit more negative Tajima's D and Fu and Li's D values; this marked excess of low-frequency polymorphism can only be explained by population (or range) expansion and is unlikely to be due to population structure per se. We thus propose that population structure and population/range expansion are among the most important evolutionary forces shaping patterns of nucleotide diversity within and among demes in these wild tomatoes. Patterns of population differentiation may also be impacted by soil seed banks and historical associations mediated by climatic cycles. Intragenic linkage disequilibrium (LD) decays very rapidly with physical distance, suggesting high recombination rates and effective population sizes in both species. The rapid decline of LD seems very promising for future association studies with the purpose of mapping functional variation in wild tomatoes.
Collapse
Affiliation(s)
- Uraiwan Arunyawat
- Section of Evolutionary Biology, Department Biologie II, University of Munich (LMU), Planegg-Martinsried, Germany
| | | | | |
Collapse
|
65
|
Kamau E, Charlesworth B, Charlesworth D. Linkage disequilibrium and recombination rate estimates in the self-incompatibility region of Arabidopsis lyrata. Genetics 2007; 176:2357-69. [PMID: 17565949 PMCID: PMC1950637 DOI: 10.1534/genetics.107.072231] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Accepted: 05/17/2007] [Indexed: 11/18/2022] Open
Abstract
Genetic diversity is unusually high at loci in the S-locus region of the self-incompatible species of the flowering plant, Arabidopsis lyrata, not just in the S loci themselves, but also at two nearby loci. In a previous study of a single natural population from Iceland, we attributed this elevated polymorphism to linkage disequilibrium (LD) between variants at loci close to the S locus and the S alleles, which are maintained in the population by balancing selection. With the four S-flanking loci whose diversity we previously studied, we could not determine the extent of the region linked to the S loci in which neutral sites are affected. We also could not exclude the possibility of a population bottleneck, or of admixture, as causes of the LD. We have now studied four more distant loci flanking the S-locus region, and more populations, and we analyze the results using a theoretical model of the effect of balancing selection on diversity at linked neutral sites within and between different functional S-allelic classes. In the model, diversity is a function of the number of selectively maintained alleles and the recombination distances from the selectively maintained sites. We use the model to estimate the number of different functional S alleles, their turnover rate, and recombination rates between the S-locus region and other loci. Our estimates suggest that there is a small region of very low recombination surrounding the S-locus region.
Collapse
Affiliation(s)
- Esther Kamau
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, W. Mains Road, Edinburgh, United Kingdom
| | | | | |
Collapse
|
66
|
Beaulieu J, Jean M, Belzile F. Linkage maps for Arabidopsis lyrata subsp. lyrata and Arabidopsis lyrata subsp. petraea combining anonymous and Arabidopsis thaliana-derived markers. Genome 2007; 50:142-50. [PMID: 17546079 DOI: 10.1139/g06-144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Arabidopsis lyrata, a close relative of the model plant Arabidopsis thaliana, is 1 of a few plant species for which the genome is to be entirely sequenced, which promises to yield important insights into genome evolution. Only 2 sparse linkage maps have been published, and these were based solely on markers derived from the A. thaliana genome. Because the genome of A. lyrata is practically twice as large as that of A. thaliana, the extent of map coverage of the A. lyrata genome remains uncertain. In this study, a 2-way pseudo-testcross strategy was used to construct genetic linkage maps of A. lyrata subsp. petraea and A. lyrata subsp. lyrata, using simple sequence repeat (SSR) and cleaved amplified polymorphic sequence (CAPS) markers from the A. thaliana genome, and anonymous amplified fragment length polymorphism (AFLP) markers that could potentially uncover regions unique to the A. lyrata genome. The SSR and CAPS markers largely confirmed the relationships between linkage groups in A. lyrata and A. thaliana. AFLP markers slightly increased the coverage of the A. lyrata maps, but mostly increased marker density on the linkage groups. We noted a much lower level of polymorphism and a greater segregation distortion in A. lyrata subsp. lyrata markers. The implications of these findings for the sequencing of the A. lyrata genome are discussed.
Collapse
Affiliation(s)
- Julien Beaulieu
- Département de phytologie, 1243 Pavillon C.E. Marchand, Université Laval, QC G1K 7P4, Canada
| | | | | |
Collapse
|
67
|
Wang WK, Schaal BA, Chiou YM, Murakami N, Ge XJ, Huang CC, Chiang TY. Diverse selective modes among orthologs/paralogs of the chalcone synthase (Chs) gene family of Arabidopsis thaliana and its relative A. halleri ssp. gemmifera. Mol Phylogenet Evol 2007; 44:503-20. [PMID: 17611127 DOI: 10.1016/j.ympev.2007.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 04/11/2007] [Accepted: 05/07/2007] [Indexed: 11/16/2022]
Abstract
As a model system, Arabidopsis thaliana and its wild relatives have played an important role in the study of genomics and evolution in plants. In this study, we examined the genetic diversity of the chalcone synthase (Chs) gene, which encodes a key enzyme of the flavonoid pathway and is located on chromosome five, as well as two Chs-like genes on the first and fourth chromosomes of Arabidopsis. The objectives of the study are to determine if natural selection operates differentially on the paralogs of the Chs gene family in A. thaliana and Arabidopsis halleri ssp. gemmifera. The mode of selection was inferred from Tajima's D values from noncoding and coding regions, as well as from the ratio of nonsynonymous to synonymous substitutions. Both McDonald-Kreitman and HKA tests revealed the effects of selection on the allelic distribution, except for the chromosome 1 paralog in ssp. gemmifera. The Chs gene on chromosome 5 was under purifying selection in both species. Significant, negative Tajima's D values at synonymous sites and positive Fay and Wu's H values within coding region, plus reduced genetic variability in introns, indicated effects of background selection in shaping the evolution of this gene region in A. thaliana. The Chs paralog on chromosome 1 was under positive selection in A. thaliana, while interspecific introgression and balancing selection determined the fates of the paralog and resulted in high heterogeneity in ssp. gemmifera. Local adaptation differentiated populations of Japan and China at the locus. In contrast, the other Chs-paralog of chromosome 4 was shaped by purifying selection in A. thaliana, while under positive selection in ssp. gemmifera, as indicated by dn/ds>1. Moreover, these contrasting patterns of selection have likely resulted in functional divergence in Arabidopsis, as indicated by radical amino acid substitutions at the chalcone synthase/stilbene synthase motif of the Chs genes. Unlike previous studies of the evolutionary history of A. thaliana, the high levels of genetic diversity in most gene regions of Chs paralogs and nonsignificant Tajima's D in the intron sequences of the Chs gene family in A. thaliana did not reflect the effects of a recent demographic expansion.
Collapse
Affiliation(s)
- Wei-Kuang Wang
- Department of Life Sciences, Cheng-Kung University, Tainan 701, Taiwan
| | | | | | | | | | | | | |
Collapse
|
68
|
Abstract
MOTIVATION Gene genealogies offer a powerful context for inferences about the evolutionary process based on presently segregating DNA variation. In many cases, it is the distribution of population parameters, marginalized over the effectively infinite-dimensional tree space, that is of interest. Our evolutionary forest (EF) algorithm uses Monte Carlo methods to generate posterior distributions of population parameters. A novel feature is the updating of parameter values based on a probability measure defined on an ensemble of histories (a forest of genealogies), rather than a single tree. RESULTS The EF algorithm generates samples from the correct marginal distribution of population parameters. Applied to actual data from closely related fruit fly species, it rapidly converged to posterior distributions that closely approximated the exact posteriors generated through massive computational effort. Applied to simulated data, it generated credible intervals that covered the actual parameter values in accordance with the nominal probabilities. AVAILABILITY A C++ implementation of this method is freely accessible at http://www.isds.duke.edu/~scl13
Collapse
Affiliation(s)
- Scotland C Leman
- Institute of Statistics and Decision Sciences, Duke University, Durham, NC, USA.
| | | | | | | |
Collapse
|
69
|
Sandring S, Riihimäki MA, Savolainen O, Agren J. Selection on flowering time and floral display in an alpine and a lowland population of Arabidopsis lyrata. J Evol Biol 2007; 20:558-67. [PMID: 17305822 DOI: 10.1111/j.1420-9101.2006.01260.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
To determine whether population differentiation in flowering time is consistent with differences in current selection, we quantified phenotypic selection acting through female reproductive success on flowering phenology and floral display in two Scandinavian populations of the outcrossing, perennial herb Arabidopsis lyrata in two years. One population was located in an alpine environment strongly affected by grazing, whereas the other was close to sea level and only moderately affected by herbivory. Multiple regression models indicated directional selection for early end of flowering in one year in the lowland population, and directional selection for early start of flowering in one year in the alpine population. As expected, there was selection for more inflorescences in the lowland population. However, in the alpine population, plants with many inflorescences were selectively grazed and the number of inflorescences produced was negatively related to female fitness in one year and not significantly related to female fitness in the second year. The results are consistent with the hypothesis that genetic differentiation in flowering phenology between the study populations is adaptive, and indicate that interactions with selective grazers may strongly influence selection on floral display in A. lyrata.
Collapse
Affiliation(s)
- S Sandring
- Department of Plant Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
| | | | | | | |
Collapse
|
70
|
Koch MA, Matschinger M. Evolution and genetic differentiation among relatives of Arabidopsis thaliana. Proc Natl Acad Sci U S A 2007; 104:6272-7. [PMID: 17404224 PMCID: PMC1851049 DOI: 10.1073/pnas.0701338104] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Indexed: 11/18/2022] Open
Abstract
Arabidopsis thaliana is one of the most intensively studied plant species. More recently, information is accumulating about its closest relatives, the former genus Cardaminopsis. A. thaliana diverged from these relatives, actually treated within three major lineages (Arabidopsis lyrata, Arabidopsis halleri, and Arabidopsis arenosa), approximately 5 mya. Significant karyotype evolution in A. thaliana with base chromosome number reduction from x=8 to x=5 might indicate and favor effective genetic isolation from these other species, although hybrids are occurring naturally and have been also constituted under controlled conditions. We tested the evolutionary significance to separate the x=5 from the x=8 lineage using DNA sequence data from the plastome and the nuclear ribosomal DNA based on an extensive, representative worldwide sampling of nearly all taxonomic entities. We conclude that (i) A. thaliana is clearly separated phylogenetically from the x=8 lineage, (ii) five major lineages outside A. thaliana can be identified (A. lyrata, A. arenosa, A. halleri, Arabidopsis croatica, and Arabidopsis pedemontana) together with Arabidopsis cebennensis, and (iii) centers of genetic and morphological diversity are mostly in congruence and are located close to the Balkans in Austria and Slovakia outside glaciated and permafrost regions with few notable exceptions.
Collapse
Affiliation(s)
- Marcus A Koch
- Heidelberg Institute of Plant Sciences, Department of Biodiversity and Plant Systematics, University of Heidelberg, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany.
| | | |
Collapse
|
71
|
Zhu Q, Zheng X, Luo J, Gaut BS, Ge S. Multilocus analysis of nucleotide variation of Oryza sativa and its wild relatives: severe bottleneck during domestication of rice. Mol Biol Evol 2007; 24:875-88. [PMID: 17218640 DOI: 10.1093/molbev/msm005] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Varying degrees of reduction of genetic diversity in crops relative to their wild progenitors occurred during the process of domestication. Such information, however, has not been available for the Asian cultivated rice (Oryza sativa) despite its importance as a staple food and a model organism. To reveal levels and patterns of nucleotide diversity and to elucidate the genetic relationship and demographic history of O. sativa and its close relatives (Oryza rufipogon and Oryza nivara), we investigated nucleotide diversity data from 10 unlinked nuclear loci in species-wide samples of these species. The results indicated that O. rufipogon and O. nivara possessed comparable levels of nucleotide variation ((sil) = 0.0077 approximately 0.0095) compared with the relatives of other crops. In contrast, nucleotide diversity of O. sativa was as low as (sil) = 0.0024 and even lower ((sil) = 0.0021 for indica and 0.0011 for japonica), if we consider the 2 subspecies separately. Overall, only 20-10% of the diversity in the wild species was retained in 2 subspecies of the cultivated rice (indica and japonica), respectively. Because statistic tests did not reject the assumption of neutrality for all 10 loci, we further used coalescent to simulate bottlenecks under various lengths and population sizes to better understand the domestication process. Consistent with the dramatic reduction in nucleotide diversity, we detected a severe domestication bottleneck and demonstrated that the sequence diversity currently found in the rice genome could be explained by a founding population of 1,500 individuals if the initial domestication event occurred over a 3,000-year period. Phylogenetic analyses revealed close genetic relationships and ambiguous species boundary of O. rufipogon and O. nivara, providing additional evidence to treat them as 2 ecotypes of a single species. Lowest linkage disequilibrium (LD) was found in the perennial O. rufipogon where the r(2) value dropped to a negligible level within 400 bp, and the highest in the japonica rice where LD extended to the entirely sequenced region ( approximately 900 bp), implying that LD mapping by genome scans may not be feasible in wild rice due to the high density of markers needed.
Collapse
Affiliation(s)
- Qihui Zhu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | |
Collapse
|
72
|
Kawabe A, Charlesworth D. Patterns of DNA variation among three centromere satellite families in Arabidopsis halleri and A. lyrata. J Mol Evol 2006; 64:237-47. [PMID: 17160639 DOI: 10.1007/s00239-006-0097-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Accepted: 10/03/2006] [Indexed: 11/28/2022]
Abstract
We describe patterns of DNA variation among the three centromeric satellite families in Arabidopsis halleri and lyrata. The newly studied subspecies (A. halleri ssp. halleri and A. lyrata ssp. lyrata and petraea), like the previously studied A. halleri ssp. gemmifera and A. lyrata ssp. kawasakiana, have three different centromeric satellite families, the older pAa family (also present in A. arenosa) and two families, pAge1 and pAge2, that probably evolved more recently. Sequence variability is high in all three satellite families, and the pAa sequences do not cluster by their species of origin. Diversity in the pAge2 family is complex, and different from variation among copies of the other two families, showing clear evidence for exchange events among family members, especially in A. halleri ssp. halleri. In A. lyrata ssp. lyrata there is some evidence for recent rapid spread of pAge2 variants, suggesting selection favoring these sequences.
Collapse
Affiliation(s)
- Akira Kawabe
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories King's Buildings, West Mains Road, Edinburgh, EH9 3JT, UK.
| | | |
Collapse
|
73
|
de Meaux J, Pop A, Mitchell-Olds T. Cis-regulatory evolution of chalcone-synthase expression in the genus Arabidopsis. Genetics 2006; 174:2181-202. [PMID: 17028316 PMCID: PMC1698642 DOI: 10.1534/genetics.106.064543] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Accepted: 09/26/2006] [Indexed: 02/06/2023] Open
Abstract
The contribution of cis-regulation to adaptive evolutionary change is believed to be essential, yet little is known about the evolutionary rules that govern regulatory sequences. Here, we characterize the short-term evolutionary dynamics of a cis-regulatory region within and among two closely related species, A. lyrata and A. halleri, and compare our findings to A. thaliana. We focused on the cis-regulatory region of chalcone synthase (CHS), a key enzyme involved in the synthesis of plant secondary metabolites. We observed patterns of nucleotide diversity that differ among species but do not depart from neutral expectations. Using intra- and interspecific F1 progeny, we have evaluated functional cis-regulatory variation in response to light and herbivory, environmental cues, which are known to induce CHS expression. We find that substantial cis-regulatory variation segregates within and among populations as well as between species, some of which results from interspecific genetic introgression. We further demonstrate that, in A. thaliana, CHS cis-regulation in response to herbivory is greater than in A. lyrata or A. halleri. Our work indicates that the evolutionary dynamics of a cis-regulatory region is characterized by pervasive functional variation, achieved mostly by modification of response modules to one but not all environmental cues. Our study did not detect the footprint of selection on this variation.
Collapse
Affiliation(s)
- Juliette de Meaux
- Genetics and Plant Breeding, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
| | | | | |
Collapse
|
74
|
Kawabe A, Nasuda S, Charlesworth D. Duplication of centromeric histone H3 (HTR12) gene in Arabidopsis halleri and A. lyrata, plant species with multiple centromeric satellite sequences. Genetics 2006; 174:2021-32. [PMID: 17028323 PMCID: PMC1698631 DOI: 10.1534/genetics.106.063628] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Arabidopsis halleri and lyrata have three different major centromeric satellite sequences, a unique finding for a diploid Arabidopsis species. Since centromeric histones coevolve with centromeric satellites, these proteins would be predicted to show signs of selection when new centromere satellites have recently arisen. We isolated centromeric protein genes from A. halleri and lyrata and found that one of them, HTR12 (CENP-A), is duplicated, while CENP-C is not. Phylogenetic analysis indicates that the HTR12 duplication occurred after these species diverged from A. thaliana. Genetic mapping shows that HTR12 copy B has the same genomic location as the A. thaliana gene; the other copy (A, at the other end of the same chromosome) is probably the new copy. To test for selection since the duplication, we surveyed diversity at both HTR12 loci within A. lyrata. Overall, there is no strong evidence for an "evolutionary arms race" causing multiple replacement substitutions. The A. lyrata HTR12B sequences fall into three classes of haplotypes, apparently maintained for a long time, but they all encode the same amino acid sequence. In contrast, HTR12A has low diversity, but many variants are amino acid replacements, possibly due to independent selective sweeps within populations of the species.
Collapse
Affiliation(s)
- Akira Kawabe
- Institute of Evolutionary Biology, Edinburgh University, UK.
| | | | | |
Collapse
|
75
|
Abstract
Much progress has been made in the past two decades in understanding Darwin's mystery of the origins of species. Applying genomic techniques to the analysis of laboratory crosses and natural populations has helped to determine the genetic basis of barriers to gene flow which create new species. Although new methodologies have not changed the prevailing hypotheses about how species form, they have accelerated the pace of data collection. By facilitating the compilation of case studies, advances in genetic techniques will help to provide answers to the next generation of questions concerning the relative frequency and importance of different processes that cause speciation.
Collapse
Affiliation(s)
- Mohamed A F Noor
- DCMB Group/Biology Department, Duke University, BOX 91000, Durham, North Carolina 27708, USA.
| | | |
Collapse
|
76
|
Counterman BA, Noor MAF. Multilocus test for introgression between the cactophilic species Drosophila mojavensis and Drosophila arizonae. Am Nat 2006; 168:682-96. [PMID: 17080365 DOI: 10.1086/508632] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Accepted: 06/21/2006] [Indexed: 11/03/2022]
Abstract
Information obtained from laboratory studies regarding the efficacy of barriers to gene flow (reproductive isolation) between species is often incomplete or misleading, so detailed genetic analyses are needed to determine whether hybridization and introgression occur in nature. Previous laboratory studies of the cactophilic species Drosophila mojavensis and Drosophila arizonae suggest that reproductive isolation is incomplete and that gene flow may occur in sympatry. We sampled 18 nuclear and one mitochondrial loci from multiple populations of D. arizonae and D. mojavensis to test for the signature of recent or historic gene flow between these two species. We located chromosomal regions that were inverted between these species and analyzed those regions independently of others. Statistical tests for introgression using all loci or only collinear loci failed to reject expectations of an isolation model. Further tests using average nucleotide differences between species and phylogenetic analyses also failed to find support for introgression between D. mojavensis and D. arizonae. Additional ecological and behavioral studies of these species in their natural habitats are required to explain why the signature of gene flow was not detected at the DNA sequence level in populations when laboratory studies suggest such gene flow should be possible.
Collapse
Affiliation(s)
- Brian A Counterman
- Levine Science Research Center, Developmental, Cell, and Molecular Biology Group, Box 91000, Duke University, Durham, North Carolina 27708, USA.
| | | |
Collapse
|
77
|
Wright SI, Foxe JP, DeRose-Wilson L, Kawabe A, Looseley M, Gaut BS, Charlesworth D. Testing for effects of recombination rate on nucleotide diversity in natural populations of Arabidopsis lyrata. Genetics 2006; 174:1421-30. [PMID: 16951057 PMCID: PMC1667078 DOI: 10.1534/genetics.106.062588] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We investigated DNA sequence diversity for loci on chromosomes 1 and 2 in six natural populations of Arabidopsis lyrata and tested for the role of natural selection in structuring genomewide patterns of variability, specifically examining the effects of recombination rate on levels of silent polymorphism. In contrast with theoretical predictions from models of genetic hitchhiking, maximum-likelihood-based analyses of diversity and divergence do not suggest reduction of diversity in the region of suppressed recombination near the centromere of chromosome 1, except in a single population from Russia, in which the pericentromeric region may have undergone a local selective sweep or demographic process that reduced variability. We discuss various possibilities that might explain why nucleotide diversity in most A. lyrata populations is not related to recombination rate, including genic recombination hotspots, and low gene density in the low recombination rate region.
Collapse
Affiliation(s)
- Stephen I Wright
- Department of Biology, York University, Toronto, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
78
|
Balañá-Alcaide D, Ramos-Onsins SE, Boone Q, Aguadé M. Highly structured nucleotide variation within and among Arabidopsis lyrata populations at the FAH1 and DFR gene regions. Mol Ecol 2006; 15:2059-68. [PMID: 16780424 DOI: 10.1111/j.1365-294x.2006.02918.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nucleotide variation at the FAH1 and DFR gene regions was surveyed in four populations of Arabidopsis lyrata (two European A. l. petraea and two North American A. l. lyrata populations). In contrast to previous results, levels of variation were not consistently lower in A. l. lyrata than in A. l. petraea, and similar degrees of genetic differentiation were detected between and within subspecies. These observations and the significant genetic differentiation detected among populations suggest population substructure and no real subdivision between subspecies. For each gene studied, genotypic data were obtained, which allowed comparing nucleotide diversity within individuals (between sequences from the same individual) and within populations (between sequences from the same population). The generally lower level of variation within than among individuals detected in each population yielded a significant deviation from panmixia within populations. In three of the four populations studied, two highly divergent alleles were detected within populations at the highly variable DFR locus. This pattern and the significant excess of derived variants detected in most populations suggest that most variation segregating within populations results from rare migration events between relatively small and isolated populations exhibiting reduced panmixia.
Collapse
Affiliation(s)
- D Balañá-Alcaide
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | | | | | | |
Collapse
|
79
|
Glinka S, De Lorenzo D, Stephan W. Evidence of gene conversion associated with a selective sweep in Drosophila melanogaster. Mol Biol Evol 2006; 23:1869-78. [PMID: 16868022 DOI: 10.1093/molbev/msl069] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Since Drosophila melanogaster colonized Europe from tropical Africa 10 to 15 thousand years ago, it is expected that adaptation has played a major role in this species in recent times. A previously conducted multilocus scan of noncoding DNA sequences on the X chromosome in an ancestral and a derived population of D. melanogaster revealed that some loci have been affected by directional selection in the European population. We investigated if the pattern of DNA sequence polymorphism in a region surrounding one of these loci can be explained by a hitchhiking event. We found strong evidence that the studied region around the gene unc-119 was shaped by a recent selective sweep, including a valley of reduced heterozygosity of 83.4 kb, a skew in the frequency spectrum, and significant linkage disequilibrium on one side of the valley. This region, however, was interrupted by gene conversion events leading to a strong haplotype structure in the center of the valley of reduced variation.
Collapse
Affiliation(s)
- Sascha Glinka
- Section of Evolutionary Biology, Department of Biology II, Ludwig-Maximilians University, Planegg-Martinsried, Germany.
| | | | | |
Collapse
|
80
|
Bechsgaard JS, Castric V, Charlesworth D, Vekemans X, Schierup MH. The transition to self-compatibility in Arabidopsis thaliana and evolution within S-haplotypes over 10 Myr. Mol Biol Evol 2006; 23:1741-50. [PMID: 16782760 DOI: 10.1093/molbev/msl042] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A recent investigation found evidence that the transition of Arabidopsis thaliana from ancestral self-incompatibility (SI) to full self-compatibility occurred very recently and suggested that this occurred through a selective fixation of a nonfunctional allele (PsiSCR1) at the SCR gene, which determines pollen specificity in the incompatibility response. The main evidence is the lack of polymorphism at the SCR locus in A. thaliana. However, the nearby SRK gene, which determines stigma specificity in self-incompatible Brassicaceae species, has extremely high sequence diversity, with 3 very divergent SRK haplotypes, 2 of them present in multiple strains. Such high diversity is extremely unusual in this species, and it suggests the possibility that multiple, different SRK haplotypes may have been preserved from A. thaliana's self-incompatible ancestor. To study the evolution of S-haplotypes in the A. thaliana lineage, we searched the 2 most closely related Arabidopsis species Arabidopsis lyrata and Arabidopsis halleri, in which most populations have retained SI, and found SRK sequences corresponding to all 3 A. thaliana haplogroup sequences. Our molecular evolutionary analyses of these 3 S-haplotypes provide an independent estimate of the timing of the breakdown of SI and again exclude an ancient transition to selfing in A. thaliana. Comparing sequences of each of the 3 haplogroups between species, we find that 2 of the 3 SRK sequences (haplogroups A and B) are similar throughout their length, suggesting that little or no recombination with other SRK alleles has occurred since these species diverged. The diversity difference between the SCR and SRK loci in A. thaliana, however, suggests crossing-over, either within SRK or between the SCR and SRK loci. If the loss of SI involved fixation of the PsiSCR1 sequence, the exchange must have occurred during its fixation. Divergence between the species is much lower at the S-locus, compared with reference loci, and we discuss two contributory possibilities. Introgression may have occurred between A. lyrata and A. halleri and between their ancestral lineage and A. thaliana, at least for some period after their split. In addition, the coalescence times of sequences of individual S-haplogroups are expected to be less than those of alleles at non-S-loci.
Collapse
Affiliation(s)
- Jesper S Bechsgaard
- Ecology and Genetics, Institute of Biological Sciences, University of Aarhus, Denmark.
| | | | | | | | | |
Collapse
|
81
|
Muller MH, Poncet C, Prosperi JM, Santoni S, Ronfort J. Domestication history in the Medicago sativa species complex: inferences from nuclear sequence polymorphism. Mol Ecol 2006; 15:1589-602. [PMID: 16629813 DOI: 10.1111/j.1365-294x.2006.02851.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
DNA sequence polymorphism carries genealogical information and allows for testing hypotheses on selection and population history, especially through coalescent-based analysis. Understanding the evolutionary forces at work in plant domestication and subsequent selection is of critical importance for the management of genetic resources. In this study, we surveyed DNA sequence diversity at two assumed neutral nuclear loci in the wild-domesticated species complex of alfalfa (Medicago sativa L.). A high level of polymorphism was detected. The domesticated pool contains on average 31% less diversity than the wild pool, but with a high heterogeneity among loci. Coalescent simulations of the domestication process showed that this result cannot be explained by assuming a constant population size but is rather consistent with a demographic bottleneck during domestication. A very low level of divergence was detected between the wild and the domesticated forms as well as between the related subspecies of the M. sativa species complex. However, the originality of the Spanish wild populations, already observed based on mitochondrial DNA polymorphism, was confirmed. These results, together with patterns of intrapopulation polymorphism, suggest that nuclear sequence polymorphism could be a promising tool, complementary to mitochondrial DNA and phenotypic evaluations, to investigate historical demographic and evolutionary processes.
Collapse
Affiliation(s)
- M-H Muller
- UMR Diversité et Génomes des Plantes Cultivées, INRA, Domaine de Melgueil, Mauguio, France.
| | | | | | | | | |
Collapse
|
82
|
Kamau E, Charlesworth D. Balancing selection and low recombination affect diversity near the self-incompatibility loci of the plant Arabidopsis lyrata. Curr Biol 2006; 15:1773-8. [PMID: 16213826 DOI: 10.1016/j.cub.2005.08.062] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Revised: 08/24/2005] [Accepted: 08/24/2005] [Indexed: 10/25/2022]
Abstract
The self-incompatibility (S-) locus region of plants in the Brassica family is a small genome region. In Arabidopsis lyrata, the S-genes, SRK and SCR, encode the functional female and pollen recognition proteins, which must be coadapted to maintain correct associations between the two component genes, and thus self-incompatibility (SI). Recombinants would be self-compatible and thus probably disadvantageous in self-incompatible species. Therefore, tight linkage between the two genes in incompatibility systems is predicted to evolve to avoid producing such recombinant haplotypes. The evolution of low recombination in S-locus regions has not been rigorously tested. To test whether these regions' per-nucleotide recombination rates differ from those elsewhere in the genome, and to investigate whether the A. lyrata S-loci have the predicted effect on diversity in their immediate genome region, we studied diversity in genes that are linked to the S-loci but are not involved in incompatibility and are not under balancing selection. Compared with other A. lyrata loci, genes linked to the S-loci have extraordinarily high polymorphism. Our estimated recombination in this region, from fitting a model of the effects of S-allele polymorphism on linked neutral sites, supports the hypothesis of locally suppressed recombination around the S-locus.
Collapse
Affiliation(s)
- Esther Kamau
- Institute of Evolutionary Biology, University of Edinburgh, UK
| | | |
Collapse
|
83
|
Hagenblad J, Bechsgaard J, Charlesworth D. Linkage disequilibrium between incompatibility locus region genes in the plant Arabidopsis lyrata. Genetics 2006; 173:1057-73. [PMID: 16582433 PMCID: PMC1526524 DOI: 10.1534/genetics.106.055780] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have studied diversity in Arabidopsis lyrata of sequences orthologous to the ARK3 gene of A. thaliana. Our main goal was to test for recombination in the S-locus region. In A. thaliana, the single-copy ARK3 gene is closely linked to the non-functional copies of the self-incompatibility loci, and the ortholog in A. lyrata (a self-incompatible species) is in the homologous genome region and is known as Aly8. It is thus of interest to test whether Aly8 sequence diversity is elevated due to close linkage to the highly polymorphic incompatibility locus, as is theoretically predicted. However, Aly8 is not a single-copy gene, and the presence of paralogs could also lead to the appearance of elevated diversity. We established a typing approach based on different lengths of Aly8 PCR products and show that most A. lyrata haplotypes have a single copy, but some have two gene copies, both closely linked to the incompatibility locus, one being a pseudogene. We determined the phase of multiple haplotypes in families of plants from Icelandic and other populations. Different Aly8 sequence types are associated with different SRK alleles, while haplotypes with the same SRK sequences tend to have the same Aly8 sequence. There is evidence of some exchange of sequences between different Aly8 sequences, making it difficult to determine which ones are allelic or to estimate the diversity. However, the homogeneity of the Aly8 sequences of each S-haplotype suggests that recombination between the loci has been very infrequent over the evolutionary history of these populations. Overall, the results suggest that recombination rarely occurs in the interval between the S-loci and Aly8 and that linkage to the S-loci can probably account for the observed high Aly8 diversity.
Collapse
Affiliation(s)
- Jenny Hagenblad
- Institute of Evolutionary Biology, University of Edinburgh, UK
| | | | | |
Collapse
|
84
|
Charlesworth D, Kamau E, Hagenblad J, Tang C. Trans-specificity at loci near the self-incompatibility loci in Arabidopsis. Genetics 2006; 172:2699-704. [PMID: 16489230 PMCID: PMC1456393 DOI: 10.1534/genetics.105.051938] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We compared allele sequences of two loci near the Arabidopsis lyrata self-incompatibility (S) loci with sequences of A. thaliana orthologs and found high numbers of shared polymorphisms, even excluding singletons and sites likely to be highly mutable. This suggests maintenance of entire S-haplotypes for long evolutionary times and extreme recombination suppression in the region.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom.
| | | | | | | |
Collapse
|
85
|
Warwick SI, Al-Shehbaz IA, Sauder CA. Phylogenetic position of Arabis arenicola and generic limits of Aphragmus and Eutrema (Brassicaceae) based on sequences of nuclear ribosomal DNA. ACTA ACUST UNITED AC 2006. [DOI: 10.1139/b05-161] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sequence data from the nuclear ribosomal internal transcribed spacer (ITS) region of 45 taxa were used to determine the phylogenetic relationship of Arabis arenicola to Arabis , Arabidopsis , Braya , and Eutrema , and that of Eutrema to the purportedly related genera Aphragmus , Lignariella , Neomartinella , Platycraspedum , Taphrospermum , and Thellungiella . Arabis arenicola was originally described as Eutrema in 1830, transferred to Arabis in 1898, and has remained in Arabis to the present, even though it is morphologically more similar to Arabidopsis, Braya, and Eutrema. Sequence data were obtained from representative taxa of Arabis, Arabidopsis, and related Boechera and Catolobus, Braya and Neotorularia, and Eutrema, Aphragmus, Lignariella, Neomartinella, Platycraspedum, Taphrospermum, and Thellungiella. The five Arabis arenicola accessions examined had ITS sequences that were identical to each other and to four Arabidopsis lyrata accessions. In both maximum parsimony and maximum likelihood analyses, Arabis arenicola fell within the Arabidopsis clade and was closely aligned with Arabidopsis lyrata. Two of six purportedly related genera were not closely related to Eutrema. Both analyses placed Lignariella within a separate well-supported clade with Aphragmus, while the other four genera, Neomartinella, Platycraspedum, Taphrospermum, and Thellungiella, fell within a well-supported clade with Eutrema. Morphology and molecular data strongly suggest transferring Arabis arenicola to Arabidopsis, expanding Aphragmus to include Lignariella, and expanding Eutrema to include Neomartinella, Platycraspedum, Taphrospermum, and Thellungiella. New combinations in Arabidopsis and Aphragmus are proposed.
Collapse
Affiliation(s)
- Suzanne I. Warwick
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Central Experimental Farm, Ottawa, ON K1A 0C6, Canada
- Missouri Botanical Garden, P.O. Box 299, St. Louis, MO 63166-0299, USA
| | - Ihsan A. Al-Shehbaz
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Central Experimental Farm, Ottawa, ON K1A 0C6, Canada
- Missouri Botanical Garden, P.O. Box 299, St. Louis, MO 63166-0299, USA
| | - Connie A. Sauder
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Central Experimental Farm, Ottawa, ON K1A 0C6, Canada
- Missouri Botanical Garden, P.O. Box 299, St. Louis, MO 63166-0299, USA
| |
Collapse
|
86
|
Beisswanger S, Stephan W, De Lorenzo D. Evidence for a selective sweep in the wapl region of Drosophila melanogaster. Genetics 2006; 172:265-74. [PMID: 16204208 PMCID: PMC1456153 DOI: 10.1534/genetics.105.049346] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Accepted: 09/20/2005] [Indexed: 11/18/2022] Open
Abstract
A scan of the X chromosome of a European Drosophila melanogaster population revealed evidence for the recent action of positive directional selection at individual loci. In this study we analyze one such region that showed no polymorphism in the genome scan (located in cytological division 2C10-2E1). We detect a 60.5-kb stretch of DNA encompassing the genes ph-d, ph-p, CG3835, bcn92, Pgd, wapl, and Cyp4d1, which almost completely lacks variation in the European sample. Loci flanking this region show a skewed frequency spectrum at segregating sites, strong haplotype structure, and high levels of linkage disequilibrium. Neutrality tests reveal that these data are unlikely under both the neutral equilibrium model and the simple bottleneck scenarios. In contrast, newly developed maximum-likelihood ratio tests suggest that strong selection has acted recently on the region under investigation, causing a selective sweep. Evidence that this sweep may have originated in an ancestral population in Africa is presented.
Collapse
Affiliation(s)
- Steffen Beisswanger
- Section of Evolutionary Biology, Department of Biology II, University of Munich, D-82152 Planegg-Martinsried, Germany.
| | | | | |
Collapse
|
87
|
Abstract
Interest in the level and organization of nucleotide diversity in domesticated plant lineages has recently been motivated by the potential for using association-based mapping techniques as a means for identifying the genes underlying complex traits. To date, however, such data have been available only for a relatively small number of well-characterized plant taxa. Here we provide the first detailed description of patterns of nucleotide polymorphism in wild and cultivated sunflower (Helianthus annuus), using sequence data from nine nuclear genes. The results of this study indicate that wild sunflower harbors at least as much nucleotide diversity as has been reported in other wild plant taxa, with randomly selected sequence pairs being expected to differ at 1 of every 70 bp. In contrast, cultivated sunflower has retained only 40-50% of the diversity present in the wild. Consistent with this dramatic reduction in polymorphism, a phylogenetic analysis of our data revealed that the cultivars form a monophyletic clade, adding to the growing body of evidence that sunflower is the product of a single domestication. Eight of the nine loci surveyed appeared to be evolving primarily under purifying selection, while the remaining locus may have been the subject of positive selection. Linkage disequilibrium (LD) decayed very rapidly in the self-incompatible wild sunflower, with the expected LD falling to negligible levels within 200 bp. The cultivars, on the other hand, exhibited somewhat higher levels of LD, with nonrandom associations persisting up to approximately 1100 bp. Taken together, these results suggest that association-based approaches will provide a high degree of resolution for the mapping of functional variation in sunflower.
Collapse
Affiliation(s)
- Aizhong Liu
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | |
Collapse
|
88
|
Yamasaki M, Tenaillon MI, Bi IV, Schroeder SG, Sanchez-Villeda H, Doebley JF, Gaut BS, McMullen MD. A large-scale screen for artificial selection in maize identifies candidate agronomic loci for domestication and crop improvement. THE PLANT CELL 2005; 17:2859-72. [PMID: 16227451 PMCID: PMC1276015 DOI: 10.1105/tpc.105.037242] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Maize (Zea mays subsp mays) was domesticated from teosinte (Z. mays subsp parviglumis) through a single domestication event in southern Mexico between 6000 and 9000 years ago. This domestication event resulted in the original maize landrace varieties, which were spread throughout the Americas by Native Americans and adapted to a wide range of environmental conditions. Starting with landraces, 20th century plant breeders selected inbred lines of maize for use in hybrid maize production. Both domestication and crop improvement involved selection of specific alleles at genes controlling key morphological and agronomic traits, resulting in reduced genetic diversity relative to unselected genes. Here, we sequenced 1095 maize genes from a sample of 14 inbred lines and chose 35 genes with zero sequence diversity as potential targets of selection. These 35 genes were then sequenced in a sample of diverse maize landraces and teosintes and tested for selection. Using two statistical tests, we identified eight candidate genes. Extended gene sequencing of these eight candidate loci confirmed that six were selected throughout the gene, and the remaining two exhibited evidence of selection in the 3' portion of each gene. The selected genes have functions consistent with agronomic selection for nutritional quality, maturity, and productivity. Our large-scale screen for artificial selection allows identification of genes of potential agronomic importance even when gene function and the phenotype of interest are unknown.
Collapse
Affiliation(s)
- Masanori Yamasaki
- Division of Plant Sciences, University of Missouri, Columbia, Misssouri 65211, USA
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Ometto L, Glinka S, De Lorenzo D, Stephan W. Inferring the effects of demography and selection on Drosophila melanogaster populations from a chromosome-wide scan of DNA variation. Mol Biol Evol 2005; 22:2119-30. [PMID: 15987874 DOI: 10.1093/molbev/msi207] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Identifying regions of the Drosophila melanogaster genome that have been recent targets of positive Darwinian selection will provide evidence for adaptations that have helped this species to colonize temperate habitats. We have begun a search for such genomic regions by analyzing multiple loci (about 250) dispersed across the X chromosome in a putatively ancestral population from East Africa and a derived European population. For both populations we found evidence for past changes in population size. We estimated that a major bottleneck associated with the colonization of Europe occurred about 3,500-16,000 years ago. We also found that while this bottleneck can account for most of the reduction in variation observed in the European sample, there is a deficit of polymorphism in some genomic regions that cannot be explained by demography alone.
Collapse
Affiliation(s)
- Lino Ometto
- Section of Evolutionary Biology, Biocenter, University of Munich, Grosshaderner Strasse 2, D-82152 Planegg-Martinsried, Germany.
| | | | | | | |
Collapse
|
90
|
Llopart A, Lachaise D, Coyne JA. Multilocus analysis of introgression between two sympatric sister species of Drosophila: Drosophila yakuba and D. santomea. Genetics 2005; 171:197-210. [PMID: 15965264 PMCID: PMC1456511 DOI: 10.1534/genetics.104.033597] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Drosophila yakuba is widely distributed in sub-Saharan Africa, while D. santomea is endemic to the volcanic island of São Tomé in the Atlantic Ocean, 280 km west of Gabon. On São Tomé, D. yakuba is found mainly in open lowland forests, and D. santomea is restricted to the wet misty forests at higher elevations. At intermediate elevations, the species form a hybrid zone where hybrids occur at a frequency of approximately 1%. To determine the extent of gene flow between these species we studied polymorphism and divergence patterns in 29 regions distributed throughout the genome, including mtDNA and three genes on the Y chromosome. This multilocus approach, together with the comparison to the two allopatric species D. mauritiana and D. sechellia, allowed us to distinguish between forces that should affect all genes and forces that should act on some genes (e.g., introgression). Our results show that D. yakuba mtDNA has replaced that of D. santomea and that there is also significant introgression for two nuclear genes, yellow and salr. The majority of genes, however, has remained distinct. These two species therefore do not form a "hybrid swarm" in which much of the genome shows substantial introgression while disruptive selection maintains distinctness for only a few traits (e.g., pigmentation and male genitalia).
Collapse
Affiliation(s)
- Ana Llopart
- Department of Ecology and Evolution, University of Chicago, Illinois 60637, USA.
| | | | | |
Collapse
|
91
|
Städler T, Roselius K, Stephan W. GENEALOGICAL FOOTPRINTS OF SPECIATION PROCESSES IN WILD TOMATOES: DEMOGRAPHY AND EVIDENCE FOR HISTORICAL GENE FLOW. Evolution 2005. [DOI: 10.1111/j.0014-3820.2005.tb01777.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
92
|
Yogeeswaran K, Frary A, York TL, Amenta A, Lesser AH, Nasrallah JB, Tanksley SD, Nasrallah ME. Comparative genome analyses of Arabidopsis spp.: inferring chromosomal rearrangement events in the evolutionary history of A. thaliana. Genome Res 2005; 15:505-15. [PMID: 15805492 PMCID: PMC1074365 DOI: 10.1101/gr.3436305] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Comparative genome analysis is a powerful tool that can facilitate the reconstruction of the evolutionary history of the genomes of modern-day species. The model plant Arabidopsis thaliana with its n = 5 genome is thought to be derived from an ancestral n = 8 genome. Pairwise comparative genome analyses of A. thaliana with polyploid and diploid Brassicaceae species have suggested that rapid genome evolution, manifested by chromosomal rearrangements and duplications, characterizes the polyploid, but not the diploid, lineages of this family. In this study, we constructed a low-density genetic linkage map of Arabidopsis lyrata ssp. lyrata (A. l. lyrata; n = 8, diploid), the closest known relative of A. thaliana (MRCA approximately 5 Mya), using A. thaliana-specific markers that resolve into the expected eight linkage groups. We then performed comparative Bayesian analyses using raw mapping data from this study and from a Capsella study to infer the number and nature of rearrangements that distinguish the n = 8 genomes of A. l. lyrata and Capsella from the n = 5 genome of A. thaliana. We conclude that there is strong statistical support in favor of the parsimony scenarios of 10 major chromosomal rearrangements separating these n = 8 genomes from A. thaliana. These chromosomal rearrangement events contribute to a rate of chromosomal evolution higher than previously reported in this lineage. We infer that at least seven of these events, common to both sets of data, are responsible for the change in karyotype and underlie genome reduction in A. thaliana.
Collapse
|
93
|
de Meaux J, Goebel U, Pop A, Mitchell-Olds T. Allele-specific assay reveals functional variation in the chalcone synthase promoter of Arabidopsis thaliana that is compatible with neutral evolution. THE PLANT CELL 2005; 17:676-90. [PMID: 15705952 PMCID: PMC1069691 DOI: 10.1105/tpc.104.027839] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Accepted: 01/06/2005] [Indexed: 05/06/2023]
Abstract
Promoters are thought to play a major role in adaptive evolution, yet little is known about the regulatory diversity within species, where microevolutionary processes take place. To investigate the potential for evolutionary change in the promoter of a gene, we examined nucleotide and functional variation of the Chalcone Synthase (CHS) cis-regulatory region in Arabidopsis thaliana. CHS is the branch point enzyme of a biosynthetic pathway that leads to the production of secondary metabolites influencing the interaction between the plant and its environment. We found that nucleotide diversity in the intergenic region encompassing the CHS promoter (pi=0.003) is compatible with neutral expectations. To quantify functional variation specifically as a result of cis-regulation of CHS mRNA levels, we developed an assay using F1 individuals in which distinct promoter alleles are compared within a common trans-regulatory background. We examined functional cis-regulatory variation in response to different stimuli representing a variety of CHS transcriptional environments (dark, light, and insect feeding). We observed extensive functional variation, some of which appeared to be independent of the trans-regulatory background. Comparison of functional and nucleotide diversity suggested a candidate point mutation that may explain cis-regulatory differences in light response. Our results indicate that functional changes in promoters can arise from a few mutations, pointing to promoter regions as a fundamental determinant of functional genetic variation.
Collapse
Affiliation(s)
- Juliette de Meaux
- Genetics and Evolution, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany.
| | | | | | | |
Collapse
|
94
|
Schmid KJ, Ramos-Onsins S, Ringys-Beckstein H, Weisshaar B, Mitchell-Olds T. A multilocus sequence survey in Arabidopsis thaliana reveals a genome-wide departure from a neutral model of DNA sequence polymorphism. Genetics 2005; 169:1601-15. [PMID: 15654111 PMCID: PMC1449538 DOI: 10.1534/genetics.104.033795] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The simultaneous analysis of multiple genomic loci is a powerful approach to studying the effects of population history and natural selection on patterns of genetic variation of a species. By surveying nucleotide sequence polymorphism at 334 randomly distributed genomic regions in 12 accessions of Arabidopsis thaliana, we examined whether a standard neutral model of nucleotide sequence polymorphism is consistent with observed data. The average nucleotide diversity was 0.0071 for total sites and 0.0083 for silent sites. Although levels of diversity are variable among loci, no correlation with local recombination rate was observed, but polymorphism levels were correlated for physically linked loci (<250 kb). We found that observed distributions of Tajima's D- and D/D(min)- and of Fu and Li's D-, D*- and F-, F*-statistics differed significantly from the expected distributions under a standard neutral model due to an excess of rare polymorphisms and high variances. Observed and expected distributions of Fay and Wu's H were not different, suggesting that demographic processes and not selection at multiple loci are responsible for the deviation from a neutral model. Maximum-likelihood comparisons of alternative demographic models like logistic population growth, glacial refugia, or past bottlenecks did not produce parameter estimates that were more consistent with observed patterns. However, exclusion of highly polymorphic "outlier loci" resulted in a fit to the logistic growth model. Various tests of neutrality revealed a set of candidate loci that may evolve under selection.
Collapse
Affiliation(s)
- Karl J Schmid
- Department of Genetics and Evolution, Max-Planck Institute of Chemical Ecology, Jena, Germany.
| | | | | | | | | |
Collapse
|
95
|
Städler T, Roselius K, Stephan W. GENEALOGICAL FOOTPRINTS OF SPECIATION PROCESSES IN WILD TOMATOES: DEMOGRAPHY AND EVIDENCE FOR HISTORICAL GENE FLOW. Evolution 2005. [DOI: 10.1554/04-722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
96
|
Stranger BE, Mitchell-Olds T. Nucleotide variation at the myrosinase-encoding locus, TGG1, and quantitative myrosinase enzyme activity variation in Arabidopsis thaliana. Mol Ecol 2004; 14:295-309. [PMID: 15643972 DOI: 10.1111/j.1365-294x.2004.02403.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Arabidopsis thaliana TGG1 gene encodes thioglucoside glucohydrolase (myrosinase), an enzyme catalysing the hydrolysis of glucosinolate compounds. The enzyme is involved in plant defence against some insect herbivores, and is present in species of the order Capparales (Brassicales). Nucleotide variation was surveyed by sequencing c. 2.4 kb of the TGG1 locus in a sample of 28 worldwide A. thaliana accessions, and one Arabidopsis lyrata ssp. lyrata individual. Myrosinase activity was quantified for 27 of these same A. thaliana accessions, plus five additional others. Overall, estimated nucleotide diversity in A. thaliana was low compared to other published A. thaliana surveys, and the frequency distribution was skewed toward an excess of low-frequency variants. Furthermore, comparison to the outgroup species A. lyrata demonstrated that A. thaliana exhibited an excess of high-frequency derived variants relative to a neutral equilibrium model, suggesting a selective sweep. A. thaliana accessions differed significantly in total myrosinase activity, but analysis of variance detected no statistical evidence for an association between quantitative enzyme activity and alleles at the TGG1 myrosinase-encoding locus. We thus conclude that other, unsurveyed factors primarily affect the observed myrosinase activity levels in this species. The pattern of nucleotide variation was consistent with a model of positive selection but might also be compatible with a completely neutral model that takes into account the metapopulation behaviour of this highly inbreeding species which experienced a relatively recent worldwide expansion.
Collapse
Affiliation(s)
- Barbara E Stranger
- Department of Genetics and Evolution, Max Planck Institute of Chemical Ecology, Jena, Germany.
| | | |
Collapse
|
97
|
Clauss MJ, Mitchell-Olds T. Functional divergence in tandemly duplicated Arabidopsis thaliana trypsin inhibitor genes. Genetics 2004; 166:1419-36. [PMID: 15082560 PMCID: PMC1470761 DOI: 10.1534/genetics.166.3.1419] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In multigene families, variation among loci and alleles can contribute to trait evolution. We explored patterns of functional and genetic variation in six duplicated Arabidopsis thaliana trypsin inhibitor (ATTI) loci. We demonstrate significant variation in constitutive and herbivore-induced transcription among ATTI loci that show, on average, 65% sequence divergence. Significant variation in ATTI expression was also found between two molecularly defined haplotype classes. Population genetic analyses for 17 accessions of A. thaliana showed that six ATTI loci arranged in tandem within 10 kb varied 10-fold in nucleotide diversity, from 0.0009 to 0.0110, and identified a minimum of six recombination events throughout the tandem array. We observed a significant peak in nucleotide and indel polymorphism spanning ATTI loci in the interior of the array, due primarily to divergence between the two haplotype classes. Significant deviation from the neutral equilibrium model for individual genes was interpreted within the context of intergene linkage disequilibrium and correlated patterns of functional differentiation. In contrast to the outcrosser Arabidopsis lyrata for which recombination is observed even within ATTI loci, our data suggest that response to selection was slowed in the inbreeding, annual A. thaliana because of interference among functionally divergent ATTI loci.
Collapse
Affiliation(s)
- M J Clauss
- Department of Genetics and Evolution, Max Planck Institute of Chemical Ecology, 07745 Jena, Germany.
| | | |
Collapse
|
98
|
Wright SI, Gaut BS. Molecular Population Genetics and the Search for Adaptive Evolution in Plants. Mol Biol Evol 2004; 22:506-19. [PMID: 15525701 DOI: 10.1093/molbev/msi035] [Citation(s) in RCA: 201] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The first papers on plant molecular population genetics were published approximately 10 years ago. Since that time, well over 50 additional studies of plant nucleotide polymorphism have been published, and many of these studies focused on detecting the signature of balancing or positive selection at a locus. In this review, we discuss some of the theoretical and statistical issues surrounding the detection of selection, with focus on plant populations, and we also summarize the empirical plant molecular population genetics literature. At face value, the literature suggests that a history of balancing or positive selection in plant genes is rampant. In two well-studied taxa (maize and Arabidopsis) over 20% of studied genes have been interpreted as containing the signature of selection. We argue that this is probably an overstatement of the prevalence of natural selection in plant genomes, for two reasons. First, demographic effects are difficult to incorporate and have generally not been well integrated into the plant population genetics literature. Second, the genes studied to date are not a random sample, so selected genes may be overrepresented. The next generation of studies in plant molecular population genetics requires additional sampling of local populations, explicit comparisons among loci, and improved theoretical methods to control for demography. Eventually, candidate loci should be confirmed by explicit consideration of phenotypic effects.
Collapse
Affiliation(s)
- Stephen I Wright
- Department of Ecology and Evolutionary Biology, University of California, Irvine, USA
| | | |
Collapse
|
99
|
Ingvarsson PK. Nucleotide polymorphism and linkage disequilibrium within and among natural populations of European aspen (Populus tremula L., Salicaceae). Genetics 2004; 169:945-53. [PMID: 15489521 PMCID: PMC1449109 DOI: 10.1534/genetics.104.034959] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Populus is an important model organism in forest biology, but levels of nucleotide polymorphisms and linkage disequilibrium have never been investigated in natural populations. Here I present a study on levels of nucleotide polymorphism, haplotype structure, and population subdivision in five nuclear genes in the European aspen Populus tremula. Results show substantial levels of genetic variation. Levels of silent site polymorphisms, pi(s), averaged 0.016 across the five genes. Linkage disequilibrium was generally low, extending only a few hundred base pairs, suggesting that rates of recombination are high in this obligate outcrossing species. Significant genetic differentiation was found at all five genes, with an average estimate of F(ST) = 0.116. Levels of polymorphism in P. tremula are 2- to 10-fold higher than those in other woody, long-lived perennial plants, such as Pinus and Cryptomeria. The high levels of nucleotide polymorphism and low linkage disequilibrium suggest that it may be possible to map functional variation to very fine scales in P. tremula using association-mapping approaches.
Collapse
Affiliation(s)
- Pär K Ingvarsson
- Umeå Plant Science Centre, Department of Ecology and Environmental Science, University of Umeå, SE-891 87 Umeå, Sweden.
| |
Collapse
|