51
|
Liu Y, Liu X, Huang J, Shi Y, Luo Z, Zhang J, Guo X, Jiang M, Li X, Yin H, Qin B, Guan G, Luo L, Zhou Y, You J. Nonlysosomal Route of mRNA Delivery and Combining with Epigenetic Regulation Optimized Antitumor Immunoprophylactic Efficacy. Adv Healthc Mater 2023; 12:e2202460. [PMID: 36366890 DOI: 10.1002/adhm.202202460] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/31/2022] [Indexed: 11/13/2022]
Abstract
Currently, mRNA-based tumor therapies are in full flow because in vitro-transcribed (IVT) mRNA has the potential to express tumor antigens to initiate the adaptive immune responses. However, the efficacy of such therapy relies heavily on the delivery system. Here, a pardaxin-modified liposome loaded with tumor antigen-encoding mRNA and adjuvant (2',3'-cGAMP, (cyclic [G(2',5')pA(3',5')p])), termed P-Lipoplex-CDN is reported. Due to an nonlysosomal delivery route, the transfection efficiency on dendritic cells (DCs) is improved by reducing the lysosome disruption of cargos. The mRNA modified DCs efficiently induce tumor antigen-specific immune responses both in vitro and in vivo. As prophylactic vaccines, mRNA transfected DCs significantly delay the occurrence and development of tumors, and several immunized mice are even completely resistant to tumors. Interestingly, the efficacy depends on the major histocompatibility complex class I (MHC-I) expression level on tumor cells. Furthermore, epigenetic modification (decitabine, DAC) is applied as a combination strategy to deal with malignant tumor progression caused by deficient tumor MHC-I expression. This study highlights the close relationship between mRNA-DCs vaccine efficacy and the expression level of tumor cell MHC-I molecules. Moreover, a feasible strategy for tumor MHC-I expression deficiency is proposed, which may provide clinical guidance for the design and application of mRNA-based tumor therapies.
Collapse
Affiliation(s)
- Yu Liu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Xu Liu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Jiaxin Huang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Zhenyu Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Junlei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Xuemeng Guo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Mengshi Jiang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Xiang Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Hang Yin
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Bing Qin
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Guannan Guan
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Yun Zhou
- Zhejiang Center of Drug and Cosmetic Evaluation, No. 39 Yile Road, Hangzhou, Zhejiang, 310012, P. R. China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| |
Collapse
|
52
|
Grzela R, Piecyk K, Stankiewicz-Drogon A, Pietrow P, Lukaszewicz M, Kurpiejewski K, Darzynkiewicz E, Jankowska-Anyszka M. N2 modified dinucleotide cap analogs as a potent tool for mRNA engineering. RNA (NEW YORK, N.Y.) 2023; 29:200-216. [PMID: 36418172 PMCID: PMC9891257 DOI: 10.1261/rna.079460.122] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
mRNA-based vaccines are relatively new technologies that have been in the field of interest of research centers and pharmaceutical companies in recent years. Such therapeutics are an attractive alternative for DNA-based vaccines since they provide material that can be used with no risk of genomic integration. Additionally, mRNA can be quite easily engineered to introduce modifications for different applications or to modulate its properties, for example, to increase translational efficiency or stability, which is not available for DNA vectors. Here, we describe the use of N2 modified dinucleotide cap analogs as components of mRNA transcripts. The compounds obtained showed very promising biological properties while incorporated into mRNA. The presented N2-guanine modifications within the cap structure ensure proper attachment of the dinucleotide to the transcripts in the IVT reaction, guarantees their incorporation only in the correct orientation, and enables highly efficient translation of mRNA both in the in vitro translation system and in human HEK293 cells.
Collapse
Affiliation(s)
- Renata Grzela
- Division of Biophysics, Institute of Experimental Physics, University of Warsaw, 02-093 Warsaw, Poland
| | - Karolina Piecyk
- Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland
| | - Anna Stankiewicz-Drogon
- Division of Biophysics, Institute of Experimental Physics, University of Warsaw, 02-093 Warsaw, Poland
| | - Paulina Pietrow
- Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland
| | - Maciej Lukaszewicz
- Division of Biophysics, Institute of Experimental Physics, University of Warsaw, 02-093 Warsaw, Poland
| | | | - Edward Darzynkiewicz
- Division of Biophysics, Institute of Experimental Physics, University of Warsaw, 02-093 Warsaw, Poland
- Center of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | | |
Collapse
|
53
|
Yuan Y, Gao F, Chang Y, Zhao Q, He X. Advances of mRNA vaccine in tumor: a maze of opportunities and challenges. Biomark Res 2023; 11:6. [PMID: 36650562 PMCID: PMC9845107 DOI: 10.1186/s40364-023-00449-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
High-frequency mutations in tumor genomes could be exploited as an asset for developing tumor vaccines. In recent years, with the tremendous breakthrough in genomics, intelligence algorithm, and in-depth insight of tumor immunology, it has become possible to rapidly target genomic alterations in tumor cell and rationally select vaccine targets. Among a variety of candidate vaccine platforms, the early application of mRNA was limited by instability low efficiency and excessive immunogenicity until the successful development of mRNA vaccines against SARS-COV-2 broken of technical bottleneck in vaccine preparation, allowing tumor mRNA vaccines to be prepared rapidly in an economical way with good performance of stability and efficiency. In this review, we systematically summarized the classification and characteristics of tumor antigens, the general process and methods for screening neoantigens, the strategies of vaccine preparations and advances in clinical trials, as well as presented the main challenges in the current mRNA tumor vaccine development.
Collapse
Affiliation(s)
- Yuan Yuan
- grid.413247.70000 0004 1808 0969Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China ,grid.412793.a0000 0004 1799 5032Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Gao
- grid.413247.70000 0004 1808 0969Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China ,grid.412793.a0000 0004 1799 5032Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Chang
- grid.413247.70000 0004 1808 0969Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China ,grid.413247.70000 0004 1808 0969Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Qiu Zhao
- grid.413247.70000 0004 1808 0969Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China ,grid.413247.70000 0004 1808 0969Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Xingxing He
- grid.413247.70000 0004 1808 0969Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China ,grid.412793.a0000 0004 1799 5032Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China ,grid.413247.70000 0004 1808 0969Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| |
Collapse
|
54
|
Matrices Activated with Messenger RNA. J Funct Biomater 2023; 14:jfb14010048. [PMID: 36662095 PMCID: PMC9864744 DOI: 10.3390/jfb14010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Over two decades of preclinical and clinical experience have confirmed that gene therapy-activated matrices are potent tools for sustained gene modulation at the implantation area. Matrices activated with messenger RNA (mRNA) are the latest development in the area, and they promise an ideal combination of efficiency and safety. Indeed, implanted mRNA-activated matrices allow a sustained delivery of mRNA and the continuous production of therapeutic proteins in situ. In addition, they are particularly interesting to generate proteins acting on intracellular targets, as the translated protein can directly exert its therapeutic function. Still, mRNA-activated matrices are incipient technologies with a limited number of published records, and much is still to be understood before their successful implementation. Indeed, the design parameters of mRNA-activated matrices are crucial for their performance, as they affect mRNA stability, device immunogenicity, translation efficiency, and the duration of the therapy. Critical design factors include matrix composition and its mesh size, mRNA chemical modification and sequence, and the characteristics of the nanocarriers used for mRNA delivery. This review aims to provide some background relevant to these technologies and to summarize both the design space for mRNA-activated matrices and the current knowledge regarding their pharmaceutical performance. Furthermore, we will discuss potential applications of mRNA-activated matrices, mainly focusing on tissue engineering and immunomodulation.
Collapse
|
55
|
Dong S, Wang J, Guo Z, Zhang Y, Zha W, Wang Y, Liu C, Xing H, Li X. Efficient delivery of VEGFA mRNA for promoting wound healing via ionizable lipid nanoparticles. Bioorg Med Chem 2023; 78:117135. [PMID: 36577327 DOI: 10.1016/j.bmc.2022.117135] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Vascular endothelial growth factor A (VEGFA) plays an important role in the healing of skin wound. However, the application of VEGFA protein in clinic is limited because of its high cost manufacturing, complicated purification and poor pharmacokinetic profile. Herein, we developed nucleoside-modified mRNA encoding VEGFA encapsulated ionizable lipid nanoparticles (LNP) to improve angiogenesis and increase wound healing rate. First, VEGFA mRNA was synthesized by an in vitro transcription (IVT) method. After that, VEGFA mRNA-LNP was prepared by encapsulating mRNA in ionizable lipid based nanoparticles via a microfluidic mixer. The physicochemical properties of VEGFA mRNA-LNP were investigated via dynamic light scattering (DLS) and transmission electron microscopy (TEM). The results showed that the VEGFA mRNA-LNP possessed regular spherical morphology with an average size of 112.67 nm and a negative Zeta potential of -3.43 mV. The LNP delivery system had excellent lysosome escape capability and high transfection efficiency. ELISA and Western Blot analysis indicated that the mRNA-LNP could express VEGFA protein in Human umbilical vein endothelial cells (HUVECs). Besides, endothelial tube formation, cell proliferation and scratch assays were performed. The results revealed VEGFA mRNA-LNP boosted angiogenesis, cell proliferation and cell migration by expressing VEGFA protein. Finally, C57BL/6 mouse model of skin wound was established and intradermally treated with VEGFA mRNA-LNP. The VEGFA mRNA-LNP treated wounds were almost healed with an average wound size of 1.56 mm2 compared with the blank of 18.66 mm2 after 9 days. The results indicated that the VEGFA mRNA-LNP was able to significantly expedite wound healing. Histological analysis further demonstrated tissue epithelialization, collagen deposition and enhancement of vascular density after treatment. Taken together, VEGFA mRNA-LNP can be uptaken by cells to express protein effectively and promote wound healing, which may provide a promising strategy for clinical remedy.
Collapse
Affiliation(s)
- Shuo Dong
- Zhongda Hospital, Southeast University, Nanjing 210009, China; School of Chemistry and Chemical Engineering, Southeast University, Nanjing 214122, China
| | - Ji Wang
- Zhongda Hospital, Southeast University, Nanjing 210009, China; School of Chemistry and Chemical Engineering, Southeast University, Nanjing 214122, China
| | - Zongke Guo
- Zhongda Hospital, Southeast University, Nanjing 210009, China; School of Chemistry and Chemical Engineering, Southeast University, Nanjing 214122, China.
| | - Yanhao Zhang
- Zhongda Hospital, Southeast University, Nanjing 210009, China; School of Chemistry and Chemical Engineering, Southeast University, Nanjing 214122, China
| | - Wenhui Zha
- Zhongda Hospital, Southeast University, Nanjing 210009, China; School of Chemistry and Chemical Engineering, Southeast University, Nanjing 214122, China
| | - Yang Wang
- Zhongda Hospital, Southeast University, Nanjing 210009, China; School of Chemistry and Chemical Engineering, Southeast University, Nanjing 214122, China
| | - Chao Liu
- Zhongda Hospital, Southeast University, Nanjing 210009, China; School of Chemistry and Chemical Engineering, Southeast University, Nanjing 214122, China
| | - Hanlei Xing
- Zhongda Hospital, Southeast University, Nanjing 210009, China; School of Chemistry and Chemical Engineering, Southeast University, Nanjing 214122, China
| | - Xinsong Li
- Zhongda Hospital, Southeast University, Nanjing 210009, China; School of Chemistry and Chemical Engineering, Southeast University, Nanjing 214122, China.
| |
Collapse
|
56
|
Protein Transduction Domain-Mediated Delivery of Recombinant Proteins and In Vitro Transcribed mRNAs for Protein Replacement Therapy of Human Severe Genetic Mitochondrial Disorders: The Case of Sco2 Deficiency. Pharmaceutics 2023; 15:pharmaceutics15010286. [PMID: 36678915 PMCID: PMC9861957 DOI: 10.3390/pharmaceutics15010286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/31/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Mitochondrial disorders represent a heterogeneous group of genetic disorders with variations in severity and clinical outcomes, mostly characterized by respiratory chain dysfunction and abnormal mitochondrial function. More specifically, mutations in the human SCO2 gene, encoding the mitochondrial inner membrane Sco2 cytochrome c oxidase (COX) assembly protein, have been implicated in the mitochondrial disorder fatal infantile cardioencephalomyopathy with COX deficiency. Since an effective treatment is still missing, a protein replacement therapy (PRT) was explored using protein transduction domain (PTD) technology. Therefore, the human recombinant full-length mitochondrial protein Sco2, fused to TAT peptide (a common PTD), was produced (fusion Sco2 protein) and successfully transduced into fibroblasts derived from a SCO2/COX-deficient patient. This PRT contributed to effective COX assembly and partial recovery of COX activity. In mice, radiolabeled fusion Sco2 protein was biodistributed in the peripheral tissues of mice and successfully delivered into their mitochondria. Complementary to that, an mRNA-based therapeutic approach has been more recently considered as an innovative treatment option. In particular, a patented, novel PTD-mediated IVT-mRNA delivery platform was developed and applied in recent research efforts. PTD-IVT-mRNA of full-length SCO2 was successfully transduced into the fibroblasts derived from a SCO2/COX-deficient patient, translated in host ribosomes into a nascent chain of human Sco2, imported into mitochondria, and processed to the mature protein. Consequently, the recovery of reduced COX activity was achieved, thus suggesting the potential of this mRNA-based technology for clinical translation as a PRT for metabolic/genetic disorders. In this review, such research efforts will be comprehensibly presented and discussed to elaborate their potential in clinical application and therapeutic usefulness.
Collapse
|
57
|
Schmidt C, Schnierle BS. Self-Amplifying RNA Vaccine Candidates: Alternative Platforms for mRNA Vaccine Development. Pathogens 2023; 12:138. [PMID: 36678486 PMCID: PMC9863218 DOI: 10.3390/pathogens12010138] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
The present use of mRNA vaccines against COVID-19 has shown for the first time the potential of mRNA vaccines for infectious diseases. Here we will summarize the current knowledge about improved mRNA vaccines, i.e., the self-amplifying mRNA (saRNA) vaccines. This approach may enhance antigen expression by amplification of the antigen-encoding RNA. RNA design, RNA delivery, and the innate immune responses induced by RNA will be reviewed.
Collapse
Affiliation(s)
- Christin Schmidt
- Section AIDS and Newly Emerging Pathogens, Department of Virology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Barbara S. Schnierle
- Section AIDS and Newly Emerging Pathogens, Department of Virology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| |
Collapse
|
58
|
Panova EA, Kleymenov DA, Shcheblyakov DV, Bykonia EN, Mazunina EP, Dzharullaeva AS, Zolotar AN, Derkaev AA, Esmagambetov IB, Sorokin II, Usachev EV, Noskov AN, Ivanov IA, Zatsepin TS, Dmitriev SE, Gushchin VA, Naroditsky BS, Logunov DY, Gintsburg AL. Single-domain antibody delivery using an mRNA platform protects against lethal doses of botulinum neurotoxin A. Front Immunol 2023; 14:1098302. [PMID: 36865543 PMCID: PMC9971915 DOI: 10.3389/fimmu.2023.1098302] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Single-domain antibodies (sdAbs, VHHs, or nanobodies) are a promising tool for the treatment of both infectious and somatic diseases. Their small size greatly simplifies any genetic engineering manipulations. Such antibodies have the ability to bind hard-to-reach antigenic epitopes through long parts of the variable chains, the third complementarity-determining regions (CDR3s). VHH fusion with the canonical immunoglobulin Fc fragment allows the Fc-fusion single-domain antibodies (VHH-Fc) to significantly increase their neutralizing activity and serum half-life. Previously we have developed and characterized VHH-Fc specific to botulinum neurotoxin A (BoNT/A), that showed a 1000-fold higher protective activity than monomeric form when challenged with five times the lethal dose (5 LD50) of BoNT/A. During the COVID-19 pandemic, mRNA vaccines based on lipid nanoparticles (LNP) as a delivery system have become an important translational technology that has significantly accelerated the clinical introduction of mRNA platforms. We have developed an mRNA platform that provides long-term expression after both intramuscular and intravenous application. The platform has been extensively characterized using firefly luciferase (Fluc) as a reporter. An intramuscular administration of LNP-mRNA encoding VHH-Fc antibody made it possible to achieve its rapid expression in mice and resulted in 100% protection when challenged with up to 100 LD50 of BoNT/A. The presented approach for the delivery of sdAbs using mRNA technology greatly simplifies drug development for antibody therapy and can be used for emergency prophylaxis.
Collapse
Affiliation(s)
- Eugenia A Panova
- National Research Centre for Epidemiology and Microbiology named after Honorary Academician N F Gamaleya of the Ministry of Health of the Russian Federation, Moscow, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Denis A Kleymenov
- National Research Centre for Epidemiology and Microbiology named after Honorary Academician N F Gamaleya of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Dmitry V Shcheblyakov
- National Research Centre for Epidemiology and Microbiology named after Honorary Academician N F Gamaleya of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Evgeniia N Bykonia
- National Research Centre for Epidemiology and Microbiology named after Honorary Academician N F Gamaleya of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Elena P Mazunina
- National Research Centre for Epidemiology and Microbiology named after Honorary Academician N F Gamaleya of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alina S Dzharullaeva
- National Research Centre for Epidemiology and Microbiology named after Honorary Academician N F Gamaleya of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anastasia N Zolotar
- National Research Centre for Epidemiology and Microbiology named after Honorary Academician N F Gamaleya of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Artem A Derkaev
- National Research Centre for Epidemiology and Microbiology named after Honorary Academician N F Gamaleya of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Ilias B Esmagambetov
- National Research Centre for Epidemiology and Microbiology named after Honorary Academician N F Gamaleya of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Ivan I Sorokin
- National Research Centre for Epidemiology and Microbiology named after Honorary Academician N F Gamaleya of the Ministry of Health of the Russian Federation, Moscow, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Evgeny V Usachev
- National Research Centre for Epidemiology and Microbiology named after Honorary Academician N F Gamaleya of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anatoly N Noskov
- National Research Centre for Epidemiology and Microbiology named after Honorary Academician N F Gamaleya of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Igor A Ivanov
- National Research Centre for Epidemiology and Microbiology named after Honorary Academician N F Gamaleya of the Ministry of Health of the Russian Federation, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | | | - Sergey E Dmitriev
- National Research Centre for Epidemiology and Microbiology named after Honorary Academician N F Gamaleya of the Ministry of Health of the Russian Federation, Moscow, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir A Gushchin
- National Research Centre for Epidemiology and Microbiology named after Honorary Academician N F Gamaleya of the Ministry of Health of the Russian Federation, Moscow, Russia.,Department of Virology, Lomonosov Moscow State University, Moscow, Russia
| | - Boris S Naroditsky
- National Research Centre for Epidemiology and Microbiology named after Honorary Academician N F Gamaleya of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Denis Y Logunov
- National Research Centre for Epidemiology and Microbiology named after Honorary Academician N F Gamaleya of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexander L Gintsburg
- National Research Centre for Epidemiology and Microbiology named after Honorary Academician N F Gamaleya of the Ministry of Health of the Russian Federation, Moscow, Russia.,Infectiology Department, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
59
|
Karim ME, Haque ST, Al-Busaidi H, Bakhtiar A, Tha KK, Holl MMB, Chowdhury EH. Scope and challenges of nanoparticle-based mRNA delivery in cancer treatment. Arch Pharm Res 2022; 45:865-893. [DOI: 10.1007/s12272-022-01418-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022]
|
60
|
Jansen EM, Frijlink HW, Hinrichs WLJ, Ruigrok MJR. Are inhaled mRNA vaccines safe and effective? A review of preclinical studies. Expert Opin Drug Deliv 2022; 19:1471-1485. [DOI: 10.1080/17425247.2022.2131767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Evalyne M Jansen
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Henderik W Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Wouter LJ Hinrichs
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Mitchel JR Ruigrok
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
61
|
Skelton R, Roach A, Prudhomme LE, Cen Feng JYC, Gaikwad P, Williams RM. Formulation of Lipid-Free Polymeric Mesoscale Nanoparticles Encapsulating mRNA. Pharm Res 2022; 39:2699-2707. [PMID: 36163410 PMCID: PMC9513001 DOI: 10.1007/s11095-022-03398-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/14/2022] [Indexed: 11/27/2022]
Abstract
Introduction Nanoparticle-mediated gene therapy has found substantial clinical impact, primarily focused on lipid-based nanoparticles. In comparison with lipid nanoparticles, polymeric particles may have certain advantages such as increased biocompatibility and controlled release. Our prior studies have found that polymeric mesoscale nanoparticles exhibited specific targeting to the renal proximal tubules. Thus, in this study, we sought to identify formulation parameters that allow for development of polymeric mesoscale nanoparticles encapsulating functional mRNA for delivery into tubular epithelial cells. Methods We evaluated particle uptake in vitro prior to exploring formulation parameters related to introduction of a primary mixture of polymer in acetonitrile and hydrophilic mRNA in water. Finally, we evaluated their functionality in a renal tubular epithelial cell line. Results We found that MNPs are endocytosed within 15 min and that the mesoscale nanoparticle formulation procedure was generally robust to introduction of a primary mixture and encapsulation of mRNA. These particles exhibited substantial uptake in renal cells in vitro and rapid (< 1 h) expression of a model mCherry fluorescent protein. Conclusion We anticipate these findings having potential in the delivery of specific gene therapies for renal disorders and cancer.
Collapse
Affiliation(s)
- Rachel Skelton
- Department of Biomedical Engineering, The City College of New York, New York, NY, 10031, USA
| | - Arantxa Roach
- Department of Biomedical Engineering, The City College of New York, New York, NY, 10031, USA
| | - Lauren E Prudhomme
- Department of Biomedical Engineering, The City College of New York, New York, NY, 10031, USA
| | | | - Pooja Gaikwad
- Department of Biomedical Engineering, The City College of New York, New York, NY, 10031, USA
- PhD Program in Chemistry, Graduate Center, City University of New York, New York, NY, 10016, USA
| | - Ryan M Williams
- Department of Biomedical Engineering, The City College of New York, New York, NY, 10031, USA.
- PhD Program in Chemistry, Graduate Center, City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
62
|
Furtado D, Cortez-Jugo C, Hung YH, Bush AI, Caruso F. mRNA Treatment Rescues Niemann-Pick Disease Type C1 in Patient Fibroblasts. Mol Pharm 2022; 19:3987-3999. [PMID: 36125338 DOI: 10.1021/acs.molpharmaceut.2c00463] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Messenger RNA (mRNA) holds great potential as a disease-modifying treatment for a wide array of monogenic disorders. Niemann-Pick disease type C1 (NP-C1) is an ultrarare monogenic disease that arises due to loss-of-function mutations in the NPC1 gene, resulting in the entrapment of unesterified cholesterol in the lysosomes of affected cells and a subsequent reduction in their capacity for cholesterol esterification. This causes severe damage to various organs including the brain, liver, and spleen. In this work, we describe the use of NPC1-encoded mRNA to rescue the protein insufficiency and pathogenic phenotype caused by biallelic NPC1 mutations in cultured fibroblasts derived from an NP-C1 patient. We first evaluated engineering strategies for the generation of potent mRNAs capable of eliciting high protein expression across multiple cell types. We observed that "GC3" codon optimization, coupled with N1-methylpseudouridine base modification, yielded an mRNA that was approximately 1000-fold more potent than wild-type, unmodified mRNA in a luciferase reporter assay and consistently superior to other mRNA variants. Our data suggest that the improved expression associated with this design strategy was due in large part to the increased secondary structure of the designed mRNAs. Both codon optimization and base modification appear to contribute to increased secondary structure. Applying these principles to the engineering of NPC1-encoded mRNA, we observed a normalization in NPC1 protein levels after mRNA treatment, as well as a rescue of the mutant phenotype. Specifically, mRNA treatment restored the cholesterol esterification capacity of patient cells to wild-type levels and induced a significant reduction in both unesterified cholesterol levels (>57% reduction compared to Lipofectamine-treated control in a cholesterol esterification assay) and lysosome size (157 μm2 reduction compared to Lipofectamine-treated control). These findings show that engineered mRNA can correct the deficit caused by NPC1 mutations. More broadly, they also serve to further validate the potential of this technology to correct diseases associated with loss-of-function mutations in genes coding for large, complex, intracellular proteins.
Collapse
Affiliation(s)
- Denzil Furtado
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christina Cortez-Jugo
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ya Hui Hung
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
63
|
Nanotechnology-based chimeric antigen receptor T-cell therapy in treating solid tumor. Pharmacol Res 2022; 184:106454. [PMID: 36115525 DOI: 10.1016/j.phrs.2022.106454] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/01/2022] [Accepted: 09/13/2022] [Indexed: 12/13/2022]
Abstract
Chimeric Antigen Receptor (CAR) T cells have changed the therapeutic landscape of hematological malignancies with overwhelming success. The clinical success of CAR T-cell therapy in hematologic malignancies has fueled interest in exploring the technology in solid tumors. However, the treatment of solid tumors presents a unique set of challenges compared to hematological tumors. The biggest impediments to the success of CAR T cell treatment are the paucity of tumor-specific antigens that are produced selectively and uniformly and the immunosuppressive tumor microenvironment. To overcome these significant challenges, nanotechnology has been involved to improve the efficacy of CAR-T cells. In this review, we systematically introduced the components of different generations of CARs and summarized recent innovations in nano-based CAR-T cell therapy to conquer therapeutically resistant non-hematologic malignancies, including mRNA and hydrogel-based CAR T cells delivery, photothermal-remodeling, and tumor microenvironment-based CAR T cell therapy. These nanotechnologies remarkably facilitate in vivo generation of CAR T cells and hold promise as a therapeutic platform to treat solid tumors and even other diseases.
Collapse
|
64
|
Higuchi A, Sung TC, Wang T, Ling QD, Kumar SS, Hsu ST, Umezawa A. Material Design for Next-Generation mRNA Vaccines Using Lipid Nanoparticles. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2106490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Akon Higuchi
- School of Biomedical Engineering, The Eye Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Chemical and Materials Engineering, National Central University, Jhongli, Taiwan
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taiwan
- Department of Reproduction, National Center for Child Health and Development, Okura, Tokyo, Japan
| | - Tzu-Cheng Sung
- School of Biomedical Engineering, The Eye Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ting Wang
- School of Biomedical Engineering, The Eye Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qing-Dong Ling
- Cathay Medical Research Institute, Cathay General Hospital, Taipei, Taiwan
| | - S. Suresh Kumar
- Department of Biotechnology, Bharath Institute of Higher Education and Research, Chennai, India
| | - Shih-Tien Hsu
- Department of Internal Medicine, Taiwan Landseed Hospital, Pingjen City, Taiwan Taoyuan
| | - Akihiro Umezawa
- Department of Reproduction, National Center for Child Health and Development, Okura, Tokyo, Japan
| |
Collapse
|
65
|
Yang L, Tang L, Zhang M, Liu C. Recent Advances in the Molecular Design and Delivery Technology of mRNA for Vaccination Against Infectious Diseases. Front Immunol 2022; 13:896958. [PMID: 35928814 PMCID: PMC9345514 DOI: 10.3389/fimmu.2022.896958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/20/2022] [Indexed: 12/02/2022] Open
Abstract
Vaccines can prevent many millions of illnesses against infectious diseases and save numerous lives every year. However, traditional vaccines such as inactivated viral and live attenuated vaccines cannot adapt to emerging pandemics due to their time-consuming development. With the global outbreak of the COVID-19 epidemic, the virus continues to evolve and mutate, producing mutants with enhanced transmissibility and virulence; the rapid development of vaccines against such emerging global pandemics becomes more and more critical. In recent years, mRNA vaccines have been of significant interest in combating emerging infectious diseases due to their rapid development and large-scale production advantages. However, their development still suffers from many hurdles such as their safety, cellular delivery, uptake, and response to their manufacturing, logistics, and storage. More efforts are still required to optimize the molecular designs of mRNA molecules with increased protein expression and enhanced structural stability. In addition, a variety of delivery systems are also needed to achieve effective delivery of vaccines. In this review, we highlight the advances in mRNA vaccines against various infectious diseases and discuss the molecular design principles and delivery systems of associated mRNA vaccines. The current state of the clinical application of mRNA vaccine pipelines against various infectious diseases and the challenge, safety, and protective effect of associated vaccines are also discussed.
Collapse
Affiliation(s)
- Lu Yang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lin Tang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Ming Zhang
- Department of Pathology, Peking University International Hospital, Beijing, China
- *Correspondence: Chaoyong Liu, ; Ming Zhang,
| | - Chaoyong Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
- *Correspondence: Chaoyong Liu, ; Ming Zhang,
| |
Collapse
|
66
|
Liu A, Wang X. The Pivotal Role of Chemical Modifications in mRNA Therapeutics. Front Cell Dev Biol 2022; 10:901510. [PMID: 35912117 PMCID: PMC9326091 DOI: 10.3389/fcell.2022.901510] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
After over a decade of development, mRNA has recently matured into a potent modality for therapeutics. The advantages of mRNA therapeutics, including their rapid development and scalability, have been highlighted due to the SARS-CoV-2 pandemic, in which the first two clinically approved mRNA vaccines have been spotlighted. These vaccines, as well as multiple other mRNA therapeutic candidates, are modified to modulate their immunogenicity, stability, and translational efficiency. Despite the importance of mRNA modifications for harnessing the full efficacy of mRNA drugs, the full breadth of potential modifications has yet to be explored clinically. In this review, we survey the field of mRNA modifications, highlighting their ability to tune the properties of mRNAs. These include cap and tail modifications, nucleoside substitutions, and chimeric mRNAs, each of which represents a component of mRNA that can be exploited for modification. Additionally, we cover clinical and preclinical trials of the modified mRNA platform not only to illustrate the promise of modified mRNAs but also to call attention to the room for diversifying future therapeutics.
Collapse
Affiliation(s)
- Albert Liu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Xiao Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
67
|
Gómez-Aguado I, Rodríguez-Castejón J, Beraza-Millor M, Rodríguez-Gascón A, Del Pozo-Rodríguez A, Solinís MÁ. mRNA delivery technologies: Toward clinical translation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 372:207-293. [PMID: 36064265 DOI: 10.1016/bs.ircmb.2022.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Messenger RNA (mRNA)-therapies have recently taken a huge step toward clinic thanks to the first mRNA-based medicinal products marketed. mRNA features for clinical purposes are improved by chemical modifications, but the inclusion in a delivery system is a regular requirement. mRNA nanomedicines must be designed for the specific therapeutic purpose, protecting the nucleic acid and facilitating the overcoming of biological barriers. Polymers, polypeptides, and cationic lipids are the main used materials to design mRNA delivery systems. Among them, lipid nanoparticles (LNPs) are the most advanced ones, and currently they are at the forefront of preclinical and clinical evaluation in several fields, including immunotherapy (against infectious diseases and cancer), protein replacement, gene editing and regenerative medicine. This chapter includes an overview on mRNA delivery technologies, with special interest in LNPs, and the most recent advances in their clinical application. Liposomes are the mRNA delivery technology with the highest clinical translation among LNPs, whereas the first clinical trial of a therapeutic mRNA formulated in exosomes has been recently approved for protein replacement therapy. The first mRNA products approved by the regulatory agencies worldwide are LNP-based mRNA vaccines against viral infections, specifically against the 2019 coronavirus disease (COVID-19). The clinical translation of mRNA-therapies for cancer is mainly focused on three strategies: anti-cancer vaccination by means of delivering cancer antigens or acting as an adjuvant, mRNA-engineered chimeric antigen receptors (CARs) and T-cell receptors (TCRs), and expression of antibodies and immunomodulators. Cancer immunotherapy and, more recently, COVID-19 vaccines spearhead the advance of mRNA clinical use.
Collapse
Affiliation(s)
- Itziar Gómez-Aguado
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, Vitoria-Gasteiz, Spain
| | - Julen Rodríguez-Castejón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, Vitoria-Gasteiz, Spain
| | - Marina Beraza-Millor
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, Vitoria-Gasteiz, Spain
| | - Alicia Rodríguez-Gascón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, Vitoria-Gasteiz, Spain
| | - Ana Del Pozo-Rodríguez
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, Vitoria-Gasteiz, Spain
| | - María Ángeles Solinís
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, Vitoria-Gasteiz, Spain.
| |
Collapse
|
68
|
Qin S, Tang X, Chen Y, Chen K, Fan N, Xiao W, Zheng Q, Li G, Teng Y, Wu M, Song X. mRNA-based therapeutics: powerful and versatile tools to combat diseases. Signal Transduct Target Ther 2022; 7:166. [PMID: 35597779 PMCID: PMC9123296 DOI: 10.1038/s41392-022-01007-w] [Citation(s) in RCA: 314] [Impact Index Per Article: 104.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/04/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
The therapeutic use of messenger RNA (mRNA) has fueled great hope to combat a wide range of incurable diseases. Recent rapid advances in biotechnology and molecular medicine have enabled the production of almost any functional protein/peptide in the human body by introducing mRNA as a vaccine or therapeutic agent. This represents a rising precision medicine field with great promise for preventing and treating many intractable or genetic diseases. In addition, in vitro transcribed mRNA has achieved programmed production, which is more effective, faster in design and production, as well as more flexible and cost-effective than conventional approaches that may offer. Based on these extraordinary advantages, mRNA vaccines have the characteristics of the swiftest response to large-scale outbreaks of infectious diseases, such as the currently devastating pandemic COVID-19. It has always been the scientists’ desire to improve the stability, immunogenicity, translation efficiency, and delivery system to achieve efficient and safe delivery of mRNA. Excitingly, these scientific dreams have gradually been realized with the rapid, amazing achievements of molecular biology, RNA technology, vaccinology, and nanotechnology. In this review, we comprehensively describe mRNA-based therapeutics, including their principles, manufacture, application, effects, and shortcomings. We also highlight the importance of mRNA optimization and delivery systems in successful mRNA therapeutics and discuss the key challenges and opportunities in developing these tools into powerful and versatile tools to combat many genetic, infectious, cancer, and other refractory diseases.
Collapse
Affiliation(s)
- Shugang Qin
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoshan Tang
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuting Chen
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kepan Chen
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Na Fan
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Xiao
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Zheng
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Guohong Li
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuqing Teng
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Xiangrong Song
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
69
|
Li M, Wang H, Tian L, Pang Z, Yang Q, Huang T, Fan J, Song L, Tong Y, Fan H. COVID-19 vaccine development: milestones, lessons and prospects. Signal Transduct Target Ther 2022; 7:146. [PMID: 35504917 PMCID: PMC9062866 DOI: 10.1038/s41392-022-00996-y] [Citation(s) in RCA: 216] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 12/15/2022] Open
Abstract
With the constantly mutating of SARS-CoV-2 and the emergence of Variants of Concern (VOC), the implementation of vaccination is critically important. Existing SARS-CoV-2 vaccines mainly include inactivated, live attenuated, viral vector, protein subunit, RNA, DNA, and virus-like particle (VLP) vaccines. Viral vector vaccines, protein subunit vaccines, and mRNA vaccines may induce additional cellular or humoral immune regulations, including Th cell responses and germinal center responses, and form relevant memory cells, greatly improving their efficiency. However, some viral vector or mRNA vaccines may be associated with complications like thrombocytopenia and myocarditis, raising concerns about the safety of these COVID-19 vaccines. Here, we systemically assess the safety and efficacy of COVID-19 vaccines, including the possible complications and different effects on pregnant women, the elderly, people with immune diseases and acquired immunodeficiency syndrome (AIDS), transplant recipients, and cancer patients. Based on the current analysis, governments and relevant agencies are recommended to continue to advance the vaccine immunization process. Simultaneously, special attention should be paid to the health status of the vaccines, timely treatment of complications, vaccine development, and ensuring the lives and health of patients. In addition, available measures such as mix-and-match vaccination, developing new vaccines like nanoparticle vaccines, and optimizing immune adjuvant to improve vaccine safety and efficacy could be considered.
Collapse
Affiliation(s)
- Maochen Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Han Wang
- Laboratory for Clinical Immunology, Harbin Children's Hospital, Harbin, China
| | - Lili Tian
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Zehan Pang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Qingkun Yang
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Tianqi Huang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Junfen Fan
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Lihua Song
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China. .,Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China.
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
| |
Collapse
|
70
|
Domazet-Lošo T. mRNA Vaccines: Why Is the Biology of Retroposition Ignored? Genes (Basel) 2022; 13:719. [PMID: 35627104 PMCID: PMC9141755 DOI: 10.3390/genes13050719] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 02/07/2023] Open
Abstract
The major advantage of mRNA vaccines over more conventional approaches is their potential for rapid development and large-scale deployment in pandemic situations. In the current COVID-19 crisis, two mRNA COVID-19 vaccines have been conditionally approved and broadly applied, while others are still in clinical trials. However, there is no previous experience with the use of mRNA vaccines on a large scale in the general population. This warrants a careful evaluation of mRNA vaccine safety properties by considering all available knowledge about mRNA molecular biology and evolution. Here, I discuss the pervasive claim that mRNA-based vaccines cannot alter genomes. Surprisingly, this notion is widely stated in the mRNA vaccine literature but never supported by referencing any primary scientific papers that would specifically address this question. This discrepancy becomes even more puzzling if one considers previous work on the molecular and evolutionary aspects of retroposition in murine and human populations that clearly documents the frequent integration of mRNA molecules into genomes, including clinical contexts. By performing basic comparisons, I show that the sequence features of mRNA vaccines meet all known requirements for retroposition using L1 elements-the most abundant autonomously active retrotransposons in the human genome. In fact, many factors associated with mRNA vaccines increase the possibility of their L1-mediated retroposition. I conclude that is unfounded to a priori assume that mRNA-based therapeutics do not impact genomes and that the route to genome integration of vaccine mRNAs via endogenous L1 retroelements is easily conceivable. This implies that we urgently need experimental studies that would rigorously test for the potential retroposition of vaccine mRNAs. At present, the insertional mutagenesis safety of mRNA-based vaccines should be considered unresolved.
Collapse
Affiliation(s)
- Tomislav Domazet-Lošo
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia;
- School of Medicine, Catholic University of Croatia, Ilica 242, HR-10000 Zagreb, Croatia
| |
Collapse
|
71
|
Abstract
The rapid development of two nucleoside-modified mRNA vaccines that are safe and highly effective against coronavirus disease 2019 has transformed the vaccine field. The mRNA technology has the advantage of accelerated immunogen discovery, induction of robust immune responses, and rapid scale up of manufacturing. Efforts to develop genital herpes vaccines have been ongoing for 8 decades without success. The advent of mRNA technology has the potential to change that narrative. Developing a genital herpes vaccine is a high public health priority. A prophylactic genital herpes vaccine should prevent HSV-1 and HSV-2 genital lesions and infection of dorsal root ganglia, the site of latency. Vaccine immunity should be durable for decades, perhaps with the assistance of booster doses. While these goals have been elusive, new efforts with nucleoside-modified mRNA-lipid nanoparticle vaccines show great promise. We review past approaches to vaccine development that were unsuccessful or partially successful in large phase 3 trials, and describe lessons learned from these trials. We discuss our trivalent mRNA-lipid nanoparticle approach for a prophylactic genital herpes vaccine and the ability of the vaccine to induce higher titers of neutralizing antibodies and more durable CD4+ T follicular helper cell and memory B cell responses than protein-adjuvanted vaccines.
Collapse
Affiliation(s)
- Sita Awasthi
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Harvey M Friedman
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
72
|
Fang E, Liu X, Li M, Zhang Z, Song L, Zhu B, Wu X, Liu J, Zhao D, Li Y. Advances in COVID-19 mRNA vaccine development. Signal Transduct Target Ther 2022; 7:94. [PMID: 35322018 PMCID: PMC8940982 DOI: 10.1038/s41392-022-00950-y] [Citation(s) in RCA: 267] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/10/2022] [Accepted: 03/03/2022] [Indexed: 12/15/2022] Open
Abstract
To date, the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has determined 399,600,607 cases and 5,757,562 deaths worldwide. COVID-19 is a serious threat to human health globally. The World Health Organization (WHO) has declared COVID-19 pandemic a major public health emergency. Vaccination is the most effective and economical intervention for controlling the spread of epidemics, and consequently saving lives and protecting the health of the population. Various techniques have been employed in the development of COVID-19 vaccines. Among these, the COVID-19 messenger RNA (mRNA) vaccine has been drawing increasing attention owing to its great application prospects and advantages, which include short development cycle, easy industrialization, simple production process, flexibility to respond to new variants, and the capacity to induce better immune response. This review summarizes current knowledge on the structural characteristics, antigen design strategies, delivery systems, industrialization potential, quality control, latest clinical trials and real-world data of COVID-19 mRNA vaccines as well as mRNA technology. Current challenges and future directions in the development of preventive mRNA vaccines for major infectious diseases are also discussed.
Collapse
Affiliation(s)
- Enyue Fang
- National Institute for Food and Drug Control, Beijing, 102629, China
- Wuhan Institute of Biological Products, Co., Ltd., Wuhan, 430207, China
| | - Xiaohui Liu
- National Institute for Food and Drug Control, Beijing, 102629, China
| | - Miao Li
- National Institute for Food and Drug Control, Beijing, 102629, China
| | - Zelun Zhang
- National Institute for Food and Drug Control, Beijing, 102629, China
| | - Lifang Song
- National Institute for Food and Drug Control, Beijing, 102629, China
| | - Baiyu Zhu
- Texas A&M University, College Station, TX, 77843, USA
| | - Xiaohong Wu
- National Institute for Food and Drug Control, Beijing, 102629, China
| | - Jingjing Liu
- National Institute for Food and Drug Control, Beijing, 102629, China
| | - Danhua Zhao
- National Institute for Food and Drug Control, Beijing, 102629, China
| | - Yuhua Li
- National Institute for Food and Drug Control, Beijing, 102629, China.
| |
Collapse
|
73
|
He Q, Gao H, Tan D, Zhang H, Wang JZ. mRNA cancer vaccines: Advances, trends and challenges. Acta Pharm Sin B 2022; 12:2969-2989. [PMID: 35345451 PMCID: PMC8942458 DOI: 10.1016/j.apsb.2022.03.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 12/12/2022] Open
Abstract
Patients exhibit good tolerance to messenger ribonucleic acid (mRNA) vaccines, and the choice of encoded molecules is flexible and diverse. These vaccines can be engineered to express full-length antigens containing multiple epitopes without major histocompatibility complex (MHC) restriction, are relatively easy to control and can be rapidly mass produced. In 2021, the U.S. Food and Drug Administration (FDA) approved the first mRNA-based coronavirus disease 2019 (COVID-19) vaccine produced by Pfizer and BioNTech, which has generated enthusiasm for mRNA vaccine research and development. Based on the above characteristics and the development of mRNA vaccines, mRNA cancer vaccines have become a research hotspot and have undergone rapid development, especially in the last five years. This review analyzes the advances in mRNA cancer vaccines from various perspectives, including the selection and expression of antigens/targets, the application of vectors and adjuvants, different administration routes, and preclinical evaluation, to reflect the trends and challenges associated with these vaccines.
Collapse
|
74
|
Moradian H, Roch T, Anthofer L, Lendlein A, Gossen M. Chemical modification of uridine modulates mRNA-mediated proinflammatory and antiviral response in primary human macrophages. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 27:854-869. [PMID: 35141046 PMCID: PMC8807976 DOI: 10.1016/j.omtn.2022.01.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 01/07/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Hanieh Moradian
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Kantstr. 55, 14513 Teltow, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Föhrerstr. 15, 13353 Berlin, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Toralf Roch
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117 Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Center for Advanced Therapies, Augustenburger Platz 1, 13353 Berlin, Germany
- Center for Translational Medicine, Immunology, and Transplantation, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Hölkeskampring 40, 44625 Herne, Germany
| | - Larissa Anthofer
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Kantstr. 55, 14513 Teltow, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Föhrerstr. 15, 13353 Berlin, Germany
| | - Andreas Lendlein
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Kantstr. 55, 14513 Teltow, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Föhrerstr. 15, 13353 Berlin, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Manfred Gossen
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Kantstr. 55, 14513 Teltow, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Föhrerstr. 15, 13353 Berlin, Germany
- Corresponding author Dr. Manfred Gossen, Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Kantstr. 55, 14513 Teltow, Germany.
| |
Collapse
|
75
|
De La Vega RE, van Griensven M, Zhang W, Coenen MJ, Nagelli CV, Panos JA, Peniche Silva CJ, Geiger J, Plank C, Evans CH, Balmayor ER. Efficient healing of large osseous segmental defects using optimized chemically modified messenger RNA encoding BMP-2. SCIENCE ADVANCES 2022; 8:eabl6242. [PMID: 35171668 PMCID: PMC8849297 DOI: 10.1126/sciadv.abl6242] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Large segmental osseous defects heal poorly. Recombinant, human bone morphogenetic protein-2 (rhBMP-2) is used clinically to promote bone healing, but it is applied at very high doses that cause adverse side effects and raise costs while providing only incremental benefit. We describe a previously unexplored, alternative approach to bone regeneration using chemically modified messenger RNA (cmRNA). An optimized cmRNA encoding BMP-2 was delivered to critical-sized femoral osteotomies in rats. The cmRNA remained orthotopically localized and generated BMP locally for several days. Defects healed at doses ≥25 μg of BMP-2 cmRNA. By 4 weeks, all animals treated with 50 μg of BMP-2 cmRNA had bridged bone defects without forming the massive callus seen with rhBMP-2. Moreover, such defects recovered normal mechanical strength quicker and initiated bone remodeling faster. cmRNA regenerated bone via endochondral ossification, whereas rhBMP-2 drove intramembranous osteogenesis; cmRNA provides an innovative, safe, and highly translatable technology for bone healing.
Collapse
Affiliation(s)
- Rodolfo E. De La Vega
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, USA
- cBITE, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Martijn van Griensven
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, USA
- cBITE, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | | | - Michael J. Coenen
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, USA
| | | | - Joseph A. Panos
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, USA
| | - Carlos J. Peniche Silva
- cBITE, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | | | | | | | - Elizabeth R. Balmayor
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, USA
- IBE, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
- Corresponding author.
| |
Collapse
|
76
|
Kon E, Elia U, Peer D. Principles for designing an optimal mRNA lipid nanoparticle vaccine. Curr Opin Biotechnol 2022; 73:329-336. [PMID: 34715546 PMCID: PMC8547895 DOI: 10.1016/j.copbio.2021.09.016] [Citation(s) in RCA: 151] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/20/2021] [Accepted: 09/29/2021] [Indexed: 12/14/2022]
Abstract
mRNA Lipid nanoparticles (LNPs) have recently been propelled onto the center stage of therapeutic platforms due to the success of the SARS-CoV-2 mRNA LNP vaccines (mRNA-1273 and BNT162b2), with billions of mRNA vaccine doses already shipped worldwide. While mRNA vaccines seem like an overnight success to some, they are in fact a result of decades of scientific research. The advantage of mRNA-LNP vaccines lies in the modularity of the platform and the rapid manufacturing capabilities. However, there is a multitude of choices to be made when designing an optimal mRNA-LNP vaccine regarding efficacy, stability and toxicity. Herein, we provide a brief on what we consider to be the most important aspects to cover when designing mRNA-LNPs from what is currently known and how to optimize them. Lastly, we give our perspective on which of these aspects is most crucial and what we believe are the next steps required to advance the field.
Collapse
Affiliation(s)
- Edo Kon
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv 69978, Israel; The Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Uri Elia
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv 69978, Israel; The Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel; Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel
| | - Dan Peer
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv 69978, Israel; The Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
77
|
Abstract
Hantavirus induced hemorrhagic fever with renal syndrome (HFRS) is an emerging viral zoonosis affecting up to 200,000 humans annually worldwide. This review article is focused on recent advances in the mechanism, epidemiology, diagnosis, and treatment of hantavirus induced HFRS. The importance of interactions between viral and host factors in the design of therapeutic strategies is discussed. Hantavirus induced HFRS is characterized by thrombocytopenia and proteinuria of varying severities. The mechanism of kidney injury appears immunopathological with characteristic deterioration of endothelial cell function and compromised barrier functions of the vasculature. Although multidisciplinary research efforts have provided insights about the loss of cellular contact in the endothelium leading to increased permeability, the details of the molecular mechanisms remain poorly understood. The epidemiology of hantavirus induced renal failure is associated with viral species and the geographical location of the natural host of the virus. The development of vaccine and antiviral therapeutics is necessary to avoid potentially severe outbreaks of this zoonotic illness in the future. The recent groundbreaking approach to the SARS-CoV-2 mRNA vaccine has revolutionized the general field of vaccinology and has provided new directions for the use of this promising platform for widespread vaccine development, including the development of hantavirus mRNA vaccine. The combinational therapies specifically targeted to inhibit hantavirus replication and vascular permeability in infected patients will likely improve the disease outcome.
Collapse
|
78
|
Rurik JG, Tombácz I, Yadegari A, Méndez Fernández PO, Shewale SV, Li L, Kimura T, Soliman OY, Papp TE, Tam YK, Mui BL, Albelda SM, Puré E, June CH, Aghajanian H, Weissman D, Parhiz H, Epstein JA. CAR T cells produced in vivo to treat cardiac injury. Science 2022; 375:91-96. [PMID: 34990237 PMCID: PMC9983611 DOI: 10.1126/science.abm0594] [Citation(s) in RCA: 665] [Impact Index Per Article: 221.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Fibrosis affects millions of people with cardiac disease. We developed a therapeutic approach to generate transient antifibrotic chimeric antigen receptor (CAR) T cells in vivo by delivering modified messenger RNA (mRNA) in T cell–targeted lipid nanoparticles (LNPs). The efficacy of these in vivo–reprogrammed CAR T cells was evaluated by injecting CD5-targeted LNPs into a mouse model of heart failure. Efficient delivery of modified mRNA encoding the CAR to T lymphocytes was observed, which produced transient, effective CAR T cells in vivo. Antifibrotic CAR T cells exhibited trogocytosis and retained the target antigen as they accumulated in the spleen. Treatment with modified mRNA-targeted LNPs reduced fibrosis and restored cardiac function after injury. In vivo generation of CAR T cells may hold promise as a therapeutic platform to treat various diseases.
Collapse
Affiliation(s)
- Joel G. Rurik
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - István Tombácz
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Amir Yadegari
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Pedro O. Méndez Fernández
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Swapnil V. Shewale
- Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Li Li
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Toru Kimura
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Ousamah Younoss Soliman
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Tyler E. Papp
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Ying K. Tam
- Acuitas Therapeutics, Vancouver, BC V6T 1Z3, Canada
| | | | - Steven M. Albelda
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ellen Puré
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carl H. June
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Haig Aghajanian
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Corresponding authors: Haig Aghajanian: , Drew Weissman: , Hamideh Parhiz: , Jonathan A. Epstein:
| | - Drew Weissman
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Corresponding authors: Haig Aghajanian: , Drew Weissman: , Hamideh Parhiz: , Jonathan A. Epstein:
| | - Hamideh Parhiz
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Corresponding authors: Haig Aghajanian: , Drew Weissman: , Hamideh Parhiz: , Jonathan A. Epstein:
| | - Jonathan A. Epstein
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Corresponding authors: Haig Aghajanian: , Drew Weissman: , Hamideh Parhiz: , Jonathan A. Epstein:
| |
Collapse
|
79
|
Rurik JG, Tombácz I, Yadegari A, Méndez Fernández PO, Shewale SV, Li L, Kimura T, Soliman OY, Papp TE, Tam YK, Mui BL, Albelda SM, Puré E, June CH, Aghajanian H, Weissman D, Parhiz H, Epstein JA. CAR T cells produced in vivo to treat cardiac injury. Science 2022; 375:91-96. [DOI: doi/10.1126/science.abm0594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Making CAR T cells in vivo
Cardiac fibrosis is the stiffening and scarring of heart tissue and can be fatal. Rurik
et al
. designed an immunotherapy strategy to generate transient chimeric antigen receptor (CAR) T cells that can recognize the fibrotic cells in the heart (see the Perspective by Gao and Chen). By injecting CD5-targeted lipid nanoparticles containing the messenger RNA (mRNA) instructions needed to reprogram T lymphocytes, the researchers were able to generate therapeutic CAR T cells entirely inside the body. Analysis of a mouse model of heart disease revealed that the approach was successful in reducing fibrosis and restoring cardiac function. The ability to produce CAR T cells in vivo using modified mRNA may have a number of therapeutic applications. —PNK
Collapse
Affiliation(s)
- Joel G. Rurik
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - István Tombácz
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Amir Yadegari
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Pedro O. Méndez Fernández
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Swapnil V. Shewale
- Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Li Li
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Toru Kimura
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Ousamah Younoss Soliman
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Tyler E. Papp
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Ying K. Tam
- Acuitas Therapeutics, Vancouver, British Columbia V6T 1Z3, Canada
| | - Barbara L. Mui
- Acuitas Therapeutics, Vancouver, British Columbia V6T 1Z3, Canada
| | - Steven M. Albelda
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ellen Puré
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carl H. June
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Haig Aghajanian
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Drew Weissman
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Hamideh Parhiz
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan A. Epstein
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
80
|
Naik R, Peden K. Regulatory Considerations on the Development of mRNA Vaccines. Curr Top Microbiol Immunol 2022; 440:187-205. [PMID: 32638114 DOI: 10.1007/82_2020_220] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Developing traditional viral vaccines for infectious diseases usually takes years, as these are usually produced either by chemical inactivation of the virus or attenuation of the pathogen, processes that can take considerable time to validate and also require the live pathogen. With the advent of nucleic-acid vaccines (DNA and mRNA), the time to vaccine design and production is considerably shortened, since once the platform has been established, all that is required is the sequence of the antigen gene, its synthesis and insertion into an appropriate expression vector; importantly, no infectious virus is required. mRNA vaccines have some advantages over DNA vaccines, such as expression in non-dividing cells and the absence of the perceived risk of integration into host genome. Also, generally lower doses are required to induce the immune response. Based on experience in recent clinical trials, mRNA-based vaccines are a promising novel platform that might be useful for the development of vaccines against emerging pandemic infectious diseases. This chapter discusses some of the specific issues that mRNA vaccines raise with respect to production, quality, safety and efficacy, and how they have been addressed so as to allow their evaluation in clinical trials.
Collapse
Affiliation(s)
- Ramachandra Naik
- Division of Vaccines and Related Products Applications, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Building 71, Room 3045, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | - Keith Peden
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Building 52/72, Room 1220, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA.
| |
Collapse
|
81
|
Lin Y, Wagner E, Lächelt U. Non-viral delivery of the CRISPR/Cas system: DNA versus RNA versus RNP. Biomater Sci 2022; 10:1166-1192. [DOI: 10.1039/d1bm01658j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since its discovery, the CRISPR/Cas technology has rapidly become an essential tool in modern biomedical research. The opportunities to specifically modify and correct genomic DNA has also raised big hope...
Collapse
|
82
|
Wang AYL. Modified mRNA-Based Vaccines Against Coronavirus Disease 2019. Cell Transplant 2022; 31:9636897221090259. [PMID: 35438579 PMCID: PMC9021518 DOI: 10.1177/09636897221090259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The pandemic of coronavirus disease 2019 (COVID-19) continuously causes deaths worldwide, representing a considerable challenge to health care and economic systems with a new precedent in human history. Many therapeutic medicines primarily focused on preventing severe organ damage and complications, which can be fatal in some confirmed cases. The synthesized modified mRNA (modRNA) represents a nonviral, integration-free, zero-footprint, efficient, and safe strategy for vaccine discovery. modRNA-based technology has facilitated the rapid development of the first COVID-19 vaccines due to its cost- and time-saving properties, thus initiating a new era of prophylactic vaccines against infectious diseases. Recently, COVID-19 modRNA vaccines were approved, and a large-scale vaccination campaign began worldwide. To date, results suggest that the modRNA vaccines are highly effective against virus infection, which causes COVID-19. Although short-term studies have reported that their safety is acceptable, long-term safety and protective immunity remain unclear. In this review, we describe two major approved modRNA vaccines and discuss their potential myocarditis complications.
Collapse
Affiliation(s)
- Aline Yen Ling Wang
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
83
|
Review of Ribosome Interactions with SARS-CoV-2 and COVID-19 mRNA Vaccine. LIFE (BASEL, SWITZERLAND) 2022; 12:life12010057. [PMID: 35054450 PMCID: PMC8780073 DOI: 10.3390/life12010057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 12/29/2022]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the causing pathogen of the unprecedented global Coronavirus Disease 19 (COVID-19) pandemic. Upon infection, the virus manipulates host cellular machinery and ribosomes to synthesize its own proteins for successful replication and to facilitate further infection. SARS-CoV-2 executes a multi-faceted hijacking of the host mRNA translation and cellular protein synthesis. Viral nonstructural proteins (NSPs) interact with a range of different ribosomal states and interfere with mRNA translation. Concurrent mutations on NSPs and spike proteins contribute to the epidemiological success of variants of concern (VOCs). The interactions between ribosomes and SARS-CoV-2 represent attractive targets for the development of antiviral therapeutics and vaccines. Recently approved COVID-19 mRNA vaccines also utilize the cellular machinery, to produce antigens and trigger immune responses. The design features of the mRNA vaccines are critical to efficient mRNA translation in ribosomes, and are directly related to the vaccine's efficacy, safety, and immunogenicity. This review describes recent knowledge of how the SARS-CoV-2 virus' genomic characteristics interfere with ribosomal function and mRNA translation. In addition, we discuss the current learning of the design features of mRNA vaccines and their impacts on translational activity in ribosomes. The understanding of ribosomal interactions with the virus and mRNA vaccines offers the foundation for antiviral therapeutic discovery and continuous mRNA vaccine optimization to lower the dose, to increase durability and/or to reduce adverse effects.
Collapse
|
84
|
Miliotou AN, Pappas IS, Spyroulias G, Vlachaki E, Tsiftsoglou AS, Vizirianakis IS, Papadopoulou LC. Development of a novel PTD-mediated IVT-mRNA delivery platform for potential protein replacement therapy of metabolic/genetic disorders. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:694-710. [PMID: 34703653 PMCID: PMC8517095 DOI: 10.1016/j.omtn.2021.09.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 09/09/2021] [Indexed: 12/22/2022]
Abstract
The potential clinical applications of the powerful in vitro-transcribed (IVT)-mRNAs, to restore defective protein functions, strongly depend on their successful intracellular delivery and transient translation through the development of safe and efficient delivery platforms. In this study, an innovative (international patent-pending) methodology was developed, combining the IVT-mRNAs with the protein transduction domain (PTD) technology, as an efficient delivery platform. Based on the PTD technology, which enables the intracellular delivery of various cargoes intracellularly, successful conjugation of a PTD to the IVT-mRNAs was achieved and evaluated by band-shift assay and NMR spectroscopy. In addition, the PTD-IVT-mRNAs were applied and evaluated in two protein-disease models, including the mitochondrial disorder fatal infantile cardioencephalomyopathy and cytochrome c oxidase (COX) deficiency (attributed to SCO2 gene mutations) and β-thalassemia. The PTD-IVT-mRNA of SCO2 was successfully transduced and translated to the corresponding Sco2 protein inside the primary fibroblasts of a SCO2/COX-deficient patient, whereas the PTD-IVT-mRNA of β-globin was transduced and translated in bone marrow cells, derived from three β-thalassemic patients. The transducibility and the structural stability of the PDT-IVT-mRNAs, in both cases, were confirmed at the RNA and protein levels. We propose that our novel delivery platform could be clinically applicable as a protein therapy for metabolic/genetic disorders.
Collapse
Affiliation(s)
- Androulla N Miliotou
- Laboratory of Pharmacology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, 546 42 Macedonia, Greece
| | - Ioannis S Pappas
- Laboratory of Pharmacology and Toxicology, Faculty of Veterinary Science, University of Thessaly, Karditsa, 431 00 Thessaly, Greece
| | | | - Efthimia Vlachaki
- Adult Thalassemia Unit, Hippokrateion General Hospital, Thessaloniki, 546 42 Macedonia, Greece
| | - Asterios S Tsiftsoglou
- Laboratory of Pharmacology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, 546 42 Macedonia, Greece
| | - Ioannis S Vizirianakis
- Laboratory of Pharmacology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, 546 42 Macedonia, Greece.,Department of Life and Health Sciences, University of Nicosia, 1700 Nicosia, Cyprus
| | - Lefkothea C Papadopoulou
- Laboratory of Pharmacology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, 546 42 Macedonia, Greece
| |
Collapse
|
85
|
Krhač Levačić A, Berger S, Müller J, Wegner A, Lächelt U, Dohmen C, Rudolph C, Wagner E. Dynamic mRNA polyplexes benefit from bioreducible cleavage sites for in vitro and in vivo transfer. J Control Release 2021; 339:27-40. [PMID: 34547258 DOI: 10.1016/j.jconrel.2021.09.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 01/06/2023]
Abstract
Currently, messenger RNA (mRNA)-based lipid nanoparticle formulations revolutionize the clinical field. Cationic polymer-based complexes (polyplexes) represent an alternative compound class for mRNA delivery. After establishing branched polyethylenimine with a succinylation degree of 10% (succPEI) as highly effective positive mRNA transfection standard, a diverse library of PEI-like peptides termed sequence-defined oligoaminoamides (OAAs) was screened for mRNA delivery. Notably, sequences, which had previously been identified as potent plasmid DNA (pDNA) or small-interfering RNA (siRNA) carriers, displayed only moderate mRNA transfection activity. A second round of screening combined the cationizable building block succinoyl tetraethylene pentamine and histidines for endosomal buffering, tyrosine tripeptides and various fatty acids for mRNA polyplex stabilization, as well as redox-sensitive units for programmed intracellular release. For the tested OAA carriers, balancing of extracellular stability, endosomal lytic activity, and intracellular release capability was found to be of utmost importance for optimum mRNA transfection efficiency. OAAs with T-shape topology containing two oleic acids as well-stabilizing fatty acids, attached via a dynamic bioreducible building block, displayed superior activity with up to 1000-fold increased transfection efficiency compared to their non-reducible analogs. In the absence of the dynamic linkage, incorporation of shorter less stabilizing fatty acids could only partly compensate for mRNA delivery. Highest GFP expression and the largest fraction of transfected cells (96%) could be detected for the bioreducible OAA with incorporated histidines and a dioleoyl motif, outperforming all other tested carriers as well as the positive control succPEI. The good in vitro performance of the dynamic lead structure was verified in vivo upon intratracheal administration of mRNA complexes in mice.
Collapse
Affiliation(s)
- Ana Krhač Levačić
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
| | - Simone Berger
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
| | - Judith Müller
- Ethris GmbH, Semmelweisstr. 3, Planegg D-82152, Germany
| | - Andrea Wegner
- Ethris GmbH, Semmelweisstr. 3, Planegg D-82152, Germany
| | - Ulrich Lächelt
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
| | | | | | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) Munich, Butenandtstr. 5-13, D-81377 Munich, Germany.
| |
Collapse
|
86
|
Balmayor ER. Synthetic mRNA - emerging new class of drug for tissue regeneration. Curr Opin Biotechnol 2021; 74:8-14. [PMID: 34749063 DOI: 10.1016/j.copbio.2021.10.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/03/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022]
Abstract
mRNA has the potential to be the next generation drug for tissue restoration in regenerative medicine. The variety of mRNAs that could be synthesized with the aim of increasing the expression of any required protein offers new opportunities. However, the intrinsic immunogenicity and lack of stability of mRNA has long restricted the potential of mRNA therapeutics. Fortunately, considerable progress has been made on synthetic mRNA modifications and relevant purification steps that have overcome these limitations. However, there remains a lack of efficient mRNA delivery strategies. Additionally, mRNA may need to be administered in situ via three-dimensional biomaterials. These materials, also known as transcript-activated matrices, require further consideration in terms of mRNA loading and release, immunogenicity, and other features. In this article, various limiting factors in mRNA synthesis, vector formulation, and local delivery to tissues are highlighted together with current developments and the future outlook for mRNA therapeutics in tissue regeneration.
Collapse
Affiliation(s)
- Elizabeth Rosado Balmayor
- IBE, MERLN Institute for Technology - Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands; Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
87
|
To KKW, Cho WCS. An overview of rational design of mRNA-based therapeutics and vaccines. Expert Opin Drug Discov 2021; 16:1307-1317. [PMID: 34058918 DOI: 10.1080/17460441.2021.1935859] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/25/2021] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Messenger RNA (mRNA)-based therapeutics and vaccines have emerged as a disruptive new drug class for various applications, including regenerative medicine, cancer treatment, and prophylactic and therapeutic vaccinations. AREAS COVERED This review provides an update about the rational structure-based design of various formats of mRNA-based therapeutics. The authors discuss the recent advances in the mRNA modifications that have been used to enhance stability, promote translation efficiency and regulate immunogenicity for specific applications. EXPERT OPINION Extensive research efforts have been made to optimize mRNA constructs and preparation procedures to unleash the full potential of mRNA-based therapeutics and vaccines. Sequence optimization (untranslated region and codon usage), chemical engineering of nucleotides and modified 5'cap, and optimization of in vitro transcription and mRNA purification protocols have overcome the major obstacles (instability, delivery, immunogenicity and safety) hindering the clinical applications of mRNA therapeutics and vaccines. The optimized design parameters should not be applied as default to different biological systems, but rather individually optimized for each mRNA sequence and intended application. Further advancement in the mRNA design and delivery technologies for achieving cell type- and organ site-specificity will broaden the scope and usefulness of this new class of drugs.
Collapse
Affiliation(s)
- Kenneth K W To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - William C S Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| |
Collapse
|
88
|
Feng R, Patil S, Zhao X, Miao Z, Qian A. RNA Therapeutics - Research and Clinical Advancements. Front Mol Biosci 2021; 8:710738. [PMID: 34631795 PMCID: PMC8492966 DOI: 10.3389/fmolb.2021.710738] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/07/2021] [Indexed: 12/16/2022] Open
Abstract
RNA therapeutics involve the use of coding RNA such as mRNA as well as non-coding RNAs such as small interfering RNAs (siRNA), antisense oligonucleotides (ASO) to target mRNA, aptamers, ribozymes, and clustered regularly interspaced short palindromic repeats-CRISPR-associated (CRISPR/Cas) endonuclease to target proteins and DNA. Due to their diverse targeting ability and research in RNA modification and delivery systems, RNA-based formulations have emerged as suitable treatment options for many diseases. Therefore, in this article, we have summarized different RNA therapeutics, their targeting strategies, and clinical progress for various diseases as well as limitations; so that it might help researchers formulate new and advanced RNA therapeutics for various diseases. Additionally, U.S. Food and Drug Administration (USFDA)-approved RNA-based therapeutics have also been discussed.
Collapse
Affiliation(s)
- Rundong Feng
- Shaanxi Institute for Food and Drug Control, Xi'an, China
| | - Suryaji Patil
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xin Zhao
- School of Pharmacy, Shaanxi Institute of International Trade & Commerce, Xi'an, China
| | - Zhiping Miao
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Airong Qian
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
89
|
Liu G, Zhu M, Zhao X, Nie G. Nanotechnology-empowered vaccine delivery for enhancing CD8 + T cells-mediated cellular immunity. Adv Drug Deliv Rev 2021; 176:113889. [PMID: 34364931 DOI: 10.1016/j.addr.2021.113889] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/17/2021] [Accepted: 07/18/2021] [Indexed: 12/18/2022]
Abstract
After centuries of development, using vaccination to stimulate immunity has become an effective method for prevention and treatment of a variety of diseases including infective diseases and cancers. However, the tailor-made efficient delivery system for specific antigens is still urgently needed due to the low immunogenicity and stability of antigens, especially for vaccines to induce CD8+ T cells-mediated cellular immunity. Unlike B cells-mediated humoral immunity, CD8+ T cells-mediated cellular immunity mainly aims at the intracellular antigens from microorganism in virus-infected cells or genetic mutations in tumor cells. Therefore, the vaccines for stimulating CD8+ T cells-mediated cellular immunity should deliver the antigens efficiently into the cytoplasm of antigen presenting cells (APCs) to form major histocompatibility complex I (MHCI)-antigen complex through cross-presentation, followed by activating CD8+ T cells for immune protection and clearance. Importantly, nanotechnology has been emerged as a powerful tool to facilitate these multiple processes specifically, allowing not only enhanced antigen immunogenicity and stability but also APCs-targeted delivery and elevated cross-presentation. This review summarizes the process of CD8+ T cells-mediated cellular immunity induced by vaccines and the technical advantages of nanotechnology implementation in general, then provides an overview of the whole spectrum of nanocarriers studied so far and the recent development of delivery nanotechnology in vaccines against infectious diseases and cancer. Finally, we look forward to the future development of nanotechnology for the next generation of vaccines to induce CD8+ T cells-mediated cellular immunity.
Collapse
Affiliation(s)
- Guangna Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Motao Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing 100190, China; Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; The GBA National Institute for Nanotechnology Innovation, Guangdong 510700, China.
| |
Collapse
|
90
|
Jeeva S, Kim KH, Shin CH, Wang BZ, Kang SM. An Update on mRNA-Based Viral Vaccines. Vaccines (Basel) 2021; 9:965. [PMID: 34579202 PMCID: PMC8473183 DOI: 10.3390/vaccines9090965] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/23/2022] Open
Abstract
With the success of COVID-19 vaccines, newly created mRNA vaccines against other infectious diseases are beginning to emerge. Here, we review the structural elements required for designing mRNA vaccine constructs for effective in vitro synthetic transcription reactions. The unprecedently speedy development of mRNA vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was enabled with previous innovations in nucleoside modifications during in vitro transcription and lipid nanoparticle delivery materials of mRNA. Recent updates are briefly described in the status of mRNA vaccines against SARS-CoV-2, influenza virus, and other viral pathogens. Unique features of mRNA vaccine platforms and future perspectives are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (S.J.); (K.-H.K.); (C.H.S.); (B.-Z.W.)
| |
Collapse
|
91
|
Berkowitz SA, Laue T. Boundary convection during velocity sedimentation in the Optima analytical ultracentrifuge. Anal Biochem 2021; 631:114306. [PMID: 34274312 DOI: 10.1016/j.ab.2021.114306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/17/2022]
Abstract
Analytical ultracentrifugation (AUC) provides the most widely applicable, precise, and accurate means for characterizing solution hydrodynamic and thermodynamic properties. While generally useful, boundary sedimentation velocity AUC (SV-AUC) analysis has become particularly important in assessing protein aggregation, fragmentation and conformational variants in the same solvents used during drug development and production. In early 2017 the only manufacturer of the analytical ultracentrifuge released its newest analytical ultracentrifuge, the Optima, to replace the aging second-generation XLA/I series ultracentrifuges. However, SV-AUC data from four Optima units used in the characterization of adeno-associated virus (AAV) have shown evidence of sample convection. Further investigation reveals this problem arises from the design of the temperature control system, which makes it prone to producing destabilizing temperature-induced density gradients that can lead to density inversions. The problem is intermittent and variable in severity within a given Optima unit and between Optima units. This convection appears to be associated mainly with low rotor speeds and dilute concentration of solvent components, i.e., AAV analysis conditions. Data features diagnostic for this problem and strategies for its elimination or minimization are provided.
Collapse
Affiliation(s)
| | - Thomas Laue
- Emeritus, University of New Hampshire, 10 Kelsey Road, Lee, NH, 03861, USA
| |
Collapse
|
92
|
Chakraborty C, Sharma AR, Bhattacharya M, Lee SS. From COVID-19 to Cancer mRNA Vaccines: Moving From Bench to Clinic in the Vaccine Landscape. Front Immunol 2021; 12:679344. [PMID: 34305909 PMCID: PMC8293291 DOI: 10.3389/fimmu.2021.679344] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Recently, mRNA vaccines have become a significant type of therapeutic and have created new fields in the biopharmaceutical industry. mRNA vaccines are promising next-generation vaccines that have introduced a new age in vaccinology. The recent approval of two COVID-19 mRNA vaccines (mRNA-1273 and BNT162b2) has accelerated mRNA vaccine technology and boosted the pharmaceutical and biotechnology industry. These mRNA vaccines will help to tackle COVID-19 pandemic through immunization, offering considerable hope for future mRNA vaccines. Human trials with data both from mRNA cancer vaccines and mRNA infectious disease vaccines have provided encouraging results, inspiring the pharmaceutical and biotechnology industries to focus on this area of research. In this article, we discuss current mRNA vaccines broadly in two parts. In the first part, mRNA vaccines in general and COVID-19 mRNA vaccines are discussed. We presented the mRNA vaccine structure in general, the different delivery systems, the immune response, and the recent clinical trials for mRNA vaccines (both for cancer mRNA vaccines and different infectious diseases mRNA vaccines). In the second part, different COVID-19 mRNA vaccines are explained. Finally, we illustrated a snapshot of the different leading mRNA vaccine developers, challenges, and future prospects of mRNA vaccines.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-do, South Korea
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-do, South Korea
| | | | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-do, South Korea
| |
Collapse
|
93
|
Detailed Dissection and Critical Evaluation of the Pfizer/BioNTech and Moderna mRNA Vaccines. Vaccines (Basel) 2021; 9:vaccines9070734. [PMID: 34358150 PMCID: PMC8310186 DOI: 10.3390/vaccines9070734] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 01/19/2023] Open
Abstract
The design of Pfizer/BioNTech and Moderna mRNA vaccines involves many different types of optimizations. Proper optimization of vaccine mRNA can reduce dosage required for each injection leading to more efficient immunization programs. The mRNA components of the vaccine need to have a 5′-UTR to load ribosomes efficiently onto the mRNA for translation initiation, optimized codon usage for efficient translation elongation, and optimal stop codon for efficient translation termination. Both 5′-UTR and the downstream 3′-UTR should be optimized for mRNA stability. The replacement of uridine by N1-methylpseudourinine (Ψ) complicates some of these optimization processes because Ψ is more versatile in wobbling than U. Different optimizations can conflict with each other, and compromises would need to be made. I highlight the similarities and differences between Pfizer/BioNTech and Moderna mRNA vaccines and discuss the advantage and disadvantage of each to facilitate future vaccine improvement. In particular, I point out a few optimizations in the design of the two mRNA vaccines that have not been performed properly.
Collapse
|
94
|
Shahryari A, Burtscher I, Nazari Z, Lickert H. Engineering Gene Therapy: Advances and Barriers. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alireza Shahryari
- Institute of Diabetes and Regeneration Research Helmholtz Zentrum München 85764 Neuherberg Germany
- School of Medicine Department of Human Genetics Technical University of Munich Klinikum Rechts der Isar 81675 München Germany
- Institute of Stem Cell Research Helmholtz Zentrum München 85764 Neuherberg Germany
- Stem Cell Research Center Golestan University of Medical Sciences Gorgan 49341‐74515 Iran
| | - Ingo Burtscher
- Institute of Diabetes and Regeneration Research Helmholtz Zentrum München 85764 Neuherberg Germany
- Institute of Stem Cell Research Helmholtz Zentrum München 85764 Neuherberg Germany
| | - Zahra Nazari
- Department of Biology School of Basic Sciences Golestan University Gorgan 49361‐79142 Iran
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research Helmholtz Zentrum München 85764 Neuherberg Germany
- School of Medicine Department of Human Genetics Technical University of Munich Klinikum Rechts der Isar 81675 München Germany
- Institute of Stem Cell Research Helmholtz Zentrum München 85764 Neuherberg Germany
| |
Collapse
|
95
|
Cao J, Choi M, Guadagnin E, Soty M, Silva M, Verzieux V, Weisser E, Markel A, Zhuo J, Liang S, Yin L, Frassetto A, Graham AR, Burke K, Ketova T, Mihai C, Zalinger Z, Levy B, Besin G, Wolfrom M, Tran B, Tunkey C, Owen E, Sarkis J, Dousis A, Presnyak V, Pepin C, Zheng W, Ci L, Hard M, Miracco E, Rice L, Nguyen V, Zimmer M, Rajarajacholan U, Finn PF, Mithieux G, Rajas F, Martini PGV, Giangrande PH. mRNA therapy restores euglycemia and prevents liver tumors in murine model of glycogen storage disease. Nat Commun 2021; 12:3090. [PMID: 34035281 PMCID: PMC8149455 DOI: 10.1038/s41467-021-23318-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
Glycogen Storage Disease 1a (GSD1a) is a rare, inherited metabolic disorder caused by deficiency of glucose 6-phosphatase (G6Pase-α). G6Pase-α is critical for maintaining interprandial euglycemia. GSD1a patients exhibit life-threatening hypoglycemia and long-term liver complications including hepatocellular adenomas (HCAs) and carcinomas (HCCs). There is no treatment for GSD1a and the current standard-of-care for managing hypoglycemia (Glycosade®/modified cornstarch) fails to prevent HCA/HCC risk. Therapeutic modalities such as enzyme replacement therapy and gene therapy are not ideal options for patients due to challenges in drug-delivery, efficacy, and safety. To develop a new treatment for GSD1a capable of addressing both the life-threatening hypoglycemia and HCA/HCC risk, we encapsulated engineered mRNAs encoding human G6Pase-α in lipid nanoparticles. We demonstrate the efficacy and safety of our approach in a preclinical murine model that phenotypically resembles the human condition, thus presenting a potential therapy that could have a significant therapeutic impact on the treatment of GSD1a.
Collapse
Affiliation(s)
| | | | | | - Maud Soty
- INSERM UMR1213, Université Claude Bernard Lyon 1, Lyon, France
| | - Marine Silva
- INSERM UMR1213, Université Claude Bernard Lyon 1, Lyon, France
| | | | | | | | - Jenny Zhuo
- Rare Diseases, Moderna, Inc, Cambridge, MA, USA
| | - Shi Liang
- Rare Diseases, Moderna, Inc, Cambridge, MA, USA
| | - Ling Yin
- Rare Diseases, Moderna, Inc, Cambridge, MA, USA
| | | | | | | | | | | | | | - Becca Levy
- Platform, Moderna, Inc, Cambridge, MA, USA
| | | | | | | | | | - Erik Owen
- Platform, Moderna, Inc, Cambridge, MA, USA
| | - Joe Sarkis
- Platform, Moderna, Inc, Cambridge, MA, USA
| | | | | | | | - Wei Zheng
- Platform, Moderna, Inc, Cambridge, MA, USA
| | - Lei Ci
- Platform, Moderna, Inc, Cambridge, MA, USA
| | | | | | - Lisa Rice
- Rare Diseases, Moderna, Inc, Cambridge, MA, USA
| | - Vi Nguyen
- Rare Diseases, Moderna, Inc, Cambridge, MA, USA
| | - Mike Zimmer
- Rare Diseases, Moderna, Inc, Cambridge, MA, USA
| | | | | | - Gilles Mithieux
- INSERM UMR1213, Université Claude Bernard Lyon 1, Lyon, France
| | - Fabienne Rajas
- INSERM UMR1213, Université Claude Bernard Lyon 1, Lyon, France
| | | | | |
Collapse
|
96
|
Overcoming the challenges of tissue delivery for oligonucleotide therapeutics. Trends Pharmacol Sci 2021; 42:588-604. [PMID: 34020790 DOI: 10.1016/j.tips.2021.04.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/07/2021] [Accepted: 04/20/2021] [Indexed: 12/19/2022]
Abstract
Synthetic therapeutic oligonucleotides (STO) represent the third bonafide platform for drug discovery in the pharmaceutical industry after small molecule and protein therapeutics. So far, thirteen STOs have been approved by regulatory agencies and over one hundred of them are in different stages of clinical trials. STOs hybridize to their target RNA or DNA in cells via Watson-Crick base pairing to exert their pharmacological effects. This unique class of therapeutic agents has the potential to target genes and gene products that are considered undruggable by other therapeutic platforms. However, STOs must overcome several extracellular and intracellular obstacles to interact with their biological RNA targets inside cells. These obstacles include degradation by extracellular nucleases, scavenging by the reticuloendothelial system, filtration by the kidney, traversing the capillary endothelium to access the tissue interstitium, cell-surface receptor-mediated endocytic uptake, and escape from endolysosomal compartments to access the nuclear and/or cytoplasmic compartments where their targets reside. In this review, we present the recent advances in this field with a specific focus on antisense oligonucleotides (ASOs) and siRNA therapeutics.
Collapse
|
97
|
Li Y, Tenchov R, Smoot J, Liu C, Watkins S, Zhou Q. A Comprehensive Review of the Global Efforts on COVID-19 Vaccine Development. ACS CENTRAL SCIENCE 2021; 7:512-533. [PMID: 34056083 PMCID: PMC8029445 DOI: 10.1021/acscentsci.1c00120] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This report examines various vaccine platforms including inactivated vaccines, protein-based vaccines, viral vector vaccines, and nucleic acid (DNA or mRNA) vaccines, and their ways of producing immunogens in cells.
Collapse
Affiliation(s)
| | | | - Jeffrey Smoot
- CAS, a division of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43210-3012, United States
| | - Cynthia Liu
- CAS, a division of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43210-3012, United States
| | - Steven Watkins
- CAS, a division of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43210-3012, United States
| | - Qiongqiong Zhou
- CAS, a division of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43210-3012, United States
| |
Collapse
|
98
|
Quantum Biotech and Internet of Virus Things: Towards a Theoretical Framework. APPLIED SYSTEM INNOVATION 2021. [DOI: 10.3390/asi4020027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Quantumization, the process of converting information into quantum (qubit) format, is a key enabler for propelling a new and distinct infrastructure in the pharmaceutical space. Quantum messenger RNA (QmRNA) technology, an indispensable constituent of quantum biotech (QB), is a compelling alternative to conventional vaccine methods because of its capacity for rapid development, high efficacy, and low-cost manufacturing to combat infectious diseases. Internet of Virus Things (IoVT), a biological version of Internet of Things (IoT), comprises applications to fight against pandemics and provides effective vaccine administration. The integration of QB and IoVT constitutes the QBIoVT system to advance the prospect of QmRNA vaccine discovery within a few days. This research disseminates the QBIoVT system paradigm, including architectural aspects, priority areas, challenges, applications, and QmRNA research engine design to accelerate QmRNA vaccines discovery. A comprehensive review of the literature was accomplished, and a context-centered methodology was applied to the QBIoVT paradigm forensic investigations to impel QmRNA vaccine discovery. Based on the above rumination, the principal motive for this study was to develop a novel QBIoVT theoretical framework which has not been produced through earlier theories. The proposed framework shall inspire future QBIoVT system research activities to improve pandemics detection and protection.
Collapse
|
99
|
Velikova T, Georgiev T. SARS-CoV-2 vaccines and autoimmune diseases amidst the COVID-19 crisis. Rheumatol Int 2021; 41:509-518. [PMID: 33515320 DOI: 10.1007/s00296‐021‐04792‐9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/13/2021] [Indexed: 12/12/2022]
Abstract
Coronavirus disease 2019 (COVID-19) pandemic has become challenging even for the most durable healthcare systems. It seems that vaccination, one of the most effective public-health interventions, presents a ray of hope to end the pandemic by achieving herd immunity. In this review, we aimed to cover aspects of the current knowledge of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines and vaccine candidates in the light of autoimmune inflammatory diseases (AIIDs) and to analyze their potential in terms of safety and effectiveness in patients with AIIDs. Therefore, a focused narrative review was carried out to predict the possible implications of different types of SARS-CoV-2 vaccines which confer distinct immune mechanisms to establish immune response and protection against COVID-19: whole virus (inactivated or weakened), viral vector (replicating and non-replicating), nucleic acid (RNA, DNA), and protein-based (protein subunit, virus-like particle). Still, there is uncertainty among patients with AIIDs and clinicians about the effectiveness and safety of the new vaccines. There are a variety of approaches towards building a protective immunity against SARS-CoV-2. Only high-quality clinical trials would clarify the underlying immunological mechanisms of the newly implemented vaccines/adjuvants in patients living with AIIDs.
Collapse
Affiliation(s)
- Tsvetelina Velikova
- Department of Clinical Immunology, Medical Faculty, University Hospital "Lozenetz", Sofia University St. Kliment Ohridski, 1 Kozyak Str., 1407, Sofia, Bulgaria
| | - Tsvetoslav Georgiev
- First Department of Internal Medicine, Faculty of Medicine, Medical University-Varna, 55 Marin Drinov Str., Varna, 9002, Bulgaria.
- Clinic of Rheumatology, University Hospital "St. Marina", 1 Hristo Smirnenski Blvd., 9010, Varna, Bulgaria.
| |
Collapse
|
100
|
Velikova T, Georgiev T. SARS-CoV-2 vaccines and autoimmune diseases amidst the COVID-19 crisis. Rheumatol Int 2021; 41:509-518. [PMID: 33515320 PMCID: PMC7846902 DOI: 10.1007/s00296-021-04792-9] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/13/2021] [Indexed: 02/05/2023]
Abstract
Coronavirus disease 2019 (COVID-19) pandemic has become challenging even for the most durable healthcare systems. It seems that vaccination, one of the most effective public-health interventions, presents a ray of hope to end the pandemic by achieving herd immunity. In this review, we aimed to cover aspects of the current knowledge of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines and vaccine candidates in the light of autoimmune inflammatory diseases (AIIDs) and to analyze their potential in terms of safety and effectiveness in patients with AIIDs. Therefore, a focused narrative review was carried out to predict the possible implications of different types of SARS-CoV-2 vaccines which confer distinct immune mechanisms to establish immune response and protection against COVID-19: whole virus (inactivated or weakened), viral vector (replicating and non-replicating), nucleic acid (RNA, DNA), and protein-based (protein subunit, virus-like particle). Still, there is uncertainty among patients with AIIDs and clinicians about the effectiveness and safety of the new vaccines. There are a variety of approaches towards building a protective immunity against SARS-CoV-2. Only high-quality clinical trials would clarify the underlying immunological mechanisms of the newly implemented vaccines/adjuvants in patients living with AIIDs.
Collapse
Affiliation(s)
- Tsvetelina Velikova
- Department of Clinical Immunology, Medical Faculty, University Hospital “Lozenetz”, Sofia University St. Kliment Ohridski, 1 Kozyak Str., 1407 Sofia, Bulgaria
| | - Tsvetoslav Georgiev
- First Department of Internal Medicine, Faculty of Medicine, Medical University-Varna, 55 Marin Drinov Str., Varna, 9002 Bulgaria
- Clinic of Rheumatology, University Hospital “St. Marina”, 1 Hristo Smirnenski Blvd., 9010 Varna, Bulgaria
| |
Collapse
|