51
|
Rezaee L. Optimization of treatment planning for hypoxic tumours and re-modulation of radiation intensity in heavy-ion radiotherapy. Rep Pract Oncol Radiother 2020; 25:68-78. [PMID: 31889925 DOI: 10.1016/j.rpor.2019.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 09/30/2019] [Accepted: 12/13/2019] [Indexed: 12/26/2022] Open
Abstract
Aim The purpose of this study is to optimize treatment planning in carbon ion radiotherapy, taking into account the effect of tumour hypoxia. Background In conventional hadron therapy, the goal is to create a homogenous dose in the tumour area and, thus, achieve a uniform cell survival level. Since the induction of a specific damage to cells is directly influenced by the level of hypoxia in the tissue, the varying oxygen pressure in the different regions of hypoxic tumours would disrupt the uniformity of the cell survival level. Materials and methods Using the Geant4 Monte Carlo Code, the physical dose profile and dose-averaged linear energy transfer were calculated in the tumour. Then, the oxygen enhancement ratio in different areas of the tumour were compared with different pressures. Results Modulations of radiation intensities as well as energies of ion beams were calculated, both considering and disregarding the effect of hypoxia, and the required dose profiles were compared with each other. Cell survival levels were also compared between the two methods. An equation was obtained for re-modulating the beams in the presence of hypoxia, and radiation weighting factors were extracted for the beam intensities. Conclusion The results show that taking the effect of hypoxia into account would cause the reduction of average doses delivered to the tumour tissues up to 1.54 times. In this regard, the required dose is reduced by 1.63 times in the healthy tissues before the tumour. This will result in an effective protection of healthy tissues around the tumour.
Collapse
Affiliation(s)
- Ladan Rezaee
- Department of Physics, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| |
Collapse
|
52
|
Peukert D, Kempson I, Douglass M, Bezak E. Gold nanoparticle enhanced proton therapy: A Monte Carlo simulation of the effects of proton energy, nanoparticle size, coating material, and coating thickness on dose and radiolysis yield. Med Phys 2019; 47:651-661. [DOI: 10.1002/mp.13923] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 01/01/2023] Open
Affiliation(s)
- Dylan Peukert
- Future Industries Institute University of South Australia Adelaide 5095 SA Australia
- Division of ITEE University of South Australia Adelaide 5095 SA Australia
| | - Ivan Kempson
- Future Industries Institute University of South Australia Adelaide 5095 SA Australia
| | - Michael Douglass
- Department of Medical Physics Royal Adelaide Hospital Adelaide 5000 SA Australia
- Department of Physics University of Adelaide Adelaide 5005 SA Australia
| | - Eva Bezak
- Cancer Research Institute and School of Health Sciences University of South Australia Adelaide 5001 SA Australia
- Department of Physics University of Adelaide Adelaide 5005 SA Australia
| |
Collapse
|
53
|
Effect of air- and vacuum-packaged atmospheres on the reduction of Salmonella on almonds by electron beam irradiation. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108389] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
54
|
Sun L, Igarashi T, Tetsuka R, Li YS, Kawasaki Y, Kawai K, Hirakawa H, Tsuboi K, Nakamura AJ, Moritake T. Pilot clinical study of ascorbic acid treatment in cardiac catheterization. JOURNAL OF RADIATION RESEARCH 2019; 60:573-578. [PMID: 31251351 PMCID: PMC6805981 DOI: 10.1093/jrr/rrz038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Indexed: 06/09/2023]
Abstract
Clinical radiodiagnosis and radiotherapy sometimes induce tissue damage and/or increase the risk of cancer in patients. However, in radiodiagnosis, a reduction in the exposure dose causes a blockier image that is not acceptable for diagnosis. Approximately 70% of DNA damage is induced via reactive oxygen species and/or radicals created during X-ray irradiation. Therefore, treatment with anti-oxidants and/or radical scavengers is considered to be effective in achieving a good balance between image quality and damage. However, few studies have examined the effect of using radical scavengers to reduce radiation damage in the clinical setting. In this study, we administrated 20 mg/kg ascorbic acid (AA) to patients before cardiac catheterization (CC) for diagnostic purposes. We analyzed changes in the number of phosphorylated H2AX (γH2AX) foci (a marker of DNA double-strand breaks) in lymphocytes, red blood cell glutathione levels, blood cell counts, and biochemical parameters. Unfortunately, we did not find satisfactory evidence to show that AA treatment reduces γH2AX foci formation immediately after CC. AA treatment did, however, cause a higher reduced/oxidized glutathione ratio than in the control arm immediately after CC. This is a preliminary study, but this result suggests that reducing radiation damage in clinical practice can be achieved using a biological approach.
Collapse
Affiliation(s)
- Lue Sun
- Health Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, Japan
- Department of Radiation Biology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
- Department of Radiological Health Science, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, Japan
| | - Tomonori Igarashi
- Iwamoto Hospital, 1-2-8 Shimoishida, Kokuraminami-ku Kitakyushu, Fukuoka, Japan
- Department of Occupational Toxicology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, Japan
| | - Ryoya Tetsuka
- Department of Biological Sciences, College of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki, Japan
| | - Yun-Shan Li
- Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, Japan
| | - Yuya Kawasaki
- Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, Japan
| | - Kazuaki Kawai
- Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, Japan
| | - Haruhisa Hirakawa
- Department of Cardiology, Social Insurance Nogata Hospital, 1-1 Susakimachi, Nogata, Fukuoka, Japan
| | - Koji Tsuboi
- Department of Radiation Biology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Asako J Nakamura
- Department of Biological Sciences, College of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki, Japan
| | - Takashi Moritake
- Department of Radiological Health Science, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, Japan
| |
Collapse
|
55
|
de Vera P, Surdutovich E, Solov’yov AV. The role of shock waves on the biodamage induced by ion beam radiation. Cancer Nanotechnol 2019. [DOI: 10.1186/s12645-019-0050-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
56
|
Zhang YR, Wang JY, Li YY, Meng YY, Zhang Y, Yang FJ, Xu WQ. Design and synthesis a mitochondria-targeted dihydronicotinamide as radioprotector. Free Radic Biol Med 2019; 136:45-51. [PMID: 30946960 DOI: 10.1016/j.freeradbiomed.2019.03.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 12/21/2022]
Abstract
Radiation-induced damage to the mitochondrial macromolecules and electron transfer chain (ETC), causing the generation of primary and secondary reactive oxygen (ROS) species. The continuous ROS production after radiation will trigger cell oxidative stress and ROS-mediated nucleus apoptosis and autophagy signaling pathways. Scavenging radiation-induced ROS effectively can help mitochondria to maintain their physiological function and relief cells from oxidative stress. Nicotinamide is a critical endogenous antioxidant helping to neutralize ROS in vivo. In this study, we designed and synthetized a novel mitochondrial-targeted dihydronicotinamide (Mito-N) with the help of mitochondrial membrane potential to enter the mitochondria and scavenge ROS. According to experiment results, Mito-N significantly increased cell viability by 30.75% by neutralizing the accumulated ROS and resisting DNA strands breaks after irradiation. Furthermore, the mice survival rate also improved with the treatment of Mito-N, by effectively ameliorating the hematopoietic system infliction under lethal dose irradiation.
Collapse
Affiliation(s)
- Yu-Rui Zhang
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jun-Ying Wang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, China
| | - Yuan-Yuan Li
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yuan-Yuan Meng
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yuan Zhang
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Fu-Jun Yang
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Wen-Qing Xu
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
| |
Collapse
|
57
|
Izumi Y, Nakashima T, Masuda T, Shioya S, Fukuhara K, Yamaguchi K, Sakamoto S, Horimasu Y, Miyamoto S, Iwamoto H, Fujitaka K, Hamada H, Hattori N. Suplatast tosilate reduces radiation-induced lung injury in mice through suppression of oxidative stress. Free Radic Biol Med 2019; 136:52-59. [PMID: 30930296 DOI: 10.1016/j.freeradbiomed.2019.03.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 01/04/2023]
Abstract
PURPOSE Although radiotherapy is important in the treatment of malignant thoracic tumors, it has harmful effects on healthy tissues. We previously showed that suplatast tosilate, an anti-allergic agent, scavenged reactive oxygen species (ROS), including hydroxyl radicals. Because ROS-mediated oxidative stress is involved in radiation-induced lung injury, we hypothesized that suplatast tosilate could reduce radiation-induced lung injury via suppression of oxidative stress. METHODS AND MATERIALS Murine alveolar epithelial cells were irradiated with or without a medium containing suplatast tosilate in vitro to determine whether the agent had cytoprotective effects against radiation-induced injury. On the other hand, the thoracic region of C57BL/6 mice was exposed to a single irradiation dose of 15 Gy and the effects of suplatast tosilate were determined by a histological evaluation and assessment of the following parameters: cell number and inflammatory cytokine levels in bronchoalveolar lavage fluid, and oxidative stress markers and hydroxyproline content in pulmonary tissues. RESULTS Suplatast tosilate protected murine alveolar epithelial cells in vitro from irradiation-induced inhibition of cell proliferation, which was accompanied by the suppression of intracellular ROS and DNA double-strand breaks induced by irradiation. Oxidative stress markers and the levels of inflammatory and fibrogenic cytokines were upregulated in irradiated murine lungs in vivo. Suplatast tosilate suppressed both oxidative stress markers and the levels of cytokines, which resulted in reduced pulmonary fibrosis and clearly improved the survival rate after irradiation. CONCLUSIONS These findings demonstrate that suplatast tosilate could be a useful lung-protective agent that acts via suppression of oxidative stress associated with thoracic radiotherapy.
Collapse
Affiliation(s)
- Yusuke Izumi
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Taku Nakashima
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Takeshi Masuda
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Sachiko Shioya
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Kazuhide Fukuhara
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Kakuhiro Yamaguchi
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Shinjiro Sakamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Yasushi Horimasu
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Shintaro Miyamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Hiroshi Iwamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Kazunori Fujitaka
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Hironobu Hamada
- Department of Physical Analysis and Therapeutic Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Noboru Hattori
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| |
Collapse
|
58
|
DuRoss AN, Neufeld MJ, Rana S, Thomas CR, Sun C. Integrating nanomedicine into clinical radiotherapy regimens. Adv Drug Deliv Rev 2019; 144:35-56. [PMID: 31279729 PMCID: PMC6745263 DOI: 10.1016/j.addr.2019.07.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 01/06/2023]
Abstract
While the advancement of clinical radiotherapy was driven by technological innovations throughout the 20th century, continued improvement relies on rational combination therapies derived from biological insights. In this review, we highlight the importance of combination radiotherapy in the era of precision medicine. Specifically, we survey and summarize the areas of research where improved understanding in cancer biology will propel the field of radiotherapy forward by allowing integration of novel nanotechnology-based treatments.
Collapse
Affiliation(s)
- Allison N DuRoss
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| | - Megan J Neufeld
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| | - Shushan Rana
- Department of Radiation Medicine, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Charles R Thomas
- Department of Radiation Medicine, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Conroy Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA; Department of Radiation Medicine, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
59
|
Matsumoto KI, Nyui M, Ueno M, Ogawa Y, Nakanishi I. A quantitative analysis of carbon-ion beam-induced reactive oxygen species and redox reactions. J Clin Biochem Nutr 2019; 65:1-7. [PMID: 31379407 PMCID: PMC6667381 DOI: 10.3164/jcbn.18-34] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 01/12/2019] [Indexed: 11/22/2022] Open
Abstract
The amounts of reactive oxygen species generated in aqueous samples by irradiation with X-ray or clinical carbon-ion beams were quantified. Hydroxyl radical (•OH), hydrogen peroxide (H2O2), and the total amount of oxidation reactions, which occurred mainly because of •OH and/or hydroperoxy radicals (HO2 •), were measured by electron paramagnetic resonance-based methods. •OH generation was expected to be localized on the track/range of the carbon-ion beam/X-ray, and mM and M levels of •OH generation were observed. Total •OH generation levels were identical at the same dose irrespective of whether X-ray or carbon-ion beam irradiation was used, and were around 0.28-0.35 µmol/L/Gy. However, sparse •OH generation levels decreased with increasing linear energy transfer, and were 0.17, 0.15, and 0.09 µmol/L/Gy for X-ray, 20 keV/µm carbon-ion beam, and >100 keV/µm carbon-ion beam sources, respectively. H2O2 generation was estimated as 0.26, 0.20, and 0.17 µmol/L/Gy, for X-ray, 20 keV/µm carbon-ion beam, and >100 keV/µm carbon-ion beam sources, respectively, whereas the ratios of H2O2 generation per oxygen consumption were 0.63, 0.51, and 3.40, respectively. The amounts of total oxidation reactions were 2.74, 1.17, and 0.66 µmol/L/Gy, respectively. The generation of reactive oxygen species was not uniform at the molecular level.
Collapse
Affiliation(s)
- Ken-Ichiro Matsumoto
- Quantitative RedOx Sensing Team, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Minako Nyui
- Quantitative RedOx Sensing Team, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Megumi Ueno
- Quantitative RedOx Sensing Team, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yukihiro Ogawa
- Quantitative RedOx Sensing Team, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Ikuo Nakanishi
- Quantitative RedOx Sensing Team, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
60
|
Petković VD, Keta OD, Vidosavljević MZ, Incerti S, Ristić Fira AM, Petrović IM. Biological outcomes of γ-radiation induced DNA damages in breast and lung cancer cells pretreated with free radical scavengers. Int J Radiat Biol 2019; 95:274-285. [PMID: 30451568 DOI: 10.1080/09553002.2019.1549753] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Investigation of effects on DNA of γ-irradiated human cancer cells pretreated with free radical scavengers is aimed to create reference data which would enable assessment of the relative efficiency of high linear energy transfer (LET) radiations used in hadron therapy, i.e. protons and carbon ions. MATERIALS AND METHODS MCF-7 breast and HTB177 lung cancer cells are irradiated with γ-rays. To minimize indirect effects of irradiation, dimethyl sulfoxide (DMSO) or glycerol are applied as free radical scavengers. Biological response to irradiation is evaluated through clonogenic cell survival, immunocytochemical and cell cycle analysis, as well as expression of proteins involved in DNA damage response. RESULTS Examined cell lines reveal similar level of radioresistance. Application of scavengers leads to the rise of cell survival and decreases the number of DNA double strand breaks in irradiated cells. Differences in cell cycle and protein expression between the two cell lines are probably caused by different DNA damage repair mechanisms that are activated. CONCLUSION The obtained results show that DMSO and glycerol have good scavenging capacity, and may be used to minimize DNA damage induced by free radicals. Therefore, they will be used as the reference for comparison with high LET irradiations, as well as good experimental data suitable for validation of numerical simulations.
Collapse
Affiliation(s)
- Vladana D Petković
- a Vinča Institute of Nuclear Sciences , University of Belgrade , Belgrade , Serbia
| | - Otilija D Keta
- a Vinča Institute of Nuclear Sciences , University of Belgrade , Belgrade , Serbia
| | | | | | | | - Ivan M Petrović
- a Vinča Institute of Nuclear Sciences , University of Belgrade , Belgrade , Serbia
| |
Collapse
|
61
|
Peukert D, Incerti S, Kempson I, Douglass M, Karamitros M, Baldacchino G, Bezak E. Validation and investigation of reactive species yields of Geant4-DNA chemistry models. Med Phys 2018; 46:983-998. [PMID: 30536689 DOI: 10.1002/mp.13332] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/22/2018] [Accepted: 12/02/2018] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Indirect biological damage due to reactive species produced in water radiolysis reactions is responsible for the majority of biological effect for low linear energy transfer (LET) radiation. Modeling water radiolysis and the subsequent interactions of reactive species, as well as track structures, is essential to model radiobiology on the microscale. Recently, chemistry models have been developed for Geant4-DNA to be used in combination with the comprehensive existing physics models. In the current work, the first detailed, independent, in silico validation of all species yields with published experimental observations and comparison with other radiobiological simulations is presented. Additionally, the effect of LET of protons and heavier ions on reactive species yield in the model was examined, as well as the completeness of the chemical reactions following the radiolysis within the time after physical interactions simulated in the model. METHODS Yields over time of reactive species were simulated for water radiolysis by incident electrons, protons, alpha particles, and ions with various LETs using Geant4 and RITRACKS simulation tools. Water dissociation and recombination was simulated using Geant4 to determine the completeness of chemical reactions at the end of the simulation. Yield validation was performed by comparing yields simulated using Geant4 with experimental observations and other simulations. Validation was performed for all species for low LET radiation and the solvated electron and hydroxyl radical for high LET ions. RESULTS It was found that the Geant4-DNA chemistry yields were generally in good agreement with experimental observations and other simulations. However, the Geant4-DNA yields for the hydroxyl radical and hydrogen peroxide at the end of the chemistry stage were found to be respectively considerably higher and lower than the experimentally observed yields. Increasing the LET of incident hadrons increased the yield of secondary species and decreased the yield of primary species. The effect of LET on the yield of the hydroxyl radical at 100 ns simulated with Geant4 was in good agreement with experimental measurements. Additionally, by the end of the simulation only 40% of dissociated water molecules had been recombined and the rate of recombination was slowing. CONCLUSIONS The yields simulated using Geant4 are within reasonable agreement with experimental observations. Higher LET radiation corresponds with increased yields of secondary species and decreased yields of primary species. These trends combined with the LET having similar effects on the 100 ns hydroxyl radical yield for Geant4 and experimental measurements indicate that Geant4 accurately models the effect of LET on radiolysis yields. The limited recombination within the modeled chemistry stage and the slowing rate of recombination at the end of the stage indicate potential long-range indirect biological damage.
Collapse
Affiliation(s)
- Dylan Peukert
- Future Industries Institute, University of South Australia, Adelaide, SA, Australia.,Division of ITEE, University of South Australia, Adelaide, SA, Australia
| | - Sebastien Incerti
- Univ. Bordeaux, CENBG, UMR 5797, Gradignan, F-33170, France.,CNRS, IN2P3, CENBG, UMR 5797, Gradignan, F-33170, France
| | - Ivan Kempson
- Future Industries Institute, University of South Australia, Adelaide, SA, Australia
| | - Michael Douglass
- Department of Medical Physics, Royal Adelaide Hospital, Adelaide, SA, Australia.,Department of Physics, University of Adelaide, Adelaide, SA, Australia
| | - Mathieu Karamitros
- Radiation Laboratory, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Gérard Baldacchino
- LIDYL, UMR 9222, CEA-CNRS-Université Paris-Saclay, CEA Paris-Saclay, F-91191, Gif sur Yvette, France
| | - Eva Bezak
- Department of Physics, University of Adelaide, Adelaide, SA, Australia.,Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
62
|
Kobayashi A, Konishi T. Radiation quality effects alteration in COX-2 pathway to trigger radiation-induced bystander response in A549 lung carcinoma cells. JOURNAL OF RADIATION RESEARCH 2018; 59:754-759. [PMID: 30124879 PMCID: PMC6251420 DOI: 10.1093/jrr/rry065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 06/12/2018] [Indexed: 06/08/2023]
Abstract
This study aimed to determine whether the radiation-induced bystander effect (RIBE) is affected by radiation quality. To mimic the different radiation qualities of the direct action (D)/indirect action (ID) ratio, A549 cells were exposed to X-rays, with either 100 mM of the radical scavenger, thio-urea (TU+), or null (TU-). Biological responses in irradiated and bystander cells were compared at equal lethal effects of a 6% survival dose, which was estimated from the survival curves to be 8 Gy and 5 Gy for TU+ and TU-, respectively. Cyclooxygenase-2 (COX-2) expression in TU- irradiated cells increased up to 8 h post-irradiation, before decreasing towards 24 h. The concentration of prostaglandin E2 (PGE2), a primary product of COX-2 and known as a secreted inducible factor in RIBE, increased over 3-fold compared with that in the control at 8 h post-irradiation. Conversely, COX-2 expression and PGE2 production of TU+ irradiated cells were drastically suppressed. These results show that the larger D/ID suppressed COX-2 expression and PGE2 production in irradiated cells. However, in contrast to the case in the irradiated cells, COX-2 expression was equally observed in the TU- and TU+ co-cultured bystander cells, which showed the highest expression levels at 24 h post-irradiation. Taken together, these findings demonstrate that radiation quality, such as the D/ID ratio, may be an important factor in the alteration of signalling pathways involved in RIBE.
Collapse
Affiliation(s)
- Alisa Kobayashi
- SPICE-BIO research core, International Open Laboratory, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inageku, Chiba, Japan
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inageku, Chiba, Japan
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, Japan
| | - Teruaki Konishi
- SPICE-BIO research core, International Open Laboratory, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inageku, Chiba, Japan
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inageku, Chiba, Japan
| |
Collapse
|
63
|
Wang W, Li C, Qiu R, Chen Y, Wu Z, Zhang H, Li J. Modelling of Cellular Survival Following Radiation-Induced DNA Double-Strand Breaks. Sci Rep 2018; 8:16202. [PMID: 30385845 PMCID: PMC6212584 DOI: 10.1038/s41598-018-34159-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/24/2018] [Indexed: 12/30/2022] Open
Abstract
A mechanistic model of cellular survival following radiation-induced DNA double-strand breaks (DSBs) was proposed in this study. DSBs were assumed as the initial lesions in the DNA of the cell nucleus induced by ionizing radiation. The non-homologous end-joining (NHEJ) pathway was considered as the domain pathway of DSB repair in mammalian cells. The model was proposed to predict the relationship between radiation-induced DSBs in nucleus and probability of cell survival, which was quantitatively described by two input parameters and six fitting parameters. One input parameter was the average number of primary particles which caused DSB, the other input parameter was the average number of DSBs yielded by each primary particle that caused DSB. The fitting parameters were used to describe the biological characteristics of the irradiated cells. By determining the fitting parameters of the model with experimental data, the model is able to estimate surviving fractions for the same type of cells exposed to particles with different physical parameters. The model further revealed the mechanism of cell death induced by the DSB effect. Relative biological effectiveness (RBE) of charged particles at different survival could be calculated with the model, which would provide reference for clinical treatment.
Collapse
Affiliation(s)
- Wenjing Wang
- Department of Engineering Physics, Tsinghua University, Beijing, China
- Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing, China
| | - Chunyan Li
- Department of Engineering Physics, Tsinghua University, Beijing, China
- Nuctech Company Limited, Beijing, China
| | - Rui Qiu
- Department of Engineering Physics, Tsinghua University, Beijing, China.
- Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing, China.
| | - Yizheng Chen
- Department of Engineering Physics, Tsinghua University, Beijing, China
- Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing, China
| | - Zhen Wu
- Department of Engineering Physics, Tsinghua University, Beijing, China
- Nuctech Company Limited, Beijing, China
| | - Hui Zhang
- Department of Engineering Physics, Tsinghua University, Beijing, China
- Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing, China
| | - Junli Li
- Department of Engineering Physics, Tsinghua University, Beijing, China
- Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing, China
| |
Collapse
|
64
|
Neužilová B, Ondrák L, Čuba V, Múčka V. Influence of the dose rate of gamma irradiation and some other conditions on the radiation protection of microbial cells by scavenging of OH radicals. J Radioanal Nucl Chem 2018. [DOI: 10.1007/s10967-018-6185-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
65
|
Lampe N, Karamitros M, Breton V, Brown JMC, Kyriakou I, Sakata D, Sarramia D, Incerti S. Mechanistic DNA damage simulations in Geant4-DNA part 1: A parameter study in a simplified geometry. Phys Med 2018; 48:135-145. [PMID: 29628360 DOI: 10.1016/j.ejmp.2018.02.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/24/2017] [Accepted: 02/14/2018] [Indexed: 01/06/2023] Open
Abstract
Mechanistic modelling of DNA damage in Monte Carlo simulations is highly sensitive to the parameters that define DNA damage. In this work, we use a simple testing geometry to investigate how different choices of physics models and damage model parameters can change the estimation of DNA damage in a mechanistic DNA damage simulation built in Geant4-DNA. The choice of physics model can lead to variations by up to a factor of two in the yield of physically induced strand breaks, and the parameters that determine scavenging, and physical and chemical single strand break induction can have even larger consequences. Using low energy electrons as primary particles, a variety of parameters are tested in this geometry in order to arrive at a parameter set consistent with past simulation studies. We find that the modelling of scavenging can play an important role in determining results, and speculate that high-scavenging regimes, where only chemical radicals within 1 nm of DNA are simulated, could provide a good means of testing mechanistic DNA simulations.
Collapse
Affiliation(s)
- Nathanael Lampe
- Université Clermont Auvergne, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, F-63000 Clermont-Ferrand, France; Université de Bordeaux, CNRS/IN2P3, CENBG, F-33175 Gradignan, France
| | | | - Vincent Breton
- Université Clermont Auvergne, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, F-63000 Clermont-Ferrand, France
| | - Jeremy M C Brown
- Radiation Science and Technology, Delft University of Technology, Mekelweg 15, Delft 26295B, The Netherlands
| | - Ioanna Kyriakou
- Medical Physics Laboratory, University of Ioannina Medical School, Ioannina 45110, Greece
| | - Dousatsu Sakata
- Université de Bordeaux, CNRS/IN2P3, CENBG, F-33175 Gradignan, France
| | - David Sarramia
- Université Clermont Auvergne, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, F-63000 Clermont-Ferrand, France
| | - Sébastien Incerti
- Université de Bordeaux, CNRS/IN2P3, CENBG, F-33175 Gradignan, France.
| |
Collapse
|
66
|
Ogawa Y, Sekine-Suzuki E, Ueno M, Nakanishi I, Matsumoto KI. Localized hydroxyl radical generation at mmol/L and mol/L levels in water by photon irradiation. J Clin Biochem Nutr 2018; 63:97-101. [PMID: 30279619 PMCID: PMC6160720 DOI: 10.3164/jcbn.18-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 02/07/2018] [Indexed: 01/17/2023] Open
Abstract
The generation of localized hydroxyl radical (•OH) in aqueous samples by low linear energy transfer irradiation was investigated. Several concentrations of 5,5-dimethyl-1-pyrroline-N-oxid solution (from 0.5 to 1,680 mmol/L) were prepared and irradiated with an identical dose of X-ray or γ-ray. The density of •OH generation in aqueous solution was evaluated by the electron paramagnetic resonance spin-trapping technique using 5,5-dimethyl-1-pyrroline-N-oxid as an electron paramagnetic resonance spin-trapping agent. The relationship between the molecular density of 5,5-dimethyl-1-pyrroline-N-oxid in the samples and the concentration of 5,5-dimethyl-1-pyrroline-N-oxid-OH generated in the irradiated samples was analyzed. Two different characteristic linear trends were observed in the 5,5-dimethyl-1-pyrroline-N-oxid-OH/5,5-dimethyl-1-pyrroline-N-oxid plots, which suggested •OH generation in two fashions, i.e., mmol/L- and mol/L-level local concentrations. The dose, dose rate, and/or the energy of photon irradiation did not affect the shapes of the 5,5-dimethyl-1-pyrroline-N-oxid-OH/5,5-dimethyl-1-pyrroline-N-oxid plots. Moreover, the addition of 5 mmol/L caffeine could cancel the contribution of mmol/L-level •OH generation, leaving a trace of mol/L-level •OH generation. Thus, the localized mmol/L- and mol/L-level generations of •OH, which were independent of experimental parameters such as dose, dose rate, and/or the energy of photon of low linear energy transfer radiation, were established.
Collapse
Affiliation(s)
- Yukihiro Ogawa
- Graduate School of Advanced Integration Science, Chiba University, 1-33 Yayoicho, Inage-ku, Chiba-shi, Chiba 263-8522, Japan.,Quantitative RedOx Sensing Team, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Emiko Sekine-Suzuki
- Quantitative RedOx Sensing Team, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Megumi Ueno
- Quantitative RedOx Sensing Team, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Ikuo Nakanishi
- Quantitative RedOx Sensing Team, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Ken-Ichiro Matsumoto
- Quantitative RedOx Sensing Team, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan.,Graduate School of Science, Chiba University, 1-33 Yayoicho, Inage-ku, Chiba-shi, Chiba 263-8522, Japan
| |
Collapse
|
67
|
Lampe N, Karamitros M, Breton V, Brown JMC, Sakata D, Sarramia D, Incerti S. Mechanistic DNA damage simulations in Geant4-DNA Part 2: Electron and proton damage in a bacterial cell. Phys Med 2018; 48:146-155. [PMID: 29371062 DOI: 10.1016/j.ejmp.2017.12.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 11/29/2017] [Accepted: 12/08/2017] [Indexed: 11/18/2022] Open
Abstract
We extended a generic Geant4 application for mechanistic DNA damage simulations to an Escherichia coli cell geometry, finding electron damage yields and proton damage yields largely in line with experimental results. Depending on the simulation of radical scavenging, electrons double strand breaks (DSBs) yields range from 0.004 to 0.010 DSB Gy-1 Mbp-1, while protons have yields ranging from 0.004 DSB Gy-1 Mbp-1 at low LETs and with strict assumptions concerning scavenging, up to 0.020 DSB Gy-1 Mbp-1 at high LETs and when scavenging is weakest. Mechanistic DNA damage simulations can provide important limits on the extent to which physical processes can impact biology in low background experiments. We demonstrate the utility of these studies for low dose radiation biology calculating that in E. coli, the median rate at which the radiation background induces double strand breaks is 2.8 × 10-8 DSB day-1, significantly less than the mutation rate per generation measured in E. coli, which is on the order of 10-3.
Collapse
Affiliation(s)
- Nathanael Lampe
- Université Clermont Auvergne, CNRS/IN2P3, LPC, F-63000 Clermont-Ferrand, France; Université de Bordeaux, CNRS/IN2P3, CENBG, F-33175 Gradignan, France
| | | | - Vincent Breton
- Université Clermont Auvergne, CNRS/IN2P3, LPC, F-63000 Clermont-Ferrand, France
| | - Jeremy M C Brown
- Radiation Science and Technology, Delft University of Technology, Mekelweg 15, Delft 26295B, The Netherlands
| | - Dousatsu Sakata
- Université de Bordeaux, CNRS/IN2P3, CENBG, F-33175 Gradignan, France
| | - David Sarramia
- Université Clermont Auvergne, CNRS/IN2P3, LPC, F-63000 Clermont-Ferrand, France
| | - Sébastien Incerti
- Université de Bordeaux, CNRS/IN2P3, CENBG, F-33175 Gradignan, France.
| |
Collapse
|
68
|
Brownstein JM, Wisdom AJ, Castle KD, Mowery YM, Guida P, Lee CL, Tommasino F, Tessa CL, Scifoni E, Gao J, Luo L, Campos LDS, Ma Y, Williams N, Jung SH, Durante M, Kirsch DG. Characterizing the Potency and Impact of Carbon Ion Therapy in a Primary Mouse Model of Soft Tissue Sarcoma. Mol Cancer Ther 2018; 17:858-868. [PMID: 29437879 PMCID: PMC5912881 DOI: 10.1158/1535-7163.mct-17-0965] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/28/2017] [Accepted: 02/01/2018] [Indexed: 12/11/2022]
Abstract
Carbon ion therapy (CIT) offers several potential advantages for treating cancers compared with X-ray and proton radiotherapy, including increased biological efficacy and more conformal dosimetry. However, CIT potency has not been characterized in primary tumor animal models. Here, we calculate the relative biological effectiveness (RBE) of carbon ions compared with X-rays in an autochthonous mouse model of soft tissue sarcoma. We used Cre/loxP technology to generate primary sarcomas in KrasLSL-G12D/+; p53fl/fl mice. Primary tumors were irradiated with a single fraction of carbon ions (10 Gy), X-rays (20 Gy, 25 Gy, or 30 Gy), or observed as controls. The RBE was calculated by determining the dose of X-rays that resulted in similar time to posttreatment tumor volume quintupling and exponential growth rate as 10 Gy carbon ions. The median tumor volume quintupling time and exponential growth rate of sarcomas treated with 10 Gy carbon ions and 30 Gy X-rays were similar: 27.3 and 28.1 days and 0.060 and 0.059 mm3/day, respectively. Tumors treated with lower doses of X-rays had faster regrowth. Thus, the RBE of carbon ions in this primary tumor model is 3. When isoeffective treatments of carbon ions and X-rays were compared, we observed significant differences in tumor growth kinetics, proliferative indices, and immune infiltrates. We found that carbon ions were three times as potent as X-rays in this aggressive tumor model and identified unanticipated differences in radiation response that may have clinical implications. Mol Cancer Ther; 17(4); 858-68. ©2018 AACR.
Collapse
Affiliation(s)
- Jeremy M Brownstein
- Department of Radiation Oncology, Duke University Health System, Durham, North Carolina
| | - Amy J Wisdom
- Department of Pharmacology & Cancer Biology, Duke University, Durham, North Carolina
| | - Katherine D Castle
- Department of Pharmacology & Cancer Biology, Duke University, Durham, North Carolina
| | - Yvonne M Mowery
- Department of Radiation Oncology, Duke University Health System, Durham, North Carolina
| | - Peter Guida
- Department of Biology, Brookhaven National Laboratory, Upton, New York
| | - Chang-Lung Lee
- Department of Radiation Oncology, Duke University Health System, Durham, North Carolina
| | - Francesco Tommasino
- Trento Institute for Fundamental Physics and Applications, National Institute for Nuclear Physics (INFN), Trento, Italy
- Department of Physics, University of Trento, Trento, Italy
| | - Chiara La Tessa
- Brookhaven National Laboratory, Upton, New York
- Trento Institute for Fundamental Physics and Applications, National Institute for Nuclear Physics (INFN), Trento, Italy
- Department of Physics, University of Trento, Trento, Italy
| | - Emanuele Scifoni
- Trento Institute for Fundamental Physics and Applications, National Institute for Nuclear Physics (INFN), Trento, Italy
| | - Junheng Gao
- Department of Biostatistics and Informatics, Duke University, Durham, North Carolina
| | - Lixia Luo
- Department of Radiation Oncology, Duke University Health System, Durham, North Carolina
| | | | - Yan Ma
- Department of Radiation Oncology, Duke University Health System, Durham, North Carolina
| | - Nerissa Williams
- Department of Radiation Oncology, Duke University Health System, Durham, North Carolina
| | - Sin-Ho Jung
- Department of Biostatistics and Informatics, Duke University, Durham, North Carolina
| | - Marco Durante
- Trento Institute for Fundamental Physics and Applications, National Institute for Nuclear Physics (INFN), Trento, Italy
| | - David G Kirsch
- Department of Radiation Oncology, Duke University Health System, Durham, North Carolina.
- Department of Pharmacology & Cancer Biology, Duke University, Durham, North Carolina
| |
Collapse
|
69
|
Chishti AA, Baumstark-Khan C, Koch K, Kolanus W, Feles S, Konda B, Azhar A, Spitta LF, Henschenmacher B, Diegeler S, Schmitz C, Hellweg CE. Linear Energy Transfer Modulates Radiation-Induced NF-kappa B Activation and Expression of its Downstream Target Genes. Radiat Res 2018; 189:354-370. [PMID: 29369006 DOI: 10.1667/rr14905.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Nuclear factor kappaB (NF-κB) is a central transcription factor in the immune system and modulates cell survival in response to radiotherapy. Activation of NF-κB was shown to be an early step in the cellular response to ultraviolet A (UVA) and ionizing radiation exposure in human cells. NF-κB activation by the genotoxic stress-dependent sub-pathway after exposure to different radiation qualities had been evaluated to a very limited extent. In addition, the resulting gene expression profile, which shapes the cellular and tissue response, is unknown. Therefore, in this study the activation of NF-κB after exposure to low- and high-linear energy transfer (LET) radiation and the expression of its target genes were analyzed in human embryonic kidney (HEK) cells. The activation of NF-κB via canonical and genotoxic stress-induced pathways was visualized by the cell line HEK-pNF-κB-d2EGFP/Neo L2 carrying the destabilized enhanced green fluorescent protein (d2EGFP) as reporter. The NF-κB-dependent d2EGFP expression after irradiation with X rays and heavy ions was evaluated by flow cytometry. Because of differences in the extent of NF-κB activation after irradiation with X rays (significant NF-κB activation for doses >4 Gy) and heavy ions (significant NF-κB activation at doses as low as 1 Gy), it was expected that radiation quality (LET) played an important role in the cellular radiation response. In addition, the relative biological effectiveness (RBE) of NF-κB activation and reduction of cellular survival were compared for heavy ions having a broad LET range (∼0.3-9,674 keV/μm). Furthermore, the effect of LET on NF-κB target gene expression was analyzed by real-time reverse transcriptase quantitative PCR (RT-qPCR). The maximal RBE for NF-κB activation and cell killing occurred at an LET value of 80 and 175 keV/μm, respectively. There was a dose-dependent increase in expression of NF-κB target genes NF-κB1A and CXCL8. A qPCR array of 84 NF-κB target genes revealed that TNF and a set of CXCL genes (CXCL1, CXCL2, CXCL8, CXCL10), CCL2, VCAM1, CD83, NF-κB1, NF-κB2 and NF-κBIA were strongly upregulated after exposure to X rays and neon ions (LET 92 keV/μm). After heavy-ion irradiations, it was noted that the expression of NF-κB target genes such as chemokines and CD83 was highest at an LET value that coincided with the LET resulting in maximal NF-κB activation, whereas expression of the NF-κB inhibitory gene NFKBIA was induced transiently by all radiation qualities investigated. Taken together, these findings clearly demonstrate that NF-κB activation and NF-κB-dependent gene expression by heavy ions are highest in the LET range of ∼50-200 keV/μm. The upregulated chemokines and cytokines (CXCL1, CXCL2, CXCL10, CXCL8/IL-8 and TNF) could be important for cell-cell communication among hit as well as nonhit cells (bystander effect).
Collapse
Affiliation(s)
- Arif Ali Chishti
- a German Aerospace Centre (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, D-51147 Köln, Germany
| | - Christa Baumstark-Khan
- a German Aerospace Centre (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, D-51147 Köln, Germany
| | - Kristina Koch
- a German Aerospace Centre (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, D-51147 Köln, Germany
| | - Waldemar Kolanus
- b Life and Medical Sciences (LIMES) Institute, University of Bonn, Karlrobert-Kreiten-Straße 13, 53115 Bonn, Germany
| | - Sebastian Feles
- a German Aerospace Centre (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, D-51147 Köln, Germany
| | - Bikash Konda
- a German Aerospace Centre (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, D-51147 Köln, Germany
| | - Abid Azhar
- c The Karachi Institute of Biotechnology and Genetic Engineering, University of Karachi, Karachi-75270, Pakistan
| | - Luis F Spitta
- a German Aerospace Centre (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, D-51147 Köln, Germany
| | - Bernd Henschenmacher
- a German Aerospace Centre (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, D-51147 Köln, Germany
| | - Sebastian Diegeler
- a German Aerospace Centre (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, D-51147 Köln, Germany
| | - Claudia Schmitz
- a German Aerospace Centre (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, D-51147 Köln, Germany
| | - Christine E Hellweg
- a German Aerospace Centre (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, D-51147 Köln, Germany
| |
Collapse
|
70
|
Piroozfar B, Raisali G, Alirezapour B, Mirzaii M. The effect of 111In radionuclide distance and auger electron energy on direct induction of DNA double-strand breaks: a Monte Carlo study using Geant4 toolkit. Int J Radiat Biol 2018; 94:385-393. [DOI: 10.1080/09553002.2018.1440329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Behnaz Piroozfar
- Radiation Applications Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Gholamreza Raisali
- Radiation Applications Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Behrouz Alirezapour
- Radiation Applications Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Mohammad Mirzaii
- Radiation Applications Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| |
Collapse
|
71
|
Abstract
Carbon ion therapy is a promising evolving modality in radiotherapy to treat tumors that are radioresistant against photon treatments. As carbon ions are more effective in normal and tumor tissue, the relative biological effectiveness (RBE) has to be calculated by bio-mathematical models and has to be considered in the dose prescription. This review (i) introduces the concept of the RBE and its most important determinants, (ii) describes the physical and biological causes of the increased RBE for carbon ions, (iii) summarizes available RBE measurements in vitro and in vivo, and (iv) describes the concepts of the clinically applied RBE models (mixed beam model, local effect model, and microdosimetric-kinetic model), and (v) the way they are introduced into clinical application as well as (vi) their status of experimental and clinical validation, and finally (vii) summarizes the current status of the use of the RBE concept in carbon ion therapy and points out clinically relevant conclusions as well as open questions. The RBE concept has proven to be a valuable concept for dose prescription in carbon ion radiotherapy, however, different centers use different RBE models and therefore care has to be taken when transferring results from one center to another. Experimental studies significantly improve the understanding of the dependencies and limitations of RBE models in clinical application. For the future, further studies investigating quantitatively the differential effects between normal tissues and tumors are needed accompanied by clinical studies on effectiveness and toxicity.
Collapse
Affiliation(s)
- Christian P Karger
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany. National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany. Author to whom any correspondence should be addressed
| | | |
Collapse
|
72
|
Mitochondrial stress controls the radiosensitivity of the oxygen effect: Implications for radiotherapy. Oncotarget 2017; 7:21469-83. [PMID: 26894978 PMCID: PMC5008299 DOI: 10.18632/oncotarget.7412] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/29/2016] [Indexed: 01/05/2023] Open
Abstract
It has been more than 60 years since the discovery of the oxygen effect that empirically demonstrates the direct association between cell radiosensitivity and oxygen tension, important parameters in radiotherapy. Yet the mechanisms underlying this principal tenet of radiobiology are poorly understood. Better understanding of the oxygen effect may explain difficulty in eliminating hypoxic tumor cells, a major cause of regrowth after therapy. Our analysis utilizes the Howard-Flanders and Alper formula, which describes the relationship of radiosensitivity with oxygen tension. Here, we assign and qualitatively assess the relative contributions of two important mechanisms. The first mechanism involves the emission of reactive oxygen species from the mitochondrial electron transport chain, which increases with oxygen tension. The second mechanism is related to an energy and repair deficit, which increases with hypoxia. Following a radiation exposure, the uncoupling of the oxidative phosphorylation system (proton leak) in mitochondria lowers the emission of reactive oxygen species which has implications for fractionated radiotherapy, particularly of hypoxic tumors. Our analysis shows that, in oxygenated tumor and normal cells, mitochondria, rather than the nucleus, are the primary loci of radiotherapy effects, especially for low linear energy transfer radiation. Therefore, the oxygen effect can be explained by radiation-induced effects in mitochondria that generate reactive oxygen species, which in turn indirectly target nuclear DNA.
Collapse
|
73
|
Zhang Y, Wang J, Li Y, Wang F, Yang F, Xu W. Synthesis and Radioprotective Activity of Mitochondria Targeted Dihydropyridines In Vitro. Int J Mol Sci 2017; 18:ijms18112233. [PMID: 29068391 PMCID: PMC5713203 DOI: 10.3390/ijms18112233] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/22/2017] [Accepted: 10/23/2017] [Indexed: 12/12/2022] Open
Abstract
The radiation-induced damage to mitochondrial oxidative respiratory chain could lead to generating of superoxide anions (O2−) and secondary reactive oxygen species (ROS), which are the major resources of continuous ROS production after radiation. Scavenging radiation-induced ROS effectively can help mitochondria to maintain their physiological function and relief cells from oxidative stress. Dihydropyridines (DHPs) are biomimetic hydrogen sources that could protect cells against radiation damage. In this study, we designed and synthetized three novel mitochondrial-targeted dihydropyridines (Mito-DHPs) that utilize the mitochondrial membrane potential to enter the organelle and scavenge ROS. MitoTracker confirmed Mito-DHPs accumulation in mitochondria, and the DCFH-DA assay demonstrated effective ROS scavenging activity. In addition, the γ-H2AX and comet assay demonstrated the ability of Mito-DHPs to protect against both radiation and ROS-induced DNA strand breaks. Furthermore, Mito-DHP1 proved to be non-toxic and displayed significant radioprotection activity (p < 0.05) in vitro. Mito-DHPs are therefore promising antioxidants that could penetrate the membrane of mitochondria, scavenge excessive ROS, and protect cells against radiation-induced oxidative damage.
Collapse
Affiliation(s)
- Yurui Zhang
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Junying Wang
- Department of Physics, School of Sciences and Tianjin Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Yuanyuan Li
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Feng Wang
- Department of Statistics, Tianjin University of Finance and Economics, Tianjin 300222, China.
| | - Fujun Yang
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Wenqing Xu
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
74
|
Recovery from sublethal damage and potentially lethal damage : Proton beam irradiation vs. X‑ray irradiation. Strahlenther Onkol 2017; 194:343-351. [PMID: 29038831 DOI: 10.1007/s00066-017-1223-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 09/26/2017] [Indexed: 01/06/2023]
Abstract
PURPOSE In order to clarify the biological response of tumor cells to proton beam irradiation, sublethal damage recovery (SLDR) and potentially lethal damage recovery (PLDR) induced after proton beam irradiation at the center of a 10 cm spread-out Bragg peak (SOBP) were compared with those seen after X‑ray irradiation. METHODS Cell survival was determined by a colony assay using EMT6 and human salivary gland tumor (HSG) cells. First, two doses of 4 Gy/GyE (Gray equivalents, GyE) were given at an interfraction interval of 0-6 h. Second, five fractions of 1.6 Gy/GyE were administered at interfraction intervals of 0-5 min. Third, a delayed-plating assay involving cells in plateau-phase cultures was conducted. The cells were plated in plastic dishes immediately or 2-24 h after being irradiated with 8 Gy/GyE of X‑rays or proton beams. Furthermore, we investigated the degree of protection from the effects of X‑rays or proton beams afforded by the radical scavenger dimethyl sulfoxide to estimate the contribution of the indirect effect of radiation. RESULTS In both the first and second experiments, SLDR was more suppressed after proton beam irradiation than after X‑ray irradiation. In the third experiment, there was no difference in PLDR between the proton beam and X‑ray irradiation conditions. The degree of protection tended to be higher after X‑ray irradiation than after proton beam irradiation. CONCLUSION Compared with that seen after X‑ray irradiation, SLDR might take place to a lesser extent after proton beam irradiation at the center of a 10 cm SOBP, while the extent of PLDR does not differ significantly between these two conditions.
Collapse
|
75
|
Rezaee M, Hill RP, Jaffray DA. The Exploitation of Low-Energy Electrons in Cancer Treatment. Radiat Res 2017; 188:123-143. [PMID: 28557630 DOI: 10.1667/rr14727.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Given the distinct characteristics of low-energy electrons (LEEs), particularly at energies less than 30 eV, they can be applied to a wide range of therapeutic modalities to improve cancer treatment. LEEs have been shown to efficiently produce complex molecular damage resulting in substantial cellular toxicities. Since LEEs are produced in copious amounts from high-energy radiation beam, including photons, protons and ions; the control of LEE distribution can potentially enhance the therapeutic radio of such beams. LEEs can play a substantial role in the synergistic effect between radiation and chemotherapy, particularly halogenated and platinum-based anticancer drugs. Radiosensitizing entities containing atoms of high atomic number such as gold nanoparticles can be a source of LEE production if high-energy radiation interacts with them. This can provide a high local density of LEEs in a cell and produce cellular toxicity. Auger-electron-emitting radionuclides also create a high number of LEEs in each decay, which can induce lethal damage in a cell. Exploitation of LEEs in cancer treatment, however, faces a few challenges, such as dosimetry of LEEs and selective delivery of radiosensitizing and chemotherapeutic molecules close to cellular targets. This review first discusses the rationale for utilizing LEEs in cancer treatment by explaining their mechanism of action, describes theoretical and experimental studies at the molecular and cellular levels, then discusses strategies for achieving modification of the distribution and effectiveness of LEEs in cancerous tissue and their associated clinical benefit.
Collapse
Affiliation(s)
- Mohammad Rezaee
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Ontario Cancer Institute and Campbell Family Institute for Cancer Research and Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Richard P Hill
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Ontario Cancer Institute and Campbell Family Institute for Cancer Research and Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - David A Jaffray
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Ontario Cancer Institute and Campbell Family Institute for Cancer Research and Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
76
|
Hollas D, Pohl MN, Seidel R, Aziz EF, Slavíček P, Winter B. Aqueous Solution Chemistry of Ammonium Cation in the Auger Time Window. Sci Rep 2017; 7:756. [PMID: 28389650 PMCID: PMC5429669 DOI: 10.1038/s41598-017-00756-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/09/2017] [Indexed: 11/26/2022] Open
Abstract
We report on chemical reactions triggered by core-level ionization of ammonium ([Formula: see text]) cation in aqueous solution. Based on a combination of photoemission experiments from a liquid microjet and high-level ab initio simulations, we identified simultaneous single and double proton transfer occurring on a very short timescale spanned by the Auger-decay lifetime. Molecular dynamics simulations indicate that the proton transfer to a neighboring water molecule leads to essentially complete formation of H3O+ (aq) and core-ionized ammonia [Formula: see text](aq) within the ~7 fs lifetime of the nitrogen 1s core hole. A second proton transfer leads to a transient structure with the proton shared between the remaining NH2 moiety and another water molecule in the hydration shell. These ultrafast proton transfers are stimulated by very strong hydrogen bonds between the ammonium cation and water. Experimentally, the proton transfer dynamics is identified from an emerging signal at the high-kinetic energy side of the Auger-electron spectrum in analogy to observations made for other hydrogen-bonded aqueous solutions. The present study represents the most pronounced charge separation observed upon core ionization in liquids so far.
Collapse
Affiliation(s)
- Daniel Hollas
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 16628, Prague, Czech Republic
| | - Marvin N Pohl
- Helmholtz-Zentrum Berlin für Materialien und Energie, Methods for Material Development, Albert-Einstein-Straße 15, D-12489, Berlin, Germany
- Department of Physics, Freie Universität Berlin, Arnimallee 14, D-141595, Berlin, Germany
| | - Robert Seidel
- Helmholtz-Zentrum Berlin für Materialien und Energie, Methods for Material Development, Albert-Einstein-Straße 15, D-12489, Berlin, Germany
| | - Emad F Aziz
- Helmholtz-Zentrum Berlin für Materialien und Energie, Methods for Material Development, Albert-Einstein-Straße 15, D-12489, Berlin, Germany
- School of Chemistry, Monash University, 3800 Clayton, Victoria, Australia
| | - Petr Slavíček
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 16628, Prague, Czech Republic.
- J. Heyrovský Institute of Physical Chemistry, Dolejškova 3, 18223, Prague 8, Czech Republic.
| | - Bernd Winter
- Helmholtz-Zentrum Berlin für Materialien und Energie, Methods for Material Development, Albert-Einstein-Straße 15, D-12489, Berlin, Germany.
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195, Berlin, Germany.
| |
Collapse
|
77
|
Tian Z, Jiang SB, Jia X. Accelerated Monte Carlo simulation on the chemical stage in water radiolysis using GPU. Phys Med Biol 2017; 62:3081-3096. [PMID: 28323637 DOI: 10.1088/1361-6560/aa6246] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The accurate simulation of water radiolysis is an important step to understand the mechanisms of radiobiology and quantitatively test some hypotheses regarding radiobiological effects. However, the simulation of water radiolysis is highly time consuming, taking hours or even days to be completed by a conventional CPU processor. This time limitation hinders cell-level simulations for a number of research studies. We recently initiated efforts to develop gMicroMC, a GPU-based fast microscopic MC simulation package for water radiolysis. The first step of this project focused on accelerating the simulation of the chemical stage, the most time consuming stage in the entire water radiolysis process. A GPU-friendly parallelization strategy was designed to address the highly correlated many-body simulation problem caused by the mutual competitive chemical reactions between the radiolytic molecules. Two cases were tested, using a 750 keV electron and a 5 MeV proton incident in pure water, respectively. The time-dependent yields of all the radiolytic species during the chemical stage were used to evaluate the accuracy of the simulation. The relative differences between our simulation and the Geant4-DNA simulation were on average 5.3% and 4.4% for the two cases. Our package, executed on an Nvidia Titan black GPU card, successfully completed the chemical stage simulation of the two cases within 599.2 s and 489.0 s. As compared with Geant4-DNA that was executed on an Intel i7-5500U CPU processor and needed 28.6 h and 26.8 h for the two cases using a single CPU core, our package achieved a speed-up factor of 171.1-197.2.
Collapse
Affiliation(s)
- Zhen Tian
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States of America
| | | | | |
Collapse
|
78
|
Her S, Jaffray DA, Allen C. Gold nanoparticles for applications in cancer radiotherapy: Mechanisms and recent advancements. Adv Drug Deliv Rev 2017; 109:84-101. [PMID: 26712711 DOI: 10.1016/j.addr.2015.12.012] [Citation(s) in RCA: 518] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 12/10/2015] [Accepted: 12/11/2015] [Indexed: 12/13/2022]
Abstract
Gold nanoparticles (AuNPs) have emerged as novel radiosensitizers owing to their high X-ray absorption, synthetic versatility, and unique chemical, electronic and optical properties. Multi-disciplinary research performed over the past decade has demonstrated the potential of AuNP-based radiosensitizers, and identified possible mechanisms underlying the observed radiation enhancement effects of AuNPs. Despite promising findings from pre-clinical studies, the benefits of AuNP radiosensitization have yet to successfully translate into clinical practice. In this review, we present an overview of the current state of AuNP-based radiosensitization in the context of the physical, chemical and biological modes of radiosensitization. As well, recent advancements that focus on formulation design and enable multi-modality treatment and clinical utilization are discussed, concluding with design considerations to guide the development of next generation AuNPs for clinical applications.
Collapse
|
79
|
Cunha M, Monini C, Testa E, Beuve M. NanOx, a new model to predict cell survival in the context of particle therapy. Phys Med Biol 2016; 62:1248-1268. [PMID: 27995904 DOI: 10.1088/1361-6560/aa54c9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Particle therapy is increasingly attractive for the treatment of tumors and the number of facilities offering it is rising worldwide. Due to the well-known enhanced effectiveness of ions, it is of utmost importance to plan treatments with great care to ensure tumor killing and healthy tissues sparing. Hence, the accurate quantification of the relative biological effectiveness (RBE) of ions, used in the calculation of the biological dose, is critical. Nevertheless, the RBE is a complex function of many parameters and its determination requires modeling. The approaches currently used have allowed particle therapy to thrive, but still show some shortcomings. We present herein a short description of a new theoretical framework, NanOx, to calculate cell survival in the context of particle therapy. It gathers principles from existing approaches, while addressing some of their weaknesses. NanOx is a multiscale model that takes the stochastic nature of radiation at nanometric and micrometric scales fully into account, integrating also the chemical aspects of radiation-matter interaction. The latter are included in the model by means of a chemical specific energy, determined from the production of reactive chemical species induced by irradiation. Such a production represents the accumulation of oxidative stress and sublethal damage in the cell, potentially generating non-local lethal events in NanOx. The complementary local lethal events occur in a very localized region and can, alone, lead to cell death. Both these classes of events contribute to cell death. The comparison between experimental data and model predictions for the V79 cell line show a good agreement. In particular, the dependence of the typical shoulders of cell survival curves on linear energy transfer are well described, but also the effectiveness of different ions, including the overkill effect. These results required the adjustment of a number of parameters compatible with the application of the model in a clinical scenario thereby showing the potential of NanOx. Said parameters are discussed in detail in this paper.
Collapse
Affiliation(s)
- M Cunha
- Université de Lyon, F-69622, Lyon, France. Université de Lyon 1, Villeurbanne, France. CNRS/IN2P3, Institut de Physique Nucléaire de Lyon, France
| | | | | | | |
Collapse
|
80
|
Li S, Penninckx S, Karmani L, Heuskin AC, Watillon K, Marega R, Zola J, Corvaglia V, Genard G, Gallez B, Feron O, Martinive P, Bonifazi D, Michiels C, Lucas S. LET-dependent radiosensitization effects of gold nanoparticles for proton irradiation. NANOTECHNOLOGY 2016; 27:455101. [PMID: 27694702 DOI: 10.1088/0957-4484/27/45/455101] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The development of new modalities and protocols is of major interest to improve the outcome of cancer treatment. Given the appealing physical properties of protons and the emerging evidence of biological relevance of the use of gold nanoparticles (GNPs), the radiosensitization effects of GNPs (5 or 10 nm) have been investigated in vitro in combination with a proton beam of different linear energy transfer (LET). After the incubation with GNPs for 24 h, nanoparticles were observed in the cytoplasm of A431 cells exposed to 10 nm GNPs, and in the cytoplasm as well as the nucleus of cells exposed to 5 nm GNPs. Cell uptake of 0.05 mg ml-1 of GNPs led to 0.78 pg Au/cell and 0.30 pg Au/cell after 24 h incubation for 10 and 5 nm GNPs respectively. A marked radiosensitization effect of GNPs was observed with 25 keV μm-1 protons, but not with 10 keV μm-1 protons. This effect was more pronounced for 10 nm GNPs than for 5 nm GNPs. By using a radical scavenger, a major role of reactive oxygen species in the amplification of the death of irradiated cell was identified. All together, these results open up novel perspectives for using high-Z metallic NPs in protontherapy.
Collapse
Affiliation(s)
- Sha Li
- Research center for the Physics of Matter and Radiation (PMR-LARN), Namur Research Institute For Life Science (NARILIS), University of Namur, B-5000 Namur, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Comparative proteomics reveals the underlying toxicological mechanism of low sperm motility induced by iron ion radiation in mice. Reprod Toxicol 2016; 65:148-158. [DOI: 10.1016/j.reprotox.2016.07.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 07/11/2016] [Accepted: 07/22/2016] [Indexed: 02/06/2023]
|
82
|
Review of Geant4-DNA applications for micro and nanoscale simulations. Phys Med 2016; 32:1187-1200. [PMID: 27659007 DOI: 10.1016/j.ejmp.2016.09.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/01/2016] [Accepted: 09/09/2016] [Indexed: 11/24/2022] Open
Abstract
Emerging radiotherapy treatments including targeted particle therapy, hadron therapy or radiosensitisation of cells by high-Z nanoparticles demand the theoretical determination of radiation track structure at the nanoscale. This is essential in order to evaluate radiation damage at the cellular and DNA level. Since 2007, Geant4 offers physics models to describe particle interactions in liquid water at the nanometre level through the Geant4-DNA Package. This package currently provides a complete set of models describing the event-by-event electromagnetic interactions of particles with liquid water, as well as developments for the modelling of water radiolysis. Since its release, Geant4-DNA has been adopted as an investigational tool in kV and MV external beam radiotherapy, hadron therapies using protons and heavy ions, targeted therapies and radiobiology studies. It has been benchmarked with respect to other track structure Monte Carlo codes and, where available, against reference experimental measurements. While Geant4-DNA physics models and radiolysis modelling functionalities have already been described in detail in the literature, this review paper summarises and discusses a selection of representative papers with the aim of providing an overview of a) geometrical descriptions of biological targets down to the DNA size, and b) the full spectrum of current micro- and nano-scale applications of Geant4-DNA.
Collapse
|
83
|
Sridharan DM, Asaithamby A, Blattnig SR, Costes SV, Doetsch PW, Dynan WS, Hahnfeldt P, Hlatky L, Kidane Y, Kronenberg A, Naidu MD, Peterson LE, Plante I, Ponomarev AL, Saha J, Snijders AM, Srinivasan K, Tang J, Werner E, Pluth JM. Evaluating biomarkers to model cancer risk post cosmic ray exposure. LIFE SCIENCES IN SPACE RESEARCH 2016; 9:19-47. [PMID: 27345199 PMCID: PMC5613937 DOI: 10.1016/j.lssr.2016.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/11/2016] [Indexed: 06/06/2023]
Abstract
Robust predictive models are essential to manage the risk of radiation-induced carcinogenesis. Chronic exposure to cosmic rays in the context of the complex deep space environment may place astronauts at high cancer risk. To estimate this risk, it is critical to understand how radiation-induced cellular stress impacts cell fate decisions and how this in turn alters the risk of carcinogenesis. Exposure to the heavy ion component of cosmic rays triggers a multitude of cellular changes, depending on the rate of exposure, the type of damage incurred and individual susceptibility. Heterogeneity in dose, dose rate, radiation quality, energy and particle flux contribute to the complexity of risk assessment. To unravel the impact of each of these factors, it is critical to identify sensitive biomarkers that can serve as inputs for robust modeling of individual risk of cancer or other long-term health consequences of exposure. Limitations in sensitivity of biomarkers to dose and dose rate, and the complexity of longitudinal monitoring, are some of the factors that increase uncertainties in the output from risk prediction models. Here, we critically evaluate candidate early and late biomarkers of radiation exposure and discuss their usefulness in predicting cell fate decisions. Some of the biomarkers we have reviewed include complex clustered DNA damage, persistent DNA repair foci, reactive oxygen species, chromosome aberrations and inflammation. Other biomarkers discussed, often assayed for at longer points post exposure, include mutations, chromosome aberrations, reactive oxygen species and telomere length changes. We discuss the relationship of biomarkers to different potential cell fates, including proliferation, apoptosis, senescence, and loss of stemness, which can propagate genomic instability and alter tissue composition and the underlying mRNA signatures that contribute to cell fate decisions. Our goal is to highlight factors that are important in choosing biomarkers and to evaluate the potential for biomarkers to inform models of post exposure cancer risk. Because cellular stress response pathways to space radiation and environmental carcinogens share common nodes, biomarker-driven risk models may be broadly applicable for estimating risks for other carcinogens.
Collapse
Affiliation(s)
| | | | - Steve R Blattnig
- Langley Research Center, Langley Research Center (LaRC), VA, United States
| | - Sylvain V Costes
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | | | | | | | - Lynn Hlatky
- CCSB-Tufts School of Medicine, Boston, MA, United States
| | - Yared Kidane
- Wyle Science, Technology & Engineering Group, Houston, TX, United States
| | - Amy Kronenberg
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Mamta D Naidu
- CCSB-Tufts School of Medicine, Boston, MA, United States
| | - Leif E Peterson
- Houston Methodist Research Institute, Houston, TX, United States
| | - Ianik Plante
- Wyle Science, Technology & Engineering Group, Houston, TX, United States
| | - Artem L Ponomarev
- Wyle Science, Technology & Engineering Group, Houston, TX, United States
| | - Janapriya Saha
- UT Southwestern Medical Center, Dallas, TX, United States
| | | | | | - Jonathan Tang
- Exogen Biotechnology, Inc., Berkeley, CA, United States
| | | | - Janice M Pluth
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
| |
Collapse
|
84
|
Hirayama R, Uzawa A, Obara M, Takase N, Koda K, Ozaki M, Noguchi M, Matsumoto Y, Li H, Yamashita K, Koike S, Ando K, Shirai T, Matsufuji N, Furusawa Y. Determination of the relative biological effectiveness and oxygen enhancement ratio for micronuclei formation using high-LET radiation in solid tumor cells: An in vitro and in vivo study. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 793:41-7. [PMID: 26520371 DOI: 10.1016/j.mrgentox.2015.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 08/10/2015] [Indexed: 11/27/2022]
Abstract
We determined the relative biological effectiveness (RBE) and oxygen enhancement ratio (OER) of micronuclei (MN) formation in clamped (hypoxic) and non-clamped (normoxic) solid tumors in mice legs following exposure to X-rays and heavy ions. Single-cell suspensions (aerobic) of non-irradiated tumors were prepared in parallel and used directly to determine the radiation response for aerobic cells. Squamous cell carcinoma (SCCVII) cells were transplanted into the right hind legs of syngeneic C3H/He male mice. Irradiation doses with either X-rays or heavy ions at a dose-averaged LET (linear energy transfer) of 14-192keV/μm were delivered to 5-mm diameter tumors and aerobic single-cells in sample-tubes. After irradiation, the tumors were excised and trypsinized to observe MN in single-cells. The single-cell suspensions were used for MN formation assays. The RBE values increased with increasing LET. The maximum RBE values for the three different oxygen conditions; hypoxic tumor, normoxic tumor, and aerobic cells, were 8.18, 5.30, and 3.76 at an LET of 192keV/μm, respectively. After X-irradiation, the OERh/n values (hypoxic tumor/normoxic tumor) were lower than the OERh/a (hypoxic tumor/aerobic cells), and were 1.73 and 2.58, respectively. We found that the OER for the in vivo studies were smaller in comparison to that for the in vitro studies. Both of the OER values at 192keV/μm were small in comparison to those of the X-ray irradiated samples. The OERh/n and OERh/a values at 192keV/μm were 1.12 and 1.19, respectively. Our results suggest that high LET radiation has a large biological effect even if a solid tumor includes substantial numbers of hypoxic cells. To conclude, we found that the RBE values under each oxygen state for non-MN fraction increased with increasing LET and that the OER values for both tumors in vivo and cells in vitro decreased with increasing LET.
Collapse
Affiliation(s)
- Ryoichi Hirayama
- Medical Physics Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan.
| | - Akiko Uzawa
- Medical Physics Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Maki Obara
- Medical Physics Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Nobuhiro Takase
- School of Engineering, Tokai University, 1117 Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan
| | - Kana Koda
- Medical Physics Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Masakuni Ozaki
- Medical Physics Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Miho Noguchi
- Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), 2-4 Shirakata-Shirane, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan
| | - Yoshitaka Matsumoto
- Medical Physics Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Huizi Li
- Medical Physics Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Kei Yamashita
- Medical Physics Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Sachiko Koike
- Medical Physics Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Koichi Ando
- Heavy Ion Medical Center, Gunma University, 3-39-22 Showa-machi, Maebashi-shi, Gunma 371-8511, Japan
| | - Toshiyuki Shirai
- Medical Physics Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Naruhiro Matsufuji
- Medical Physics Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Yoshiya Furusawa
- Medical Physics Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| |
Collapse
|
85
|
Tsai JY, Chen FH, Hsieh TY, Hsiao YY. Effects of indirect actions and oxygen on relative biological effectiveness: estimate of DSB induction and conversion induced by gamma rays and helium ions. JOURNAL OF RADIATION RESEARCH 2015; 56:691-699. [PMID: 25902742 PMCID: PMC4497398 DOI: 10.1093/jrr/rrv025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 03/17/2015] [Accepted: 03/21/2015] [Indexed: 06/04/2023]
Abstract
Clustered DNA damage other than double-strand breaks (DSBs) can be detrimental to cells and can lead to mutagenesis or cell death. In addition to DSBs induced by ionizing radiation, misrepair of non-DSB clustered damage contributes extra DSBs converted from DNA misrepair via pathways for base excision repair and nucleotide excision repair. This study aimed to quantify the relative biological effectiveness (RBE) when DSB induction and conversion from non-DSB clustered damage misrepair were used as biological endpoints. The results showed that both linear energy transfer (LET) and indirect action had a strong impact on the yields for DSB induction and conversion. RBE values for DSB induction and maximum DSB conversion of helium ions (LET = 120 keV/μm) to (60)Co gamma rays were 3.0 and 3.2, respectively. These RBE values increased to 5.8 and 5.6 in the absence of interference of indirect action initiated by addition of 2-M dimethylsulfoxide. DSB conversion was ∼1-4% of the total non-DSB damage due to gamma rays, which was lower than the 10% estimate by experimental measurement. Five to twenty percent of total non-DSB damage due to helium ions was converted into DSBs. Hence, it may be possible to increase the yields of DSBs in cancerous cells through DNA repair pathways, ultimately enhancing cell killing.
Collapse
Affiliation(s)
- Ju-Ying Tsai
- Institute of Biotechnology and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Fang-Hsin Chen
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Kweishan, Taiwan, Republic of China Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan, Republic of China
| | - Tsung-Yu Hsieh
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, No. 110, Section 1, Chien-Kuo N Road, Taichung, 402, Taiwan, Republic of China
| | - Ya-Yun Hsiao
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, No. 110, Section 1, Chien-Kuo N Road, Taichung, 402, Taiwan, Republic of China
| |
Collapse
|
86
|
Liu Y, Liu X, Jin X, He P, Zheng X, Dai Z, Ye F, Zhao T, Chen W, Li Q. The dependence of radiation enhancement effect on the concentration of gold nanoparticles exposed to low- and high-LET radiations. Phys Med 2015; 31:210-8. [DOI: 10.1016/j.ejmp.2015.01.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 01/14/2015] [Accepted: 01/16/2015] [Indexed: 01/12/2023] Open
|
87
|
Tokuyama Y, Furusawa Y, Ide H, Yasui A, Terato H. Role of isolated and clustered DNA damage and the post-irradiating repair process in the effects of heavy ion beam irradiation. JOURNAL OF RADIATION RESEARCH 2015; 56:446-55. [PMID: 25717060 PMCID: PMC4426916 DOI: 10.1093/jrr/rru122] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/17/2014] [Indexed: 05/15/2023]
Abstract
Clustered DNA damage is a specific type of DNA damage induced by ionizing radiation. Any type of ionizing radiation traverses the target DNA molecule as a beam, inducing damage along its track. Our previous study showed that clustered DNA damage yields decreased with increased linear energy transfer (LET), leading us to investigate the importance of clustered DNA damage in the biological effects of heavy ion beam radiation. In this study, we analyzed the yield of clustered base damage (comprising multiple base lesions) in cultured cells irradiated with various heavy ion beams, and investigated isolated base damage and the repair process in post-irradiation cultured cells. Chinese hamster ovary (CHO) cells were irradiated by carbon, silicon, argon and iron ion beams with LETs of 13, 55, 90 and 200 keV µm(-1), respectively. Agarose gel electrophoresis of the cells with enzymatic treatments indicated that clustered base damage yields decreased as the LET increased. The aldehyde reactive probe procedure showed that isolated base damage yields in the irradiated cells followed the same pattern. To analyze the cellular base damage process, clustered DNA damage repair was investigated using DNA repair mutant cells. DNA double-strand breaks accumulated in CHO mutant cells lacking Xrcc1 after irradiation, and the cell viability decreased. On the other hand, mouse embryonic fibroblast (Mef) cells lacking both Nth1 and Ogg1 became more resistant than the wild type Mef. Thus, clustered base damage seems to be involved in the expression of heavy ion beam biological effects via the repair process.
Collapse
Affiliation(s)
- Yuka Tokuyama
- Analytical Research Center for Experimental Sciences, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - Yoshiya Furusawa
- Heavy Ion Radiobiology Research Group, Research Center for Charged Particle Therapy, National Institute of Radiobiological Sciences, 4-9-1 Anagawa, Inage Ward, Chiba 263-8555, Japan
| | - Hiroshi Ide
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Akira Yasui
- Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba Ward, Sendai 980-8575, Japan
| | - Hiroaki Terato
- Analytical Research Center for Experimental Sciences, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| |
Collapse
|
88
|
Douglass M, Bezak E, Penfold S. Development of a radiation track structure clustering algorithm for the prediction of DNA DSB yields and radiation induced cell death in Eukaryotic cells. Phys Med Biol 2015; 60:3217-36. [PMID: 25813497 DOI: 10.1088/0031-9155/60/8/3217] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The preliminary framework of a combined radiobiological model is developed and calibrated in the current work. The model simulates the production of individual cells forming a tumour, the spatial distribution of individual ionization events (using Geant4-DNA) and the stochastic biochemical repair of DNA double strand breaks (DSBs) leading to the prediction of survival or death of individual cells. In the current work, we expand upon a previously developed tumour generation and irradiation model to include a stochastic ionization damage clustering and DNA lesion repair model. The Geant4 code enabled the positions of each ionization event in the cells to be simulated and recorded for analysis. An algorithm was developed to cluster the ionization events in each cell into simple and complex double strand breaks. The two lesion kinetic (TLK) model was then adapted to predict DSB repair kinetics and the resultant cell survival curve. The parameters in the cell survival model were then calibrated using experimental cell survival data of V79 cells after low energy proton irradiation. A monolayer of V79 cells was simulated using the tumour generation code developed previously. The cells were then irradiated by protons with mean energies of 0.76 MeV and 1.9 MeV using a customized version of Geant4. By replicating the experimental parameters of a low energy proton irradiation experiment and calibrating the model with two sets of data, the model is now capable of predicting V79 cell survival after low energy (<2 MeV) proton irradiation for a custom set of input parameters. The novelty of this model is the realistic cellular geometry which can be irradiated using Geant4-DNA and the method in which the double strand breaks are predicted from clustering the spatial distribution of ionisation events. Unlike the original TLK model which calculates a tumour average cell survival probability, the cell survival probability is calculated for each cell in the geometric tumour model developed in the current work. This model uses fundamental measurable microscopic quantities such as genome length rather than macroscopic radiobiological quantities such as alpha/beta ratios. This means that the model can be theoretically used under a wide range of conditions with a single set of input parameters once calibrated for a given cell line.
Collapse
Affiliation(s)
- Michael Douglass
- University of Adelaide, School of Chemistry and Physics, North Terrace, Adelaide, 5005, South Australia. Royal Adelaide Hospital, Department of Medical Physics, North Terrace, Adelaide, 5000, South Australia
| | | | | |
Collapse
|
89
|
Gerelchuluun A, Manabe E, Ishikawa T, Sun L, Itoh K, Sakae T, Suzuki K, Hirayama R, Asaithamby A, Chen DJ, Tsuboi K. The major DNA repair pathway after both proton and carbon-ion radiation is NHEJ, but the HR pathway is more relevant in carbon ions. Radiat Res 2015; 183:345-56. [PMID: 25738894 DOI: 10.1667/rr13904.1] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The purpose of this study was to identify the roles of non-homologous end-joining (NHEJ) or homologous recombination (HR) pathways in repairing DNA double-strand breaks (DSBs) induced by exposure to high-energy protons and carbon ions (C ions) versus gamma rays in Chinese hamster cells. Two Chinese hamster cell lines, ovary AA8 and lung fibroblast V79, as well as various mutant sublines lacking DNA-PKcs (V3), X-ray repair cross-complementing protein-4 [XRCC4 (XR1), XRCC3 (irs1SF) and XRCC2 (irs1)] were exposed to gamma rays ((137)Cs), protons (200 MeV; 2.2 keV/μm) and C ions (290 MeV; 50 keV/μm). V3 and XR1 cells lack the NHEJ pathway, whereas irs1 and irs1SF cells lack the HR pathway. After each exposure, survival was measured using a clonogenic survival assay, in situ DSB induction was evaluated by immunocytochemical analysis of histone H2AX phosphorylation at serine 139 (γ-H2AX foci) and chromosome aberrations were examined using solid staining. The findings from this study showed that clonogenic survival clearly depended on the NHEJ and HR pathway statuses, and that the DNA-PKcs(-/-) cells (V3) were the most sensitive to all radiation types. While protons and γ rays yielded almost the same biological effects, C-ion exposure greatly enhanced the sensitivity of wild-type and HR-deficient cells. However, no significant enhancement of sensitivity in cell killing was seen after C-ion irradiation of NHEJ deficient cells. Decreases in the number of γ-H2AX foci after irradiation occurred more slowly in the NHEJ deficient cells. In particular, V3 cells had the highest number of residual γ-H2AX foci at 24 h after C-ion irradiation. Chromosomal aberrations were significantly higher in both the NHEJ- and HR-deficient cell lines than in wild-type cell lines in response to all radiation types. Protons and gamma rays induced the same aberration levels in each cell line, whereas C ions introduced higher but not significantly different aberration levels. Our results suggest that the NHEJ pathway plays an important role in repairing DSBs induced by both clinical proton and C-ion beams. Furthermore, in C ions the HR pathway appears to be involved in the repair of DSBs to a greater extent compared to gamma rays and protons.
Collapse
|
90
|
Kubo N, Noda SE, Takahashi A, Yoshida Y, Oike T, Murata K, Musha A, Suzuki Y, Ohno T, Takahashi T, Nakano T. Radiosensitizing effect of carboplatin and paclitaxel to carbon-ion beam irradiation in the non-small-cell lung cancer cell line H460. JOURNAL OF RADIATION RESEARCH 2015; 56:229-38. [PMID: 25599995 PMCID: PMC4380040 DOI: 10.1093/jrr/rru085] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 08/22/2014] [Accepted: 08/27/2014] [Indexed: 05/22/2023]
Abstract
The present study investigated the ability of carboplatin and paclitaxel to sensitize human non-small-cell lung cancer (NSCLC) cells to carbon-ion beam irradiation. NSCLC H460 cells treated with carboplatin or paclitaxel were irradiated with X-rays or carbon-ion beams, and radiosensitivity was evaluated by clonogenic survival assay. Cell proliferation was determined by counting the number of viable cells using Trypan blue. Apoptosis and senescence were evaluated by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining and senescence-associated β-galactosidase (SA-β-gal) staining, respectively. The expression of cleaved caspase-3, Bax, p53 and p21 was analyzed by western blotting. Clonogenic survival assays demonstrated a synergistic radiosensitizing effect of carboplatin and paclitaxel with carbon-ion beams; the sensitizer enhancement ratios (SERs) at the dose giving a 10% survival fraction (D10) were 1.21 and 1.22, respectively. Similarly, carboplatin and paclitaxel showed a radiosensitizing effect with X-rays; the SERs were 1.41 and 1.29, respectively. Cell proliferation assays validated the radiosensitizing effect of carboplatin and paclitaxel with both carbon-ion beam and X-ray irradiation. Carboplatin and paclitaxel treatment combined with carbon-ion beams increased TUNEL-positive cells and the expression of cleaved caspase-3 and Bax, indicating the enhancement of apoptosis. The combined treatment also increased SA-β-gal-positive cells and the expression of p53 and p21, indicating the enhancement of senescence. In summary, carboplatin and paclitaxel radiosensitized H460 cells to carbon-ion beam irradiation by enhancing irradiation-induced apoptosis and senescence.
Collapse
Affiliation(s)
- Nobuteru Kubo
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Shin-ei Noda
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Akihisa Takahashi
- Advanced Scientific Research Leaders Development Unit, Gunma University, Gunma, Japan
| | | | - Takahiro Oike
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Kazutoshi Murata
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Atsushi Musha
- Gunma University Heavy Ion Medical Center, Gunma, Japan
| | - Yoshiyuki Suzuki
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Tatsuya Ohno
- Gunma University Heavy Ion Medical Center, Gunma, Japan
| | - Takeo Takahashi
- Department of Radiology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Takashi Nakano
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan Gunma University Heavy Ion Medical Center, Gunma, Japan
| |
Collapse
|
91
|
Hata K, Urushibara A, Yamashita S, Lin M, Muroya Y, Shikazono N, Yokoya A, Fu H, Katsumura Y. Chemical repair activity of free radical scavenger edaravone: reduction reactions with dGMP hydroxyl radical adducts and suppression of base lesions and AP sites on irradiated plasmid DNA. JOURNAL OF RADIATION RESEARCH 2015; 56:59-66. [PMID: 25212600 PMCID: PMC4572592 DOI: 10.1093/jrr/rru079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/08/2014] [Accepted: 08/16/2014] [Indexed: 06/03/2023]
Abstract
Reactions of edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) with deoxyguanosine monophosphate (dGMP) hydroxyl radical adducts were investigated by pulse radiolysis technique. Edaravone was found to reduce the dGMP hydroxyl radical adducts through electron transfer reactions. The rate constants of the reactions were greater than 4 × 10(8) dm(3) mol(-1) s(-1) and similar to those of the reactions of ascorbic acid, which is a representative antioxidant. Yields of single-strand breaks, base lesions, and abasic sites produced in pUC18 plasmid DNA by gamma ray irradiation in the presence of low concentrations (10-1000 μmol dm(-3)) of edaravone were also quantified, and the chemical repair activity of edaravone was estimated by a method recently developed by the authors. By comparing suppression efficiencies to the induction of each DNA lesion, it was found that base lesions and abasic sites were suppressed by the chemical repair activity of edaravone, although the suppression of single-strand breaks was not very effective. This phenomenon was attributed to the chemical repair activity of edaravone toward base lesions and abasic sites. However, the chemical repair activity of edaravone for base lesions was lower than that of ascorbic acid.
Collapse
Affiliation(s)
- Kuniki Hata
- Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakatashirane, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan
| | - Ayumi Urushibara
- Laboratory of Radiation Biology, Osaka Prefecture University, 1-2 Gakuenchou, Naka-ku, Sakai-shi, Osaka 599-8570, Japan
| | - Shinichi Yamashita
- Nuclear Professional School, School of Engineering, The University of Tokyo, 2-22 Shirakatashirane, Tokai-mura, Nakagun, Ibaraki 319-1188, Japan
| | - Mingzhang Lin
- School of Nuclear Science and Technology, University of Science and Technology of China, 96 JinZhai Road, Hefei, Anhui 230026, P.R. China
| | - Yusa Muroya
- Department of Beam Materials Science, Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Naoya Shikazono
- Quantum Beam Science Directorate, Japan Atomic Energy Agency, 8-1-7 Umemidai, Kizukawa-shi, Kyoto 619-0215, Japan
| | - Akinari Yokoya
- Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakatashirane, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan
| | - Haiying Fu
- Shanghai Institute of Applied Physcs, Chinese Academy of Science, Shanghai 201800, P.R. China
| | - Yosuke Katsumura
- Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan Nuclear Professional School, School of Engineering, The University of Tokyo, 2-22 Shirakatashirane, Tokai-mura, Nakagun, Ibaraki 319-1188, Japan
| |
Collapse
|
92
|
Slavíček P, Winter B, Cederbaum LS, Kryzhevoi NV. Proton-Transfer Mediated Enhancement of Nonlocal Electronic Relaxation Processes in X-ray Irradiated Liquid Water. J Am Chem Soc 2014; 136:18170-6. [DOI: 10.1021/ja5117588] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Petr Slavíček
- Department
of Physical Chemistry, Institute of Chemical Technology, Technická
5, 16628 Prague, Czech Republic
| | - Bernd Winter
- Joint
Laboratory for Ultrafast Dynamics in Solutions and at Interfaces (JULiq), Helmholtz-Zentrum Berlin für Matrialien und Energie, Albert-Einstein-Strasse
15, D-12489 Berlin, Germany
| | - Lorenz S. Cederbaum
- Theoretical
Chemistry, Institute of Physical Chemistry, University of Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
| | - Nikolai V. Kryzhevoi
- Theoretical
Chemistry, Institute of Physical Chemistry, University of Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
| |
Collapse
|
93
|
Múčka V, Červenák J, Čuba V, Bláha P. Determination of the survival of yeast and bacteria under the influence of gamma or UV radiation in the presence of some scavengers of OH radicals. J Radioanal Nucl Chem 2014. [DOI: 10.1007/s10967-014-3696-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
94
|
Jeynes JCG, Merchant MJ, Spindler A, Wera AC, Kirkby KJ. Investigation of gold nanoparticle radiosensitization mechanisms using a free radical scavenger and protons of different energies. Phys Med Biol 2014; 59:6431-43. [PMID: 25296027 DOI: 10.1088/0031-9155/59/21/6431] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Gold nanoparticles (GNPs) have been shown to sensitize cancer cells to x-ray radiation, particularly at kV energies where photoelectric interactions dominate and the high atomic number of gold makes a large difference to x-ray absorption. Protons have a high cross-section for gold at a large range of relevant clinical energies, and so potentially could be used with GNPs for increased therapeutic effect.Here, we investigate the contribution of secondary electron emission to cancer cell radiosensitization and investigate how this parameter is affected by proton energy and a free radical scavenger. We simulate the emission from a realistic cell phantom containing GNPs after traversal by protons and x-rays with different energies. We find that with a range of proton energies (1-250 MeV) there is a small increase in secondaries compared to a much larger increase with x-rays. Secondary electrons are known to produce toxic free radicals. Using a cancer cell line in vitro we find that a free radical scavenger has no protective effect on cells containing GNPs irradiated with 3 MeV protons, while it does protect against cells irradiated with x-rays. We conclude that GNP generated free radicals are a major cause of radiosensitization and that there is likely to be much less dose enhancement effect with clinical proton beams compared to x-rays.
Collapse
|
95
|
Palmans H, Rabus H, Belchior AL, Bug MU, Galer S, Giesen U, Gonon G, Gruel G, Hilgers G, Moro D, Nettelbeck H, Pinto M, Pola A, Pszona S, Schettino G, Sharpe PHG, Teles P, Villagrasa C, Wilkens JJ. Future development of biologically relevant dosimetry. Br J Radiol 2014; 88:20140392. [PMID: 25257709 DOI: 10.1259/bjr.20140392] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Proton and ion beams are radiotherapy modalities of increasing importance and interest. Because of the different biological dose response of these radiations as compared with high-energy photon beams, the current approach of treatment prescription is based on the product of the absorbed dose to water and a biological weighting factor, but this is found to be insufficient for providing a generic method to quantify the biological outcome of radiation. It is therefore suggested to define new dosimetric quantities that allow a transparent separation of the physical processes from the biological ones. Given the complexity of the initiation and occurrence of biological processes on various time and length scales, and given that neither microdosimetry nor nanodosimetry on their own can fully describe the biological effects as a function of the distribution of energy deposition or ionization, a multiscale approach is needed to lay the foundation for the aforementioned new physical quantities relating track structure to relative biological effectiveness in proton and ion beam therapy. This article reviews the state-of-the-art microdosimetry, nanodosimetry, track structure simulations, quantification of reactive species, reference radiobiological data, cross-section data and multiscale models of biological response in the context of realizing the new quantities. It also introduces the European metrology project, Biologically Weighted Quantities in Radiotherapy, which aims to investigate the feasibility of establishing a multiscale model as the basis of the new quantities. A tentative generic expression of how the weighting of physical quantities at different length scales could be carried out is presented.
Collapse
Affiliation(s)
- H Palmans
- 1 Acoustics and Ionising Radiation Division, National Physical Laboratory (NPL), Teddington, Middlesex, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Kennedy AR. Biological Effects of Space Radiation and Development of Effective Countermeasures. LIFE SCIENCES IN SPACE RESEARCH 2014; 1:10-43. [PMID: 25258703 PMCID: PMC4170231 DOI: 10.1016/j.lssr.2014.02.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
As part of a program to assess the adverse biological effects expected from astronaut exposure to space radiation, numerous different biological effects relating to astronaut health have been evaluated. There has been major focus recently on the assessment of risks related to exposure to solar particle event (SPE) radiation. The effects related to various types of space radiation exposure that have been evaluated are: gene expression changes (primarily associated with programmed cell death and extracellular matrix (ECM) remodeling), oxidative stress, gastrointestinal tract bacterial translocation and immune system activation, peripheral hematopoietic cell counts, emesis, blood coagulation, skin, behavior/fatigue (including social exploration, submaximal exercise treadmill and spontaneous locomotor activity), heart functions, alterations in biological endpoints related to astronaut vision problems (lumbar puncture/intracranial pressure, ocular ultrasound and histopathology studies), and survival, as well as long-term effects such as cancer and cataract development. A number of different countermeasures have been identified that can potentially mitigate or prevent the adverse biological effects resulting from exposure to space radiation.
Collapse
Affiliation(s)
- Ann R Kennedy
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6072
| |
Collapse
|
97
|
Hirayama R, Matsumoto Y, Uzawa A, Kaneko Y, Koda K, Ozaki M, Yamashita K, Li H, Noguchi M, Shirai T, Furusawa Y. Indirect action to cell killing by SOBP carbon-ion beams. JOURNAL OF RADIATION RESEARCH 2014; 55:i133-i134. [PMCID: PMC3941534 DOI: 10.1093/jrr/rrt192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Purpose: The aim of this study was to clarify the cell survival in human salivary gland (HSG) cells under oxic condition after 290 MeV/nucleon carbon-ion beams and 200 kV X-rays. Moreover, we examined OH radical-mediated indirect actions from either SOBP carbon beams or photon beams on cellular lethality. Materials and methods: Cell culture: The HSG cells were grown in E-MEM (SIGMA) supplemented with 10% FBS and antibiotics under a humidified air with 5% CO2 at 37˚C. The cells were seeded into T25 cm2 flask (CORNING) at a concentration of 4 × 105 cells per flask for 48 h prior to irradiation. Irradiation and treatment with DMSO: Carbon ions (12C6+) were accelerated by the HIMAC synchrotron to 290 MeV/nucleon. Depths in the SOBP beams were selected using a PMMA range shifter (116.10 and 143.84 mmH2O at middle and distal-end of SOBP, respectively). X-ray irradiations were performed using an X-ray generator (Shimadzu, Pantac HF-320S) operating at 200 kV and 20 mA, with a filter of 0.5 mm aluminum and 0.5 mm copper. The flasks were filled with 5 ml of medium containing different concentrations of DMSO ranging from 0 to 1.0 M for 1 h prior to irradiation. Colony formation assay: After irradiation, the cells were seeded into triplicate 60-mm plastic dishes at a density of ∼100 living cells per dish and incubated for 14 days. The colonies were fixed with 10% formalin solution, stained with 1% methylene blue solution and colonies consisting of more than 50 cells were counted. The 10% survival level (D10 or LD90) was calculated from a dose–response curve fitted by an LQ equation. Calculation of the maximum protection by DMSO (DMSO method): The maximum degree of protection (DP), the concentration of DMSO that provides the maximum protection against cell killing, was calculated as well as our previous work [
1–
4]. Briefly, the maximum DP was calculated by an extrapolation of reciprocals of surviving fractions over those of DMSO concentrations. The DP was defined by the below equation, and regression curves were drawn in the plots of DP as a function of DMSO concentration.
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$${\rm DP}=\displaystyle{{{\rm ln(SF}_{\rm 0} {\rm )} - {\rm ln(SF}_x {\rm )}} \over {{\rm ln(SF}_{\rm 0} {\rm )}}}, $$\end{document}
where SF0 and SFx are surviving fractions at 0 and x M of DMSO concentrations, respectively. The DP is expressed as the increase in the surviving fraction in the presence of DMSO normalized by the surviving fraction in the absence of DMSO (Fig. 1). Regression lines were drawn in the graphs of the reciprocals of DP plotted against those of DMSO concentration. The maximum DP is the value at the point of intersection of the regression line at the infinite concentration of DMSO. Results: Colony forming assays were used to determine the surviving fractions of exponentially growing HSG cells at various doses of X-rays. The D10 value was 4.7. The D10 values for SOBP beam were 3.1 and 1.9 at middle and distal-end positions, respectively. The RBEs were 1.5 at middle and 2.5 at distal-end of SOBP. The contributions of indirect action to cell killing were 77% for X-rays, 80% at middle and 65% at distal-end of SOBP beam.
Effects of DMSO on the survival of HSG cells after exposure to X-rays or SOBP carbon beams. DPs were determined using Equation (1). The curves were fitted by the Michaelis–Menten kinetics. The error bars represent the standard errors. ![]() Summary: In this study, we could see the high contribution of indirect action to cell killing at the distal-end in SOBP carbon-ions, although RBE of 2.5 was shown. Clinical Trial Registration number if required. No.
Collapse
Affiliation(s)
- Ryoichi Hirayama
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Yoshitaka Matsumoto
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Akiko Uzawa
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Yumiko Kaneko
- International Open Laboratory, National Institute of Radiological Sciences (NIRS), Japan
| | - Kana Koda
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Masakuni Ozaki
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Kei Yamashita
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Huizi Li
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Miho Noguchi
- Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), Japan
| | - Toshiyuki Shirai
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Yoshiya Furusawa
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| |
Collapse
|
98
|
Ding N, Pei H, Hu W, He J, Li H, Wang J, Wang T, Zhou G. Cancer risk of high-charge and -energy ions and the biological effects of the induced secondary particles in space. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2014. [DOI: 10.1007/s12210-014-0288-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
99
|
Hu W, Pei H, Li H, Ding N, He J, Wang J, Furusawa Y, Hirayama R, Matsumoto Y, Liu C, Li Y, Kawata T, Zhou G. Effects of shielding on the induction of 53BP1 foci and micronuclei after Fe ion exposures. JOURNAL OF RADIATION RESEARCH 2014; 55:10-16. [PMID: 23728321 PMCID: PMC3885111 DOI: 10.1093/jrr/rrt078] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 04/25/2013] [Accepted: 04/29/2013] [Indexed: 06/02/2023]
Abstract
High atomic number and high-energy (HZE) particles in deep space are of low abundance but substantially contribute to the biological effects of space radiation. Shielding is so far the most effective way to partially protect astronauts from these highly penetrating particles. However, simulated calculations and measurements have predicted that secondary particles resulting from the shielding of cosmic rays produce a significant fraction of the total dose and dose equivalent. In this study, we investigated the biological effects of secondary radiation with two cell types, and with cells exposed in different phases of the cell cycle, by comparing the biological effects of a 200 MeV/u iron beam with a shielded beam in which the energy of the iron ion beam was decreased from 500 MeV/u to 200 MeV/u with PMMA, polyethylene (PE), or aluminum. We found that beam shielding resulted in increased induction of 53BP1 foci and micronuclei in a cell-type-dependent manner compared with the unshielded 200 MeV/u Fe ion beam. These findings provide experimental proof that the biological effects of secondary particles resulting from the interaction between HZE particles and shielding materials should be considered in shielding design.
Collapse
Affiliation(s)
- Wentao Hu
- Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hailong Pei
- Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - He Li
- Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China
| | - Nan Ding
- Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinpeng He
- Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jufang Wang
- Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China
| | - Yoshiya Furusawa
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba 263-555, Japan
| | - Ryoichi Hirayama
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba 263-555, Japan
| | - Yoshitaka Matsumoto
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba 263-555, Japan
| | - Cuihua Liu
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba 263-555, Japan
| | - Yinghui Li
- State Key Laboratory of Space Medical Fundamentation and Application Astronaut Center of China, Beijing 100094, China
| | - Tetsuya Kawata
- Department of Radiology, School of Medicine, Keio University, Tokyo, 160-8582, Japan
| | - Guangming Zhou
- Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China
| |
Collapse
|
100
|
Liu C, Kawata T, Zhou G, Furusawa Y, Kota R, Kumabe A, Sutani S, Fukada J, Mishima M, Shigematsu N, George K, Cucinotta F. Comparison of the repair of potentially lethal damage after low- and high-LET radiation exposure, assessed from the kinetics and fidelity of chromosome rejoining in normal human fibroblasts. JOURNAL OF RADIATION RESEARCH 2013; 54:989-997. [PMID: 23674607 PMCID: PMC3823769 DOI: 10.1093/jrr/rrt031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Revised: 03/09/2013] [Accepted: 03/12/2013] [Indexed: 06/02/2023]
Abstract
Potentially lethal damage (PLD) and its repair (PLDR) were studied in confluent human fibroblasts by analyzing the kinetics of chromosome break rejoining after X-ray or heavy-ion exposures. Cells were either held in the non-cycling G0 phase of the cell cycle for 12 h, or forced to proliferate immediately after irradiation. Fusion premature chromosome condensation (PCC) was combined with fluorescence in situ hybridization (FISH) to study chromosomal aberrations in interphase. The culture condition had no impact on the rejoining kinetics of PCC breaks during the 12 h after X-ray or heavy-ion irradiation. However, 12 h after X-ray and silicon irradiation, cycling cells had more chromosome exchanges than non-cycling cells. After 6 Gy X-rays, the yield of exchanges in cycling cells was 2.8 times higher than that in non-cycling cells, and after 2 Gy of 55 keV/μm silicon ions the yield of exchanges in cycling cells was twice that of non-cycling cells. In contrast, after exposure to 2 Gy 200-keV/μm or 440-keV/μm iron ions the yield of exchanges was similar in non-cycling and cycling cells. Since the majority of repair in G0/G1 occurs via the non-homologous end joining process (NHEJ), increased PLDR in X-ray and silicon-ion irradiated cells may result from improved cell cycle-specific rejoining fidelity through the NHEJ pathway, which is not the case in high-LET iron-ion irradiated cells.
Collapse
Affiliation(s)
- Cuihua Liu
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Tetsuya Kawata
- Department of Radiology, School of Medicine, Keio University, Tokyo, 160-8582, Japan
| | - Guangming Zhou
- Department of Space Radiobiology, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730-000, China
| | - Yoshiya Furusawa
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Ryuichi Kota
- Department of Radiology, School of Medicine, Keio University, Tokyo, 160-8582, Japan
| | - Atsuhiro Kumabe
- Department of Radiology, School of Medicine, Keio University, Tokyo, 160-8582, Japan
| | - Shinya Sutani
- Department of Radiology, School of Medicine, Keio University, Tokyo, 160-8582, Japan
| | - Junichi Fukada
- Department of Radiology, School of Medicine, Keio University, Tokyo, 160-8582, Japan
| | - Masayo Mishima
- Department of Radiology, School of Medicine, Keio University, Tokyo, 160-8582, Japan
| | - Naoyuki Shigematsu
- Department of Radiology, School of Medicine, Keio University, Tokyo, 160-8582, Japan
| | - Kerry George
- Wyle Integrated Science and Engineering Group, Houston, Texas, USA
| | - Francis Cucinotta
- NASA Johnson Space Center, Radiation Biophysics, Houston, Texas, USA
| |
Collapse
|